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Abstract

This thesis is devoted to the theoretical investigation of magnetic topological
insulator–superconductor heterostructures as a promising platform for realizing
topological superconductivity and zero-energy Majorana modes. We first review
the physics of three-dimensional topological insulators in the Bi2Se3 family and
discuss the possible two- and three-dimensional topological phases they can achieve
in the presence of a net magnetization. By including the effect of a mean-field
superconducting pairing induced via proximity to a conventional superconductor,
we analyze the emergence of two- and one-dimensional topological superconducting
regimes that support zero-energy Majorana states at their boundaries.

To identify experimental signatures of topological superconductivity, we study
electronic transport in a normal–superconductor–normal (NSN) junction on a mag-
netic topological insulator slab, where only the central region is proximitized. Solv-
ing the scattering problem within the Blonder–Tinkham–Klapwijk (BTK) formalism,
we compute reflection and transmission amplitudes across the junction for different
topological superconducting phases in the central sector, and extract the conduc-
tance signals associated with distinct Majorana modes. Particular emphasis is placed
on the conductance behavior under an asymmetrically distributed bias between the
left and right leads of the junction.

Finally, we adopt a perturbative approach to obtain the leading-order correc-
tion to the anomalous Green’s function, enabling us to evaluate the induced pairing
correlations in a thin film of magnetic topological insulator. By solving the equa-
tion of motion for the unperturbed system, we obtain a general expression for the
anomalous propagator and analyze a limiting case in which a closed-form analytical
solution is possible. The induced superconducting order parameter is subsequently
classified according to its spin and momentum symmetries, with particular emphasis
on the role of magnetization in shaping these properties.
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Resumen

Esta tesis está dedicada a la investigación teórica de heteroestructuras formadas
por aislantes topológicos magnéticos y superconductores, consideradas como una
plataforma prometedora para la realización de la superconductividad topológica y
de modos de Majorana de energía nula. En primer lugar, revisamos la física de los
aislantes topológicos tridimensionales de la familia Bi2Se3 y discutimos las posibles
fases topológicas bidimensionales y tridimensionales que pueden surgir en presencia
de una magnetización neta. Al incluir el efecto de un acoplamiento superconductor
de campo medio inducido por proximidad a un superconductor convencional, anali-
zamos la aparición de regímenes de superconductividad topológica unidimensional
y bidimensional que soportan estados de Majorana de energía nula en sus fronteras.

Con el fin de identificar marcas experimentales de la superconductividad topo-
lógica, estudiamos el transporte electrónico en una unión normal–superconductor–
normal (NSN) sobre una lámina de aislante topológico magnético, donde únicamente
la región central está proximizada. Resolviendo el problema de dispersión dentro del
formalismo de Blonder–Tinkham–Klapwijk (BTK), calculamos las amplitudes de re-
flexión y transmisión a través de la unión para distintas fases superconductoras
topológicas en la región central, y extraemos las señales de conductancia asociadas
a modos de Majorana distintos. Se presta especial atención al comportamiento de
la conductancia bajo un voltage distribuido asimétricamente entre los electrodos
izquierdo y derecho de la unión.

Finalmente, adoptamos un enfoque perturbativo para obtener la corrección de
primer orden de la función de Green anómala, lo que nos permite evaluar las corre-
laciones de apareamiento inducidas en una película delgada de aislante topológico
magnético. Al resolver la ecuación de movimiento para el sistema no perturbado,
obtenemos una expresión general para el propagador anómalo y analizamos un caso
límite en el que es posible una solución analítica en forma cerrada. El parámetro
de orden superconductor inducido se clasifica posteriormente de acuerdo con sus
simetrías en espín y momento, con especial énfasis en el papel de la magnetización
en la modificación de dichas propiedades.
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Resum

Aquesta tesi està dedicada a la investigació teòrica d’heteroestructures formades
per aïllants topològics magnètics i superconductors, considerades com una platafor-
ma prometedora per a la realització de la superconductivitat topològica i de modes de
Majorana d’energia nul·la. En primer lloc, revisem la física dels aïllants topològics
tridimensionals de la família Bi2Se3 i discutim les possibles fases topològiques bidi-
mensionals i tridimensionals que poden aparèixer en presència d’una magnetització
neta. En incloure l’efecte d’un acoblament superconductor de camp mitjà induït per
proximitat amb un superconductor convencional, analitzem l’aparició de règims de
superconductivitat topològica unidimensional i bidimensional que sustenten estats
de Majorana d’energia nul·la a les seves vores.

Amb l’objectiu d’identificar signatures experimentals de la superconductivitat
topològica, estudiem el transport electrònic en una unió normal–superconductor–
normal (NSN) sobre una làmina d’aïllant topològic magnètic, on només la regió
central està proximitzada. Resolent el problema de dispersió dins del formalisme de
Blonder–Tinkham–Klapwijk (BTK), calculem les amplituds de reflexió i transmissió
a través de la unió per a diferents fases superconductores topològiques en la regió
central, i en traiem els senyals de conductància associats a modes de Majorana
diferenciats. Es presta una atenció especial al comportament de la conductància
sota un biaix de potencial distribuït asimètricament entre els elèctrodes esquerre i
dret de la unió.

Finalment, adoptem un enfocament perturbatiu per obtenir la correcció de pri-
mer ordre de la funció de Green anòmala, cosa que ens permet avaluar les correlacions
d’aparellament induïdes en una pel·lícula prima d’aïllant topològic magnètic. En
resoldre l’equació de moviment per al sistema no pertorbat, obtenim una expressió
general per al propagador anòmal i analitzem un cas límit en què és possible una
solució analítica en forma tancada. El paràmetre d’ordre superconductor induït es
classifica posteriorment d’acord amb les seves simetries d’espín i moment, amb espe-
cial èmfasi en el paper de la magnetització en la modificació d’aquestes propietats.
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Zesummefaassung

An dëser Dissertatioun gi magnéitesch topologesch Isolator-Supraleedungs Hete-
rostrukturen theoretesch analyséiert. Dës Systemer stellen eng villverspriechend
Plattform duer, fir topologesch Superleedung an Nullenergie-Majorana-Zoustänn
z’erreechen. Als éischt gëtt d’Physik vun dräidimensionalen topologeschen Isolatoren
aus der Bi2Se3 -Famill ënnersicht, an et gëtt diskutéiert, wéi eng méiglech zwee- an
dräidimensional topologesch Phase si an der Präsenz vun enger Net-Magnetiséierung
unhuele kënnen. Duerch den Afloss vun enger mëttelwäerteger, duerch Proximitéit
induzéierter Supraleedungskopplung, entstinn zwee- an eendimensional topologesch
Supraleedungsregimer, déi Nullenergie-Majorana-Zoustänn un hire Grenzen hunn.

Fir experimentell Signature vun topologescher Supraleedung z’identifizéieren,
gëtt den elektroneschen Transport an enger normal–supraleedungs–normal (NSN)-
Jonctioun, op engem magnéiteschen topologeschen Isolator ënnersicht, wou nëmmen
déi mëttelst Regioun proximiséiert ass. Duerch d’Léisung vum Streeproblem am
Kader vum Blonder–Tinkham–Klapwijk (BTK)-Formalismus ginn d’Reflexiouns- an
Transmissiouns-Amplituden iwwer d’Jonctioun fir verschidden topologesch Supralee-
dungsphase berechent, an d’Leedungssignaler, déi mat ënnerschiddleche Majorana-
Zoustänn verbonne sinn, ginn extrahéiert. Besonnesch Opmierksamkeet gëtt dem
Verhale vun der Leedung ënnert enger asymmetresch verdeelter Spannung tëscht de
lénksen an de rietse Leedungen vun de Jonctioune geschenkt.

Zum Schluss gëtt eng perturbativ Approche ugeholl, fir d’Haaptuerdnungskorrek-
tur vun der anomaler green’scher Funktioun ze bestëmmen, wat et erméiglecht, déi
induzéiert Paarungskorrelatiounen an engem dënne Film vun engem magnéiteschen
topologeschen Isolator ze bewäerten. Duerch d’Léise vun der Beweegungsgläichung
fir deen ongestéierte System gëtt een allgemengen Ausdrock fir den ongewéinlechen
Propagator hiergeleet, an e Grenzfall analyséiert, an deem eng genau analytesch
Léisung méiglech ass. Déi induzéiert supraleedend Uerdnungsparameter ginn duerno
no hirer Spin- a Momentum-Symmetrie klassifizéiert, mat engem besonnesche Fokus
op d’Roll vun der Magnetiséierung beim Forme vun dëse Charakteristiken.
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Introduction

Symmetry and topology are two of the most important principles in physics, lying
at the very heart of our modern theoretical understanding of physical systems [1].
Symmetry refers to a transformation—such as a spatial translation, rotation, or
time reversal—under which a system remains invariant. The fundamental connec-
tion between symmetries and conservation laws was rigorously established by Emmy
Noether’s theorem, a cornerstone of twentieth-century mathematical physics [2, 3].
For each continuous symmetry of a physical system, there corresponds a conserved
quantity: translational invariance yields momentum conservation, rotational invari-
ance implies conservation of angular momentum, and time-translational invariance
leads to energy conservation [4, 5].

In contrast, topology classifies phases of matter based on global, quantized in-
variants that remain unchanged under smooth deformations of system parameters.
While traditional condensed matter phases are distinguished by symmetry breaking
and local order parameters, topologically nontrivial phases may share identical local
symmetries yet differ profoundly in their global properties [6–8]. This topological
framework has led to the discovery of exotic phases in insulators and superconductors
that are distinguished from the conventional ones by a nontrivial bulk band topol-
ogy. Moreover, due to the bulk–boundary correspondence, a topologically nontrivial
phase is characterized by the emergence of gapless states localized at the boundaries
of the system, giving rise to a variety of remarkable transport phenomena.

The first nontrivial insulating phase to be discovered was the integer quantum
Hall (QH) state, which occurs in two-dimensional electron systems under a strong
perpendicular magnetic field. In analogy with the classical Hall effect, electrons
whose motion is driven by an external electric field experience a transverse deflection,
resulting in a finite Hall conductance. However, unlike its classical counterpart, the
Hall conductance in the QH regime is quantized in integer multiples of e2/h with
an extraordinary precision of one part in 109, reflecting its topological origin [9–11].
Within the topological framework, the quantized conductance is related to a nonzero
topological invariant—the Chern number—and arises from the presence of gapless
chiral edge states, which carry current along the boundaries while the bulk remains
gapped and insulating [12, 13].

It did not take long for a generalization of the QH effect to emerge. Build-
ing on the same topological principles, the quantum anomalous Hall (QAH) effect
was predicted to arise without an external magnetic field, relying instead on in-
trinsic magnetic order to break time-reversal symmetry [14–16]. Subsequently, the
quantum spin Hall (QSH) state was proposed as its time-reversal-symmetric analog,
effectively comprising two QH systems—one per spin species—with equal and op-



2 Goal and Motivation

posite bulk invariants that overall preserve time-reversal symmetry. In this regime,
the chiral edge modes become helical, with electrons of opposite spin propagating in
opposite directions along the same edge [17–22]. Extending this paradigm to three
dimensions lead to three-dimensional topological insulators (TIs), where spin-filtered
one-dimensional channels are replaced by two-dimensional surface Dirac cones ex-
hibiting robust spin-momentum locking [23–26].

Since the topological classification applies to gapped phases, it naturally ex-
tends to superconductors where the energy spectrum of single quasiparticles is fully
gapped. In this context, one- and two-dimensional topological superconductors
(TSCs) have been predicted, attracting even more research interest [27]. Their
nontrivial bulk band topology enforces the emergence of gapless boundary modes
protected by intrinsic particle–hole symmetry, which at zero energy correspond to
Majorana quasiparticles—fermionic excitations that are their own antiparticles [28–
30]. These exotic states are particularly appealing in the context of topological
quantum computation, since the nonlocal encoding of qubits in Majorana modes
provides intrinsic protection against local perturbations and disorder [31–34].

In this landscape, topological insulators of the Bi2Se3 family have emerged as a
versatile platform for engineering a variety of symmetry‐protected topological phases,
owing to their time-reversal symmetry–protected surface states featuring Dirac‐like
dispersion and spin–momentum locking [35, 36]. When confined into a thin film
geometry, hybridization between the Dirac cones in the top and bottom surfaces
opens a gap in the energy spectrum, making the Dirac fermions massive [37]. If the
resulting gapped surface states retain a nontrivial band topology, the system realizes
an effective quantum spin Hall phase. In contrast, breaking time‐reversal symmetry
through magnetic doping can drive the system into the quantum anomalous Hall
regime [38–40].

Hybrid heterostructures composed of magnetically doped topological insulators
and conventional s-wave superconductors (SCs) can also realize different classes
of topological superconductors depending on symmetry and geometry [28–30]. In-
ducing superconducting correlations in the QAH regime provides a natural setting
for the chiral topological superconductor—the superconducting analog of the quan-
tum Hall state—characterized by chiral Majorana edge modes with linear, gapless
dispersion [41–44]. In contrast, when the system is confined into a narrow nanorib-
bon geometry such that the QAH edge states hybridize, the proximitized magnetic
topological insulator (MTI) is expected to realize a one-dimensional topological su-
perconductor, hosting localized Majorana bound states at its ends [45–47].

Goal and Motivation
In this thesis, we explore the interplay between magnetism, topology, and super-
conductivity in MTI–SC hybrid structures, where distinct forms of topological su-
perconductivity can emerge [41, 42, 45, 46]. The motivation for investigating the
physics of such hybrid systems is twofold, as proximitized MTIs lie at the crossroads
of fundamental research and technological innovation. From an applied perspec-
tive, they provide a solid-state environment in which Majorana quasiparticles can
be engineered and manipulated. These zero-energy modes exhibit non-Abelian ex-
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change statistics and allow quantum information to be encoded nonlocally in pairs
of Majorana states localized at different ends of a topological nanowire, ensuring
robustness against local perturbations and decoherence [31–34]. At the same time,
the coexistence and interplay of magnetism, topology, and superconductivity is in-
trinsically fascinating from a fundamental condensed matter viewpoint. It gives
rise to unconventional superconducting phases with exotic properties, such as chiral
superconductivity, anomalous Josephson effects, and topological phase transitions
with no analog in conventional materials [28, 30, 48, 49].

The main goal of this thesis is to develop a theoretical framework for understand-
ing and modeling proximitized MTIs, with the aim of supporting and complementing
ongoing experimental efforts. This objective is pursued along two complementary
directions. On the one hand, we perform numerical simulations of transport in
normal–superconductor–normal (NSN) junctions, aiming to characterize topological
superconducting phases that host Majorana modes through their electrical response,
and to identify experimentally accessible signatures of nontrivial topology. On the
other hand, we develop a second-quantized perturbative framework to describe the
proximity effect in a MTI thin film, which enables us to derive the induced super-
conducting order parameter with its full spin, momentum, and spatial structure,
and to analyze its dependence on magnetization, film thickness, and all the micro-
scopic parameters of the Hamiltonian. Together, these two approaches provide a
coherent picture of how superconductivity emerges in proximitized MTIs and how
its topological properties can be probed in realistic device geometries.

Structure of the Thesis
The thesis is structured as follows. In Part I, we present the theoretical foundations
of topology in condensed matter physics, with particular emphasis on the nontrivial
insulating states realized in compounds of the Bi2Se3 family. In Section 1.1, we re-
view the fundamental concepts of topological band theory for gapped Hamiltonians,
introducing the Chern number and the Z2 index as the invariants characterizing two-
dimensional systems with and without time-reversal symmetry, respectively. In Sec-
tion 1.1.3, we present the generalized classification of topological phases within the
framework of the “periodic table” of gapped systems, which systematically organizes
free-fermion Hamiltonians according to their symmetry class and spatial dimension.
In Section 1.2, we turn to the physics of three-dimensional TIs of the Bi2Se3 family,
which can host distinct topological phases both in extended three-dimensional sys-
tems and in confined lower-dimensional geometries. To describe them, we introduce
low-energy continuum Hamiltonians that serve as effective models for the three- and
two-dimensional cases, respectively.

In Chapter 2, we extend the first-quantized effective description to proximi-
tized MTIs, incorporating the mean-field induced pairing within the Bogoliubov–de
Gennes framework. In Section 2.2, we discuss the physics of a two-dimensional prox-
imitized MTI thin film, which can host the chiral topological SC phase characterized
by the emergence of linear, gapless Majorana modes propagating along the edges. In
Section 2.3, we examine the regime where the film width is reduced and the system
is confined to an effective one-dimensional nanowire. In this limit, a distinct TSC
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phase can be realized by tuning magnetization and chemical potential, giving rise
to localized zero-energy Majorana bound states at the ends of finite-length wires.

Part II is devoted to the study of transport in double NSN junctions composed
of normal (N) and proximitized (S) thin films of MTI. The transport problem is
formulated within the Landauer–Büttiker framework for phase-coherent transport in
multiterminal conductors. In Section 3.1, we derive the expression for the differential
conductance using the Blonder–Tinkham–Klapwijk formalism, which accounts for
Andreev reflection at the normal–superconductor interfaces. In Section 3.1.1, we
outline the complex band-structure approach employed to compute the scattering
amplitudes that characterize transport through the junction.

Two original results are presented in the following sections. In Section 3.2, we
investigate the conductance under asymmetric voltage drops applied on the two sides
of the junction, for a total bias below the surface gap of the proximitized MTI. We
show that in topological phases hosting Majorana modes, the conductance acquires
an antisymmetric profile as a function of the bias-splitting parameter, reflecting
equal scattering processes at the two interfaces. In Section 3.3, we discuss high-bias
transport signatures of the chiral TSC, in condition of symmetric bias splitting. We
identify a regime of large oscillations in the total differential conductance, arising
from the interference of co-propagating chiral modes associated with the emergence
of Majorana states.

In Part III, we develop a second-quantized framework to describe the induced su-
perconducting correlations in MTI–SC hybrid structures within the Green’s function
formalism, with the goal of obtaining explicit expressions for the induced pairing as
a function of the film thickness, the magnetization, and all the microscopic Hamilto-
nian parameters. In Chapter 4, we introduce the second-quantized Hamiltonian of
the MTI–SC heterostructure, together with the corresponding Green’s function for-
malism, which describes the propagation of single quasiparticles and Cooper pairs.
In Section 4.3, we derive the perturbative corrections to the normal and anomalous
Green’s functions in the magnetic topological insulator, treating the tunneling as a
perturbation on the unperturbed ground states of the decoupled materials.

In Chapter 5, we derive and solve the equations of motion for the unperturbed
Green’s functions of the two separated materials. We first consider the SC, where
the normal and anomalous propagators are coupled via the Gor’kov equations. We
then derive and solve the equation of motion for the normal MTI Green’s function
in real space, obtaining both a general solution—valid for arbitrary magnetization,
energy, and Hamiltonian parameters—and a closed-form analytical expression, valid
in the limit of vanishing in-plane momentum and restricted to the topological surface
states confined at the film interfaces.

Chapter 6 presents original results on induced superconductivity in thin films of
MTI compounds from the Bi2Se3 family. In Section 6.1, we begin by evaluating the
perturbative correction to the anomalous Green’s function in the magnetic topolog-
ical insulator, building on the results for the unperturbed propagators obtained in
Chapter 5. We analyze the effect of magnetization on the pairing amplitude and
the spatial profile of the induced SC correlations, deriving an explicit expression
for the decay length in an analytically tractable limit. In Section 6.2, we address
the spin symmetry of the induced order parameter, decomposing it into singlet and
triplet components, and showing that increasing magnetization enhances the weight
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of spin-polarized pairing channels, consistently with the polarization of the proxim-
itized surface states. In Section 6.3, we turn to the momentum-space structure of
the order parameter and connect it to the topology of the proximitized MTI thin
film. By projecting onto circular harmonics, we resolve the pairing components with
different in-plane angular momentum, and demonstrate that strong magnetization
drives the system into a chiral TSC phase with p-wave pairing.

Finally, the last chapter summarizes the main results of this work and presents
the conclusions of the thesis.



Part I

Topological Matter





Chapter 1

Topological Insulators

Overview

The concept of topology has become central to modern condensed matter physics,
providing a unifying framework to classify phases of matter beyond the conventional
paradigm of symmetry breaking. This perspective has not only deepened our theo-
retical understanding but has also led to the prediction and experimental realization
of novel materials with exotic transport properties. Among the most promising mate-
rials are three-dimensional topological insulators, which can host distinct nontrivial
states in both two- and three-dimensional geometries and are particularly significant
in view of their potential applications in future quantum technologies.

This chapter provides the theoretical background required for the thesis and is
structured as follows. In Section 1.1 we review the principles of topological band
theory, introducing the main topological invariants, and discussing the periodic ta-
ble of topological insulators and superconductors, which systematically classifies
all gapped free-fermion Hamiltonians based on symmetry constraints and spatial
dimensionality. In Section 1.2, we introduce the three-dimensional topological in-
sulators of the Bi2Se3 family, which play a central role in this thesis. We analyze
their topological features and the associated boundary states in effective three- and
two-dimensional geometries, presenting the minimal effective Hamiltonian models
that captures the low-energy physics of these materials.

1.1 Topological Band Theory

Topology is concerned with those properties of geometric objects that are invari-
ant under continuous deformations. These deformations, also known as topological
transformations or homeomorphisms, establish a one-to-one, continuous, and invert-
ible mapping between the points of two spaces [6, 7, 50]. Objects that are related
through such a transformation are said to be topologically equivalent and are char-
acterized by a discrete invariant, the genus, which counts the number of holes in a
three-dimensional shape as shown in Fig. 1.1.

The genus is defined through the Gauss–Bonnet theorem, which states that the
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1

Figure 1.1: Distinct topological surfaces characterized by a different value of the
topological invariant g, the genus. Adapted from [8].

integral of the Gaussian curvature K over the surface S of an object is quantized
1

2π

∫
S
K dA = n , (1.1)

where n ∈ N is an integer related to the genus through n = 2(1−g). The remarkable
implication of the Gauss–Bonnet theorem is that the genus is a global property that
cannot be changed by a local or smooth deformation, being independent of the local
curvature of the surface [51, 52].

The same conceptual framework extends naturally to condensed matter systems:
two gapped Hamiltonians describing insulating phases are topologically equivalent
if they can be continuously deformed one into each other without closing the energy
gap [23, 24]. In this context, distinct classes of Hamiltonians are characterized by
discrete topological invariants, in the same way as the genus classifies topologically
distinct surfaces in geometry. The quantization of the topological invariants under-
lies the phenomenon of the topological protection: as long as the bulk energy gap
remains open, continuous deformations of the Hamiltonian leave the topological in-
variant unchanged, and thus preserve the global physical properties of the system.
A change in the topological state can only occur via a quantum phase transition,
during which the energy gap closes and the topological invariant undergoes a dis-
continuous change [53, 54]. The topological classification framework allows for a
systematic distinction between qualitatively different quantum phases and their as-
sociated transitions, each characterized by different types of topological invariants
depending on the symmetries and dimensionality of a given system.

One of the most profound consequences of the topological classification of gapped
systems is the bulk–boundary correspondence, which asserts the existence of gap-
less boundary states at interfaces where the topological invariant changes [55–57].
Indeed, at the interfaces between distinct topological phases, the discrete change of
the invariant requires a local closing of the energy gap to smoothly interpolate be-
tween the two phases, in accordance with the classification of gapped Hamiltonians.
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Since the vacuum is topologically equivalent to a trivial insulator, the boundary of a
nontrivial topological phase must host such a transition, resulting in the emergence
of zero-energy states localized at the boundary. These modes are protected by the
same symmetries that enforce the nontrivial bulk topology and give rise to exotic
transport phenomena [58].

1.1.1 Chern Invariant
The Chern invariant is an integer-valued topological index that characterizes two-
dimensional systems with broken time–reversal symmetry (TRS) [59–61]. Consider
a Hamiltonian H that depends on time t through a set of parameters R(t) =
(R1(t), R2(t), . . . , RD(t)):

H(t) ≡ H[R(t)] , (1.2)
where R(t) is a vector in a D-dimensional parameter space, not necessarily related to
the spatial dimension of the physical system. For each R(t), we denote by |n(t)⟩ ≡
|n(R(t))⟩ the n-th orthonormal eigenstates of H(t):

H(t) |n(t)⟩ = εn(t) |n(t)⟩ . (1.3)

Suppose the Hamiltonian is slowly varied by changing R(t) adiabatically along a
path in parameter space. If the system is initially in the n-th eigenstate

|ψ(t = 0)⟩ = |n(t = 0)⟩ , (1.4)

then the adiabatic theorem ensures that the system will remain in the n-th eigenstate

|ψ(t)⟩ = Cn(t) |n(t)⟩ . (1.5)

Because the time evolution is unitary, the coefficient Cn(t) must be a pure phase
factor. Without loss of generality, we can write

Cn(t) = eiγn(t) exp
(

− i
ℏ

∫ t

0
dt′ εn(t′)

)
, (1.6)

where γn(t) is the so-called Berry phase [62]. Taking the time derivative of Equa-
tion (1.5)

d
dt

|ψ(t)⟩ = Ċn(t) |n(t)⟩ + Cn(t) d
dt

|n(t)⟩ , (1.7)

and inserting this into the time-dependent Schrödinger equation

iℏ d
dt

|ψ(t)⟩ = H(t) |ψ(t)⟩ = εn(t) |ψ(t)⟩ , (1.8)

we obtain
Ċn(t) |n(t)⟩ + Cn(t) d

dt
|n(t)⟩ = − i

ℏ
εn(t) |ψ(t)⟩ . (1.9)

Projecting the above equation onto ⟨n(t)| and taking the time-derivative of Equa-
tion (1.6) yields

d
dt
γn(t) = i ⟨n(t)| ∂

∂t
|n(t)⟩ . (1.10)
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The time dependence of the energy eigenstate |n(t)⟩ ≡ |n(R(t))⟩ is entirely
determined by time dependence of the parameters R(t)

d
dt

|n(R(t))⟩ =
∑

µ

∂ |n(R(t))⟩
∂Rµ

dRµ

dt
= ∇R |n(R)⟩ · Ṙ(t) , (1.11)

and therefore eq. (1.10) can be written as

d
dt
γn(t) = i ⟨n(R)| ∇R |n(R)⟩ · Ṙ(t) = An(R(t)) · Ṙ(t) , (1.12)

where we introduced the Berry connection as

An(R) = i ⟨n(R)| ∇R |n(R)⟩ . (1.13)

Integrating over time, yields the total geometric phase accumulated along a path C
in parameter space [59–62]

γn(t) =
∫ t

0
An[R(t′)] · Ṙ(t′) dt′ =

∫
C

An(R) · dR . (1.14)

In a three-dimensional parameter space, we can introduce the Berry curvature as

Ωn(R) = ∇R × An(R) , (1.15)

and for a closed path that forms the boundary of a surface S, the closed-path Berry
phase can thus be rewritten using Stokes’ theorem as

γn =
∫

∂S
An(R) · dR =

∫
S

dS · Ωn(R) . (1.16)

In crystalline solids, the relevant parameter space is the first Brillouin zone (BZ),
and in momentum space the Berry connection takes the following form

An(k) = i ⟨unk| ∇k |unk⟩ , (1.17)

where |unk⟩ is the periodic part of the Bloch wavefunction for the n-th energy state
with momentum k. The associated Berry curvature is then given by

Ωn(k) = ∇k × An(k) , (1.18)

and the Berry phase acquired by adiabatic transport around a closed loop C ≡ ∂S
in momentum space is

γn =
∮

∂S
An(k) · dk =

∫
S

dS · Ωn(k) . (1.19)

In two-dimensional gapped phases, the above equation motivates the definition of
the Chern number, which measures the flux of Berry curvature through the BZ [63]:

Cn = 1
2π

∫
BZ

dS · Ωn(k) . (1.20)
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Figure 1.2: Schematic illustration of the Berry connection in a two-dimensional
Brillouin zone for (a) a topologically trivial band with C = 0 and (b) a topologically
nontrivial band with C = 1.

A nonzero Chern number implies a winding or self-rotation in the structure of the
Berry connection in the Brillouin zone as illustrated in Fig. 1.2 for a two-dimensional
system. This winding reflects the nontrivial topology of the bulk and is associated
with a nonvanishing Chern number [8].

The physical meaning of the Chern number can be understood through the
analogy between the Berry curvature and a magnetic field, which emerges naturally
from the semiclassical dynamics of Bloch electrons. When a wave packet is formed
from states within a single energy band, its center-of-mass dynamics is governed by
the following semiclassical equations of motion [64]

ṙ = 1
ℏ

∇k εn(k) − k̇ × Ωn(k) , (1.21)

ℏk̇ = −eE − eṙ × B(r) , (1.22)

where εn(k) is the band dispersion, E is the electric field, and B is the magnetic field.
The first term ∇k εn(k) is the usual group velocity, while the second one k̇×Ωn(k) is
the Berry curvature correction, which acts like a Lorentz force in momentum space.
In the absence of a real-space magnetic field, Equation (1.22) reduces to ℏk̇ = −eE
and plugging it into Equation (1.21), we obtain [64]

ṙ = 1
ℏ

∇k εn(k) + e

ℏ
E × Ωn(k) , (1.23)

which reveals that the wave packet experiences an additional velocity that is orthog-
onal to both the electric field E and the local Berry curvature Ωn(k).

The analogy between the Berry curvature and a magnetic field becomes partic-
ularly relevant when considering transport phenomena in two-dimensional electron
systems. The total electric current is obtained by integrating the band velocity of
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the electrons in Equation (1.23) over all the occupied states. For a completely filled
state, the conventional group-velocity term vanishes upon integration over the BZ,
while the anomalous velocity results in a net transverse current that directly reflects
the nontrivial topology of the bulk bands [24, 55]

j = −e2

ℏ
∑

n ∈ occ

∫
BZ

d2k
(2π)2 E × Ωn(k) . (1.24)

This expression is related to a quantized transverse conductivity [14, 65]

σxy = e2

h
C , (1.25)

where C is the total Chern number obtained by summing the first Chern invariant
of all occupied bands

C =
∑

n ∈ occ
Cn . (1.26)

Equation (1.25) establishes a direct correspondence between the macroscopic trans-
port response and the topological properties of the Bloch wavefunctions defined over
the BZ. The transverse deflection of charge carriers under an applied electric field
thus closely resembles the classical Hall effect, with the Berry curvature playing the
role of an effective magnetic field in momentum space. Consequently, a system char-
acterized by a nonzero Chern number exhibits a quantized Hall conductance even
in the absence of an external magnetic field and is referred to as a Chern insulator
or integer QAH state [15, 55].

The quantization of the Hall conductance can also be understood within the
framework of topological band theory through the bulk–boundary correspondence.
At the interface between a Chern insulator and the vacuum—which is topologically
equivalent to a trivial insulator—gapless edge states necessarily emerge to interpo-
late between the two distinct topological phases that require a local closing of the
energy gap. Therefore, the Chern invariant counts the number of such chiral edge
modes present at the boundaries of the system [14, 15, 55]. In sufficiently wide sam-
ples, these edge states propagate unidirectionally along the edges and are immune
to elastic backscattering, as no counter-propagating states are available on the same
edge. As a result, they enable ballistic transport that is exceptionally robust against
disorder and imperfections, providing a natural explanation for the precise quanti-
zation of the transverse conductance. A sketch of the chiral edge state connecting
valence and bulk bands in a Chern insulator and the corresponding electron channel
in real space is shown in Figure 1.3.

1.1.2 The Z2 Topological Invariant
In time-reversal invariant systems, the Chern number identically vanishes due to
the antisymmetric nature of the Berry curvature under time-reversal transformation.
Therefore, the topological classification of band insulators in two dimensions requires
the introduction of a new topological invariant, known as the Z2 invariant, which
emerges naturally from the global structure of the occupied bands and generalizes
the concept of topology to time-reversal symmetric Hamiltonians [19, 22, 24].
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Figure 1.3: Bulk-boundary correspondence in the quantum Hall effect. Left: inter-
face between a trivial insulator and a Chern insulator with C = 1, hosting a chiral
edge mode. Right: sketch of the band structure with a single edge state connecting
valence and conduction bulk bands.

For spinful systems, TRS is represented by the antiunitary operator

T = iσy K , (1.27)

where K denotes complex conjugation and σy is the Pauli matrix acting in spin
space. For spin-1/2 particles, this operator satisfies T 2 = −1, a property that leads
to the fundamental constraint known as Kramers’ theorem: all eigenstates of a time-
reversal symmetric Hamiltonian must be at least twofold degenerate [66]. Indeed,
assuming the existence of a non-degenerate eigenstate |χ⟩, one would have

T |χ⟩ = c |χ⟩ , (1.28)

for some complex number c. Applying T once more yields

T 2 |χ⟩ = T (c |χ⟩) = c∗T |χ⟩ = |c|2 |χ⟩ . (1.29)

However, this contradicts the identity T 2 = −1, implying that |χ⟩ and T |χ⟩ must
be linearly independent and the eigenstates are thus degenerate.

In the absence of spin–orbit coupling (SOC), Kramers’ degeneracy reduces to the
trivial spin degeneracy between up and down states. In contrast, in the presence
of spin-orbit interactions, the degeneracy acquires a nontrivial character and has
important implications for the structure of the energy spectrum. In momentum
space, TRS imposes that [24, 55]

T H(k)T −1 = H(−k) . (1.30)

This implies that at the time–reversal invariant momenta (TRIM) in the Brillouin
zone where k and −k correspond to the same momentum state, the energy eigen-
states must appear in degenerate Kramers’ pairs due to time-reversal invariance.
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These high-symmetry points, which play a central role in the topological classifica-
tion of band structures, are commonly referred to as Kramers’ points. Although the
Chern number vanishes in the presence of TRS, two-dimensional systems can still
exhibit a distinct topological classification characterized by a Z2 invariant, which
takes the values ν = 0 or 1 [67]. The existence of these two topological classes can
be understood through the bulk-boundary correspondence.

Consider a one-dimensional edge of a two-dimensional time-reversal invariant
system. While the presence of edge-localized states generally depends on micro-
scopic details at the boundary, Kramers’ theorem ensures that any such states must
be twofold degenerate at the TRIM kx = 0 and kx = π/a in the one-dimensional
edge BZ. The topological nature of the system is determined by how the edge-state
branches connect between these two points. Specifically, the number of times the
edge bands cross the Fermi energy can be either even or odd. If the number of
Fermi-level crossings is even, the Hamiltonian can be smoothly deformed pushing
the edge states into the bulk without breaking TRS, indicating a topologically triv-
ial phase. In contrast, an odd number of crossings signals the presence of robust,
symmetry-protected edge modes that cannot be eliminated without closing the bulk
gap, thus characterizing a topologically nontrivial insulator. This distinction is cap-
tured by the bulk-boundary correspondence, which links the number NK of edge
states crossing the Fermi level to the change in the bulk Z2 invariant across the
interface [24, 55]:

NK = ∆ν mod 2 , (1.31)

meaning that for ν = 1 the system host a pair of helical edge states—two counter-
propagating modes related by TRS. A sketch of the helical edge states crossing the
bulk energy gap in a 2D system with ν = 1 is shown in Figure 1.4. Since the system
can be viewed as two copies of the QH state with opposite Chern numbers—one for
each spin species—the two-dimensional time-reversal invariant topological insulator
is referred to as a QSH insulator [17–19].

One formal definition of the Z2 invariant, analyzes the symmetry properties of
Bloch wavefunctions at the special TRIM [22, 24, 67, 68]. In particular, one can
introduce the so-called sewing matrix

wmn(k) = ⟨um(k)|T |un(−k)⟩ , (1.32)

which encodes how the occupied Bloch states |un(k)⟩ at momentum k are related
to those at −k under the action of the time-reversal operator T . At the TRIM
points Λi, where k = −k mod G, the sewing matrix becomes antisymmetric due
to Kramers’ degeneracy, and satisfies

wT (Λi) = −w(Λi) . (1.33)

This antisymmetry allows one to define the Pfaffian Pf[w(Λi)], whose square yields
the determinant of the matrix. The Z2 topological invariant ν can then be computed
as

(−1)ν =
∏

i

√
det[w(Λi)]
Pf[w(Λi)]

, (1.34)
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Figure 1.4: Bulk-boundary correspondence in the quantum spin Hall effect. Left:
interface between a trivial insulator and a QSH state with ν = 1, hosting a pair of
helical edge channels. Right: sketch of the band structure with a pair of counter-
propagating edge states connecting valence and conduction bulk bands.

where the product runs over all TRIMs in the Brillouin zone. The above definition
can be easily extended from two to three dimensions by considering all the TRIM
within the three-dimensional BZ.

The physical meaning of this formulation is that the sewing matrix encodes
the global structure of the occupied states under TRS. Although Kramers’ theo-
rem guarantees that the states come in degenerate pairs, it does not determine the
relative phases between the two partners. These phases therefore remain locally
unconstrained in momentum space. The distinction between a trivial and a topo-
logical time-reversal-invariant state lies precisely in whether one can determine the
relative phases between the Kramers pairs smoothly and globally across the BZ.
The sewing matrix defined in Equation (1.32) encodes exactly this information: its
antisymmetric form at the TRIMs reflects the Kramers constraint imposed by TRS,
while its Pfaffian provides a compact measure of whether the two Kramers states
can be consistently chosen without encountering a sign ambiguity. In this sense,
the gauge-invariant quantity in Equation (1.34) detects a topological obstruction in
the phase structure of the occupied bands: a product equal to −1 over all TRIMs
signals that a globally smooth, time-reversal-symmetric gauge cannot be defined,
corresponding to a nontrivial topological phase [24, 55].

1.1.3 Periodic Classification
The classification of topological phases in free-fermion systems is rooted in the in-
terplay between symmetry and geometry, and can be generalized in the so-called
periodic table of topological insulators and superconductors [69–71]. This frame-
work generalizes the notion of topological invariants to all spatial dimensions and
symmetry classes, providing a unified description of gapped topological phases. The
classification is based on the presence or absence of three fundamental discrete sym-
metries: time-reversal symmetry T , particle-hole symmetry P , and chiral symmetry
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defined as the combination S = T P . The algebraic properties of these symme-
try operators—specifically, whether they square to +1 or −1—determine in which
symmetry class a given system belongs to. There are ten distinct classes which
correspond directly to the Altland-Zirnbauer classification of random matrices [72]:
their topological properties across spatial dimensions are summarized in Table 1.1.

Symmetry Dimension d

T P S 1 2 3 4 5 6 7 8
A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

Table 1.1: Topological classification of gapped free-fermion systems according to the
Altland-Zirnbauer symmetry class and spatial dimension d. The first three columns
indicate the presence (±1) or absence (0) of time-reversal T , particle-hole P , and
chiral and S symmetries, respectively. Each entry shows the type of topological
invariant in that dimension: trivial (0), integer (Z), or binary (Z2).

Each symmetry class admits a topological classification in every spatial dimen-
sion d, characterized by an associated topological invariant taking values in Z, Z2,
or 0 (trivial). The integer QH effect arises in class A, which lacks both time-reversal
and particle-hole symmetry. In two dimensions d = 2, this class supports an integer-
valued topological invariant, corresponding to the Chern number introduced in Sec-
tion 1.1.1. In contrast, the QSH state belongs to class AII, defined by the absence of
particle-hole symmetry and the presence of time-reversal symmetry with T 2 = −1
for spinful electrons. In d = 2, this class admits a Z2 topological invariant that
distinguishes the QSH phase from a trivial insulator, as discussed in Section 1.1.2.
The same symmetry class also hosts three-dimensional topological insulators, which
can be viewed as the natural extension of the QSH phase to d = 3. In both two-
and three-dimensional cases, TRS protects the gapless helical edge or surface states,
rendering them robust against nonmagnetic disorder and perturbations.

TSCs also arise naturally within this classification framework [28, 30]: since the
single-particle excitation spectrum is gapped by the presence of superconducting
pairing, the topology of the bulk wavefunction can be classified analogously to that
of insulators, and is encompassed by the periodic table of topological phases. More-
over, since these systems are intrinsically particle-hole symmetric, the topological
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boundary modes predicted by the bulk-boundary correspondence take the form of
zero-energy Majorana quasiparticles—fermionic excitations that are their own an-
tiparticles [29, 73, 74]. Most notably, systems in class D, which is defined by the
presence of particle–hole symmetry (PHS) with P2 = 1 and the absence of both
time-reversal and chiral symmetries, can host topological superconducting phases.
In two dimensions (d = 2), this class supports an integer topological invariant Z,
analogous to the Chern number, which counts the number of chiral Majorana edge
modes propagating along the boundary. This realizes a chiral topological supercon-
ductor, which serves as the superconducting analogue of the quantum Hall state
[41, 42]. Instead, in one dimension (d = 1), class D admits a Z2 classification and
captures the physics of the Kitaev chain, where the nontrivial phase supports lo-
calized Majorana zero modes at the ends of the system [45, 46, 75, 76]. If TRS
is preserved, instead, the Hamiltonian falls into the symmetry class DIII and in
two dimensions (d = 2) it is characterized by a Z2 invariant. The corresponding
state is the superconducting counterpart of the QSH insulator and exhibit a pair
of counterpropagating helical edge states related by time-reversal symmetry [42, 77,
78].

Three-dimensional topological insulators of the Bi2Se3 family are the main focus
of the remainder of this chapter. These materials not only exhibit rich physical
properties arising from their nontrivial bulk topology, but also serve as a versatile
platform for engineering a variety of different topological phases. In particular, they
can host the QAH phase in effectively two-dimensional geometries with magnetic
doping, and give rise to one- and two-dimensional TSC states when brought into
proximity with conventional s-wave superconductors.

1.2 Three-dimensional Topological Insulators
The classification of gapped free-fermion systems according to their dimensionality
and fundamental symmetries discussed above provides a unifying framework for
understanding topological phases of matter. Among the most prominent examples
emerging from this periodic classification are the so-called three-dimensional TIs,
which constitute the natural generalization of the QSH state to d = 3. Through
the bulk-boundary correspondence, these systems are characterized by an insulating
bulk and gapless Dirac-cone shaped surface states with spin and momentum locked
to each other that generalize the QSH helical edge states in two-dimensions [23, 25,
35, 79].

According to Table 1.1, three-dimensional TIs belong to the symmetry class AII
and they are spinful systems characterized by TRS with T 2 = −1 and by the absence
of both PHS and chiral symmetry. In three dimensions, it is possible to define a set
of four Z2 indices (ν0; ν1ν2ν3). A strong topological insulator corresponds to ν0 = 1
and it is characterized by an odd number of Dirac cones states on any surface—
independently of the surface orientation—and it is robust against perturbations
that do not break TRS. In contrast, a weak topological insulator has ν0 = 0 but
at least one nonzero weak index νi = 1, and it can be viewed as a stack of two-
dimensional QSH layers. In this case, the presence of gapless surface states depends
on the surface orientation, and such states can be removed by perturbations that
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break translational symmetry, making weak TIs more sensitive to disorder than their
strong counterparts [15, 55, 79].

In the following, we focus on the properties of materials of the Bi2Se3 family—
namely bismuth selenide Bi2Se3, bismuth telluride Bi2Te3 and antimony telluride
Sb2Te3. These materials are strong topological insulators characterized by robust
surface states, consisting of a single Dirac cone at the high-symmetry point Γ in the
BZ, located inside a large bulk gap that exceeds the thermal energy scale at room
temperature [35, 36]. In recent years, they have attracted considerable attention,
both as a platform for exploring the fundamental properties of topological matter
and for their potential applications in areas ranging from spintronics to quantum
computing, owing to their robust metallic surface states capable of supporting bal-
listic transport.

1.2.1 Crystal Structure

The materials of the Bi2Se3 family crystallize in a rhombohedral structure with
space group R3̄m, which can also be described in the equivalent hexagonal setting
illustrated in Figure 1.5. The fundamental structural unit is the quintuple layer
(QL), composed of five atomic planes stacked along the crystallographic c axis in
the sequence Se1–Bi1–Se2–Bi1′–Se1′. Within a quintuple layer, adjacent atomic
planes are strongly bonded, while neighboring QLs are weakly coupled through
weak van der Waals bonding. Viewed along the z axis, the atoms in each layer form
a triangular lattice, with successive layers occupying distinct A, B, and C positions
in the hexagonal close-packed arrangement. This layered structure, combined with
the atomic properties of the constituent atoms, gives rise to strong SOC, which plays
a crucial role in the topological properties of the material [30, 35, 80, 81].

The bulk electronic structure of Bi2Se3 is characterized by a direct energy gap
located at the Γ = (0, 0, 0) point of the BZ. In the absence of SOC, the conduction
and valence bands are mainly derived from the pz orbitals of Bi and Se atoms, since
they are energetically favourable over the px,y ones due to the crystal-field splitting.
In the atomic limit, these orbitals possess a well-defined parity under spatial inver-
sion: states predominantly derived from Bi exhibit even (+) parity, whereas those
originating from Se exhibit odd (−) parity. Inclusion of strong spin-orbit coupling
mixes orbital and spin degrees of freedom of the strong SOC and induces a band
inversion at Γ, whereby the conduction-band minimum and valence-band maximum
exchange their parity character [35, 80]. This inversion is one of the hallmarks of
the topologically non-trivial phase and leads, via the bulk-boundary correspondence,
to the emergence of metallic surface states. First-principles calculations predict a
bulk gap of approximately 300 meV in Bi2Se3, significantly larger than the thermal
energy scale at room temperature kBT ≈ 26 meV, ensuring the robustness of the
surface states against thermal excitations. The BZ and the bulk energy bands of
Bi2Se3 are shown in Figure 1.6.

Assuming translational invariance in all spatial directions, the low-energy, long-
wavelength physics in the vicinity of the Γ point can be described by an effective
model constructed from the four relevant states with well-defined parity τ = ± and
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Figure 1.5: Crystal structure of Bi2Se3. (a) Side view of the rhombohedral unit cell,
highlighting a quintuple layer consisting of Se1–Bi1–Se2–Bi1′–Se1′. The primitive
lattice vectors t1, t2, and t3 are indicated. (b) Top view along the z axis, showing
the triangular lattice within a quintuple layer, with A, B, and C sites marked. (c)
Layer stacking sequence along the z direction. Adapted from Ref. [35].
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Figure 1.6: (a) Brillouin zone of Bi2Se3 in the hexagonal setting, indicating the high-
symmetry points Γ, Z, F , K and L, together with their projections Γ, K̄, M̄ onto
the (111) surface BZ. (b) First-principles bulk band structure along high-symmetry
directions. A direct gap is observed at the Γ point, where strong spin–orbit coupling
induces a band inversion between the conduction and valence bands. The dashed
horizontal line marks the Fermi level. Adapted from Ref. [35]

spin projection along the z axis σ =↑, ↓. These states form the basis{
|↑ +⟩ , |↑ −⟩ , |↓ +⟩ , |↓ −⟩

}
, (1.35)

which serves as the starting point for the k · p expansion and the construction of an
effective 4 × 4 Hamiltonian near the Γ = (0, 0, 0) point.

1.2.2 Three-Dimensional Bulk Model
The three-dimensional effective model for bulk TIs of the Bi2Se3 family can be
obtained by imposing the constraints dictated by the relevant symmetries of the
system. If a momentum-dependent Hamiltonian H(k) is invariant under a symmetry
operation g, it must satisfy [71, 82, 83]

D(g)−1 H (dg(k)) D(g) = H(k) , (1.36)

where dg(k) denotes the action of g in momentum space, and D(g) is its represen-
tation in the Hilbert space of the chosen basis states. The relevant symmetries for
the materials of the Bi2Se3 family follow from their rhombohedral crystal structure,
classified by the space group R3̄m. By excluding the lattice translations, one obtains
the associated point group D3d, containing the transformations that leave at least
one point fixed. This set of symmetry operations consists of [35, 79, 80]:

(i) time-reversal symmetry T , inherited from the non-magnetic character of the
crystal;

(ii) inversion symmetry I, with respect to the atomic plane containing the Se2
atoms;
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(iii) threefold rotation symmetry C3 about the z axis.

Together, these symmetries impose important constraints on the form of the low-
energy electronic Hamiltonian.

As already discussed in Equation (1.27), for spinful fermions TRS is represented
by the operator

T = iσyK , (1.37)
where σx,y,z are Pauli matrices in spin space and K is complex conjugation. Its
action on momentum is characterized by dT (k) = −k, and the symmetry constraint
in Equation (1.36) reads as

−iσy H
∗(−k) iσy = H(k) , (1.38)

ensuring Kramers’ degeneracy at all TRIMs in the Brillouin zone. Inversion sym-
metry acts only in orbital space, and it is represented as I = τz, where τx,y,z is a set
of Pauli matrices acting in orbital space. Under the action of I, the momentum is
inverted dT (k) = −k, such that Equation (1.36) becomes

τz H(−k) τz = H(k) , (1.39)

forcing the matrix elements that connect states of equal (opposite) parity to be
even (odd) in momentum space. The three-fold rotation C3 around the z axis is
represented by

C3 = ei π
3 σz , (1.40)

and it acts on momentum rotating the in-plane momentum components kx, ky by
2π/3 while leaving kz unchanged

dC3(k) = R3 k , where R3 =


−1

2

√
3

2 0

−
√

3
2 −1

2 0
0 0 1

 . (1.41)

The constraint in Equation (1.36) for the C3 rotational symmetry thus reads as

e−i π
3 σz H (dC3(k)) ei π

3 σz = H(k) , (1.42)

imposing the energy bands to be isotropic to leading order in the in-plane momen-
tum, and allowing only combinations of kx ± iky in the linear terms.

Up to second order in momentum, the most general Hamiltonian H(k) that satis-
fies the symmetry relations in Equations (1.38), (1.39) and (1.42), can be expressed
in the basis of states of Equation (1.35) as [84]

hTI(k) =


a+ b k2

∥ + c k2
z γ kz 0 β (kx − iky)

γ∗ kz a′ + b′ k2
∥ + c′ k2

z β (kx − iky) 0
0 β∗ (kx + iky) a+ b k2

∥ + c k2
z −γ∗ kz

β∗ (kx + iky) 0 −γ kz a′ + b′ k2
∥ + c′ k2

z

 ,

(1.43)
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where we defined the in-plane momentum as k2
∥ ≡ k2

x + k2
y. Let us define C0 ≡

(a + a′)/2, M0 ≡ (a − a′)/2, D1 ≡ (c + c′)/2, D2 ≡ (b + b′)/2, B1 ≡ −(c − c′)/2,
B2 ≡ −(b − b′)/2, A1 ≡ γ and A2 ≡ β with A1,2 assumed to be real. Then
Equation (1.43) takes the following form [35, 79, 80, 84]

hTI(k) = ε0(k) I4 +


M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)

 , (1.44)

where

ε0(k) ≡ C0 +D1k
2
z +D2k

2
∥ , M(k) ≡ M0 −B1k

2
z −B2k

2
∥ , (1.45)

and k± = kx ± iky. The Hamiltonian in Equation (1.44) constitutes the low-energy
effective model for three-dimensional TIs of the Bi2Se3 family expanded around the
Γ = (0, 0, 0) point and expressed in the basis of states of Equation (1.35). Using a
basis-independent notation, Equation (1.44) can finally be rewritten as

hTI(k) = ε0(k) + A(k)τx +M(k)τz , (1.46)

where we defined
A(k) ≡ A1kzσz + A2 (kxσx + kyσy) . (1.47)

The material parameters, extracted by fitting the energy spectrum of Equation (1.46)
to the ab initio band structures of the topological insulators of the Bi2Se3 family,
are listed in Table 1.2.

Bi2Se3 Bi2Te3 Sb2Te3

C0 [eV] −0.28 −0.014 0.10
D1 [eV Å2] 1.46 1.65 −6.48
D2 [eV Å2] 22.81 29.47 −4.26
A1 [eV Å] 1.94 0.55 1.69
A2 [eV Å] 4.33 4.40 3.89
M0 [eV] 0.30 0.26 0.21
B1 [eV Å2] 6.00 4.62 19.32
B2 [eV Å2] 70.38 72.80 63.91

Table 1.2: Fitted parameters of the low-energy effective Hamiltonian for Bi2Se3,
Bi2Te3 and Sb2Te3 taken from Ref. [81].

Physically, the parameter M0 is related to the k = 0 bulk gap and controls the
band inversion at the Γ point, B1,2 capture the effective masses of the conduction
and valence bands along kz and in-plane directions, respectively, and D1,2 describe
the particle-hole asymmetry in the energy spectrum via quadratic corrections. The
parameter A1 governs the linear coupling between opposite-parity states along kz,
and A2 describes the linear in-plane coupling, enforced by C3 rotational symmetry
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to appear in the combinations k±. The system described by Equation (1.46) is
an insulator for |D2| < |B2| and a topologically nontrivial phase, characterized by
the presence of surface states in the bulk gap, emerges when the band inversion
parameters B1,2 and the bulk gap M0 have the same sign M0 ·B1,2 > 0 [23, 79, 85].

The energy spectra for the various TI compounds of the Bi2Se3 family, obtained
by discretization of the Hamiltonian in Equation (1.46) on a finite lattice along the
z direction and imposing periodic boundary conditions along x and y, are presented
in Figure 1.7. For all parameter sets corresponding to the different materials under
consideration, the energy spectrum exhibit a pair of linear gapless modes traversing
the bulk gap and connecting valence and conduction bands. These modes correspond
to the topologically protected surface states, whose emergence in the nontrivial phase
is a direct consequence of the bulk–boundary correspondence. While the present
plots are obtained by fixing ky = 0, the energy dispersion calculated in the full
kx, ky plane would reveal the characteristic Dirac-cone shape of these topological
boundary modes.
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Figure 1.7: Energy spectra of (a) Bi2Se3, (b) Bi2Te3, and (c) Sb2Te3, obtained by
discretizing the Hamiltonian in Equation (1.46) on a finite lattice with thickness
d = 100 Å along the z direction, and periodic boundary conditions along x and y.
The energy bands are shown as a function of kx at fixed ky = 0, using the material
parameters listed in Table 1.2.

Magnetic Doping

While the materials of the Bi2Se3 family are intrinsically non-magnetic, a net mag-
netization can be induced by doping with magnetic elements such as chromium,
vanadium, or manganese. The resulting magnetically doped TI is referred to as a
magnetic topological insulator (MTI). Introducing such a spontaneous magnetiza-
tion in proximity to the surfaces of a topological insulator breaks the time-reversal
symmetry and substantially modifies the electronic structure, opening a gap in the
surface spectrum and making the Dirac electrons massive [37, 38, 84].

The effect of a net magnetization can be incorporated into the low-energy theory
through a Zeeman term of the form σ · Λ, where Λ = (Λx,Λy,Λz) is the magneti-
zation vector. In the following, we focus on the case of a MTI slab with in-plane
dimensions much larger than its out-of-plane thickness d, and we consider a uniform
magnetization oriented along the z axis. In this case, the three-dimensional slab of
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magnetic TI can be modeled as [38]

hMTI(k) = hTI(k) + Λσz =

= ε0(k) + A(k)τx +M(k)τz + Λσz .
(1.48)

The surface energy spectrum of Equation (1.48) near Γ for a slab with finite thickness
d = 100 Å along the out-of-plane direction z and periodic boundary conditions in
x and y is shown in Figure 1.8. The picture illustrates the difference between the
gapless spectrum obtained in the presence of TRS with Λ = 0 and the massive
Dirac-cone spectrum obtained for Λ = 50 meV.
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Figure 1.8: Surface state energy spectrum for Bi2Se3 plotted as a function of in-
plane momentum kx and ky near the Γ point. The bands are obtained by discretizing
the Hamiltonian in Equation (1.48) on a finite lattice with thickness d = 100 Å along
the z direction, and periodic boundary conditions along x and y, using the material
parameters listed in Table 1.2. Panel (a) shows a non-magnetic TI with Λ = 0, while
panel (b) depict a MTI with Λ = 50 meV.

The out-of-plane spin polarization of the surface states of the MTI is also influ-
enced by the presence of a finite magnetization. In the TRS-preserving case (Λ = 0),
the states near the Γ point are equal superpositions of σ =↑ and σ =↓ components.
When time-reversal symmetry is broken by a finite magnetization (Λ ̸= 0), however,
the states in the vicinity of the Dirac point acquire a net spin polarization, with
opposite orientations for the conduction and valence surface bands [81].

Owing to the presence of topologically protected surface states that can be read-
ily gapped by doping with magnetic elements, MTIs of the Bi2Se3 family have at-
tracted considerable interest and emerged as a versatile platform for engineering
other topological phases. First, when confined to two-dimensional geometries, a
robust QAH state can be realized via magnetic doping, even in the absence of an
external magnetic field [15, 39]. Second, when placed in proximity to a conventional
superconductor, TIs provide a promising route for realizing topological superconduc-
tivity and Majorana modes [39, 41, 45]. The remainder of this chapter is devoted to
the discussion of effective one- and two-dimensional models relevant to the descrip-
tion of magnetic topological insulators in confined geometries. Such effective models
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will be subsequently used to investigate transport and superconducting properties
in MTI-SC heterostructurs.

1.2.3 Two-Dimensional Surface Hamiltonian
We consider here a thin film of topological insulator, with finite thickness d along
the z direction and translational invariance in the in-plane directions x and y. In the
topologically nontrivial phase, gapless surface states appear at the two interfaces of
the system, located at z = 0 and z = d. The low-energy dynamics of these modes
can be captured by an effective two-dimensional Hamiltonian acting in the subspace
of the surface states.

To construct such a model, we start from the three-dimensional MTI model and
project it onto the subspace spanned by the two surface-localized eigenstates. The
Hamiltonian in Equation (1.46) can be conveniently decomposed as [84]

hTI(kx, ky, kz) = h0(kz) + h∥(kx, ky) , (1.49)

where the first term encodes the motion along z

h0(kz) = D1k
2
z +

(
M0 −B1k

2
z

)
τz + A1kzτxσz , (1.50)

and the second one contains the in-plane motion

h∥(kx, ky) = C0 +D2k
2
∥ −B2k

2
∥ τz + A2(kxσx + kyσy)τx . (1.51)

Assuming C0 = 0, which merely shifts the spectrum rigidly without affecting the
underlying physics, the in-plane contribution vanishes at the Γ point, where h∥ = 0.
At this high-symmetry point, the Hamiltonian therefore reduces to h0 alone. Re-
placing kz → −i∂z and imposing that the wavefunction vanishes at the boundaries
z = 0 and z = d, one finds that the spectrum contains four low-energy eigenvalues
well separated from the higher-energy states. Figure 1.9 shows the lowest eigen-
values En of the discretized energy spectrum of Equation (1.50), together with the
corresponding probability densities |ψn(z)|2.

Panel (a) illustrates that these four lowest eigenvalues are separated from the
higher-energy modes by an energy gap of approximately 300 meV, while panel (b)
shows that these modes are strongly localized near the two interfaces, since they cor-
respond to the gapless boundary states of the topological phase. For the thickness
considered here, the four lowest–energy modes exhibit identical probability–density
profiles. In thinner slabs, however, hybridization between the top and bottom sur-
faces lifts this degeneracy, leading to different spatial profiles. In the absence of
magnetization Λ = 0, time-reversal symmetry is preserved, and each mode is twofold
degenerate due to Kramers’ theorem. Without loss of generality, we denote their
energies as E±, and the corresponding eigenstates as φσ and χσ for σ =↑, ↓.

Projecting the full three-dimensional Hamiltonian onto the basis of low-energy
eigenstates of h0 {

|φ↑⟩ , |χ↓⟩ , |φ↓⟩ , |χ↑⟩
}
, (1.52)

we obtain a reduced model in the form of [35, 80, 84]

h̃2D(kx, ky) =

h+(kx, ky) 0
0 h∗

−(kx, ky)

 . (1.53)
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Figure 1.9: Discretized energy spectrum of Equation (1.50) computed using a
finite lattice of thickness d = 40 Å. Panel (a) presents the lowest-energy eigenvalues
near the Dirac point, while panel (b) shows the probability densities |ψn(z)|2 of the
corresponding eigenstates. Eigenvalues and their associated probability densities are
plotted using the same color. The plots were obtained using the material parameters
of Bi2Se3 listed in Table 1.2.

Here, h± are two-dimensional Dirac Hamiltonians given by

h±(kx, ky) ≡ −µ−Dk2
∥ + vF (kyσx − kxσy) +

(
m0 ± Λ +m1k

2
∥

)
σz , (1.54)

where vF is the Fermi velocity and the parameter D characterizes the particle-hole
asymmetry of the spectrum. The coefficients can be obtained from the material
parameters of the three-dimensional Hamiltonian through [84]

µ ≡ −E− + E+

2
− C0 ,

D ≡ B2

2
(⟨φ↑|τz|φ↑⟩ + ⟨χ↑|τz|χ↑⟩) −D2 ,

vF ≡ −iA2⟨φ↑|τx|χ↓⟩ ∈ R ,

m0 ≡ E− − E+

2
,

m1 ≡ −B2

2
(⟨φ↑|τz|φ↑⟩ − ⟨χ↑|τz|χ↑⟩) .

(1.55)

The values of the coefficients m0, m1, D, vF for a thin film of Bi2Se3 are listed in
Table 1.3 for several values of the film thickness d.

The eigenstates |φσ⟩ and |χσ⟩ can be further combined to construct states |t, σ⟩
and |b, σ⟩ localized near the top and bottom surfaces of the thin film respectively.
Explicitly, these states are given by

|t, σ⟩ = 1√
2

(|φσ⟩ + |χσ⟩) , |b, σ⟩ = 1√
2

(|φσ⟩ − |χσ⟩) . (1.56)

The probability-density profiles of the surface-localized states |t, σ⟩ and |b, σ⟩ are
shown in Figure 1.10 for a Bi2Se3 thin film of thickness d = 40 Å. The states are
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d [Å] m0 [eV] m1 [eV Å2] D [eV Å2] vF [eV Å]
20 0.069 45.48 −17.35 4.09
30 −0.020 19.81 −12.64 4.06
40 −0.011 −2.82 −12.05 4.06
50 −0.0075 −4.29 −12.29 4.06
60 0.0012 −0.59 −12.24 4.06
70 0.00026 0.51 −12.24 4.06

Table 1.3: Values of the coefficients m0, m1, D, vF for a TI slab (Λ = 0) with
thickness between two and seven QLs. Above seven quintuple layers, m0 and m1
have negligible magnitudes and D and vF become approximately constant. The
values of the coefficients are taken from Ref. [84].
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Figure 1.10: Probability density profiles |ψn(z)|2 for the surface-localized basis
states |t, σ⟩ and |b, σ⟩ obtained through Equation (1.56) for a Bi2Se3 thin film of
thickness d = 40 Å. The eigenstates are normalized such that

∫
dz |ψ(z)|2 = 1.

exponentially confined near the top (z = 0) and bottom (z = d) interfaces, with
localization lengths of approximately 10 Å.

In the basis of states {
|t, ↑⟩ , |t, ↓⟩ , |b, ↑⟩ , |b, ↓⟩

}
, (1.57)

where λ = t, b labels the top and bottom interfaces of the thin film and σ =↑, ↓ is
the electron spin, the Hamiltonian in Equation (1.53) takes the form [44, 84]

h2D(kx, ky) = −µ−Dk2
∥ + vF (kyσx − kxσy)λz + Λσz +m(kx, ky)λx , (1.58)

where m(kx, ky) = m0 + m1k
2
∥ and the Pauli matrices λx,y,z and σx,y,z act on the

top/bottom layer and spin degrees of freedom, respectively. The energy band struc-
ture of a Bi2Se3 thin film described by Equation (1.58) is shown in Figure 1.11, illus-
trating the effect of confinement and finite magnetization on the surface spectrum.
Here, we assumed an effective two-dimensional geometry with thickness d = 40 Å
along z and infinite translational invariance along the in-plane directions x and y.

The asymmetry in the dispersion of the surface states above and below the Dirac
point arises from a finite value of the parameter D, which accounts for electron–hole
asymmetry in the system [81]. The figure illustrates that, even in the absence of
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Figure 1.11: Energy dispersion of a Bi2Se3 thin film of thickness d = 40 Å along
kx with ky = 0 described by Equation (1.58). The surface energy spectrum in (a)
corresponds to a non-magnetic TI with Λ = 0, while that in (b) corresponds to a
MTI with Λ = 25 meV. Both were obtained with the Hamiltonian parameters listed
in Table 1.3.

magnetization, Λ = 0, the hybridization between top and bottom interfaces in a
very thin film opens a finite-size gap m0 in the surface energy spectrum, making the
Dirac electrons massive. Furthermore, the presence of a finite Zeeman term lifts the
degeneracy and opens a magnetic gap Λ [37, 38].

Quantum Anomalous Hall State

Omitting the particle–hole asymmetry termDk2
∥, the Hamiltonian in Equation (1.58)

is equivalent to the four-band Bernevig–Hughes–Zhang (BHZ) model for two-
dimensional QSH insulators, which has been shown to reproduce the behavior of
the bulk Hamiltonian in Equation (1.46) in the thin-film limit [20, 86, 87]. In the
absence of magnetic doping, it belongs to the unitary symmetry class AII, and its
topological phase is characterized by a binary Z2 index. Conversely, when Λ ̸= 0,
TRS is broken and the system falls into the symmetry class A, whose topological
properties are described by an integer-valued Chern number Z. Physically, this
implies that when a three-dimensional TI is confined to a two-dimensional slab
geometry, such that only the topological surface states at the top and bottom
interfaces remain, the effective 2D system can realize a trivial insulating phase, a
QAH state, or a QSH insulator [39, 81, 84]. The state of the system is determined
by the interplay between the surface gap m0 and the magnetization Λ.

Within the low-energy model, topological phase transitions occur when the effec-
tive gap m0 ± Λ changes sign. For Λ = 0, a sign reversal of m0—for instance, when
increasing the thickness from two to three quintuple layers (see Table 1.3)—marks
the transition from a trivial insulator to a QSH insulator [81, 87]. For the case of fi-
nite magnetization Λ ̸= 0, instead, the Chern number vanishes when 0 < |Λ| < |m0|,
indicating that the system is in a trivial phase. Conversely, a sufficiently strong
magnetic exchange term satisfying |Λ| > |m0| drives the system into a QAH phase
[38–40, 84]. The energy spectrum of Equation (1.58) discretized over a finite lattice
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with width Ly = 5µm along y and periodic boundary conditions along x is shown
in Figure 1.12.
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Figure 1.12: Energy spectrum of a thin film TI obtained by discretizing Equa-
tion (1.58) on a finite lattice with width Ly = 5µm along y and periodic boundary
conditions along x. Panel (a) displays the kx = 0 energy eigenvalues as a function
of magnetization Λ, highlighting the closing and reopening of the surface gap at
Λ = m0. Red (blue) indicates spin-up (spin-down) polarized states as obtained from
Equation (1.59). Panels (b)–(c) show the momentum-resolved spectrum near kx = 0
for a trivial insulator with Λ = 0.5 meV and for a QAH phase with Λ = 1.5 meV, re-
spectively. The remaining parameters were set to m0 = 1 meV, m1 = 0.001 meVµm2,
vF = 0.26 meVµm, and D = 0.

The figure illustrates the phase transition from a two-dimensional trivial insu-
lator to the QAH state. Panel (a) shows that when the magnetization becomes
sufficiently large to overcome the finite-size gap m0, the kx = 0 surface gap closes
and subsequently reopens, with the emergence of spin polarized zero-energy states
within the gap. These modes correspond to the topologically protected chiral edge
states which characterize the unconventional transport properties of a QAH insu-
lator and are responsible for the quantization of the transverse conductance. The
colors represent states with opposite spin polarization along the z axis, obtained
through the expectation value

⟨σz⟩ =
∫

dz ψ†(z)σz ψ(z) . (1.59)

The resulting spin polarization highlights that the order of valence and conduction
bands is reverted when the bulk gap reopens. Panel (b) depicts the energy spectrum
of a trivial insulator with C = 0, whereas panel (c) shows that of a QAH insulator
with C = 1, characterized by a pair of gapless boundary modes crossing the surface
gap, one per each edge of the system. The Chern number can be inferred via the
bulk-boundary correspondence by counting the number of gapless linear edge states
crossing the surface gap.

To illustrate that the gapless linear modes emerging within the surface gap in the
QAH phase are the topologically protected edge states whose existence is guaranteed
by the bulk-boundary correspondence, we discretize Equation (1.58) on a finite
lattice of width Ly = 1µm along y, imposing periodic boundary conditions along
x. The resulting discrete eigenvalues En of the lowest-energy states, together with
their corresponding probability densities Ψn(y), are shown in Figure 1.13.
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Figure 1.13: Discretized energy spectrum of Equation (1.58) obtained using a fi-
nite lattice of width Ly = 1µm along y and with periodic boundary conditions along
x. Panel (a) shows the lowest-energy eigenvalues at the Dirac point kx = 0, while
panel (b) displays the corresponding probability densities ψn(y). Eigenvalues and
their associated probability densities are plotted using the same color. The remain-
ing parameters were set to m0 = 1 meV, m1 = 0.001 meVµm2, vF = 0.26 meVµm,
µ = 0 and D = 0.

Owing to topological protection, the two lowest-energy states appear exactly at
zero energy and are localized near the system boundaries, with probability density
peaks around y = 0 and y = Ly. It can be seen from the figure that, for the chosen
parameters, they have a localization length of around ≈ 200 nm. In contrast, the
higher-energy states display a finite probability density across the entire transverse
section of the thin film and are therefore delocalized over the entire surface.

Summary
In this chapter, we developed the theoretical framework necessary to describe the
low-energy physics of topological insulators of the Bi2Se3 family. We first introduced
the main concepts of topological band theory, defining topological invariants such
as the Chern number and the Z2 index, which classify two-dimensional systems
according to the presence or absence of TRS. This formalism culminates in the
periodic table of topological phases, which provides a systematic classification of
gapped free-fermion Hamiltonians based on their symmetries and dimensionality.

We then turned to three-dimensional topological insulators of the Bi2Se3 family.
After presenting their lattice and bulk band structure within the 3D k · p Hamilto-
nian near the Γ point, we showed how Dirac-like surface states emerge at the system
boundaries as a consequence of the nontrivial topology. To capture the low-energy
dynamics in thin-film geometries, we derived an effective two-dimensional model de-
scribing surface states localized at the top and bottom interfaces of the film. Special
emphasis was placed on the role of magnetization, introduced via a Zeeman term,
which gaps out the surface spectrum and drives a two-dimensional system into a
QAH phase supporting chiral edge channels.

The effective Hamiltonians introduced in this chapter, namely Equations (1.46)
and (1.58), will serve as the foundation for the following chapters. They will be
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employed to model heterostructures formed by TIs and conventional superconduc-
tors, to analyze their transport properties, and to describe the induced pairing pro-
duced by proximity effect. In particular, when superconducting correlations are
induced in the chiral edge channels of a magnetically doped TI thin film, the result-
ing two-dimensional QAH insulator provides the starting point for the realization
of topological superconducting states, which are the focus of the next chapter.



Chapter 2

Topological Superconductivity

Overview

The topological band theory outlined in the first chapter applies to gapped Hamil-
tonians, encompassing both insulating and superconducting systems. While a vari-
ety of nontrivial insulating phases have been experimentally realized over the past
decades, topological superconductivity has so far remained elusive. A particularly
promising route toward engineering nontrivial SC states is represented by hybrid
heterostructures consisting of thin films of MTIs in proximity to conventional su-
perconductors. In such systems, the induced pairing can give rise to topological
superconducting phases in both one- and two-dimensional geometries.

The emergence of topological superconductivity and Majorana quasiparticles in
such hybrid systems is the focus of this chapter. In Section 2.1, we review the
Bogoliubov–de Gennes framework and, building on the previous chapter, we intro-
duce the proximitized Hamiltonians that describe induced pairing in three- and
two-dimensional MTIs. In Section 2.2, we discuss the emergence of two-dimensional
TSC states in thin films of proximitized topological insulators, characterized by
propagating Majorana modes along the edges. Finally, in Section 2.3, we focus on
effective one-dimensional MTI–SC nanowires, which can realize topological super-
conducting phases, that host zero-energy Majorana bound states localized at their
ends.

2.1 Bogoliubov de Gennes Framework

The general ideas of topological band theory discussed in Section 1.1 can be straight-
forwardly extended from insulating to superconducting systems, since both are char-
acterized by an energy gap for single particle excitations. In presence of translational
invariance, a superconducting system can be described by the Hamiltonian [88–91]

HSC = 1
2
∑

k
Ψ†

k hBdG(k) Ψk , (2.1)
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which is expressed in the Nambu basis of electron and hole states

Ψk =

 ψk(
ψ†

−k

)T

 . (2.2)

Here ψk denotes an n-component wavefunction in the single-particle basis describ-
ing the electron degrees of freedom, while ψ†

k corresponds to the hole parts, which
can be seen as the absence of an electron in the corresponding state. In the second
quantization formalism, ψk and ψ†

k are interpreted as annihilation and creation oper-
ators for electrons and holes, respectively. In this basis, the momentum-dependent
Hamiltonian hBdG(k) is given by [92, 93]

hBdG(k) =
(
h0(k) − µ ∆k

∆†
k −h∗

0(−k) + µ

)
, (2.3)

where h0 is the normal-state Hamiltonian describing the non-proximitized system,
and ∆k is the induced pairing. Equation (2.3) takes the name of Bogoliubov–de
Gennes (BdG) Hamiltonian, and for h0(k) = h∗

0(−k) it can be expressed as

hBdG(k) =
[
h0(k) − µ

]
γz + ∆r(k)γx − ∆i(k)γy , (2.4)

where γx,y,z are Pauli matrices acting in the Nambu space of electrons and hole, and
we decomposed the pairing as

∆k = ∆r(k) + i∆i(k) . (2.5)

In general, the BdG Hamiltonian can be diagonalized by introducing Bogoli-
ubov quasiparticle operators, which are linear combinations of electron and hole
ones [88, 92, 93]. An eigenstate Ψk,E of the superconducting BdG Hamiltonian in
Equation (2.3) with energy E

hBdG(k) Ψk,E = EΨk,E , (2.6)

can be expressed in the Nambu basis of Equation (2.2) as

Ψk,E =
[
uk,E

vk,E

]
, (2.7)

where uk,E and vk,E are complex amplitudes describing the electron and hole com-
ponents of the wave function, respectively. The corresponding Bogoliubov operator,
which creates a mixed electron–hole quasiparticle excitation in the superconducting
condensate, is defined as

Γk,E = u∗
k,E ψk + v∗

k,E ψ
†
−k . (2.8)

For any normal-state Hamiltonian h0, Equation (2.3) satisfies an intrinsic
particle–hole symmetry [69, 70, 94]

P hBdG(k) P−1 = −hBdG(−k), (2.9)
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where the particle–hole operator is defined as P = γx K and acts reversing the
quasiparticle momentum. In the absence of pairing, ∆k = 0, the Hamiltonian
trivially reduces to two copies of h0 corresponding to the electron and hole sectors,
which are related by PHS. A finite pairing ∆k ̸= 0 opens a gap in the band structure
and couples particle and hole states. Nevertheless, the spectrum remains symmetric
around zero energy. Indeed, applying Equation (2.9) to Equation (2.6) directly
yields

hBdG(−k) P Ψk,E = −E P Ψk,E , (2.10)

showing that every eigenstate at energy E and momentum k has a particle–hole
related partner

Ψ−k,−E = P Ψk,E, (2.11)

which is itself an eigenstate of the BdG Hamiltonian with energy −E and momentum
−k. Physically, the two states are redundant, and the corresponding Bogoliubov
operators satisfy [24]

Γk,E = Γ†
−k,−E , (2.12)

meaning that creating a quasiparticle at energy −E and momentum −k is equivalent
to removing one at energy E and momentum k. As an illustrative example of how
the energy spectrum evolves, Figure 2.1 displays the energy bands of a free-electron
model described by the normal-state Hamiltonian h0(k) = |k|2, together with the
spectra obtained by diagonalizing the corresponding BdG Hamiltonian hBdG(k) in
the absence and in the presence of superconducting pairing.
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Figure 2.1: Energy spectrum of a free-electron system with parabolic dispersion,
obtained from the normal-state Hamiltonian and from the corresponding BdG Hamil-
tonian in Equation (2.3). Panel (a)–(b) shows the normal-state spectrum obtained
from h0 and from the BdG Hamiltonian at ∆k = 0, respectively. Panel (c) displays
the Bogoliubov spectrum for a finite pairing amplitude ∆k ≡ ∆ ̸= 0, where an en-
ergy gap opens at the Fermi level coupling electron and hole branches. Red and blue
denote electron-like and hole-like states, respectively, while yellow indicates mixed
states.

From a topological perspective, the BdG Hamiltonian in Equation (2.3) can be
classified according to the periodic table discussed in Section 1.1.3, and, depending
on the underlying symmetries and dimensionality, may realize topologically nontriv-
ial phases. Due to the bulk–boundary correspondence, such phases are characterized
by gapless boundary excitations, which obey the constraint in Equation (2.12). At
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zero energy and particle–hole invariant momenta k = −k this reduces to [24]

Γ0 = Γ†
0 , (2.13)

implying that an unpaired topologically protected zero-energy modes localized on
one of the boundaries of the system realizes a quasiparticle excitation that is iden-
tical to its own antiparticle. Such zero-energy modes are therefore a realization of
Majorana particles in condensed-matter systems [29, 73, 74, 95, 96].

2.1.1 Effective Model for Proximitized MTIs
Different topological superconducting phases with Majorana modes on the bound-
aries can be realized in thin films of MTIs by inducing a finite pairing via proximity
to a conventional superconductor. Such hybrid systems are conveniently described
within a low-energy BdG framework, based on the effective models introduced in
Sections 1.2.2 and 1.2.3.

A three-dimensional proximitized MTI can be described within the BdG formal-
ism, starting from the normal-state Hamiltonian h3D introduced in Equation (1.48).
Within this framework, the general BdG Hamiltonian of Equation (2.3) takes the
explicit form [97, 98]

hBdG
3D (k) =

 h3D(k) i ∆σy

−i ∆∗σy −h∗
3D(−k)

 , (2.14)

which is expressed in the Nambu basis of Equation (2.2) and where ∆ denotes a
momentum-independent scalar pairing potential. An equivalent formulation can be
obtained by adopting an alternative Nambu basis, defined as [99]

Ψk =

 ψk

−iσy

(
ψ†

−k

)T

 , (2.15)

in which the hole components correspond to time-reversed electron operators.
Within this basis, the three-dimensional BdG Hamiltonian takes the form [99,
100]

hBdG
3D (k) =

h3D(k) ∆
∆∗ −σy h

∗
3D(−k)σy

 . (2.16)

For simplicity, we consider here a conventional s-wave spin-singlet pairing, that is
proportional to the identity in orbital space [98]. For generality, Equation (2.14)
can be expressed in terms of Pauli matrices as

hBdG
3D (k) =

[
ε0(k) +M(k)τz + Λσz + A2kyσy

]
γz

+ (A1kzσz + A2kxσx) γ0

− Re (∆) σyγy − Im (∆) σyγx ,

(2.17)

where σx,y,z act on the spin subspace, τx,y,z on the orbital (parity) sector, and γx,y,z on
the Nambu particle–hole space, with γ0 denoting the corresponding identity matrix.
The terms entering the Hamiltonian are defined in Equations (1.45) and (1.47).
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In a similar way, an induced pairing can be incorporated into the low-energy
model h2D introduced in Equation (1.58), which captures the physics of the topolog-
ical surface states on the top and bottom interfaces of an effective two-dimensional
MTI thin film. The corresponding BdG Hamiltonian, obtained from the general
expression in Equation (2.3), becomes [42, 44, 101, 102]

hBdG
2D (kx, ky) =

(
h2D(kx, ky) ∆

∆† −h∗
2D(−kx,−ky)

)
, ∆ =

∆1 0
0 ∆2

 iσy , (2.18)

where ∆1 and ∆2 are the pairing potential induced into the top and bottom surfaces
of the thin film, respectively. By defining ∆± ≡ 1

2(∆1 ±∆2), it is possible to express
Equation (2.18) in terms of Pauli matrices as

hBdG
2D (kx, ky) =

[
−(µ+Dk2

∥) +m(kx, ky)λx + Λσz

]
γz

+ vF (kyσxλzγ0 − kxσyλzγz)

− Re (∆+ + ∆−λz)σyγy − Im (∆+ + ∆−λz)σyγx ,

(2.19)

where σx,y,z act on the spin subspace, λx,y,z on the top/bottom layer subspace, and
γx,y,z on the Nambu space of particles and holes, with γ0 denoting the corresponding
identity matrix.

When TRS is broken by a finite magnetization Λ ̸= 0, the BdG Hamiltonians in
Equations (2.17) and (2.19) belong to symmetry class D [69, 70], featuring particle–
hole symmetry alone with P2 = +1. According to Table 1.1, in two dimensions
(d = 2), their bulk topology is characterized by an integer invariant, analogous
to the Chern number, which counts the chiral edge modes propagating along the
boundary of a finite system. This phase is the superconducting analog of the QH
state and is commonly referred to as a chiral topological superconductor [41, 42,
103].

Although the physical time-reversal symmetry is broken by the Zeeman coupling,
the Hamiltonians admit a time-reversal-like transformation that remains preserved
even in the presence of a finite magnetization. As a result, the system can be
also classified in terms of time-reversal-like, particle–hole, and chiral symmetries,
and falls within the BDI symmetry class [46, 69, 70]. Therefore, in one dimension
(d = 1), the corresponding band topology is characterized by an integer invariant
NBDI ∈ Z, which counts the number of zero-energy bound states localized at the wire
ends, identified as Majorana bound states (MBSs). In this sense, the proximitized
one-dimensional QAH state effectively realizes a 1D p-wave SC [76, 104, 105].

2.2 Chiral Topological Superconductor
We begin by discussing the physical properties of a two-dimensional proximitized
system described by the effective 2D Hamiltonian in Equation (2.19). Equivalent
results can also be derived from the three-dimensional model of Equation (2.17),
provided that the system thickness d along the out-of-plane z direction remains
much smaller than the in-plane dimensions Lx,y.
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For the special case µ = 0, D = 0, and ∆1 = −∆2 the Hamiltonian can be
rewritten as the sum of four independent massive Dirac Hamiltonians [84]

hBdG
2D (kx, ky) =

∑
η=±

∑
κ=±

χ†
k, ηκ hηκ(kx, ky)χk, ηκ , (2.20)

where
hηκ(kx, ky) = vF (kyσx − κkxσy) +mηκ(kx, ky)σz . (2.21)

The mass terms in each Dirac Hamiltonian have all the same general form

mηκ(kx, ky) = m0, ηκ +m1, ηκk
2
∥ (2.22)

where
m0, ηκ = κΛ + ηκm0 + |∆|, m1, ηκ = ηκm1. (2.23)

The topology of the Hamiltonian in Equation (2.20) is characterized by an integer
invariant N , which is the analogue of the Chern invariant in superconducting systems
and takes the name of BdG Chern number. Since the Hamiltonian is a sum of
independent massive Dirac Hamiltonians, the BdG Chern number can be computed
as the sum of the winding numbers Nηκ associated with each of the independent
Hamiltonians hηκ [84]:

N =
∑
η,κ

Nηκ . (2.24)

Topological phase transitions take place when the Chern invariant Nηκ associated
with one of the Dirac Hamiltonians changes its value, which occurs with the closing
of the energy gap 2m0, ηκ at the Γ point. Consequently, the corresponding phase
boundaries are determined by the condition

|∆| = ±
(
Λ ±m0

)
. (2.25)

The Chern number associated with each Hamiltonian hηκ(kx, ky) depends only
on the sign of the mass term: the system is in a trivial phase for m0, ηκ > 0, while a
negative mass m0, ηκ < 0 drives the system into a topological phase with Nηκ = ±1,
yielding the following condition for each Dirac Hamiltonian

|∆| ≤ −κΛ + ηκm0 . (2.26)

Taking into account that the Chern numbers Nηκ acquire opposite values for opposite
orientations of the magnetization, the full phase diagram can be easily determined
in the (Λ,∆) parameter space. The phase diagram a 2D proximitized MTI thin film
with m0 > 0, µ = 0, and ∆1 = −∆2 = ∆ is shown in Figure 2.2.

In the absence of induced pairing ∆ = 0, the system undergoes a phase transition
from the C = 0 trivial insulating phase to the C = ±1 quantum anomalous Hall
state when Λ = m0. Within the BdG formalism, this phase is characterized by
N = ±2 due to the doubling of degrees of freedom introduced by the Nambu
basis. For a finite pairing ∆ ̸= 0, this phase is adiabatically connected to a N =
±2 superconductor, which corresponds to a proximitized QAH state. Importantly,
however, in the presence of an induced pairing, the transition between the trivial
SC phase with N = 0 and the proximitized QAH phase with N = ±2 must always
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Figure 2.2: Phase diagram of the MTI-SC heterostructure as a function of mag-
netization Λ and induced pairing for µ = 0 and ∆1 = −∆2 = ∆. Different colors
indicate distinct topological phases characterized by different values of the BdG
Chern number N . The red lines mark the non-proximitized QAH phase at ∆ = 0,
while the blue dashed one indicates the helical TSC, analogous to a proximitized
QSH system. Adapted from Ref. [84].

pass through an intermediate region in which the system realizes a chiral TSC with
N = ±1. It is worth stressing that the N = 1 phase emerges only when the
induced pairing amplitudes at the top and bottom surfaces are unequal, ∆1 ̸= ∆2.
In contrast, if the superconducting proximity effect is symmetric on both interfaces,
the system undergoes a direct transition between the trivial phase (N = 0) and the
N = 2 superconductor [41, 42, 84].

2.2.1 Majorana Chiral Propagating States
An intuitive picture of the emergence of the chiral TSC phase near the transition
between the QAH and the normal insulator can be obtained by considering the evo-
lution of the edge states. According to the bulk–boundary correspondence, the BdG
Chern number N in a superconductor equals the number of gapless zero-energy
edge modes which cross the bulk energy gap and connect valence and conduction
bands in a two-dimensional system with finite width [24]. The energy spectra of
a proximitized MTI thin film in the different TSC phases with N = 0, 1, 2 corre-
sponding to different sectors of the above phase diagram are shown in Figure 2.3.
The energy bands are obtained by discretizing Equation (2.19) on a finite lattice of
width Ly = 1µm along the y direction and with periodic boundary conditions along
x.

The energy eigenvalues at kx = 0 are displayed in panel (a) as a function of the
magnetization Λ and for chemical potential µ = 0. The colors distinguish electron
and hole states, quantified by the expectation value

⟨γz⟩ =
∫

dyΨ†
kx

(y) γz Ψkx(y) , (2.27)
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Figure 2.3: Energy spectrum of a proximitized MTI thin film, obtained by dis-
cretizing Equation (2.19) on a finite lattice of width Ly = 1µm along the y direction
and with periodic boundary conditions along x. (a) Lowest-energy spectrum at
kx = 0 as a function of the magnetization Λ. Panels (b)–(d) show the corresponding
band dispersions at the representative values of Λ marked by the dashed lines in
panel (a): (b) N = 0 trivial superconductor at Λ = 0.5 meV, (c) N = 1 chiral
TSC at Λ = 2 meV, and (d) N = 2 proximitized QAH state at Λ = 4 meV. The
Hamiltonian parameters are m0 = 1 meV, m1 = 0.001 meVµm2, vF = 0.26 meVµm,
µ = 0, D = 0, and we assumed an induced pairing ∆1 = 1.5 meV and ∆2 = 0. Red
and blue colors denote electron- and hole-like states, respectively, as obtained from
Equation (2.27).

whereas black corresponds to states with an equal mixture of electron and hole
components. For the chosen parameters, the gap closes around Λ ≈ 1.5 meV and Λ ≈
3 meV, where the topological phase transitions occur with the emergence of linear
gapless edge states within the surface gap. Panel (b) shows the energy spectrum
of a trivial SC phase with N = 0, characterized by a finite energy gap at the Γ
point. Increasing the magnetization drives the system into the N = 1 chiral TSC
depicted in panel (c), which hosts a gapless boundary mode on each edge. At zero
energy, due to particle–hole symmetry, this single edge state satisfies the Majorana
condition in Equation (2.13) and is therefore called a Majorana chiral propagating
state (MCPS) [41–43, 84]. A further increase of the magnetization leads the system
into the N = 2 TSC shown in panel (d), characterized by a pair of particle–hole
symmetric edge states on each boundary. This phase is the superconducting analog
of a QAH insulator [41], to which it is adiabatically connected in the limit ∆ =
0. The edge localization of the low-energy states is illustrated by the transverse
probability density profiles |ψn(y)|2 of the corresponding eigenstates, which is shown
Figure 2.4 for the four lowest-energy eigenstates at kx = 0 in the three representative
cases under consideration.
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Figure 2.4: Transverse probability density profiles |ψn(y)|2 for the first four eigen-
states of Equation (2.19) at kx = 0, discretized on a finite lattice of width Ly = 1 µm
and periodic boundary conditions along x. The three panels correspond to the three
different topological superconducting phases with (a) Λ = 0.5 meV, (b) Λ = 2 meV,
and (c) Λ = 4 meV, whose energy spectrum is shown in Figure 2.3. At large mag-
netizatization blue (red) states are localized at the right (left) edge. The induced
pairing and all other Hamiltonian parameters are chosen consistently.

In the N = 0 trivial SC phase shown in panel (a), the four lowest-energy states
are delocalized over the entire transverse section of the MTI thin film. Increasing
the magnetization progressively pushes the two lowest-energy eigenstates toward the
boundaries of the system, until they fully separate from the bulk continuum once
the system enters the N = 1 chiral TSC phase. In this regime, the probability
density is localized at the edges y = 0 and y = Ly, and decays exponentially in the
bulk, as illustrated in panel (b). A further increase of the magnetization drives two
additional states toward the boundaries, until the system transitions to the N = 2
phase shown in panel (c), where a pair of particle–hole symmetric edge states is
localized on each side of the system.

2.3 1D Topological Superconductor
When a two-dimensional MTI thin film in the topological QAH phase is confined to a
narrow geometry, the edge states localized on opposite boundaries strongly hybridize.
In this regime—that we refer to as effective or quasi–one–dimensional limit—the Hall
conductance ceases to be quantized, as the strong coupling between edge modes
on opposite sides allows for electron backscattering, making the transport diffusive
rather than ballistic in the presence of disorder. Nevertheless, when such a system is
placed in proximity to a conventional s-wave superconductor, it can be driven into a
1D topological superconducting phase that supports MBSs at the wire ends [45–47,
84, 106, 107]. Indeed, when the width of the QAH system is comparable to the
localization length of the edge states, the two chiral edge modes hybridize forming a
single helical conducting channel. Inducing superconductivity in this helical channel,
it is possible to realize an effective p-wave SC, whose physics is analogue to that of
a proximitized Rashba semiconductor nanowire [76, 104, 105].

The topological properties of the system can be understood by analyzing the
symmetry of the Hamiltonian within the framework of the classification scheme
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introduced in Section 1.1.3. A quasi–one–dimensional nanoribbon of proximitized
MTI can be described by the two-dimensional BdG Hamiltonian in Equation (2.19)
discretized on a narrow transverse lattice along y with a width Ly comparable to
the localization length of the QAH edge states. Following the procedure described
in Appendix A.1, the Hamiltonian can be rewritten as

h̃BdG
2D (kx) =

∑
ny

Ψ†
kx,ny

[
h0 Ψkx,ny + h+ Ψkx,ny+1 + h− Ψkx,ny−1

]
(2.28)

where

Ψkx,ny =

 ψkx,ny(
ψ†

−kx,ny

)T

 , (2.29)

is the Nambu basis introduced in Equation (2.2) and ny is a discrete index labeling
the Ny sites of the one-dimensional transverse lattice. The on-site energy is given
by

h0 =
[
−
(
µ+D k̃2

x

)
+
(
m0 +m1 k̃

2
x

)
λx + Λσz

]
γz − vFkxσyλzγz

− Re (∆+ + ∆−λz)σyγy − Im (∆+ + ∆−λz)σyγx ,
(2.30)

while the hopping energies are defined as

h± = 1
a2 (D −m1λx) γz ∓ ivF

2a
σzλz , (2.31)

where a is the lattice spacing and k̃2
x ≡ k2

x + 2/a2.
While the physical time-reversal symmetry in Equation (1.27) is explicitly broken

by the magnetization term Λσz, the discretized Hamiltonian in Equation (2.28) still
exhibits a time-reversal-like symmetry [46]. This antiunitary transformation is given
by

T ′ = UK , T ′2 = +1 , (2.32)
where the operator U reverses the sites on the discrete lattice, and can be represented
in real space as the Ny ×Ny anti–diagonal matrix

Uij = δ i+j, Ny+1 , (2.33)

which exchanges site j with its mirror partner Ny + 1 − j. The time-reversal-like
symmetry in Equation (2.32) imposes the following condition on the Hamiltonian

T ′−1 h̃BdG
2D (−kx) T ′ = h̃BdG

2D (kx) . (2.34)

By construction, the discretized BdG Hamiltonian h̃BdG
2D possesses the intrinsic

particle–hole symmetry P introduced in Equation (2.9). Together with the time-
reversal-like symmetry T ′, this gives rise to a unitary chiral symmetry,

S = T ′ P = γxσz , S2 = +1 , (2.35)

under which the Hamiltonian satisfies

S−1 h̃BdG
2D (kx) S = −h̃BdG

2D (kx) . (2.36)
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The simultaneous presence of time-reversal-like, particle–hole, and chiral symme-
tries, together with their squared properties, places the discretized Hamiltonian in
Equation (2.28) in the BDI symmetry class of the periodic classification introduced
in Table 1.1. Therefore, in an effective one-dimensional system (d = 1), the band
topology of the Hamiltonian is characterized by an integer invariant NBDI ∈ Z,
which counts the number of zero-energy MBSs localized at the ends of the nanowire
[46, 69, 70].

With respect to the physical time-reversal symmetry, which is broken by the Zee-
man coupling, the Hamiltonian belongs to the symmetry class D. In one dimension,
this class is characterized by a Z2 topological invariant ν, which encodes the parity
of the MBSs localized at the ends of the proximitized nanowire [45, 70, 71]. The
topological invariant of the symmetry class D can be obtained from the integer in-
variant NBDI of the symmetry class BDI through the relation ν = (−1)NBDI , meaning
that only the parity of the number of Majorana zero modes remains topologically
protected once the time-reversal symmetry is broken [69, 108].

The value of the topological invariant NBDI in the proximitized system is related
to the number of energy bands crossing the Fermi energy in the non-proximitized
case. In the effective 1D system, each subband that crosses the Fermi energy con-
stitutes an available one-dimensional conducting helical channel. In the presence
of induced pairing, each of these channels realizes an effective p-wave SC and host
a Majorana zero mode at the wire ends. The BDI invariant NBDI precisely counts
the number of such Majorana modes protected by the combined particle–hole and
chiral symmetries [46, 106]. The phase diagram in the (Λ, µ) parameter space for a
proximitized quasi–one–dimensional nanowire is shown in Figure 2.5. The different
regions were identified by discretizing the Hamiltonian in Equation (2.19) on a finite
lattice along the y direction and periodic boundary conditions along x, and counting
the number of bands crossing the Fermi level in the normal state.

For vanishing magnetization (Λ = 0), the Hamiltonian retains the physical time-
reversal symmetry of Equation (1.27), which enforces the twofold Kramers degener-
acy. In this regime the Fermi level can intersect only an even number of subbands.
A finite Zeeman field Λ lifts the degeneracy and splits each band into two distinct
branches, so that the Fermi energy may cross an odd number of subbands. When-
ever n subbands are partially filled, the system realizes a phase with NBDI = n,
which support n zero-energy MBSs at each end of the nanowire, protected by the
coexistence of particle–hole and chiral symmetries. It should be emphasized that
in the presence of disorder the chiral symmetry is broken, and the MBSs are pro-
tected by PHS alone. Under these conditions, two Majorana modes localized at the
same end of the nanowire hybridize into a trivial fermionic state, meaning that only
phases with an odd value of NBDI remain topologically nontrivial [47, 98, 106, 109].

2.3.1 Majorana Bound States
An intuitive connection between the topological invariant NBDI and the number n of
subbands intersecting the Fermi level in the normal state, can be gained by examin-
ing how the energy spectrum of a quasi–one–dimensional QAH system evolves under
the effect of magnetization and proximity-induced pairing. The energy spectrum of
an effective one-dimensional MTI described by Equation (1.58) and Equation (2.19)
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Figure 2.5: Phase diagram of the quasi–one–dimensional MTI in the presence of
proximity-induced superconducting pairing. The topological invariant NBDI corre-
sponds to the number of subbands crossing the Fermi level in the non-proximitized
limit. The diagram is obtained by discretizing the normal-state Hamiltonian of Equa-
tion (1.58) on a finite lattice of width Ly = 300 nm and by counting the number of
bands at zero energy. The other parameters are m0 = 1 meV, m1 = 0.001 meVµm2,
vF = 0.26 meVµm, and D = 0.

in the absence and presence of SC induced pairing, respectively, is shown in Fig-
ure 2.6.

The spectra are obtained by discretization of the Hamiltonians in Equa-
tions (1.58) and (2.19) on a finite lattice along y and imposing periodic boundary
conditions along x. We assume a width Ly = 300 nm, comparable to the localization
length of the edge states in the QAH phase. Panel (a) shows the energy spectrum
of the MTI nanowire in the trivial insulating regime, characterized by a trivial gap
at kx = 0 with Λ < m0. Upon increasing the magnetization, the system enters the
QAH phase shown in panel (b) for Λ > m0. Due to the confinement in a narrow
geometry, the chiral edge channels strongly hybridize, resulting in the opening of a
finite gap in the edge states.

Panel (c) shows the same spectrum obtained within the BdG framework with
∆ = 0 and µ = 2 meV. The energy bands are doubled in electron (red branches)
and hole (blue branches) states due to the degeneracy of the Nambu basis: in the
presence of finite chemical potential, the former are shifted upward, while the latter
downward. Introducing a finite pairing ∆ ̸= 0 opens a superconducting gap around
E = 0, and the nontrivial topology of the system is highlighted by a band inversion
at kx = 0, where the normal order of electron and hole branches is reversed.

It is worth emphasizing that the realization of a one-dimensional TSC does not
strictly require starting from a MTI thin film in the QAH phase. If the system is in
the trivial insulating regime, the low-energy states correspond to surface states delo-
calized across the entire transverse section rather than chiral edge-localized modes
[47, 98, 106]. Nevertheless, in a quasi–one–dimensional geometry, these states still
combine into a helical conducting channel, which, upon proximity coupling to a su-
perconductor, gives rise to an effective p-wave SC supporting zero-energy MBSs at
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Figure 2.6: Evolution of the spectrum of a MTI nanoribbon with magnetization
and induced pairing. The band structure is obtained by discretizing the Hamiltonian
in Equation (2.19) on an effective one-dimensional geometry of width Ly = 300 nm,
with periodic boundary conditions along the x direction. Panels (a) and (b) show
the electron states of the spectrum of a non-proximitized system with µ = 0, and
for Λ = 0 and Λ = 2 meV, respectively. Panel (c) illustrates the full BdG spectrum
of the MTI nanoribbon with Λ = 2 meV and µ = 2 meV. Panel (d) displays the
effect of an induced pairing with ∆1 = 1 meV and ∆2 = 0. The model parameters
are m0 = 1 meV, m1 = 0.001 meVµm2, vF = 0.26 meVµm, and D = 0. Red
and blue colors denote electron- and hole-like states, respectively, as obtained from
Equation (2.27).

the wire ends [76, 104, 105]. Figure 2.7 compares the spectra of a non-proximitized
MTI nanowire in the trivial and QAH regimes, both in the regime where a single
band crosses the Fermi level. The green shaded region highlights the energy window
where the normal-state system hosts a single Fermi crossing.

Despite both cases lead to a NBDI = 1 topological SC state with unpaired MBSs
localized at the ends of the effective 1D nanowire, the QAH phase provides a more
favorable platform for engineering robust topological superconductivity [46, 106]. In
panel (a), the MTI is in a trivial insulating phase, and the two lowest bands lie close
in energy, resulting in a narrow range of chemical potentials where the proximity
effect yields a NBDI = 1 phase. By contrast, in panel (b) the system is in the QAH
state, and the lowest band, corresponding to the topological chiral edge channel, is
well separated from the second-lowest one originating from the discretization of the
surface Dirac cones on a lattice with finite width. The energy gap at kx = 0 in the
edge dispersion arises from the strong hybridization of the chiral edge modes in the
quasi–one–dimensional limit. As a result, the topological region corresponding to
NBDI = 1 is significantly broader, making it more robust against fluctuations in the
chemical potential [47, 98, 106]. Reducing the system width increases the transverse
confinement, pushing the surface states to higher energies, and thereby isolating the
single helical channel that originates from the strongly hybridized QAH chiral edge
modes [46].
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Figure 2.7: Comparison between the spectrum of a (a) normal and (b) QAH phase
in a narrow quasi–one–dimensional film of non-proximitized MTI. The spectra are
obtained discretizing the Hamiltonian in Equation (1.58) in a finite lattice along
y with width Ly = 300 nm and periodic boundary conditions along x, with (a)
Λ = 0.5 meV and (b) Λ = 2 meV. The other parameters are m0 = 1 meV, m1 =
0.001 meVµm2, vF = 0.26 meVµm, µ = 2 meV and D = 0.

Summary
In this chapter, we introduced the BdG formalism as a framework to describe proxim-
itized systems, emphasizing the role of particle–hole symmetry and its fundamental
connection to the emergence of Majorana quasiparticles. Within this approach, we
constructed effective three- and two-dimensional BdG Hamiltonians for proximitized
MTIs, building on the low-energy models outlined in Section 1.2.

We showed that in the two-dimensional case, a proximitized MTI can host topo-
logical superconducting phases, whose topology is classified by the BdG Chern num-
ber N . Depending on the interplay between the induced pairing amplitude and the
magnetization, the system can realize different phases that support gapless chiral
states propagating along the edges.

Moreover, we illustrated that, in the quasi–one–dimensional limit, a confined
MTI film with narrow width can be engineered into a one-dimensional topological
superconducting phase. In this regime, the topology is characterized by a nonzero
integer invariant NBDI, which determines the number of MBSs localized at the ends
of finite-length nanowires.

These results establish proximitized MTIs as a versatile platform for realizing
topological superconductivity in both two- and one-dimensional geometries, hosting
either propagating Majorana modes or localized bound states. The next chapter
is devoted to the study of transport properties in junctions based on such hybrid
heterostructures, with the goal of identifying electrical signatures of the topological
phases discussed here.
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Chapter 3

Transport in NSN Junctions

Overview
In the previous chapter, we established how proximitized MTIs provide a versatile
platform for realizing topological superconductivity, supporting propagating MCPSs
in two dimensions and localized MBSs in one dimension. Despite these theoretical
proposals, however, the experimental observation of Majorana quasiparticles has
remained inconclusive, as trivial mechanisms can mimic the transport signatures
expected from topological superconducting phases. In this chapter, we investigate
the transport properties of junctions composed of normal (N) and proximitized (S)
thin films of MTIs, with the aim of identifying electric signatures associated with
the emergence of zero-energy Majorana modes. Although such signatures are not
strictly unique, we focus on transport observables that provide strong indications of
Majorana physics in both one- and two-dimensional geometries.

The remainder of this chapter is organized as follows. In Section 3.1, we introduce
the theoretical framework employed to describe quasiparticle transport across NS
and SNS junctions. The analysis is based on a complex band-structure approach,
under the assumption that each section of the junction is homogeneous along the
transport direction. This framework allows us to compute the probability amplitudes
of the elementary scattering processes and compute the differential conductance
within the Blonder–Tinkham–Klapwijk (BTK) formalism.

In Section 3.2, we examine the conductance profiles of the one- and two-
dimensional TSC phases induced in MTIs, for small voltage biases below the
surface gap of the topological insulator, ensuring that the system remains within
the linear-response regime. Special attention is devoted to the antisymmetric profile
of the conductance, which directly reflects the emergence of Majorana quasiparticles
in the proximitized region under asymmetric bias applied to the two normal leads.

Finally, in Section 3.3, we discuss interference patterns and conductance oscilla-
tions characteristic of the N = 1 topological SC phase when the applied bias exceeds
the surface gap. In this regime, three distinct transport behaviors can be identified
depending on the quasiparticle energy. The intermediate one is particularly notable,
as it exhibits characteristic current oscillations arising from the interference of a pair
of propagating edge states associated with the emergence of the chiral TSC.

The results presented in this chapter are based on Refs. [100, 102].
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3.1 Blonder–Tinkham–Klapwijk Formalism
The topological superconducting phases introduced in Chapter 2 can be probed
through their characteristic conductance signatures, which reflect the presence of
distinct edge and bound states in the central superconducting sector of an NSN
junction made by normal (N) and proximitized (S) thin films of MTIs. From a the-
oretical perspective, the quasiparticle transport occurring at the interface between
a normal and a superconducting system can be described by the BTK theory and
its generalization in an NSN double junction [110–112]. The investigated device is
schematically shown in Figure 3.1.
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Figure 3.1: Schematic illustration of the NSN junction used for the modeling of
the quasiparticle transport in the proximitized MTI thin film. The electrostatic po-
tential V0 = −eµ is controlled by the back-gate electrode, which tunes the chemical
potential of the system. The central proximitized sector is grounded, while different
voltage drops V1 and V2 are applied on the normal leads. Adapted from Ref. [100].

The system consists of two normal MTI leads, assumed to be semi-infinite along
the longitudinal direction of propagation, and a central superconducting region of
finite length, where a nonvanishing pairing potential is induced via proximity to a
conventional s-wave spin-singlet SC placed on top of the topological insulator. The
superconductor is grounded, making the device an effective three-terminal junction.
The full structure extends over a width Ly along the transverse direction y, while the
central superconducting section has a length Lx along the longitudinal propagation
axis x, with the normal leads assumed to be translationally invariant. The thickness
is assumed to be much smaller than the in-plane dimensions d ≪ Lx,y. We assume
that the central region is grounded, and that different voltage drops V1 and V2 are
applied to the left and right terminals.
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Both the normal and superconducting regions can be described within the BdG
formalism introduced in Section 2.1. In the normal leads, the single-particle exci-
tations are doubled into decoupled electron and hole states, whereas in the super-
conducting region they couple due to the nonzero pairing potential. Moreover, in
the proximitized region, the electric current can also be sustained by a supercurrent
of Cooper pairs. Consequently, the transport across the junction results from the
competition between normal scattering processes and Andreev reflections, the lat-
ter originating from the interaction between the individual quasiparticles and the
Cooper pair condensate.

In particular, when an electron is incident on a normal–superconductor (NS)
interface, it may be reflected either as an electron (normal reflection) or as a hole,
with the simultaneous creation of a Cooper pair into the superconductor (Andreev
reflection). In the Andreev reflection process, both spin and momentum are con-
served across the interface, with the missing charge and spin being absorbed by the
superconducting condensate through the formation of a Cooper pair [113–116]. A
sketch of the transport processes at the normal–superconductor interface is shown
in Figure 3.2.

N S

N S

(a)

N S

N S

(b)

Figure 3.2: Schematic illustration of the reflection processes at the NS interface
between a normal and a superconducting region. Panel (a) shows normal reflec-
tion, where an incoming electron (red circle) is reflected back as an electron, while
panel (b) depicts Andreev reflection, where the incoming electron is retroreflected as
a hole (blue circle). The missing spin and momentum are absorbed by the Cooper
pair formed in the superconducting condensate.

In addition to local reflection processes, in a NSN double junction an incoming
electron injected from one normal lead can induce the emission of a hole in the
opposite terminal, a mechanism known as Andreev transmission or crossed Andreev
reflection (CAR) [116, 117]. Since the emission of a hole from the SC is physically
equivalent to the absorption of an electron into the Cooper pair condensate, the
process effectively transfers two electrons—one from each normal lead—into the
superconducting region, where they bind to form a Cooper pair. A sketch of the
CAR process in the NSN junction is shown in Figure 3.3.

Local normal and Andreev reflections, together with the nonlocal CAR, consti-
tute all the possible subgap transport processes that can occur in the NSN junction.
It should be noted, however, that when the injected quasiparticles have energies
above the superconducting gap, or when edge or boundary states emerge below the
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N S N
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Figure 3.3: Schematic illustration of the CAR process in the NSN junction. An
electron is injected in the superconducting sector from the left lead, and a hole
is emitted in the right one, with simultaneous creation of a Cooper pair in the
condensate.

gap due to a nontrivial bulk band topology in the proximitized region, the trans-
mission of single quasiparticles across the junction becomes possible. In such cases,
normal transmission can also occur, where electrons and holes propagate across the
superconducting region while retaining their character.

In the following, we denote the probability amplitudes for these scattering pro-
cesses as P ab

ij , representing the probability for an incoming quasiparticle of type b in
terminal j to scatter into a quasiparticle of type a in terminal i, with i, j ∈ {1, 2}
labeling the normal leads of the junction and a, b ∈ {e, h} distinguishing electrons
and holes states. In this language, reflection processes correspond to i = j, while
transmission processes correspond to i ̸= j, encompassing both normal and Andreev
scattering events.

3.1.1 Scattering Amplitudes
The probability amplitudes P ab

ij for all the possible transport processes in the NSN
double junction can be obtained by solving the corresponding scattering problem.
To this end, we employ a complex band structure approach, where each region of
the junction is treated as homogeneous along the longitudinal propagation direction
x, while complex momenta are used to describe boundary states localized at the
interfaces of the proximitized sector [118–122]. We illustrate the method in the
case of a two-dimensional system, where the continuum Hamiltonian hBdG(kx, ky)
is discretized on a finite lattice along the transverse direction y according to the
procedure described in Appendix A.1, while the longitudinal direction x is treated
with the approach outlined below. The extension to the three-dimensional case,
where the z direction is also discretized on a lattice, follows straightforwardly.

In each homogeneous region of the junction labeled by s ∈ {N1, N2, S}, the
wavefunction at fixed energy can be written as [100, 118, 119]

Ψ(s)(x, y) =
∑

k

c
(s)
k eik(s)x Ψ̃(s)

k (y) , (3.1)

where k ≡ kx denotes the longitudinal momentum, and Ψ̃(s)
k (y) is the transverse

wavefunction discretized on the lattice and expressed in the Nambu basis. The
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momenta k = kr + iki are, in general, complex and include both propagating modes,
corresponding to real wavenumbers, and evanescent states, characterized by a finite
imaginary part ki ̸= 0, according to

eikx = eikrx e−kix . (3.2)

In an infinitely long system, only propagating modes with real momentum k ∈ R are
physical, while exponentially growing solutions must be discarded. In contrast, in
finite or semi-infinite geometries, complex momenta associated with exponentially
decaying solutions that satisfy

∫
dx |Ψ(x, y)|2 < +∞ are also admissible, as they

describe boundary states localized near the interfaces [119].
The set of complex wavenumbers and associated transverse modes {k(s), Ψ̃(s)

k }
can be obtained by solving the momentum eigenvalue problem for the k-dependent
translational invariant Hamiltonian in each region of the junction. In fact, the usual
energy eigenvalue problem of the Schrödinger equation can be recast into a non-
Hermitian momentum eigenvalue equation at fixed energy, as discussed in details in
Appendix A.2. Due to numerical truncation, only a finite set of wavenumbers and
transverse modes is obtained at a given energy. This discrete basis then enables the
construction of the wavefunction through Equation (3.1).

In the semi-infinite leads of the NSN junction, the modes are classified as incom-
ing or outgoing, while exponentially divergent states are discarded as unphysical.
The classification of input and output channels is determined by the sign of the
quasiparticle probability flux, which for propagating states with real momentum is
given by [100, 118]

Ik = ⟨Ψ̃k| ∂hBdG

∂k
|Ψ̃k⟩ . (3.3)

For the left terminal (i = 1), input modes correspond to states with real momen-
tum that propagate toward the superconducting region with positive flux (Ik > 0).
Output modes, instead, correspond to states with real momentum and negative
quasiparticle flux (Ik < 0), as well as evanescent modes with complex momentum
that decay away from the interface. The signs of the quasiparticle flux are reversed
on the right lead (i = 2), so that input states correspond to propagating modes
with Ik < 0, while the output ones are associated with Ik > 0. In contrast, in the
superconducting region, all complex and real modes are physically admissible, and
they correspond to output channels.

We denote the coefficients of the incoming (outgoing) modes in the wavefunction
superposition as {a(s)

k } ({b(s)
k }), so that Equation (3.1) can be rewritten as

Ψ(s)(x, y) =
∑

k∈s,inp
a

(s)
k eikx Ψ̃(s)

k (y) +
∑

k∈s,out
b

(s)
k eikx Ψ̃(s)

k (y) . (3.4)

While the input coefficients a(s)
k are fixed by the choice of the incoming scattering

state, the outgoing ones b(s)
k must be determined by solving the scattering problem

and constructing the full wavefunction across the junction. Due to truncation, the
total number of unknowns is finite and their values must be fixed by imposing
continuity of the wave function and its x-derivative at the normal–superconductor
interfaces, ensuring conservation of the quasiparticle current across the boundary. In
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practice, those equations are projected onto the total discrete set of complex modes
by means of the overlap matrices [118, 119]

Ms′s
k′k =

∫
dy

[
Ψ̃(s′)

k′ (y)
]†

Ψ̃(s)
k (y) . (3.5)

Further details on the derivation of the linear system of equations for the boundary
conditions at the interfaces of the junction are provided in Appendix A.3.

By solving the linear system imposed by the boundary conditions at the two
interfaces, the scattering problem is fully determined and the complete wavefunc-
tion across the junction can be obtained. Assuming a single propagating incoming
channel with a

(s)
k = 1 in one of the normal region s, while all the other incoming

states are set to zero, one can finally obtain the scattering probabilities as

ps′s
k′k =

∣∣∣bs′

k′

∣∣∣2 , (3.6)

which quantify the probability for a quasiparticle in the state k of lead s to be scat-
tered into the state k′ of lead s′. In the non-superconducting leads, the electron and
hole degrees of freedom are decoupled in the absence of pairing, making it possible
to discriminate between the two particle types. By summing the contributions in
Equation (3.6) over all output channels, discriminating their particle type and lead,
one obtains the total scattering probabilities as [100, 118, 119]

P he
ij =

∑
kh,ke

pij
khke

, (3.7)

which quantify, for instance, the probability for an electron incident from lead j to
be transmitted as a hole into lead i. The following procedure applies exclusively
to non-proximitized leads, where electron and hole states can be unambiguously
distinguished.

3.1.2 Differential Conductance
The probability amplitudes P ab

ij for the different quasiparticle processes in the junc-
tion provide the fundamental ingredients to compute the differential conductance
within the BTK formalism. In general, the electric currents flowing in the two nor-
mal terminals are not identical. It is therefore convenient to define two distinct
differential conductances measured separately on each terminal:

Gi(E) = ∂Ii

∂V
, (3.8)

where Ii denotes the current in the terminal i and V ≡ V1 − V2 is the total bias
applied across the junction.

The current in each normal lead can be expressed in terms of the incoming and
outgoing quasiparticle fluxes as [110, 112, 123]

Ii =
∫ +∞

0
dE

∑
a

a [Ja
i (E) −Ka

i (E)] , (3.9)
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where a = e, h = ± denotes the particle type and

Ja
i (E) = e

h
Na

i (E)fa
i (E) , Ka

i (E) = e

h

∑
jb

P ab
ij (E)f b

j (E) . (3.10)

Here, e denotes the elementary charge and h the Planck constant, Na
i (E) is the

number of propagating modes of type a in terminal i, fa
i (E) is the correspond-

ing Fermi distribution function, and P ab
ij (E) are the probability amplitudes defined

above. Physically, Ja
i (E) represents the flux of quasiparticles of type a injected from

lead i, whereas Ka
i (E) accounts for the corresponding outgoing flux after scattering,

obtained by weighting the incoming distributions in all leads with the appropriate
scattering probabilities P ab

ij (E). The Fermi distributions for electron and hole states
are given by [112, 124]

fa
i (E) =


1

1 + e(E−eVi)/kBT
for a = e ,

1
1 + e(E+eVi)/kBT

for a = h ,
(3.11)

where Vi is the bias applied to the normal lead i with respect to the grounded SC
region. It is worth noting that, unlike in the original BTK model [110, 111], we do
not include a δ-function potential to model the tunneling at the interface. In our
setup, the NS interface is not a physical barrier but rather the transition between
a normal and a proximitized film of MTI. Therefore, the transport properties are
fully determined by the microscopic Hamiltonian without an additional interfacial
potential.

By making use of Equation (3.10), the electric current in Equation (3.9) can be
rewritten as

Ii = e

h

∫ +∞

0
dE

[
Je

i −Ke
i − Jh

i +Kh
i

]
=

= e

h

∫ +∞

0
dE

N e
i f

e
i −

∑
j

(
P ee

ij f
e
j + P eh

ij f
h
j

)
−Nh

i f
h
i +

∑
j

(
P he

ij f
e
j + P hh

ij f
h
j

) ,
(3.12)

where for simplicity we omitted the energy dependence. Expanding the sum over j,
the expression for the electric current in the normal terminal i = 1 becomes

I1 = e

h

∫ +∞

0
dE

{ [
N e

1 − P ee
11 + P he

11

]
f e

1 +
[
−Nh

1 − P eh
11 + P hh

11

]
fh

1 +

+
[
P he

12 − P ee
12

]
f e

2 +
[
P hh

12 − P eh
12

]
fh

2

}
,

(3.13)

and, similarly, for the terminal i = 2 we have

I2 = e

h

∫ +∞

0
dE

{ [
N e

2 − P ee
22 + P he

22

]
f e

2 +
[
−Nh

2 − P eh
22 + P hh

22

]
fh

2 +

+
[
P he

21 − P ee
21

]
f e

1 +
[
P hh

21 − P eh
21

]
fh

1

}
.

(3.14)
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To proceed, we explicitly consider the case in which the total bias across the junc-
tion is distributed asymmetrically between the two normal leads. We parametrize
the voltages as V1 = αV and V2 = −βV , with 0 ≤ α ≤ 1 and α + β = 1, so that
the total voltage drop across the junction remains fixed to V ≡ V1 − V2. In the
zero-temperature limit, the Fermi distributions reduce to step functions,

f e,h
i = 1

1 + e(E∓eVi)/kBT
−−−→
T →0

Θ (±eVi − E) , (3.15)

where the + sign corresponds to electrons, while the − sign corresponds to holes.
The expressions for the electric currents in the two normal terminals thus simplify
to

I1 = e

h

∫ αeV

0
dE

[
N e

1 − P ee
11 + P he

11

]
+ e

h

∫ βeV

0
dE

[
P hh

12 − P eh
12

]
, (3.16)

I2 = e

h

∫ βeV

0
dE

[
−Nh

2 − P eh
22 + P hh

22

]
+ e

h

∫ αeV

0
dE

[
P he

21 − P ee
21

]
. (3.17)

By taking the derivative with respect to the total bias V , the differential conductance
Gi in Equation (3.8) can be explicitly evaluated as

G1(V ) = α
[
N e

1(αeV ) − P ee
11(αeV ) + P he

11 (αeV )
]

+ β
[
P hh

12 (βeV ) − P eh
12 (βeV )

]
,

(3.18)

G2(V ) = β
[
−Nh

2 (βeV ) − P eh
22 (βeV ) + P hh

22 (βeV )
]

+ α
[
P he

21 (αeV ) − P ee
21(αeV )

]
,

(3.19)

expressed in units of e2/h.
The differential conductance G1(V ) measured at the left terminal is governed

by the balance between the number of incoming electrons N e
1 and the scattering

processes they undergo in the junction. The first term accounts for electrons in-
jected from lead 1: normal reflections P ee

11 reduce the conductance, whereas Andreev
reflections P he

11 yield a positive contribution. The second term corresponds to holes
incoming from lead 2: normal transmission P hh

12 increases the conductance in lead 1,
while crossed Andreev transmission P eh

12 contributes negatively. The expression for
the conductance in lead 2 follows analogously by exchanging the role of electrons
and holes in the corresponding processes.

3.2 Conductance Antisymmetry
In the following section, we investigate the electronic transport properties of the NSN
junction formed by a two-dimensional or quasi–one–dimensional MTI thin film with
a proximitized central sector under an asymmetric bias applied to the left and right
leads. In this setup, the conductance is determined by the topological superconduct-
ing phase realized in the central SC region. The presence of topologically protected
Majorana modes manifests itself through an antisymmetric conductance profile with
respect to the point of equally-split bias. We analyze this behavior by means of theo-
retical arguments and numerical simulations, which, following Ref. [100], are carried
out using the three-dimensional BdG Hamiltonian given in Equation (2.17).
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3.2.1 Asymmetric Bias Splitting
When the proximitized MTI slab is in a two-dimensional thin-film configuration, it
effectively reproduces the physics of a 2D superconductor and can host the topo-
logical phases discussed in Section 2.2: a trivial superconductor with N = 0 and
no edge states, a topological superconductor with N = 1 characterized by a sin-
gle unpaired MCPS on each edge, and a topological superconductor with N = 2,
equivalent to a proximitized QAH state, which supports a pair of particle–hole sym-
metric edge states on each side. If the system is sufficiently wide, the edge states
localized on opposite sides do not hybridize and therefore remain gapless. In this
limit, the energy spectra of the different phases resemble those shown in Figure 2.3,
and the scattering amplitudes can be directly inferred from the connectivity of the
edge modes across the different sectors of the junction [42, 43, 125]. The various
scattering processes are illustrated schematically in Figure 3.4.

N = 0 N = 1 N = 2

Figure 3.4: Schematic illustration of the scattering processes in an NSN junction
composed of normal and proximitized MTIs in the film geometry. The normal leads
are in the QAH state, while the central sector is assumed to realize a two-dimensional
topological SC with N = 0, 1, or 2. Red (blue) arrows represent the propagation of
electron (hole) quasiparticles.

If the normal leads are held in a QAH state, a pair of zero-energy chiral modes
propagate along the edges, reflecting the particle–hole degeneracy of the BdG Hamil-
tonian at ∆ = 0. When N = 2, the superconducting sector is topologically equiva-
lent to the QAH insulator in the normal terminals [41]. In this case, the chiral states
run uninterruptedly through the normal and proximitized regions, and the edge cur-
rent is perfectly transmitted [43, 126]. Conversely, the N = 0 trivial superconductor
is topologically different with respect to the QAH insulator in the normal terminals,
and the bulk–boundary correspondence enforces the appearance of a gapless chiral
state along the NS interface between normal and proximitized regions. This inter-
face mode causes complete backscattering of the edge current flowing toward the
superconductor [43, 126]. Finally, when N = 1, the proximitized region hosts a
single unpaired Majorana mode localized at each edge and along the junction inter-
faces. In this regime, the incoming chiral modes from the QAH leads split into two
MCPSs at the junction interfaces: one is perfectly transmitted, while the other is
completely reflected. For a bias below the SC gap, transmission and reflection occur
with equal probability for normal and Andreev processes, as the chiral Majorana
mode is an equal superposition of electron and hole states.

A similar framework applies to a MTI thin film in a quasi–one–dimensional ge-
ometry. When the slab width is smaller than the localization length of the edge
modes, the QAH edge states hybridize into a single conducting channel, effectively
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realizing a spinless 1D metallic phase where electrons can propagate in both direc-
tions. In the presence of induced pairing, the proximitized sector effectively realizes
a one-dimensional p-wave superconductor [46]. Consequently, the interfaces between
the normal and superconducting regions of the MTI reproduce the physics of a con-
ventional NS junction between a normal metal and a p-wave superconductor [127].
The resulting transport processes, which depend on the topology of the proximitized
sector, are illustrated schematically in Figure 3.5.

NBDI = 0 NBDI = 1

Figure 3.5: Schematic illustration of the scattering processes in an NSN junction
composed of normal and proximitized MTIs in the wire geometry. Metallic helical
propagating channels are active in the normal leads, while the central sector is
assumed to realize a one-dimensional topological SC with NBDI = 0, 1. Red (blue)
arrows represent the propagation of electron (hole) quasiparticles.

As discussed in Section 2.3, the central sector can be either a trivial supercon-
ductor with NBDI = 0 or a topological one with NBDI = 1, hosting unpaired MBSs
in finite-length systems. In the topological phase, end-localized MBSs give rise
to perfect Andreev reflection for biases below the superconducting gap [128–130].
Conversely, in the trivial phase, the conductance vanishes in the low-bias limit, as
transport is dominated by normal reflection [127]. Higher-order states with NBDI ≥ 2
are neglected here, since in the presence of disorder only the parity of the MBSs is
a robust topological quantity, and their transport properties reduce to those of the
NBDI = 0, 1 cases.

Choosing appropriate values for the transmission probabilities P ab
ij to recover the

scenarios above, the conductances at the two terminals of the junction can be directly
obtained from Equations (3.18) and (3.19) in the different regimes discussed above.
The scattering amplitudes and the resulting conductances G1,2 are summarized in
Tables 3.1 and 3.2, assuming an asymmetric bias configuration with V1 = αV and
V2 = (α− 1)V , where V is the total bias applied across the junction.

S-Phase N e
1 P ee

11 P he
11 P hh

12 P eh
12

NBDI = 0 1 1 0 0 0
NBDI = 1 (MBSs) 1 0 1 0 0

N = 0 1 1 0 0 0
N = 1 (MCPSs) 1 0.25 0.25 0.25 0.25
N = 2 (QAH) 1 0 0 1 0

Table 3.1: Transmission amplitudes of the scattering processes at the i = 1 terminal
of the junction. Results are displayed for all possible topological phases of the central
superconducting region. Analogous results are obtained for the lead with i = 2.

Only in the presence of Majorana states—either one-dimensional MCPSs or end-
localized MBSs—does the conductance depend on how the bias is distributed across
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S-Phase G1 G2 Gt

NBDI = 0 0 0 0
NBDI = 1 (MBSs) 2αe2/h 2(α− 1)e2/h 2(2α− 1)e2/h

N = 0 0 0 0
N = 1 (MCPSs) αe2/h (α− 1)e2/h (2α− 1)e2/h
N = 2 (QAH) e2/h −e2/h 0

Table 3.2: Conductances G1 and G2, together with their sum Gt = G1 + G2, eval-
uated from Equations (3.18) and (3.19) using the transmission probabilities listed
in Table 3.1. The total conductance Gt is nonzero only in the presence of topolog-
ically protected Majorana modes, and its value allows one to distinguish between
end-localized MBSs and dispersive MCPSs.

the junction. Indeed, when the central region is in a trivial superconducting phase
or in a N = 2 TSC, only normal reflection or transmission processes are expected
to occur, making the conductance independent on the bias split. In contrast, in
presence of Majorana states, the injected quasiparticles interact with the supercon-
ducting condensate, such that Cooper pairs are created or annihilated when Andreev
reflection takes place at the interfaces [42, 128]. This coupling renders the transport
sensitive to the bias partition: if the voltage drops applied to the two sides of the
junction are unequal, the creation and annihilation of Cooper pairs at the two in-
terfaces occur at different rates, resulting in a net Cooper-pair current flowing from
the proximitized region to ground. Such a current is directly associated with a finite
total conductance Gt = G1 + G2, which signals the presence of Majorana modes
under an asymmetric bias splitting, α ̸= 0.

3.2.2 Symmetry Discussion
It is important to note that Gt ̸= 0 is not, by itself, an unambiguous signature of Ma-
jorana states [131–133]. In the presence of disorder, a trivial Andreev bound state
(ABS)—a discrete quasiparticle excitation localized at a normal–superconductor in-
terface formed by successive Andreev reflections of electrons and holes—can give
rise to a similar conductance whenever Andreev processes (reflection or transmis-
sion) occur at the two interfaces with different rates [134]. In this situation, the
currents in the two leads may differ, I1 ̸= I2, giving rise to a nonzero total con-
ductance Gt. The latter corresponds to a net electric current that is emitted from,
or absorbed by, the superconducting condensate and flows to ground. However,
topologically protected Majorana modes are characterized by the antisymmetry of
the total conductance with respect to the equally split bias point α = 0.5 (see Ta-
ble 3.2), reflecting identical scattering amplitudes for the Andreev processes at the
two interfaces [100].

Analyzing the total conductance Gt as a function of the bias-splitting parameter
α provides a practical criterion to identify transport features arising from trivial
Andreev processes. While not a definitive proof, an antisymmetric profile of Gt(α)
around α = 0.5 is indicative of Majorana modes, since trivial Andreev bound states
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are not generally constrained to display such behavior. In fact, trivial ABSs can give
rise to a wide variety of Gt(α) dependencies, determined by the relative coupling
strengths of the bound state to the two interfaces. For instance, if a trivial ABS
couples exclusively to the left lead, the total conductance acquires an antisymmetric
profile centered at α = 0 (completely unbalanced bias). By contrast, in topological
phases hosting Majorana modes, the identical scattering amplitudes at the two in-
terfaces enforce an antisymmetric dependence of Gt(α) around α = 0.5 (symmetric
bias splitting) [100].

Moreover, despite sharing the same antisymmetric profile, the ratioGt/G0, where
G0 ≡ e2/h is the conductance quantum, distinguishes between the two types of
Majorana modes that can appear in the superconductor. For a MCPS, one finds
Gt/G0 = (2α−1), reflecting the fact that all scattering processes in Equations (3.18)
and (3.19) occur with the same probability. In contrast, in the presence of end-
localized MBSs, the relation Gt/G0 = 2(2α − 1) signals perfect Andreev reflection
at both ends of the proximitized region. Although similar antisymmetric profiles
could in principle originate from trivial ABSs, their realization would require finely
tuned and perfectly symmetric couplings to the two junction interfaces.

Experimentally, the total conductance Gt can be probed through the current
ISC flowing out of the proximitized region (see Figure 3.1). This current directly
reflects the transport through the two normal leads while retaining the correlations
between the scattering processes at the two interfaces of the junction. Within our
simplified model, the only contribution to the current in the s-wave superconductor
arises from Cooper pairs generated in the proximitized MTI or topological modes
below the surface gap. We also neglect direct scattering between the normal leads
and the s-wave superconductor, as the presence of a physical interface between dis-
tinct materials strongly reduces such processes compared to the dominant scattering
within the MTI slab.

Conductance Matrix

The antisymmetric relation involving the total conductance Gt can be expressed
in the equivalent language of the conductance matrix. By considering two-terminal
transport between the normal leads of our three-terminal device, the current-voltage
relation can be written as (

I1
I2

)
=
(
g11 g12
g21 g22

)(
V1
V2

)
. (3.20)

The conductance matrix elements are defined as gij = ∂Ii/∂Vj and can be distin-
guished into local (i = j) and nonlocal (i ̸= j) components. The conductance Gi for
the current in the i = 1, 2 terminal with asymmetric bias splitting takes the form

G1 = α g11 + (α− 1) g12 , G2 = α g21 + (α− 1) g22 , (3.21)

and the total conductance can be written as

Gt = G1 +G2 = −(g12 + g22) + α(g11 + g12 + g21 + g22) . (3.22)



Chapter 3: Transport in NSN Junctions 61

Therefore, in terms of local gii and nonlocal gij matrix elements the antisymmetric
condition around α = 0.5 can be written explicitly as

g11 − g22 = g12 − g21 , (3.23)

meaning that the difference between local conductances must be equal to the differ-
ence between the nonlocal ones.

3.2.3 Numerical Results
To investigate the antisymmetric profile of the conductance with respect to the
bias-splitting parameter α, we simulated a NSN junction composed of normal and
proximitized MTI slabs, employing the complex band structure approach introduced
in Section 3.1.1. The modeling is based on the effective three-dimensional BdG
Hamiltonian defined in Equation (2.17). In what follows, we consider an MTI with
thickness d = 4 nm (corresponding to approximately four QLs) and two representa-
tive values of the lateral width:

(i) Ly = 160 nm, corresponding to an effective two-dimensional film-like geome-
try;

(ii) Ly = 20 nm, corresponding to a quasi–one–dimensional wire-like geometry.

The first configuration reproduces the physics of the two-dimensional TSC described
in Section 2.2, whereas the second one emulates the one-dimensional limit discussed
in Section 2.3.

Since an asymmetric pairing between the top and bottom surfaces is required to
realize topological superconductivity [41, 42, 45, 46], we assume a constant pairing
field along the transverse direction y, and we restrict the proximity effect to the
upper half of the system through

∆(y, z) = ∆0 θ(z − d/2) , (3.24)

where θ denotes the Heaviside step function. All numerical results presented below
are obtained with ∆0 = 10 meV for the film geometry, and ∆0 = 5 meV for the wire
case. Although these values are considerably larger than those typically accessible
in experiments, they are convenient for numerical purposes: qualitatively similar
results can be achieved for smaller pairings and rescaled system sizes. In particular,
employing a large pairing amplitude ∆ reduces the computational cost by enabling
simulations of smaller systems, while at the same time enhancing the MBS energy
gap and widening the parameter regime that hosts MCPSs, which are the main focus
of our analysis.

Figure 3.6 shows the total conductance Gt as a function of the magnetization Λ
and the bias-splitting parameter α. In the effective two-dimensional geometry, the
normal leads are maintained in the QAH phase, which guarantees ballistic propa-
gation of electron and hole quasiparticles toward the junction under a finite bias.
By contrast, in the quasi–one–dimensional limit the non-proximitized part of the
junction is maintained in a metallic-like state, where—in the presence of disorder—
quasiparticles undergo diffusive transport through helical conducting channels aris-
ing from the discretization of the Dirac-cone surface states in the wire geometry. In
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both cases, the occurrence of regions with Gt ̸= 0 signals the presence of topological
SC phases hosting zero-energy Majorana modes.
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Figure 3.6: Total conductance Gt = G1+G2 of the NSN junction under asymmetric
bias splitting. (a)–(b) Dependence of Gt on the magnetization Λ for the quasi–one–
dimensional wire (blue) and two-dimensional film (red) geometries with (a) α = 0
and (b) α = 0.25. (c) Conductance as a function of the bias-splitting parameter α
for a junction with the proximitized central region in the N = 2 (yellow), N = 1
(orange), and NBDI = 1 (green) topological SC phases. In all panels, the total bias
across the junction is fixed at V = 0.1 meV. Adapted from Ref. [100].

Panels (a) and (b) illustrate the case of an asymmetric voltage drop with (a)
α = 0 and (b) α = 0.25. In the thin-film geometry (red line), the N = 1 chiral
TSC is clearly separated from the trivial N = 0 superconductor and the N = 2
proximitized QAH state, where Gt = 0 reflects equal and opposite terminal currents
independent of how the bias is split. The N = 1 phase yields Gt = −e2/2h at
α = 0.25 and Gt = −e2/h at α = 0, in qualitative agreement with our theoretical
analysis (see Table 3.2). An analogous behavior is found in the wire geometry
(blue line), where the NBDI = 1 phase gives Gt = −e2/h and −2e2/2h for α = 0
and α = 0.25, respectively, while the NBDI = 0 phase is characterized by Gt = 0,
corresponding to perfect normal reflection.

In panel (c), the total conductance Gt is shown as a function of the bias-splitting
parameter α. The magnetization is fixed to realize the N = 1 phase with MCPSs
and the N = 2 state in the film geometry, and the NBDI = 1 topological phase
hosting MBSs in the wire geometry. The numerical results are in excellent agree-
ment with the predictions summarized in Table 3.2. It is important to note that a
symmetric bias configuration (α = 0.5) cannot discriminate a TSC from either the
trivial superconductor or the proximitized QAH phase, since all yield Gt = 0. Our
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framework thus extends the analysis of electrical conductance in the NSN double
junction with Majorana modes previously reported in Refs. [42–44].

Figure 3.7 shows the probability amplitudes associated with the scattering pro-
cesses at the left interface of the junction, namely normal reflection P ee

11 , Andreev
reflection P he

11 , normal transmission P ee
21 , and Andreev transmission P he

21 . Panel (a)
corresponds to a one-dimensional N = 1 topological superconducting thin film host-
ing MCPSs, while panel (b) refers to a two-dimensional NBDI = 1 topological super-
conducting wire with unpaired MBSs.
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Figure 3.7: Scattering probability amplitudes at terminal i = 1 of the NSN junction
as a function of the central region length Lx, for (a) the film geometry and (b) the
wire geometry. The total bias across the junction is fixed at V = 0.1 meV. Blue
(red) lines denote (normal) Andreev processes. Adapted from Ref. [100].

In the two-dimensional film geometry, normal and Andreev transmission and re-
flection occur with equal probability, P ae

j1 = 0.25 for j = 1, 2 and a = e, h. The small
oscillations around this plateau originate from the interference between backscat-
tered chiral modes at the two interfaces of the double junction, giving rise to an
interferometric behaviour [44]. In the quasi–one–dimensional limit, provided the
junction is sufficiently long to suppress transmission through evanescent modes, the
injected electron undergoes perfect Andreev reflection with P he

11 = 1 in the presence
of MBSs. The numerical results show excellent agreement with the theoretical pre-
dictions summarized in Table 3.1. In all cases, the total bias across the junction
is fixed to V = 0.1 meV, well below the surface energy gap. This choice ensures
that bulk modes are not activated in the proximitized region and that the injected
quasiparticles interact with the condensate exclusively through the topologically
protected Majorana boundary states.

3.3 Bias-Dependent Transport Regimes
In the previous section, we analyzed the antisymmetric profile of the total electric
conductance Gt as a function of the bias-splitting parameter α, for small total biases
below the surface gap of the proximitized MTI, in both one- and two-dimensional
geometries. In this chapter, we turn our attention to the physics of MCPSs under
symmetric bias conditions V1 = −V2 applied to the two sides of the junction, and
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we investigate the dependence of the electric conductance on the total bias V . The
central goal is to identify additional transport signatures characteristic of the N = 1
chiral superconducting phase.

Due to the interplay of normal and Andreev reflection and transmission pro-
cesses, the presence of zero-energy MCPSs gives rise to a half-quantized conductance
plateauG1 = −G2 = e2/2h, for a small voltage bias below the SC gap. Although this
half-integer conductance plateau was originally proposed as a hallmark of proximi-
tized QAH systems, subsequent works have demonstrated that it does not constitute
an unambiguous signature of MCPSs [101, 135–137]. To address this limitation, we
numerically simulate the conductance in the symmetric-bias configuration, where
G1 = −G2, and analyze the emergence of three distinct transport regimes as the
total bias V is increased. The simulations are performed within the framework of
the three-dimensional BdG Hamiltonian introduced in Equation (2.17), following
the methodology of Ref. [100].

3.3.1 Edge Spectrum
To gain insight into the emergence of the three distinct transport regimes in the NSN
junction, we analyze the energy spectrum of a two-dimensional MTI thin film subject
to a proximity-induced pairing applied to the upper interfaces. In particular, we
study the evolution of the spectrum as the pairing amplitude is gradually increased,
starting from a N = 2 phase with Λ > m0. The induced pairing plays a role
analogous to that of the magnetization discussed in Section 2.2, driving the phase
transition from the proximitized QAH state to the N = 1 chiral TSC [41, 42]. This
evolution is illustrated in Figure 3.8, which shows the energy spectrum of the MTI
thin film as superconducting correlations are progressively introduced on its upper
surface.

The edge or bulk character of the states, represented by the color scale in Fig-
ure 3.8, is quantified by the expectation value of the transverse coordinate, computed
from the energy eigenstates ψn,kx(y) of the discretized Hamiltonian. For an energy
state with band index n and longitudinal momentum kx, the average transverse
position is defined as

⟨y⟩n,kx =
∑

i

yi

∣∣∣ψn,kx(yi)
∣∣∣2 , ∑

i

∣∣∣ψn,kx(yi)
∣∣∣2 = 1 , (3.25)

where yi denotes the coordinate of the i-th site in the finite transverse lattice.
In the absence of pairing ∆1 = 0 and for Λ < m0, the MTI thin film is in the QAH

phase. Within the Nambu formalism, the doubling of the degrees of freedom yields
N = 2 particle–hole symmetric, degenerate edge modes on each side of the system.
Introducing a finite pairing amplitude ∆1 ̸= 0 lifts this degeneracy: a gap opens at
one of the two crossings, and the corresponding edge states are pushed into the bulk.
As a consequence, only a single unpaired MCPS remains on each side below the
gap, realizing the N = 1 chiral SC phase [30, 41, 42]. In this regime, the boundary
modes are strongly hybridized around kx = 0, but they retain a well-defined edge
character away from the Dirac point. Therefore, at slightly higher energies, a pair
of chiral modes with different momenta k1 and k2 coexist on each side of the system,
as shown in Figure 3.8 (b). Upon further increasing the pairing strength, these edge
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Figure 3.8: Evolution of the energy spectrum of a proximitized MTI thin film with
increasing superconducting pairing on the top surface. The spectra are obtained by
discretizing the Hamiltonian in eq. (2.19) on a finite lattice along the y direction with
width Ly = 1 µm and imposing periodic boundary conditions along x. We assumed
an induced pairing (a) ∆1 = 0.5 meV, (b) ∆1 = 1.5 meV, and (c) ∆1 = 2.5 meV and
∆2 = 0. The remaining parameters are fixed to m0 = 1 meV, m1 = 0.001 meVµm2,
vF = 0.26 meVµm, µ = 0, D = 0 and Λ = 2 meV. The color scale represents the
average transverse position on the lattice, computed according to Equation (3.25),
with red (blue) corresponding to ⟨y⟩ = +0.5 µm (⟨y⟩ = −0.5 µm). In panel (a), the
energy-degenerate bands are slightly displaced for clarity of visualization.

modes are progressively pushed toward the bulk until they delocalize completely
and merge with the surface-state continuum.

In the intermediate regime, where Λ − m0 < ∆1 < Λ + m0 drives the system
into the N = 1 phase, three distinct transport regimes can be clearly identified at
different energies:

(i) a low-energy regime, characterized by a single MCPS on each side;

(ii) an intermediate-energy regime, featuring a pair of linear edge-localized modes
with different momenta;

(iii) a high-energy regime, with several propagating channels delocalized across the
entire section of the film, and metallic-like transport properties.

These three distinct regimes are a characteristic feature of the spectrum of a chiral
TSC, and their transport signatures provide a means to identify the N = 1 topologi-
cal phase hosting MCPSs. In particular, for a fixed energy in the intermediate-energy
regime, the two edge channels occur at different wavenumbers k1 and k2. The finite
momentum separation between these modes induces spatial interference, leading to
characteristic oscillations in the electric current as a function of the quasiparticle
energy when transport occurs along the edge of the proximitized MTI [102].

3.3.2 Quasiparticle Interference
The oscillations of the edge current in the intermediate-energy regime can be intu-
itively understood through a simple toy model, which predicts an oscillatory depen-
dence of both normal and Andreev transmission probabilities. Let us consider a
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proximitized one-dimensional spinless system that, at a given energy E, hosts two
chiral propagating modes with longitudinal momenta k1 and k2. These modes are
assumed to be equal superpositions of electron and hole states in the Nambu basis,
and can be written as

|ψ1⟩ = 1√
2 (|e⟩ + |h⟩) , |ψ2⟩ = 1√

2 (|e⟩ − |h⟩) . (3.26)

This toy model captures the essential edge physics of the two-mode regime of the
chiral TSC, where, in the limiting case µ = 0, the two states are equal superpositions
of particle and hole components.

An incoming electron propagating into this proximitized region can be expressed
as a coherent superposition of the two chiral modes through

|ψ⟩ = 1√
2

(
eik1x |ψ1⟩ + eik2x |ψ2⟩

)
, (3.27)

where x denotes the distance traveled. The probability that an electron is perfectly
transmitted across the junction is thus given by

Pe = |⟨e|ψ⟩|2 = 1
2

[1 + cos (δk L)] , (3.28)

while the probability of converting an electron into a hole is

Ph = |⟨h|ψ⟩|2 = 1
2

[1 − cos (δk L)] , (3.29)

where δk ≡ k1 − k2 such that δk L is the phase difference acquired along the propa-
gation length L. Analogous expressions can be found for an incoming hole.

When two edge modes with different momenta coexist at the boundary of an
MTI thin film in the intermediate-energy regime of the chiral TSC, the resulting edge
transport reflects the physics of the toy model discussed above. The probabilities
of normal and Andreev transmission display out-of-phase oscillations as a function
of the accumulated phase δkL, and the differential conductance across the NSN
junction exhibits characteristic oscillations in the intermediate-energy regime [102].
Figure 3.9 shows the differential conductance G ≡ G1 = −G2, computed from
Equation (3.18) as a function of the symmetric bias V1 = −V2 = V/2, with the
normal leads maintained in a QAH state.

The three distinct bias-dependent regimes can be clearly distinguished:

(i) a low-bias regime with a conductance plateau at G = e2/2h, with small oscil-
lations induced by the finite transverse width Ly;

(ii) an intermediate-bias regime, where large oscillations occur with 0 < G < e2/h;

(iii) a high-bias regime, exhibiting a metallic-like behavior with quasiparticle trans-
port becoming difffusive rather than ballistic.

In the low-bias regime E ≈ 0, a single MCPS is present within the surface gap
of the N = 1 topological superconductor and the conductance is half-quantized at
the value G = e2/2h. Oscillations around this plateau arise from the finite-size hy-
bridization of edge modes located at opposite sides [44]. As the bias increases, but
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Figure 3.9: Differential conductance G of a NSN junction composed by normal
and proximitized MTI thin films, plotted as a function of the applied bias voltage
eV . The calculation is performed using the two-dimensional Hamiltonian in Equa-
tion (2.19), discretized on a finite lattice of width Ly = 1 µm along the y direction.
We assume an induced SC pairing on the top surface, only with ∆1 = 1.5 meV
and ∆2 = 0. The remaining parameters are m0 = 1 meV, m1 = 0.001 meVµm2,
vF = 0.26 meVµm, µ = 0, and D = 0. Replotted from Ref. [102].

still remains below the surface gap, the normal leads stay in the QAH regime, while
the proximitized region hosts a pair of chiral edge modes with different wavenumbers.
In this situation, the quasiparticle propagation is influenced by spatial interference,
as the accumulated phase difference over the junction length Lx determines an oscil-
latory conductance ranging between G = 0 (perfect crossed Andreev reflection) and
G = e2/h (perfect normal transmission). At even higher biases, additional delocal-
ized states become active, and the system enters a metallic-like regime. Transport in
the proximitized regions becomes diffusive rather than ballistic, and the conductance
is expected to be strongly sensitive to disorder.

3.3.3 Current Density Distribution
The three different regimes can be distinguished not only in terms of two-terminal
conductance, but also in terms of current density along the transverse section of
the junction. We emphasize that the transverse current distribution is relevant in-
formation for the experimental characterization of proximitized TI thin films, and
can be measured through superconducting quantum interference devices [138–140].
Resolving the full spatial profile of the current density offers valuable insight into
the quasiparticle transport processes occurring in the junction. In contrast, conduc-
tance measurements alone have so far proven insufficient to yield an unambiguous
signature of MCPSs in proximitized QAH films [101, 135–137].

The longitudinal component of the electric current density is given by [102, 118]

jx(x, y) = −eRe
[
Ψ†(x, y) vxγz Ψ(x, y)

]
, (3.30)
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where Ψ(x, y) denotes the real-space wavefunction in Nambu basis, and the velocity
operator in the longitudinal direction x takes the form (ℏ = 1)

vx = ∂

∂kx

[
hBdG

2D (kx)
]

= 2kx (D +m1λx) γz − vFσyλzγz . (3.31)

Once the real-space wavefunction Ψ(x, y) across the entire junction has been ob-
tained following the procedure outlined in Appendices A.2 and A.3, the current
density defined in Equation (3.30) can be directly evaluated.

The longitudinal current in the two normal leads of the NSN junction is shown
in Figure 3.10 as a function of the transverse coordinate y for different values of
the bias V applied across the junction. In the numerical simulations, the current
density was evaluated at x = ±15 µm, assuming a central proximitized region of
length Lx = 20 µm with x = 0 defined at its midpoint. The width of the transverse
lattice was fixed to Ly = 1 µm. As long as the normal regions remain in the QAH
phase, the resulting current profile is independent of the precise longitudinal position
at which it is extracted.

Panels (a)–(b) show the electric current-density profiles for the low-bias regime
eV ∈ [0.1, 0.3] meV, where a single unpaired MCPSs is found on each side of the
proximitized region. As long as the normal sectors of the MTI thin film are in the
QAH phase, the current is strongly confined to the edges. The maxima in the current-
density distribution correspond to quasiparticles injected toward the proximitized
region: electrons propagate along the upper edge at y = 0.5 µm (blue column),
while holes travel in the opposite direction along the lower edge at y = −0.5 µm
(red column). In the presence of a single MCPS, electrons and holes are equally
split between reflection and transmission at the junction interfaces [43]. Apart from
negligible finite-size effects, no net electric current is transmitted or reflected through
the superconducting region, as evidenced by jx = 0 in the normal lead opposite to
the one carrying the injected edge current.

A different physics is illustrated in Figure 3.10 (c)–(d), where the current-density
profiles are shown for the intermediate-bias regime eV ∈ [0.6, 0.8] meV. As in the
previous case, the non-proximitized regions remain in the QAH phase, so that the
current is confined to the edges and the transport is ballistic. However, as discussed
in Section 3.3.2, the superconducting region hosts a pair of degenerate edge modes
with different momenta. As a consequence, an injected quasiparticle traversing the
central sector exhibits an oscillatory probability of undergoing normal or Andreev
transmission, resulting in a modulated current density on the lead where the par-
ticle is transmitted. The spatial current distribution is highly sensitive to small
variations in the applied bias, since the transmission amplitudes depend on the mo-
mentum mismatch δk between the edge channels, which in turn is determined by
the quasiparticle energy.

Finally, Figure 3.10 (e)–(f) illustrate the metallic-like regime corresponding to
the hig-bias regime eV ∈ [1.7, 1.9] meV, exceeding the surface gap. In this case, the
quasiparticles propagate through delocalized bulk modes in both the normal leads
and the proximitized region, rendering the transport diffusive rather than ballistic.
Although some maxima remain visible near the system boundaries, the current is
transmitted across the entire transverse section of the junction, and disorder effects
are therefore expected to play a significant role in the overall transport properties.



Chapter 3: Transport in NSN Junctions 69

Figure 3.10: Longitudinal current density jx across the transverse section of a NSN
junction composed of normal and proximitized MTIs thin films, shown for different
voltage biases. The current is evaluated along the transverse section of the junction
in the left (right) normal lead and is plotted in red (blue). Results are presented for
a N = 1 topological superconductor in the three distinct regimes discussed in the
main text: (a)-(b) low-bias regime with unpaired MCPSs, (c)–(d) intermediate-bias
regime with two edge states at different momenta, and (e)–(f) high-bias regime with
metallic-like states. The color scale denotes the quasiparticle injection energy eV
in meV, corresponding to the applied bias across the junction. The system size and
Hamiltonian parameters are chosen consistently with Figure 3.9. Reproduced from
Ref. [102].
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An analogous analysis of the transverse current density can be performed within
the proximitized region of the TI thin film by evaluating the average current jx in the
central sector of the junction. In the present discussion, however, we have restricted
our attention to the current distribution in the normal leads, where the entire electric
current is carried by quasiparticles. In contrast, within the superconducting region,
the quasiparticle contribution is screened by the Cooper pair condensate, which
is not captured by our formalism. Nevertheless, qualitatively similar behavior is
expected for the characteristic oscillations in the two-mode regime.

We emphasize that the oscillatory transport behavior relies on the fact that
quasiparticle excitations in the superconducting region are coherent superpositions
of electron and hole states. This condition is always satisfied in the limit of vanishing
chemical potential, µ = 0, where the Fermi energy coincides with the Dirac point
of the topological surface states. Although such fine-tuned conditions represent a
limitation of our analysis, the band structure of topological insulators of the Bi2Se3
family can be engineered, manipulating the Dirac surface states without affecting
the bulk properties of the crystal [141, 142].

Summary
In this chapter, we investigated direct-current transport in NSN junctions based
on proximitized MTIs, combining the Landauer–Büttiker framework with the BTK
formalism to account for Andreev reflection. Using the complex band-structure
approach, we modeled both propagating and evanescent modes at the NS interfaces
of the junction, with the aim of identifying transport signatures of Majorana states
and distinguishing them from trivial ABSs.

Our first main result concerns the low-bias linear-response regime, where only
subgap quasiparticles or Andreev processes contribute to transport. We demon-
strated that, in presence of asymmetric bias splitting, the occurrence of Andreev
reflection can lead to an imbalance between the partial conductances G1 and G2 at
the two normal leads, compensated by a Cooper-pair current that flows to ground
from the superconductor. The presence of zero-energy Majorana modes, however,
enforces identical scattering amplitudes at both interfaces, resulting in a robust
antisymmetric profile of the total conductance as a function of the bias-splitting pa-
rameter. This distinctive feature was shown to occur in both quasi–one–dimensional
nanowires and two-dimensional thin films.

Our second main result relates to the transport properties of the N = 1 TSC
phase, where Majorana chiral states propagate along the edges of the proximitized
region. While a half-quantized conductance plateau is a well-known hallmark of this
state, we demonstrated that increasing the voltage drop across the junction reveals
two additional transport regimes, with the half-quantized plateau representing only
the lowest-bias case. In particular, in the symmetric-bias configuration, we identi-
fied a regime of large oscillations in the differential conductance, arising from the
interference of two co-propagating chiral modes along the same edge and directly
linked to the emergence of the topological phase hosting MCPSs.

Overall, our analysis shows that electric transport experiments could reveal topo-
logical superconducting states with Majorana quasiparticles, with the antisymmetric
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conductance profile and high-bias oscillations providing signatures that go beyond
the conventional conductance-quantization plateaus. At the same time, the lack of
an unambiguous zero-bias feature highlights the limitations of transport probes and
the need for complementary observables.

The numerical analysis in this chapter were carried out by introducing a phe-
nomenological pairing term in the BdG Hamiltonian to describe the proximitized
MTIs. The final part of this thesis is devoted to developing a perturbative frame-
work for evaluating in a more realistic way the induced superconducting correlations,
explicitly accounting for the tunneling processes between the two materials at the
interface of the heterostructure.



Part III

Induced Superconductivity





Chapter 4

Perturbation Theory

Overview
In the previous chapters, we analyzed proximitized MTIs within an effective first-
quantization framework, where superconductivity was introduced phenomenologi-
cally by adding an external pairing term to the BdG Hamiltonian. While this
approach provides a convenient low-energy description, it treats the induced pairing
as an input parameter and therefore does not allow for a self-consistent evaluation
of the proximity effect. This limitation motivates the development of a second-
quantized formalism, in which superconducting correlations emerge naturally from
tunneling across the MTI–SC interface and are captured by the anomalous compo-
nents of the Green’s function. In this framework, the tunneling interaction is treated
as a perturbation on the ground states of the decoupled materials. This allows us to
derive the corrections to the normal and anomalous Green’s functions of the MTI,
expressed in terms of the unperturbed propagators of the isolated systems.

The remainder of this chapter is organized as follows. In Section 4.1, we intro-
duce the second-quantized Hamiltonian for the MTI–SC heterostructure, modeling
the magnetic topological insulator as a thin film with translational invariance along
x and y, and finite thickness d along z. The SC is assumed to be a conventional
spin-singlet s-wave bulk superconductor. In Section 4.2 we outline the many-body
Green’s function formalism, which provides the natural framework to describe super-
conducting correlations and proximity-induced effects. Finally, in Section 4.3, we
derive the lowest-order corrections to the MTI Green’s functions in the interaction
picture, treating the tunneling Hamiltonian as a perturbation on the unperturbed
ground states of the decoupled materials.

4.1 Second-Quantized Model
The proximity effect in an MTI–SC heterostructure can be described within the
framework of second quantization, where Green’s functions provide a natural descrip-
tion of the system. In this approach, the normal and anomalous Green’s functions
describe the propagation amplitudes of single and correlated pairs of quasiparticles,
respectively. The latter reflects the presence of the Cooper-pair condensate induced
by the proximity effect.
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In an otherwise non-superconducting MTI, the induced pairing arises from the
proximity effect, where electrons from the Cooper-pair condensate tunnel into the
topological surface states of the MTI, and, conversely, electrons in the MTI tunnel
into the SC to form Cooper pairs. This process gives rise to an effective supercon-
ducting pairing in the topological insulator, and can be modeled by a Hamiltonian
of the form

H = HMTI +HSC +Hint . (4.1)
In the following, we focus on a system that is translationally invariant along the
in-plane directions x and y. The MTI thin film is taken to have a finite thickness
d along the out-of-plane direction z, spanning the region 0 ≤ z ≤ d, while the
superconductor occupies the semi-infinite region z < 0. The SC is approximated as a
bulk system, neglecting confinement effects, since the interface does not significantly
alter the electronic wavefunctions within the condensate.

4.1.1 MTI Hamiltonian
In order to compute the perturbative correction to the normal and anomalous
Green’s functions in the MTI, we need to express the heterostructure Hamiltonian
in the second quantization form using real-space field operators. We start by in-
troducing the creation (annihilation) field operators ψ†

στ (r) (ψστ (r)) in the MTI,
which creates (annihilates) an electron at position r with spin σ =↑, ↓ and orbital
index τ = ± [143, 144]. The field operators satisfy the fermionic anticommutation
relations

{ψστ (r), ψ†
σ′τ ′(r′)} = δσσ′ δττ ′ δ(r − r′) ,

{ψστ (r), ψσ′τ ′(r′)} = {ψ†
στ (r), ψ†

σ′τ ′(r′)} = 0 .
(4.2)

We consider a complete and orthonormal basis of single-particle eigenstates |n⟩ of
the MTI Hamiltonian hMTI, satisfying

hMTI |n⟩ = εn |n⟩ , (4.3)

with the orthonormality and completeness relations

⟨n|m⟩ = δnm ,
∑

n

|n⟩ ⟨n| = 1̂ . (4.4)

The corresponding first-quantized wavefunction in the spin–orbital basis |στr⟩ is
defined as

φn,στ (r) = ⟨στr |n⟩ , (4.5)
and the field operators can be expanded in terms of the eigenstates |n⟩ as

ψστ (r) =
∑

n

φn,στ (r) cn , ψ†
στ (r) =

∑
n

φ∗
n,στ (r) c†

n , (4.6)

where c†
n (cn) creates (annihilates) an electron in the single-particle eigenstate |n⟩,

acting on the Fock space. Reversing Equation (4.6), the creation and annihilation
operators cn, c†

n can be expressed in terms of the real-space field operators as

cn =
∑
στ

∫
drφ∗

n,στ (r)ψστ (r) , c†
n =

∑
στ

∫
drφn,στ (r)ψ†

στ (r) . (4.7)
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As single-particle Hamiltonian hMTI we adopt the 3D low-energy effective model
for topological insulators of the Bi2Se3 family introduced in Equation (1.48). Using
the second quantization formalism, the MTI Hamiltonian can be written in terms
of real-space field operators as [143, 144]

HMTI =
∑
σσ′

∑
ττ ′

∫
drψ†

στ (r)hστ,σ′τ ′(−i∇)ψσ′τ ′(r) , (4.8)

where the matrix elements hστ,σ′τ ′ are defined as

hστ,σ′τ ′(−i∇) = ⟨στ, r| hMTI(−i∇) |σ′τ ′, r⟩ , (4.9)

and the real-space representation of the first-quantized Hamiltonian hMTI is obtained
by performing the usual substitution k → −i∇ in Equation (1.48). In this represen-
tation, the differential operator acts on the spatial coordinate of the wave function
to its right, |σ′τ ′, r⟩. Since we are ultimately interested in a thin film of MTI with
translational invariance along the x and y directions, we perform a Fourier transform
of Equation (4.8) with respect to the in-plane coordinates. This yields a Hamiltonian
that is diagonal in the corresponding momenta kx and ky, and depends explicitly
only on the out-of-plane coordinate z

HMTI =
∑
σσ′

∑
ττ ′

∫
dz ψ†

στ (z)hστ,σ′τ ′(−i∂z)ψσ′τ ′(z) . (4.10)

For simplicity, here we have omitted the indices for the in-plane momenta kx and
ky. The field operators in this mixed representation are defined as

ψστ (z) ≡ ψστ (k∥, z) =
∫

dx dy e−i(kxx+kyy) ψστ (x, y, z) ,

ψ†
στ (z) ≡ ψ†

στ (k∥, z) =
∫

dx dy ei(kxx+kyy) ψ†
στ (x, y, z) .

(4.11)

4.1.2 Superconductor Hamiltonian
In the same way as was done for the MTI, we introduce the real-space field operator
ϕ†

σ(r) (ϕσ(r)) which creates (annihilates) an electron in the SC at position r with
spin σ =↑, ↓ and satisfy the fermionic anticommutation relation [143, 144]

{ϕσ(r), ϕ†
σ′(r′)} = δσσ′ δ(r − r′) ,

{ϕσ(r), ϕσ′(r′)} = {ϕ†
σ(r), ϕ†

σ′(r′)} = 0 .
(4.12)

Despite the presence of the physical interface with the MTI that we assume to be
at z = 0, for the superconductor we assume periodic boundary conditions in all
spatial direction, exploiting a full 3D bulk model which neglects confinement effects.
To describe a conventional spin-singlet s-wave superconductor, we adopt the BCS
Hamiltonian, which can be written as the sum of a single-particle kinetic term and
a two-particle interaction HSC = Hkin + VSC. The kinetic term can be written in
second quantization as (ℏ = 1)

Hkin =
∑

σ

∫
drϕ†

σ(r)
(

− ∇2

2m
− µ

)
ϕσ(r) , (4.13)
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where m is the effective mass of the electrons in the superconductor and µ is the
Fermi energy. Similarly, the two-particle interaction can be expressed as

VSC =
∑
σσ′

∫
dr dr′ ϕ†

σ′(r′)ϕ†
σ(r)Vint(r − r′)ϕσ′(r′)ϕσ(r) , (4.14)

where Vint(r − r′) is the two-particle interaction potential. Following the usual
Bardeen–Cooper–Schrieffer (BCS) prescription, we can apply a mean-field approxi-
mation to the interaction term [88–90]

VSC =
∑
σσ′

∫
dr dr′

[
ϕ†

σ(r)∆σσ′(r, r′)ϕ†
σ′(r′) + ϕσ′(r′)∆∗

σσ′(r, r′)ϕσ(r)
]
, (4.15)

where the superconducting pairing potential is given by

∆σσ′(r, r′) = −Vint(r, r′) ⟨ϕσ(r)ϕσ′(r′)⟩ , (4.16)

with ⟨. . . ⟩ denoting a ground state average. Because any intrinsic pairing considered
in the following will be of the conventional BCS form, we assume a local contact
interaction

Vint(r, r′) = λ(r)δ(r − r′) , (4.17)

where λ(r) < 0 is the coupling constant describing a phonon-mediated attrac-
tive electron-electron interaction. Inserting Equations (4.16) and (4.17) into Equa-
tion (4.15), the two-particle interaction can be written as

VSC =
∑
σσ′

∫
dr

[
ϕ†

σ(r)∆σσ′(r)ϕ†
σ′(r) + ϕσ′(r′)∆∗

σσ′(r)ϕσ(r)
]
. (4.18)

It is worth noting that the pairing potential is antisymmetric upon exchange of the
field operators [88]

∆σσ′(r) = −λ(r) ⟨ϕσ(r)ϕσ′(r)⟩ = λ(r) ⟨ϕσ′(r)ϕσ(r)⟩ = −∆σ′σ(r) , (4.19)

reflecting the antisymmetry of the fermionic wavefunction, which enforces the vanish-
ing of the diagonal spin components, ∆↑↑(r) = ∆↓↓(r) = 0. Applying the mean-field
approximation, the real-space BCS Hamiltonian can thus be written as

HSC =
∑

σ

∫
drϕ†

σ(r)
(

− ∇2

2m
− µ

)
ϕσ(r)+

+
∑
σσ′

∫
dr

[
ϕ†

σ(r)∆σσ′(r)ϕ†
σ′(r) + ϕσ′(r)∆∗

σσ′(r)ϕσ(r)
]
.

(4.20)

Since the system is assumed to be perfectly translationally invariant in all spatial
directions, we can perform a Fourier transform of Equation (4.20) to momentum
space, where the Hamiltonian is diagonal in k. The single-particle term becomes

Hkin =
∑

σ

∫
dk εk ϕ

†
k σ ϕk σ , (4.21)
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where εk ≡ k2/2m − µ denotes the single-particle energy spectrum, and k2 = k2
x +

k2
y +k2

z is the modulus squared of the three-dimensional electron crystal momentum.
The field operators in momentum space are defined as

ϕk σ =
∫

d3r e−ik·r ϕσ(r) , ϕ†
k σ =

∫
d3r eik·r ϕ†

σ(r) . (4.22)

Assuming a spatially uniform pairing potential ∆σσ′(r) ≡ ∆σσ′ , the interaction term
in Equation (4.18) can be Fourier transformed as

VSC =
∑
σσ′

∫
dk

[
ϕ†

k σ∆σσ′ϕ†
−k σ′ + ϕ−k σ′∆∗

σσ′ϕk σ

]
, (4.23)

and the full Hamiltonian reads as

HSC =
∑

σ

∫
dk εk ϕ

†
k σϕk σ +

∑
σσ′

∫
dk

[
ϕ†

k σ∆σσ′ϕ†
−k σ′ + ϕ−k σ′∆∗

σσ′ϕk σ

]
, (4.24)

recovering the usuals BCS prescription. It is worth noting that, in order to comply
with Equation (4.19), the pairing operator must be antisymmetric in spin space,
meaning that ∆↑↓ = −∆↓↑ and ∆↑↑ = ∆↓↓ = 0.

4.1.3 Tunneling Hamiltonian
Due to tunneling of electrons from one material to the other, the SC can induce effec-
tive superconducting correlations into the MTI. The coupling Hamiltonian between
the two materials can be expressed as

Hint = T + T † , (4.25)

where T represents the tunneling of electrons from the superconductor to the mag-
netic topological insulator, and T † is the opposite process. In second quantization,
the real-space tunneling term can be written as

T =
∑
σσ′

∑
τ

∫
dr dr′ ψ†

στ (r)γστ, σ′(r, r′)ϕσ′(r′) , (4.26)

where γστ, σ′(r, r′) represents the probability that an electron at a position r′ with
spin σ′ in the SC tunnels into the MTI at position r in the MTI with spin σ and
parity τ . The opposite tunneling process can be explicitly written as

T † =
∑
σσ′

∑
τ

∫
dr dr′ ϕ†

σ′(r′)γ∗
στ, σ′(r, r′)ψστ (r) . (4.27)

Keeping the real-space dependence only along the out-of-plane coordinate z, and
Fourier transforming along the in-plane x and y directions we obtain

Hint = T + T † =
∑
σσ′

∑
τ

∫
dz dz′

[
ψ†

στ (z)γστ, σ′(z, z′)ϕσ′(z′) + h.c.
]
, (4.28)

where we assumed the tunneling to be independent on the x, y coordinates and
omitted the indices for the in-plane momenta kx and ky.
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4.2 Green’s Function
To describe a proximitized system in which a superconducting pairing is induced in a
normal system by proximity with a SC, it is essential to work within the framework of
Green’s functions (also called propagators). In many-body theory, Green’s functions
encode the amplitude for a single particle, or for a correlated pair of particles, to
propagate between two space-time points in an interacting quantum system.

4.2.1 Time-ordered Green’s Functions
The time-ordered or causal normal Green’s function for an MTI with translational
invariance along the in plane directions x and y, is defined as [143–145]

Gστ,σ′τ ′(k∥; zt, z′t′) = −i
〈
Tt ψ̂στ (k∥, z, t)ψ̂†

σ′τ ′(k∥, z
′, t′)⟩ , (4.29)

where k∥ = (kx, ky) is the in-plane momentum, and ψ̂στ (k∥, z, t) and ψ̂†
στ (k∥, z, t)

denote the time-evolution in the Heisenberg picture of the annihilation and creation
field operators introduced in Equation (4.11). The ground-state expectation value
at zero temperature is denoted by ⟨. . . ⟩, and Tt is the time-ordering operator, whose
action is defined as

Tt A(t)B(t′) =

A(t)B(t′) if t ≥ t′ ,

−B(t′)A(t) if t < t′ ,
(4.30)

where A and B are fermionic operators. The normal Green’s function, defined
in Equation (4.29), describes the amplitude for a particle propagating within the
MTI with in-plane momentum k∥, being created at the spacetime point (z′, t′) and
annihilated at (z, t). The time-ordering operator ensures the correct fermionic sign
structure and preserves causality in the propagation of excitations.

In superconducting systems, the ground state is a condensate of Cooper pairs in
which the total particle number is not conserved. As a result, anomalous correlations
emerge, reflecting the coherent propagation of paired particles rather than individual
quasiparticles. These are captured by the time-ordered anomalous Green’s function,
which in the infinite MTI slab is defined as [143–145]

F †
στ,σ′τ ′(k∥; zt, z′t′) = −i

〈
Tt ψ̂

†
στ (−k∥, z, t)ψ̂†

σ′τ ′(k∥, z
′, t′)

〉
. (4.31)

This function vanishes in the normal phase but becomes nonzero in the supercon-
ducting state, where particle number is no longer conserved.

4.2.2 Gor’kov Green’s Function
To describe superconductivity in a unified formalism, it is convenient to introduce
the Nambu spinor notation, as introduced in Equation (2.2)

Ψ(k∥, z, t) =

 ψ(k∥, z, t)[
ψ†(−k∥, z, t)

]T
 , Ψ†(k∥, z, t) =

(
ψ†(k∥, z

′, t′)
[
ψ(−k∥, z, t)

]T)
,

(4.32)
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where ψ† ≡ ψ†(k∥, z, t) and ψ ≡ ψ(k∥, z, t) are four-component spinors, grouping the
creation and annihilation field operators as a row and a column vector, respectively.
In the basis of states {|↑ +⟩ , |↑ −⟩ , |↓ +⟩ , |↓ −⟩}, we have explicitly

ψ =
(
ψ̂↑+ ψ̂↑− ψ̂↓+ ψ̂↓−

)T
, ψ† =

(
ψ̂†

↑+ ψ̂†
↑− ψ̂†

↓+ ψ̂†
↓−

)
, (4.33)

where we omitted the indices for in-plane momentum, real-space coordinate z and
time t. The Gor’kov Green’s function is then defined as the time-ordered correlator
in Nambu space [145]

G(k∥; zt, z′t′) = −i
〈
Tt Ψ(k∥, z, t) Ψ†(k∥, z

′, t′)
〉
, (4.34)

which encodes both normal and anomalous propagators

G(k∥; zt, z′t′) =

 G(k∥; zt, z′t′) F(k∥; zt, z′t′)
F †(k∥; zt, z′t′) G(k∥; zt, z′t′)

 . (4.35)

Normal and anomalous propagators recover the definition given in Equations (4.29)
and (4.31), while their Hermitian conjugates are given by

Gστ,σ′τ ′(k∥; zt, z′t′) = −i
〈
Tt ψ̂

†
στ (−k∥, z, t) ψ̂σ′τ ′(−k∥, z

′, t′)
〉

Fστ,σ′τ ′(k∥; zt, z′t′) = −i
〈
Tt ψ̂στ (k∥, z, t) ψ̂σ′τ ′(−k∥, z

′, t′)
〉
.

(4.36)

The former captures the amplitude for a hole that propagates through the system
with in-plane momentum k∥, as it describes an electron being removed (i.e., a hole
created) at point (z, t) and subsequently re-inserted at point (z′, t′). The latter de-
scribes the amplitude for destroying a Cooper pair, that is, removing two correlated
particles at positions (z, t) and (z′, t′), and thus capturing the presence of pairing
correlations in a superconducting system.

4.3 Perturbative Expansion
In order to develop a perturbative theory of the proximity effect induced in the
MTI due to the proximity with the SC, we work within the interaction picture and
separate the Hamiltonian as

H = H0 +Hint , (4.37)
where H0 = HMTI + HSC is the unperturbed Hamiltonian for the uncoupled MTI
and superconductor, while the interaction Hint corresponds to the tunneling term
in Equation (4.28). In the following, we use the following notation to distinguish
between the different representations of an operator:

• the bare letter O is used for the time evolution in the interaction picture;

• the hat symbol Ô is used for the time evolution in the Heisenberg picture;

• the check symbol Ǒ is used for the time-independent operators in the
Schrödinger picture.
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In the interaction picture, the time evolution of an operator is determined only by the
unperturbed Hamiltonian while the evolution of a state depends on the interaction
[146]

O(t) = eiH0tǑe−iH0t , Ψ(t) = eiH0te−iHtΨ(0) . (4.38)
In contrast, the time-dependence of an operator in the Heisenberg representation is
defined as

Ô(t) = eiHtǑe−iHt , (4.39)
while the states are constant. Reversing Equation (4.38), and plugging it into Equa-
tion (4.39) we obtain

Ô(t) = eiHte−iH0tO(t)eiH0te−iHt = U †(t)O(t)U(t) , (4.40)

where we introduced the unitary operator U(t) ≡ eiH0te−iHt that determines the
time-evolution of a state in interaction picture

Ψ(t) = eiH0te−iHtΨ(0) = U(t)Ψ(0) . (4.41)

It is also possible to introduce an operator S(t, t′) that transforms the operator Ψ(t′)
into Ψ(t) as

Ψ(t) = S(t, t′)Ψ(t′) , U(t)Ψ(0) = S(t, t′)U(t′)Ψ(0) , (4.42)

which implies S(t, t′) ≡ U(t)U †(t′).
To proceed further we need to make a couple of assumptions. The first one is the

Gell-Man and Low theorem, stating that the ground state ϕ0 of the unperturbed
Hamiltonian H0 and the t = 0 ground state Ψ(0) of the full Hamiltonian H are
related by [143, 145, 147]

Ψ(0) = S(0,−∞)ϕ0 . (4.43)
If we consider t = 0 and t′ = t in Equation (4.42), we have that

Ψ(0) = S(0, t)Ψ(t) , (4.44)

and taking the limit t → −∞ we obtain

Ψ(0) = S(0,−∞)Ψ(−∞) . (4.45)

By comparison between Equations (4.43) and (4.45), we can understand the Gell-
Man and Low theorem as Ψ(−∞) = ϕ0, meaning that starting in a remote past with
a wavefunction ϕ0 which does not contain any effect of the interaction Hint, the op-
erator S(0,−∞) recovers adiabatically the ground state Ψ(0) of the full interacting
Hamiltonian H = H0 +Hint.

The second assumption is that the ground state at t → +∞

Ψ(+∞) = S(+∞, 0)Ψ(0) , (4.46)

is equal to the unperturbed one up to a phase factor eiL [143, 145]

Ψ(+∞) = S(+∞, 0)Ψ(0) = S(+∞, 0)S(0,−∞)ϕ0 = S(+∞,−∞)ϕ0 = eiLϕ0 ,
(4.47)
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where eiL ≡ ⟨ϕ0|S(+∞,−∞) |ϕ0⟩.
In order to express the Green’s functions in the interaction picture, we replace

the Heisenberg representation of the field operators with the corresponding interac-
tion one. Recalling Equation (4.40), the normal Green’s function defined in Equa-
tion (4.29) becomes

Gστ,σ′τ ′(zt, z′t′) = −i
〈
Tt ψ̂στ (zt)ψ̂†

σ′τ ′(z′t′)
〉

=

= −i
〈
Tt S(0, t)ψστ (zt)S(t, t′)ψ†

στ (z′t′)S(t′, 0)
〉
,

(4.48)

where we omitted the in-plane momentum. Using the previous assumption
Ψ(−∞) = ϕ0, it is possible to show that

⟨Ψ(0)| = ⟨ϕ0|S(−∞, 0) = e−iL ⟨ϕ0|S(+∞, 0) , (4.49)

and with some straightforward manipulation we finally obtain

Gστ,σ′τ ′(zt, z′t′) = −i⟨ϕ0|Tt ψστ (zt)ψ†
στ (z′t′)S(+∞,−∞) |ϕ0⟩

⟨ϕ0|S(+∞,−∞) |ϕ0⟩
. (4.50)

Similarly, we can obtain an equivalent expression for the anomalous Green’s function

F †
στ,σ′τ ′(zt, z′t′) = −i⟨ϕ0|Tt ψ

†
στ (zt)ψ†

στ (z′t′)S(+∞,−∞) |ϕ0⟩
⟨ϕ0|S(+∞,−∞) |ϕ0⟩

. (4.51)

4.3.1 Exponential Series
Recalling that U(t) = eiH0te−iHt, the matrix S(t, t′) = U(t)U †(t′) can be easily
expressed as a time-ordered operator

∂

∂t
S(t, t′) = −iV (t)S(t, t′) . (4.52)

where V ≡ Hint denotes the interacting Hamiltonian. Equation (4.52) has the formal
solution

S(t, t′) = Tt exp

−i
∫ t

t′
dt1 V (t1)

 , (4.53)

and therefore it can be expanded in an exponential series as [143, 145, 147]

S(t, t′) = 1 +
+∞∑
n=1

(−i)n

n!

∫ t

t′
dt1 · · ·

∫ t

t′
dtn Tt

[
V (t1) . . . V (tn)

]
. (4.54)

Plugging Equation (4.54) into Equation (4.50), we can evaluate the normal Green’s
function perturbatively as

Gστ,σ′τ ′(zt, z′t′) =
+∞∑
n=0

(−i)n+1

n!

∫ +∞

−∞
dt1 · · ·

∫ +∞

−∞
dtn

⟨ϕ0|Tt ψστ (zt)V (t1) . . . V (tn)ψ†
σ′τ ′(z′t′) |ϕ0⟩

⟨ϕ0|S(+∞,−∞) |ϕ0⟩
.

(4.55)
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Let us neglect the phase factor eiL in the denominator, since its only effect is to
generate terms that cancel the disconnected contributions originating from the nu-
merator. Up to the second-order in the interaction V , we can expand the Green’s
function in series as:

(i) unperturbed

G(0)
στ,σ′τ ′(zt, z′t′) = −i

〈
Tt ψστ (zt)ψ†

σ′τ ′(z′t′)
〉

0
; (4.56)

(ii) first-order

G(1)
στ,σ′τ ′(zt, z′t′) = −

∫ +∞

−∞
dt1

〈
Tt ψστ (zt)V (t1)ψ†

σ′τ ′(z′t′)
〉

0
; (4.57)

(iii) second-order

G(2)
στ,σ′τ ′(zt, z′t′) = i

2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

〈
Tt ψστ (zt)V (t1)V (t2)ψ†

σ′τ ′(z′t′)
〉

0
.

(4.58)
Here ⟨. . . ⟩0 ≡ ⟨ϕ0| . . . |ϕ0⟩ indicates the average on the unperturbed ground state
ϕ0.

Proceeding in analogous way, we can obtain a perturbative correction to the
anomalous Green’s function. Plugging Equation (4.54) into Equation (4.51) the
series expansion for the anomalous propagator is explicitly given by

F †
στ,σ′τ ′(zt, z′t′) =

+∞∑
n=0

(−i)n+1

n!

∫ +∞

−∞
dt1 · · ·

∫ +∞

−∞
dtn

⟨ϕ0|Tt ψ
†
στ (zt)V (t1) . . . V (tn)ψ†

σ′τ ′(z′t′) |ϕ0⟩
⟨ϕ0|S(+∞,−∞) |ϕ0⟩

.

(4.59)

Neglecting the phase factor eiL in the denominator, the perturbative expansion of
the propagator yields the following corrections up to second order in the tunneling
Hamiltonian:

(i) unperturbed

F † (0)
στ,σ′τ ′(zt, z′t′) = −i

〈
Tt ψ

†
στ (zt)ψ†

σ′τ ′(z′t′)
〉

0
; (4.60)

(ii) first-order

F † (1)
στ,σ′τ ′(zt, z′t′) = −

∫ +∞

−∞
dt1

〈
Tt ψ

†
στ (zt)V (t1)ψ†

σ′τ ′(z′t′)
〉

0
; (4.61)

(iii) second-order

F † (2)
στ,σ′τ ′(zt, z′t′) = i

2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

〈
Tt ψ

†
στ (zt)V (t1)V (t2)ψ†

σ′τ ′(z′t′)
〉

0
.

(4.62)
It is straightforward to verify that all odd-order contributions in the perturbative

series of Equations (4.55) and (4.59) vanish. Consequently, the leading corrections
to both the normal and anomalous components of the Green’s function correspond
to the second order terms in the series expansion. The detailed evaluation of the
first- and second-order corrections is presented in Appendix B, while here we report
only the final expressions for the second-order terms.
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4.3.2 Second-Order Corrections
Normal Green’s Function

The leading correction to the normal Green’s function can be obtained by evaluating
the time-ordered expectation value in Equation (4.58)〈

Tt ψστ (zt)V (t1)V (t2)ψ†
σ′τ ′(z′t′)

〉
0
, (4.63)

where only those terms containing an equal number of creation ψ† and annihilation
ψ field operators in the product V (t1)V (t2) give a nonvanishing contribution in the
unperturbed ground state. Up to overall constants, the time-ordered bracket can be
written explicitly as [143, 145]〈

Tt ψ(ξ)ψ†(1)ϕ(1′)ϕ†(2′)ψ(2)ψ†(ξ′)
〉

0
=〈

Tt ψ(ξ)ψ†(1)ψ(2)ψ†(ξ′)
〉

0

〈
Tt ϕ(1′)ϕ†(2′)

〉
0
,

(4.64)

where we introduced a compact notation ξ ≡ (z, t, σ, τ) to denote the complete set
of spatial, temporal, spin, and orbital indices associated with each field operator.
For the integrated variables, we adopt the following convention

i ≡ (zi, ti, σi, τi) , i′ ≡ (z′
i, ti, σ

′
i, τ

′
i) , (4.65)

where the time coordinate of a primed index is the same of the corresponding un-
primed one. Here, we have separated the MTI and SC contributions, since the
corresponding field operators commute and factorize in the unperturbed ground
state.

The two brackets in Equation (4.64) can be evaluated through Wick’s theorem
expanding them into all possible nonvanishing contractions, which correspond to
the normal and anomalous Green’s functions evaluated in the unperturbed ground
states of the two materials [143, 145, 148]. Assuming the tunneling term to be local
in space, i.e. that it couples only electrons at the same position

γστ,σ′(z) ≡ γστ,σ′(z) δ(z − z′) , (4.66)
the second-order correction in Equation (4.58) can be evaluated in the frequency
domain as (see Appendix B.1.2)

G(2)
MTI(z, z′;ω) =

∫
dz1 dz2

{
G(0)

MTI(z, z1;ω) Γ(z1) G(0)
SC(z1, z2;ω) Γ†(z2) G(0)

MTI(z2, z
′;ω)

−G(0)
MTI(z, z′;ω) Γ(z1) G(0)

SC(z1, z2;ω) Γ†(z2) G(0)
MTI(z2, z1;ω)

}
,

(4.67)

where G(0)
MTI (G(0)

SC) denotes the unperturbed normal Green’s function matrix of dimen-
sion 4×4 (2×2) in the MTI (SC), and Γ is the 4×2 tunneling matrix whose elements
are the tunneling amplitudes γστ,σ′(z) defined in Equation (4.66). The correspond-
ing Feynman diagrams are illustrated in Figure 4.1. The first term describes the
tunneling of an electron between the MTI and the SC, representing a back-and-forth
tunneling process. The second term corresponds to a disconnected diagram, which
cancels with the denominator ⟨ϕ0|S(−∞,+∞)|ϕ0⟩ of the perturbative expansion
and can therefore be neglected.
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G(0)
MTI(z, z′; ω)

Γ†(z2) Γ(z1)

G(0)
SC(z1, z2; ω)

G(0)
MTI(z2, z1; ω)

G(0)
MTI(z2, z′; ω) G(0)

SC(z1, z2; ω) G(0)
MTI(z, z1; ω)

Γ†(z2) Γ(z1)

Figure 4.1: Feynman diagrams corresponding to the second-order correction to the
normal MTI Green’s function in Equation (4.67). The blue (red) arrows represent
the unperturbed normal Green’s function in the MTI (SC), while the wiggly line
stand for the tunneling interaction.

Anomalous Green’s Function

Similarly, in order to evaluate the second-order correction to the anomalous MTI
Green’s function in Equation (4.62), we need to compute the time-ordered bracket〈

Tt ψ
†
στ (zt)V (t1)V (t2)ψ†

σ′τ ′(z′t′)
〉

0
. (4.68)

Neglecting the terms that vanish due to an unequal number of creation ψ† and
annihilation ψ operators, the time-ordered bracket reduces to〈

Tt ψ
†(ξ)ϕ†(1′)ψ(1)ϕ†(2′)ψ(2)ψ†(ξ′)

〉
0

=

−
〈
Tt ψ

†(ξ)ψ(1)ψ(2)ψ†(ξ′)
〉

0

〈
Tt ϕ

†(1′)ϕ†(2′)
〉

0
,

(4.69)

where we employed the compact notation introduced in Equation (4.65).
Equation (4.69) can be evaluated through Wick’s theorem [143, 145, 148]. For a

local tunneling as in Equation (4.66), the second-order correction to the anomalous
MTI Green’s function in the frequency domain is (see Appendix B.2.1)

F † (2)
MTI(z, z′;ω) =

∫
dz1 dz2 ×

×
[
G(0)

MTI(z1, z; −ω)
]T

Γ∗(z1) F † (0)
SC (z2, z1;ω) Γ†(z2) G(0)

MTI(z2, z
′;ω) ,

(4.70)

where F † (0)
SC is the 2×2 anomalous Green’s function in the unperturbed SC. The cor-

responding Feynman diagram is sketched in Figure 4.2. Physically, it corresponds
to an Andreev reflection process [113, 115]: an electron tunnels from the MTI into



86 Summary

the SC and is back-reflected as a hole, while a Cooper pair is formed in the supercon-
ducting condensate (see Figure 3.2). It is worth noting that this result has general
validity, as it applies to a broad class of normal–superconductor heterostructures
where SC correlations arise from the proximity effect, under the assumption of local
tunneling at the interface between the two materials.

G(0)
MTI(z2, z′; ω) F† (0)

SC (z2, z1; ω)
[
G(0)

MTI(z1, z; −ω)
]TΓ†(z2) Γ∗(z1)

Figure 4.2: Feynman diagrams corresponding to the second-order correction to the
anomalous MTI Green’s function in Equation (4.70). The blue arrows represent the
unperturbed normal Green’s function in the MTI, the red double arrow stands for
the unperturbed anomalous Green’s function in the SC, and the wiggly lines stand
for the tunneling interaction.

The above equation provides the final expression for the perturbative correc-
tion to the anomalous Green’s function, characterizing the induced superconducting
pairing in the magnetically doped TI system. In the following chapters, we first eval-
uate the unperturbed Green’s functions in the two materials in the decoupled limit
(V = 0), and subsequently employ Equation (4.70) to model the proximity-induced
pairing in the proximitized MTI.

Summary
In this chapter, we developed a second-quantized formalism to describe the pairing
amplitude induced in MTIs by proximity to a conventional superconductor. After
introducing the second-quantized Hamiltonian of the MTI–SC heterostructure, we
outline the normal and anomalous Green’s functions, which encode the propagation
amplitude of individual and coherent pairs of quasiparticles within the MTI. By
treating the tunneling interaction as a perturbation on the ground states of the
uncoupled materials, we derived the corrections to the Green’s functions in the
interaction picture.

A key result of this analysis is that all odd-order contributions to the MTI
Green’s functions vanish, so that the lowest nonvanishing correction arises at sec-
ond order in the tunneling amplitude. We obtained explicit analytical expressions
for these second-order terms, together with their Feynman-diagram representation.
In particular, the correction to the anomalous Green’s function can be physically
interpreted as an Andreev process, in which an electron tunnels into the supercon-
ductor and is reflected as a hole, creating a Cooper pair. These results establish the
microscopic origin of the proximity effect and provide the foundation for the quan-
titative evaluation of the induced pairing: building on this framework, in the next
chapter we evaluate the unperturbed Green’s functions of the two decoupled ma-
terials, which provide the essential input for the perturbative expansion developed
here.



Chapter 5

Unperturbed Materials

Overview

In the previous chapter, we developed a perturbative framework to describe the cor-
relations induced in MTI thin films by proximity to a conventional superconductor,
and showed that the lowest nonvanishing correction to the Green’s functions arises
at second order in the tunneling amplitude. Building on this result, the aim of the
present chapter is to evaluate the unperturbed Green’s functions in the two decou-
pled materials, which will serve as the input for the perturbative expansion enabling
the quantitative analysis of the induced pairing.

The remainder of this chapter is organized as follows. In Section 5.1, we derive
and solve the Gor’kov equations for a conventional spin-singlet s-wave bulk super-
conductor with full translational invariance. The solution is obtained in momentum
space and Fourier transformed along the out-of-plane direction z by evaluating the
corresponding contour integral in the complex plane. In Section 5.2, we turn to the
normal Green’s function of an MTI thin film with translational invariance in the
in-plane directions and finite thickness along z. The equation of motion reduces to
a system of coupled second-order differential equations, from which we obtain a gen-
eral momentum-dependent solution, as well as a closed-form expression valid in the
limiting case of kx = ky = 0 and for surface-localized states decaying exponentially
away from the interface.

5.1 Bulk Superconductor

The energy spectrum of a conventional bulk superconductor can be conveniently
computed using the Nambu formalism introduced in Equation (2.2), where the BCS
Hamiltonian Equation (4.24) acquires a quadratic form and can thus be diagonalized
straightforwardly [88, 89]. Introducing the Nambu spinors

Φk =

 ϕk ↑

ϕ†
−k ↓

 , Φ†
k =

(
ϕ†

k ↑ ϕ−k ↓

)
, (5.1)
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and exploiting the fermionic anticommutation relations of the field operators, the
second-quantized Hamiltonian Equation (4.24) can be recast as

HSC = 1
2

∫
dk Φ†

k hBdG(k) Φk . (5.2)

The corresponding BdG Hamiltonian in momentum space reads

hBdG(k) =

 εk ∆
∆∗ −εk

 , (5.3)

where εk = (k2
x + k2

y + k2
z)/2m − µ denotes the free-electron dispersion and ∆ ≡

∆↑↓ = −∆↓↑ is the superconducting pairing amplitude.
The energy spectrum of the bulk SC can thus be found straightforwardly by

diagonalizing Equation (5.3), whose eigenstates and eigenvalues are given by

Ek = ±
√
ε2

k + |∆|2 , Φk = |∆|√
2εk (εk ± Ek)

 1
∆∗

(
εk ± Ek

)
1

 . (5.4)

The two components of the Nambu spinor Φk ≡ (uk vk)T can be identified as the
electron uk and hole vk amplitudes of the single quasiparticle excitations, and the
particle-hole character can be computed as the expectation value

⟨γz⟩ = Φ†
k γz Φk , (5.5)

where γx,y,z is a set of Pauli matrices acting in the particle-hole subspace. The
BdG spectrum for single particle excitations in a conventional bulk SC is shown
in Figure 5.1 as a function of the crystalline momentum. The colors are used to
represent the particle-hole character of the corresponding eigenstates.

5.1.1 Gor’kov Equations
The physics of a superconducting system is governed by the Gor’kov equations,
which couple the normal and anomalous components of the Green’s function. A
detailed derivation for a conventional spin-singlet s-wave superconductor with full
translational invariance is presented below. Unless otherwise specified, we express all
equations in natural units, setting ℏ = 1, and fix the effective mass of the electrons
in the superconductor by assuming 1

2m
= 1.

For a conventional BCS superconductor described by the Hamiltonian in Equa-
tion (4.24), the unperturbed time-ordered Green’s functions in momentum space,
defined in Equations (4.56) and (4.60), take the form

G(0)
σσ′(k; t, t′) = −i

〈
Tt ϕk σ(t)ϕ†

k σ′(t′)
〉

0
,

F † (0)
σσ′ (k; t, t′) = −i

〈
Tt ϕ

†
−k σ(t)ϕ†

k σ′(t′)
〉

0
,

(5.6)

where ϕ†
k σ(t) and ϕk σ(t)) are the time-evolved SC field operators defined in Equa-

tion (4.22). It is worth noting that in the absence of a perturbation V = 0, the
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Figure 5.1: Single-particle energy spectrum of the BCS superconductor as a func-
tion of the modulus squared of the crystal momentum k2 = k2

x + k2
y + k2

z . The
colors represent the particle-hole character of the eigenstates obtained through Equa-
tion (5.5).

time-evolution in the Heisenberg representation Equation (4.39) is equal to the time-
evolution in the interacting one Equation (4.38). Making explicitly the action of the
time-ordering operator, the normal Green’s function becomes

G(0)
σσ′(k; t, t′) = −iθ(t− t′)

〈
ϕk σ(t)ϕ†

k σ′(t′)
〉

0
+ iθ(t′ − t)

〈
ϕ†

k σ′(t′)ϕk σ(t)
〉

0
, (5.7)

and the time derivative can be evaluated as

∂tG(0)
σσ′(k; t, t′) = −iδ(t− t′)

〈{
ϕk σ(t), ϕ†

k σ′(t′)
}〉

0
− i

〈
Tt ∂tϕk σ(t)ϕ†

k σ′(t′)
〉

0
=

= −iδσσ′δ(t− t′) − i
〈
Tt ∂tϕk σ(t)ϕ†

k σ′(t′)
〉

0
,

(5.8)

where we took advantage of the anticommutation relation{
ϕk σ(t), ϕ†

k σ′(t)
}

= δσσ′ , (5.9)

since the field operators act at the same instant of time t = t′. Similarly, for the
anomalous Green’s function we have that

∂tF † (0)
σσ′ (k; t, t′) = −i

〈
Tt ∂tϕ

†
−k σ(t)ϕ†

k σ′(t′)
〉

0
, (5.10)

since the anticommutator of two creation field operators is always vanishing. The
time-derivative of an operator O(t) can be evaluated as [143, 146]

∂tO(t) = i [H,O(t)] = i eiHt [H,O] e−iHt , (5.11)

and for the SC Hamiltonian in Equation (4.24) we obtain

i∂tϕk σ(t) = εkϕk σ(t) +
∑
σ′

∆σσ′ϕ†
−k σ′(t) ,

i∂tϕ
†
k σ(t) = −εkϕ

†
k σ(t) +

∑
σ′

∆∗
σσ′ϕ−k σ′(t) .

(5.12)
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Plugging Equation (5.12) into Equations (5.8) and (5.10), we can obtain two
paired equations coupling normal and anomalous Green’s functions. For the normal
one, we have

∂tG(0)
σσ′(k; t, t′) = − iδσσ′δ(t− t′) − i

〈
Tt ∂tϕk σ(t)ϕ†

k σ′(t′)
〉

0
=

= − iδσσ′δ(t− t′) − εk

〈
Tt ϕk σ(t)ϕ†

k σ′(t′)
〉

0
−

−
∑
σ′′

∆σσ′′

〈
Tt ϕ

†
−k σ′′(t)ϕ†

k σ′(t′)
〉

0
=

= − iδσσ′δ(t− t′) − iεkG(0)
σσ′(k; t, t′) − i

∑
σ′′

∆σσ′′F † (0)
σ′′σ′(k; t, t′) .

(5.13)

The previous equation can be rewritten in compact form using matrix notation

∂tG(0)
SC(k; t, t′) = −iδ(t− t′) − iεk G(0)

SC(k; t, t′) − i∆σy F † (0)
SC (k; t, t′) , (5.14)

where ∆ ≡ ∆↑↓ = −∆↓↑, and σy denotes the Pauli matrix acting in the spin space
of the superconductor. Here, we introduced the normal GSC and anomalous F †

SC
Green’s functions matrices, which in the basis {|↑⟩ , |↓⟩} are explicitly given by

GSC =

G↑↑ G↑↓

G↓↑ G↓↓

 , F †
SC =

F †
↑↑ F †

↑↓

F †
↓↑ F †

↓↓

 . (5.15)

With some straightforward manipulation we finally obtain

(i∂t − εk) G(0)
SC(k; t, t′) − ∆σy F † (0)

SC (k; t, t′) = δ(t− t′) , (5.16)

Similarly, we can obtain a second equation for the anomalous propagator. Plug-
ging Equation (5.12) into Equation (5.10), we have

∂tF † (0)
σσ′ (k; t, t′) = −i

〈
Tt ∂tϕ

†
−k σ(t)ϕ†

k σ′(t′)
〉

0
=

= εk

〈
Tt ϕ

†
−k σ(t)ϕ†

k σ′(t′)
〉

0
−
∑
σ′′

∆∗
σσ′′

〈
Tt ϕk σ′′(t)ϕ†

k σ′(t′)
〉

0
=

= iεk F † (0)
σσ′ (k; t, t′) − i

∑
σ′′

∆∗
σσ′′G(0)

σ′′σ′(k; t, t′) ,

(5.17)

which with the matrix notation introduced in Equation (5.15) becomes

∂tF † (0)
SC (k; t, t′) = iεk F † (0)

SC (k; t, t′) − i∆∗σy G(0)
SC(k; t, t′) . (5.18)

With some algebraic manipulation, the above equation can be rewritten as

(i∂t + εk) F † (0)
SC (k; t, t′) − ∆∗σyG(0)

SC(k; t, t′) = 0 . (5.19)

The Equations (5.16) and (5.19) that couple normal and anomalous Green’s func-
tions take the name of Gor’kov equations, and describe the physics of a conventional
spin-singlet s-wave SC with an isotropic pairing ∆σy [143, 144].
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Since the Hamiltonian in Equation (4.24) does not depend explicitly on time,
the system is time-translational invariant. Fourier transforming the propagators
to frequency space the time derivatives become algebraic, and Equations (5.16)
and (5.19) can thus be rewritten as

(ω + iη sgnω − εk) G(0)
SC(k;ω) − ∆σy F † (0)

SC (k;ω) = 1 ,

(ω + iη sgnω + εk) F † (0)
SC (k;ω) − ∆∗σy G(0)

SC(k;ω) = 0 ,
(5.20)

where η > 0 is an infinitesimal positive constant that displaces the poles of the
Green’s function from the real axis, enforcing the correct analytic continuation and
ensuring the causal structure of the time-ordered propagator.

5.1.2 Momentum-Space Solution
The Gor’kov equations (5.20) in momentum and frequency space are algebraic and
can be directly solved as [143, 144]

G(0)
SC(k;ω) = ω + εk

(ω + iη sgnω)2 − E2
k

, F † (0)
SC (k;ω) = ∆∗

(ω + iη sgnω)2 − E2
k

σy ,

(5.21)
where E2

k ≡ ε2
k + |∆|2 denotes the squared Bogoliubov excitation spectrum. Con-

sistently with the assumption of a conventional spin-singlet s-wave pairing, the
off-diagonal (diagonal) part of the normal (anomalous) propagator vanishes

G↑↓ = G↓↑ = 0 , F †
↑↑ = F †

↓↓ = 0 , (5.22)

while the nontrivial components are

G↑↑ = G↓↓ = ω + εk

(ω + iη sgnω)2 − E2
k

, F †
↑↓ = −F †

↓↑ = − i∆∗

(ω + iη sgnω)2 − E2
k

,

(5.23)
with the anomalous propagator being antisymmetric in spin space.

5.1.3 Real-Space Solution
Despite we assumed full translational invariance and derived and solved the Gor’kov
equations for a bulk superconductor, to evaluate the perturbative corrections in
Equations (4.67) and (4.70) we are ultimately interested in the real-space dependence
along z of the Green’s functions. For this purpose, we need to Fourier transform
Equation (5.21) to real space along z and evaluate the following integrals

G(0)
SC(k∥, z, z

′;ω) ≡ G(0)
SC(k∥, z − z′;ω) =

∫ dkz

2π
eikz(z−z′)G(0)

SC(k;ω) , (5.24)

F † (0)
SC (k∥, z, z

′;ω) ≡ F † (0)
SC (k∥, z − z′;ω) =

∫ dkz

2π
eikz(z−z′)F † (0)

SC (k;ω) . (5.25)

Extending the momentum from the real axis to the complex plane kz → kr + iki,
the integrals in Equations (5.24) and (5.25) can be evaluated in the complex plane
if the exponential factor

eikz(z−z′) = eikr(z−z′)e−ki(z−z′) , (5.26)
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converges in the limit of large imaginary part ki. For ki > 0, we have

lim
ki→+∞

e−ki(z−z′) =

0 if z − z′ > 0 ,

+∞ if z − z′ < 0 ,
(5.27)

and conversely for ki < 0

lim
ki→−∞

e−ki(z−z′) =

+∞ if z − z′ > 0 ,

0 if z − z′ < 0 ,
(5.28)

meaning that to ensure the convergence of the integrals we need to choose a closed
path in the upper (lower) half of the complex plane when z − z′ ≥ 0 (z − z′ < 0).

In general, the integral of a complex-valued function f(kz) over a closed contour
γ in the complex plane can be evaluated using the residue theorem as [149, 150]∮

γ
f(kz) dkz = 2πi

∑
j

I(γ, kj) Res(f, kj) , (5.29)

where kj are the poles enclosed by γ, Res(f, kj) denotes the residue of f at kj, and
I(γ, kj) is the winding number of the contour γ around the pole kj, whose sign is
positive (negative) for an anticlockwise (clockwise) loop. If we choose as closed path
γ the semicircle CR of radius R with the diameter along the real axis, the contour
integral can be decomposed as

∮
γ
f(kz) dkz =

∫ R

−R
f(kz) dkz +

∫
CR

f(kz) dkz . (5.30)

In the limit of large |kz|, if the integrand function decays at least as |f(kz)| ∼ 1/|kz|a
for a > 1, by Jordan’s lemma we have that [149, 150]

lim
R→+∞

∫
CR

f(kz) dkz = 0 , (5.31)

and taking the limit R → +∞ in Equation (5.30) we obtain

∮
γ
f(kz) dkz = lim

R→∞

[∫ R

−R
f(kz) dkz +

∫
CR

f(kz) dkz

]
=
∫ +∞

−∞
f(kz) dkz . (5.32)

Therefore, by means of Equation (5.29), the integral on the real axis can be computed
as the sum of the residues enclosed by the path γ

∫ +∞

−∞

dkz

2π
f(kz) =

∮
γ

dkz

2π
f(kz) = ±i

∑
j

Res(f, kj) , (5.33)

where the positive (negative) sign is for the loop closed in the upper (lower) half-
plane. The integrals in Equations (5.24) and (5.25) can be computed in the complex
plane along the paths shown in Figure 5.2 taking the limit R → +∞.
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Figure 5.2: The closed paths in the upper (lower) half of the complex plane used to
evaluate the integrals in Equations (5.24) and (5.25) are shown as blue (red) lines.
The black dots represent the poles of the Green’s functions, located along a circle
of radius |kp| centered at the origin.

Complex Poles

To Fourier transform the propagators into real space, we first need to find the poles
of the Green’s functions in Equation (5.21), corresponding to the zeros of Bogoliubov
quasiparticle spectrum ω2 − E2

k = 0. With some straightforward algebra, the four
poles can be found as

kp = ±i
√

1
t
(ε0 ± ω0) , (5.34)

where t ≡ 1/2m, ε0 ≡ t(k2
x + k2

y) − µ, ω0 =
√
ω2 − |∆|2 and we neglected the

infinitesimal imaginary part η for the sake of simplicity. Since we are interested in
the proximity effect, we restrict our analysis to −|∆| < ω < |∆|. In this limit we
have that

ω0 = i
√

|∆|2 − ω2 , (5.35)
is always a purely imaginary number, and the four poles in Equation (5.34) can be
evaluated explicitly as kp = ±k± with k± ≡ ±κr + iκi where real and imaginary
parts are given by

κr =
√

1
2t

(√
E2

0 − ω2 − ε0

)
, κi =

√
1
2t

(√
E2

0 − ω2 + ε0

)
, (5.36)

and E0 ≡
√
ε2

0 + |∆|2. For energies below the superconducting gap, the poles always
possess finite real and imaginary parts and lie on a circle of radius

|kp| = 1
2t

√
E2

0 − ω2 , (5.37)

centered at the origin, and they become purely real or imaginary only for ω = |∆|.
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Normal Green’s Function

For the normal Green’s function, the integrand function in Equation (5.24) is explic-
itly given by

g(kz) ≡ ω + εk

(ω + iη sgnω)2 − E2
k

eikz(z−z′) . (5.38)

For z−z′ ≥ 0, the integration contour can be closed in the upper half-plane, enclosing
the poles k± as illustrated in Figure 5.2. The integral in Equation (5.24) can thus
be evaluated as ∫ dkz

2π
g(kz) = i

[
Res(g, k+) + Res(g, k−)

]
. (5.39)

Since both the poles are simple, the residues can be computed as

Res(g, kp) = lim
kz→kp

(kz − kp)g(kz) , (5.40)

yielding
Res(g, k±) = ±ω ∓ ω0

4tω0

1
k±

eik±(z−z′) (5.41)

Skipping some straightforward algebra, the integral can be evaluated as
∫ dkz

2π
g(kz) = i

[
Res(g, k+) + Res(g, k−)

]
= i

4tω0

Ω−

k+
eik+(z−z′) − Ω+

k−
eik−(z−z′)

 ,
(5.42)

where Ω± ≡ ω ± ω0. Since the poles in the upper and lower half–planes are related
by inversion symmetry, an analogous expression follows for z − z′ < 0. Recalling
that the unperturbed normal Green’s function in the bulk SC is proportional to
identity in spin space, the real-space propagator can be finally written as

G(0)
SC(k∥, z − z′;ω) = i

4tω0

Ω−

k+
eik+|z−z′| − Ω+

k−
eik−|z−z′|

1 . (5.43)

The diagonal nonvanishing component of the normal SC Green’s function is shown
in Figure 5.3, plotted as a function of the spatial coordinate difference z − z′ and
the energy ω below the gap.

Anomalous Green’s Function

For the anomalous Green’s function, the integrand function in Equation (5.25) is
explicitly given by

f(kz) ≡ i∆∗

(ω + iη sgnω)2 − E2
k

eikz(z−z′) , (5.44)

and we recall that the off-diagonal components are related by a sign change. We
treat explicitly only the case of z − z′ ≥ 0, which can be integrated in the upper
half-plane enclosing the poles k± as illustrated in Figure 5.2. The case z − z′ < 0
yields an analogous result. The integral in Equation (5.25) can thus be evaluated as∫ dkz

2π
f(kz) = i

[
Res(f, k+) + Res(f, k−)

]
, (5.45)
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Figure 5.3: Unperturbed normal and anomalous Green’s functions of a BCS super-
conductor, plotted as a function of (a) the real-space coordinate difference z − z′ at
zero energy ω = 0, and (b) the frequency ω below the gap at fixed position z = z′.
The red curve shows the real part of the normal Green’s function computed in Equa-
tion (5.43), while the blue curve shows the imaginary part of the anomalous Green’s
function in Equation (5.48). The plot was obtained for kx = ky = 0, ∆ = 5 meV
and µ = 10 meV.

where the residues can be computed through Equation (5.40) since the poles are
simple. With some straightforward algebra, it is possible to obtain

Res(f, k±) = ± i∆∗

4tω0

1
k±

eik±(z−z′) , (5.46)

and the integral is thus given by∫ dkz

2π
f(k) = i

[
Res(f, k+) + Res(f, k−)

]
= − ∆∗

4tω0

eik+(z−z′)

k+
− eik−(z−z′)

k−

 . (5.47)

Taking into account the analogous result that can be obtained for z − z′ < 0 with
the opposite poles, and recalling that F (0) † ∝ σy in spin space, we can finally write
the real-space anomalous Green’s function in the superconductor as

F † (0)
SC (k∥, z − z′;ω) = − ∆∗

4tω0

eik+|z−z′|

k+
− eik−|z−z′|

k−

σy . (5.48)

The off-diagonal nonvanishing components of the anomalous SC Green’s function is
shown in Figure 5.3, plotted as a function of the spatial coordinate difference z− z′

and the energy ω below the gap.

5.2 Unperturbed MTI
5.2.1 Equation of Motion
In the absence of the tunneling term, the unperturbed normal and anomalous
Green’s functions in the MTI can be computed exactly solving the correspond-
ing equations of motion, which in real space take the form of a system of coupled
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second-order linear differential equations. Recalling Equations (4.56) and (4.60),
the unperturbed time-ordered propagators in the interaction picture are given by

G(0)
στ,σ′τ ′(zt, z′t′) = −i

〈
Tt ψστ (zt)ψ†

σ′τ ′(z′t′)
〉

0
,

F † (0)
στ,σ′τ ′(zt, z′t′) = −i

〈
Tt ψ

†
στ (zt)ψ†

σ′τ ′(z′t′)
〉

0
,

(5.49)

where we omitted the in-plane momenta kx and ky for the translational invariant
directions x and y. We emphasize that in the absence of a perturbation V = 0, the
time evolution of the field operators in the interacting representation Equation (4.38)
is equal to the Heisenberg one Equation (4.39). Making explicitly the action of the
time-ordering operator, the normal Green’s function becomes [144]

G(0)
στ,σ′τ ′(zt, z′t′) = −iθ(t− t′)

〈
ψστ (zt)ψ†

σ′τ ′(z′t′)
〉

0
+ iθ(t′ − t)

〈
ψ†

σ′τ ′(z′t′)ψστ (zt)
〉

0
,

(5.50)
and its time derivative can be easily evaluated as

∂tG(0)
στ,σ′τ ′(zt, z′t′) = −iδ(t− t′)

〈{
ψστ (zt), ψ†

σ′τ ′(z′t′)
}〉

0
− i

〈
Tt ∂tψστ (zt)ψ†

σ′τ ′(z′t′)
〉

0

= −iδσσ′δττ ′δ(z − z′)δ(t− t′) − i
〈
Tt ∂tψστ (zt)ψ†

σ′τ ′(z′t′)
〉

0
,

(5.51)
where we have used the canonical fermionic anticommutation relation at t = t′{

ψστ (zt), ψ†
σ′τ ′(z′t)

}
= δσσ′δττ ′δ(z − z′) . (5.52)

For the anomalous Green’s function we can obtain an analogous result

∂tF † (0)
στ,σ′τ ′(zt, z′t′) = −i

〈
Tt ∂tψ

†
στ (zt)ψ†

σ′τ ′(z′t′)
〉

0
, (5.53)

taking into account that the anticommutator between two fermionic creation field
operators vanishes identically.

The time-derivative of the field operators ψστ (zt) and ψ†
στ (zt) on the unperturbed

ground state is given by [144, 146]
∂tψστ (zt) = ieiHt [H,ψστ (z)] e−iHt = −i

∑
σ′τ ′

hστ,σ′τ ′ψστ (zt) ,

∂tψ
†
στ (zt) = ieiHt

[
H,ψ†

στ (z)
]

e−iHt = i
∑
σ′τ ′

hστ,σ′τ ′ψ†
στ (z) ,

(5.54)

where we used the Hamiltonian H = HMTI for a non-proximitized thin film of MTI
in Equation (4.10), whose matrix elements hστ,σ′τ ′ are defined in Equation (4.9).
Plugging Equation (5.54) into Equation (5.49), the time-derivative of the normal
and anomalous Green’s functions can be obtained. The normal one becomes
∂tG(0)

στ,σ′τ ′(zt, z′t′) = − iδσσ′δττ ′δ(z − z′)δ(t− t′) − i
〈
Tt ∂tψστ (zt)ψ†

σ′τ ′(z′t′)
〉

0
=

= − iδσσ′δττ ′δ(z − z′)δ(t− t′)−

−
∑

σ′′τ ′′
hστ,σ′′τ ′′

〈
Tt ψσ′′λ′′(zt)ψ†

σ′τ ′(z′t′)
〉

0
=

= − iδσσ′δττ ′δ(z − z′)δ(t− t′) − i
∑

σ′′τ ′′
hστ,σ′′τ ′′G(0)

σ′′λ′′,σ′τ ′(zt, z′t′) .

(5.55)



Chapter 5: Unperturbed Materials 97

Equivalently, one may write

−
∑

σ′′τ ′′

(
δσσ′′δττ ′′ ∂t + ihστ,σ′′τ ′′

)
G(0)

σ′′λ′′,σ′τ ′(zt, z′t′) = iδσσ′δττ ′δ(z − z′)δ(t− t′) , (5.56)

which can be recast in matrix form as(
∂t + ihMTI

)
G(0)

MTI(zt, z′t′) = iδσσ′δττ ′δ(z − z′)δ(t− t′) , (5.57)

In analogous way, for the anomalous propagator we obtain [144]

∂tF † (0)
στ,σ′τ ′(zt, z′t′) = −i

〈
Tt ∂tψ

†
στ (zt)ψ†

σ′τ ′(z′t′)
〉

0
=

=
∑

σ′′τ ′′
hστ,σ′′τ ′′

〈
Tt ψ

†
σ′′λ′′(z)ψ†

σ′τ ′(z′t′)
〉

0
=

= i
∑

σ′′τ ′′
hστ,σ′′τ ′′F † (0)

σ′′λ′′,σ′τ ′(zt, z′t′) ,

(5.58)

which can be rewritten as∑
σ′′λ′′

(
δσσ′′δττ ′′ ∂t − ihστ,σ′′τ ′′

)
F † (0)

σ′′λ′′,σ′τ ′(zt, z′t′) = 0 . (5.59)

and using matrix notation finally becomes(
∂t − ihMTI(−i∂z)

)
F † (0)

MTI(zt, z′t′) = 0 . (5.60)

Equations (5.57) and (5.59) are the equations of motion for the normal and anoma-
lous Green’s functions in a non-proximitized thin film of MTI with translational
invariance along the in-plane directions x and y and finite thickness along z. In the
absence of proximity effect, the two equations become decoupled and can be solved
independently, reflecting the absence of induced superconducting correlations in the
system.

Since the Hamiltonian in Equation (4.10) does not depend explicitly on time, the
system is time-translational invariant. Fourier transforming the Green’s functions
to frequency space the time derivatives become algebraic, such that Equations (5.57)
and (5.59) become (

ω − hMTI(−i∂z)
)

G(0)
MTI(z, z′;ω) = δ(z − z′) ,(

ω + hMTI(−i∂z)
)

F † (0)
MTI(z, z′;ω) = 0 .

(5.61)

5.2.2 General Solution
To solve Equation (5.61) we must first solve the corresponding homogeneous equa-
tion valid for z ̸= z′ and then find the particular solution applying boundary and
matching conditions.
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Homogeneous Solution

We begin by determining the general solution of the associated homogeneous sys-
tem of equations. Since the anomalous Green’s function vanishes identically in
the absence of superconducting proximity-induced pairing, we deal with the normal
propagator only, whose corresponding homogeneous equation reads(

ω − hMTI(−i∂z)
)

G(0)
MTI(z, z′;ω) = 0 . (5.62)

In the spin-orbital basis of states {|↑ +⟩ , |↑ −⟩ , |↓ +⟩ , |↓ −⟩}, the differential
equations take the explicit form

(B1 − tD1) ∂2
z gστ,σ′τ ′ = − [t (e0 + sΛ − ω) +m0] gστ,σ′τ ′−

− A2t (kx − isky) gσ̄τ̄ ,σ′τ ′+

+ itsA1 ∂z gστ̄ ,σ′τ ′ ,

(5.63)

where gστ,σ′τ ′ denote the matrix elements of the normal Green’s function G(0)
MTI, and

the barred indices σ̄ and τ̄ indicate the opposite spin and orbital states, respectively.
We introduced the abbreviations e0 ≡ C0 +D2k

2, m0 ≡ M0 −B2k
2, and k2 ≡ k2

x +k2
y,

while the spin and orbital indices are encoded through

s =

+1 if σ =↑
−1 if σ =↓

, t =

+1 if τ = +
−1 if τ = −

. (5.64)

Equation (5.63) constitutes a system of four coupled second-order linear differential
equations—one for each spin-orbital combination στ . Importantly, since the right-
hand side does not depend on σ′τ ′, the homogeneous solution is identical across all
columns of the Green’s function matrix.

To simplify the system, Equation (5.63) can be rewritten in a compact matrix
form as

∂2
z gστ = [C]στ,στ gστ + [C]στ,σ̄τ̄ gσ̄τ̄ + [D]στ,στ̄ ∂zgστ̄ , (5.65)

where C and D are 4 × 4 matrices defined by comparison with Equation (5.62), that
in the chosen basis are explicitly given by

C =



− e0+m0+Λ−ω
B1−D1 0 0 −A2(kx−iky)

B1−D1

0 − e0+m0−Λ−ω
B1−D1 −A2(kx+iky)

B1−D1 0

0 A2(kx−iky)
B1+D1

e0−m0+Λ−ω
B1+D1 0

A2(kx+iky)
B1+D1 0 0 e0−m0−Λ−ω

B1+D1


, (5.66)

and

D = iA1



0 0 1
B1−D1 0

0 0 0 − 1
B1−D1

− 1
B1+D1 0 0 0

0 1
B1+D1 0 0

 . (5.67)
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Enlarging the space of unknowns and adding a set of four new equations in the
unknowns gστ,σ′τ ′ , Equation (5.62) can be reduced to a closed system of first-order
differential equations [151, 152]. Indeed, Equation (5.65) can be rearranged as

∂2
z gστ = [C]στ,στ gστ + [C]στ,σ̄τ̄ gσ̄τ̄ + [D]στ,στ̄ ∂zgστ̄ , (5.68)

and taking into account also the trivial identity, it can be seen as a system of eight
first-order differential equations in the unknowns gστ and ∂zgστ . Introducing the
eight-component vector of unknowns

X =
(
g↑+ g↑− g↓+ g↓− ∂zg↑+ ∂zg↑− ∂zg↓+ ∂zg↓−

)
, (5.69)

Equation (5.68) can be written in matrix form as [153]

∂zX(z, z′) = M X(z, z′) , (5.70)

where
M =

[
0 1
C D

]
, (5.71)

and 0 and 1 are the 4 × 4 zero and identity matrices, respectively. The general
solution to Equation (5.70) can be formally expressed via matrix exponentiation as
[151, 152]

X(z, z′) = eMz X0(z′) , (5.72)
where X0(z′) is an eight-components vector-valued function to be fixed by appropri-
ate boundary or matching conditions.

To obtain the general solution of the homogeneous system of equations Equa-
tion (5.62) is thus sufficient to compute the exponential of the matrix M. Explicitly,
the general homogeneous solution in Equation (5.70) can be written as a linear com-
bination of the matrix elements in the first four rows of the matrix M

gστ (z, z′) =
∑

j

[
eMz

]
στ,j

X0,j(z′) , (5.73)

where X0,j for j = 1, . . . , 8 are the components of the vector X0. Real and imaginary
parts of the matrix elements in the first four rows of eMz are shown in Figures 5.4
and 5.5 as a function of the out-of-plane coordinate z.

Particular Solution

To find the full solution to Equation (5.62) we need to apply boundary conditions
at the extremities of the MTI thin film and determine the particular solution for
X0(z′). By including the inhomogeneous Dirac delta term, Equation (5.63) takes
the following form

(B1 − tD1) ∂2
z gστ,σ′τ ′ + [t (e0 + sΛ − ω) +m0] gστ,σ′τ ′

+A2t (kx − isky) gσ̄τ̄ ,σ′τ ′ − itsA1 ∂z gστ̄ ,σ′τ ′ = δσσ′δττ ′δ(z − z′) ,
(5.74)

which depends also on σ′τ ′, meaning that the particular solution is different for each
column of the Green’s function matrix.



100 5.2 Unperturbed MTI

−10 0 10

0

1

R
e
( eM

z)
[a

.u
.]

j = 1

−10 0 10

0

1

j = 2

−10 0 10
−4

−2

0

j = 3

−10 0 10
−4

−2

0

j = 4

−10 0 10
z

−25

0

25

R
e
( eM

z)
[a

.u
.]

j = 5

−10 0 10
z

−25

0

25

j = 6

−10 0 10
z

−10

0

10

j = 7

−10 0 10
z

−10

0

10

j = 8

στ =↑ + στ =↑ − στ =↓ + στ =↓ −
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For z ̸= z′, the delta function vanishes, and Equation (5.74) reduces to the ho-
mogeneous one in Equation (5.63), whose general solution has already been derived.
In principle, the solutions on either side of z = z′ may differ, and without loss of
generality they can be expressed as

X(z, z′) =

eMz XL
0 (z′) for z < z′ ,

eMz XR
0 (z′) for z > z′ ,

(5.75)

where XL
0 (z′) and XR

0 (z′) are the corresponding coefficient vectors for the left and
right branches, respectively. The components in the first four rows of the vector in
Equation (5.75) correspond to the solutions for the normal MTI Green’s function
and we denote them as gL

στ,σ′τ ′ and gR
στ,σ′τ ′ , respectively.

At the boundaries of the MTI thin film, z = 0 and z = d, we impose Neumann
boundary conditions to ensure that the Green’s function remains finite and does not
vanish at the interfaces:

∂z g
L
στ,σ′τ ′(z, z′)

∣∣∣
z=0

= 0 , (5.76)

∂z g
R
στ,σ′τ ′(z, z′)

∣∣∣
z=d

= 0 . (5.77)

While this choice is not the only possible one, it is the most convenient for the
computation of the induced pairing since allows us to assume that the tunneling
Γ(z) ∝ δ(z) occurs sharply at the MTI-SC interface at z = 0 without the need to
evaluate the real-space integrals in Equation (4.70). Furthermore, this assumption
is physically justified because it enforces the quasiparticle current normal to the
surfaces of the MTI film to vanish, ensuring that no current flows out of the sample.

In addition, we impose continuity of the Green’s function at z = z′,

gL
στ,σ′τ ′(z = z′, z′) = gR

στ,σ′τ ′(z = z′, z′) , (5.78)

ensuring that no discontinuity arises in the propagator itself. Finally, in order to
account for the singular source term δ(z− z′), we integrate Equation (5.74) over an
infinitesimal interval around z = z′. Making use of the continuity condition (5.78),
this yields a discontinuity in the first derivative:[

∂z g
R
στ,σ′τ ′(z, z′) − ∂z g

L
στ,σ′τ ′(z, z′)

]
z=z′

= δσσ′δττ ′

B1 − tD1
. (5.79)

For each fixed pair σ′τ ′, the boundary conditions (5.76)–(5.77), together with the
continuity (5.78) and derivative jump condition (5.79), form a closed system of 16
linear equations for the 16 unknown coefficients gR

στ,σ′τ ′ and gL
στ,σ′τ ′ appearing in

the general solution Equation (5.75). Being linear, such a system can be straight-
forwardly solved with matrix techniques. The particular solution for the normal
Green’s function in a non-proximitized thin film of Bi2Se3 with thickness d = 100 Å
are shown in Figures 5.6 and 5.7 for z′ = d/2.

5.2.3 Analytical Solution
While the general solution derived above is formally exact, it relies on the numerical
evaluation of the matrix exponential and the subsequent solution of a boundary
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the same as those used in Figure 5.4.
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value problem involving 16 coupled linear equations. Although this approach is nec-
essary for full generality, it can conceal the underlying physical structure and limit
analytical interpretation. To gain deeper insight, we now restrict our attention to
surface-localized states that decay exponentially away from the interface at z = 0.
Moreover, we focus on the limit of vanishing in-plane momentum kx = ky = 0,
for which the MTI normal Green’s function admits a closed-form analytical solu-
tion [153].

At the Γ = (0, 0) point in the surface BZ, spin-momentum locking becomes
ineffective due to the vanishing of the spin-orbit coupling terms, and the spin species
effectively decouple [35, 80]. This symmetry simplifies the problem substantially: the
normal Green’s function becomes diagonal in spin space, and the full system reduces
to a pair of coupled second-order differential equations for each spin component.
Specifically, the homogeneous system of Equation (5.62) reduces to:

(B1 −D1) ∂2
z gσ+ = −

(
M0 + C̃0

)
gσ+ + i sA1 ∂z gσ− ,

(B1 +D1) ∂2
z gσ− = −

(
M0 − C̃0

)
gσ− − i sA1 ∂z gσ+ ,

(5.80)

where C̃0 ≡ C0 + sΛ − ω and, for notational simplicity, we have omitted the indices
σ′ = σ and τ ′. The index s = ±1 denotes the spin projection as in Equation (5.64).

By differentiating and substituting between the two equations, one obtains a
decoupled fourth-order differential equation for gσ+ and a third-order differential
equation for gσ−

∂4
z gσ+ − a ∂2

z gσ+ + b gσ+ = 0 ,

gσ− = c ∂3
z gσ+ + d ∂z gσ+ ,

(5.81)

where the coefficients are defined as

a = 1
B2

1 −D2
1

(
A2

1 − 2D1C̃0 − 2B1M0
)
, b = 1

B2
1 −D2

1

(
M2

0 − C̃2
0

)
,

c = is B2
1 −D2

1

A1
(
M0 − C̃0

) , d = is
A1 − (B2

1 −D2
1)
(
M0 + C̃0

)
A1
(
M0 − C̃0

) .

(5.82)
The general solution to this system takes the form [151]

gσ+(z, z′) = g1 e
λ1z + g2 e

−λ1z + g3 e
λ2z + g4 e

−λ2z ,

gσ−(z, z′) = η1
(
g1 e

λ1z − g2 e
−λ1z

)
+ η2

(
g3 e

λ2z − g4 e
−λ2z

)
,

(5.83)

where the functions gi ≡ gi(z′) are fixed by boundary and matching conditions. The
characteristic exponents λi and the coefficients ηi are given by

λ1,2 = 1√
2

√
a ±

√
a2 − 4b , ηi = λi

(
cλ2

i − d
)
. (5.84)

We emphasize that λ1,2 ≡ λσ
1,2(ω) depend explicitly on the spin index σ and the

energy ω. However, the corresponding indices are omitted throughout for notational
simplicity.
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To further simplify the analytical structure of the found solution, we now consider
a physically motivated limiting case. Specifically, we make the following assump-
tions:

(i) neglect electron–hole asymmetry by setting D1 = 0;

(ii) remove the constant energy offset by setting C0 = 0 in the effective Hamilto-
nian of Equation (1.46);

(iii) assume a low-energy, weak-magnetization regime where ω,Λ ≪ M0.

Within this regime, the structure of the general solution in Equation (5.83) remains
intact, but the characteristic exponents simplify considerably.

For A2
1 − 4M0B1 < 0, we can approximate [153]

λ1,2 ≈ 1√
2B1

√
A2

1 − 2M0B1 ± A1

√
A2

1 − 4M0B1 , (5.85)

where the inner square root becomes imaginary, yielding complex-conjugate pairs.
In these conditions, we can define

λ1 = λ+ iκ , λ2 = λ− iκ , (5.86)

which represent decaying and oscillatory modes. In the limiting case where ω = 0
and Λ ≪ M0, the real and imaginary parts can be obtained from Equation (5.85) as

λ ≈ A1

2B1
, κ ≈ 1

2B1

√
4M0B1 − A2

1 . (5.87)

These quantities are real and positive for A1, B1 > 0, ensuring physically acceptable
solutions that decay away from the surface. While the specific expressions in Equa-
tion (5.87) were obtained by setting ω = Λ = 0, the structure of Equation (5.86)
remains valid more generally as long as ω,Λ ≪ M0 and particle–hole asymmetry is
negligible.

Particular Solution

To construct the particular solution for the normal Green’s function, we follow the
strategy outlined in the previous section, now restricting the possible solutions to
surface-localized states of topological origin. In this context, we seek solutions that
decay exponentially away from the surface at z = 0, which is consistent with the
physical expectation for topologically protected states confined near the boundary
of a finite system. These states are characterized by their localization at the inter-
faces of the thin film and their suppression into the bulk, making them particularly
relevant in the analysis of surface transport and proximity effects.

We consider again the homogeneous solution derived in Equation (5.83), which
can be in principle different in the two regions created by the singular point z = z′.
Specifically, for z ≤ z′, we assume a general solution of the form:

gL
σ+,στ ′(z, z′) = l1 eλ1z + l2 e−λ1z + l3 eλ2z + l4 e−λ2z ,

gL
σ−,στ ′(z, z′) = η1

(
l1 eλ1z − l2 e−λ1z

)
+ η2

(
l3 eλ2z − l4 e−λ2z

)
,

(5.88)
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where the coefficients li ≡ li(z′) are undetermined functions of the source coordinate
z′ that will be fixed by boundary and matching conditions.

For z > z′, we impose that the Green’s function remains bounded in the limit
z → +∞, which in the present case corresponds to requiring that no exponentially
growing modes are present. Physically, this condition eliminates bulk-like delocal-
ized solutions and ensures that the response remains localized near the interface at
z = 0. Accordingly, we discard the growing terms proportional to eλz by setting
r1 = r4 = 0 in Equation (5.83) to obtain

gR
σ+,στ ′(z, z′) = r2 e−λ1z + r3 e−λ2z ,

gR
σ−,στ ′(z, z′) = −η1 r2 e−λ1z − η2 r3 e−λ2z ,

(5.89)

where r2 ≡ r2(z′) and r3 ≡ r3(z′) are again functions to be determined by boundary
and matching conditions. This construction reflects a physically motivated ansatz:
we retain only the components of the Green’s function that decay away from the
interface at z = 0, consistently with the assumption that the MTI thin film is in
a topological phase with Dirac-cone surface states localized on the interfaces and
within a large bulk gap [35, 36, 80]. States that penetrate into the bulk are thus
excluded from the possible solutions.

To fully determine the particular solution, we impose the same boundary and
matching conditions introduced previously in Equations (5.76), (5.78) and (5.79).
We recall that these conditions include Neumann boundary condition at z = 0, con-
tinuity of the Green’s function at z = z′, and the discontinuity of the first derivative
at z = z′ determined by the inhomogeneous delta-function source. Together, these
yield a linear system of six equations for the six unknown functions li(z′) and ri(z′),
which fully determine the particular solution for a given spin σ and orbital channel
τ, τ ′.

After solving this system, we obtain the Green’s function in a closed analytical
form. In particular, at the interface z = 0, the solution simplifies to [153]

gστ,στ ′(z = 0, z′) = e−λz′[
ασ

ττ ′ cos(κz′) + βσ
ττ ′ sin(κz′)

]
, (5.90)

where λ ≡ λσ(ω) and κ ≡ κσ(ω) are the real and imaginary parts of the complex
characteristic exponents introduced in Equation (5.86). Both quantities depend on
the spin index σ and the energy ω, and encode the decay length and oscillation
frequency of the surface states, respectively. The coefficients ασ

ττ ′ and βσ
ττ ′ contain

the full dependence on the orbital indices and boundary geometry and are derived
explicitly in Appendix C. The analytical solution given in Equation (5.90), evaluated
for a Bi2Se3 thin film with thickness d = 100 Å for vanishing in-plane momentum
and at the z = 0 interface, is shown in Figure 5.8 as a function of the out-of-plane
coordinate z′. Only the Green’s function components with non-vanishing real or
imaginary parts are displayed.

These expressions provide an analytically tractable description of the Green’s
function near the interface, capturing the essential features of surface-state propa-
gation in the MTI thin film geometry. Importantly, this analytical result illustrates
the emergence of exponentially damped oscillations characteristic of systems with a
nontrivial topological mass term. The interplay between the decay length 1/λ and
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Figure 5.8: Real (left) and imaginary (right) parts of the normal Green’s function
gστ,σ′τ ′ at the Γ point, obtained from the analytical solution at z = 0 in Equa-
tion (5.90). Only components with a nonvanishing real or imaginary part are dis-
played, plotted as functions of the out-of-plane coordinate z′. All the parameters
are chosen consistently with those used in Figure 5.4.

oscillation frequency κ is a direct consequence of the band inversion present in the
bulk MTI and reflects the hybridization between spin and orbital degrees of freedom
near the surface.

Summary
In this chapter, we evaluated the unperturbed Green’s functions of the two decou-
pled materials forming the MTI–SC heterostructure, and providing the essential
ingredients for the perturbative theory developed in Chapter 4.

For the bulk superconductor, we derived and solved the Gor’kov equations in
momentum space, which couple normal and anomalous propagator. We then per-
formed a Fourier transform along the out-of-plane direction z, obtaining closed-form
expressions for both the normal and anomalous Green’s functions in real space.

We then turned to the magnetic topological insulator, deriving the equation of
motion for the unperturbed normal propagator. By solving the resulting system of
second-order linear differential equations, we obtained the real-space Green’s func-
tion in two different ways. First, we derived a general solution valid for arbitrary in-
plane momentum near the high-symmetry point Γ of the two-dimensional Brillouin
zone and for generic Hamiltonian parameters. Second, we obtained an analytical
closed-form expression in the limiting case kx = ky = 0, restricting the solution to
surface-localized states that decay exponentially away from the interface. Together,
these results provide both a general description of quasiparticle propagation in MTI
thin films, and a tractable analytical limit useful for further analysis.

The unperturbed Green’s functions derived in this chapter provide the ingre-
dients for evaluating the second–order corrections to the anomalous propagator in
proximitized MTIs, which will be the focus of the last chapter.



Chapter 6

Induced Pairing

Overview
In Chapters 4 and 5, we developed a perturbative framework to describe supercon-
ductivity induced in proximitized MTIs, and solved the equations of motion for both
the bulk SC and the thin film of topological insulator, obtaining the unperturbed
normal and anomalous Green’s functions of the two isolated materials. These results
provide the building blocks necessary to evaluate the perturbative correction to the
anomalous MTI propagator, which encodes the effective superconducting pairing
induced by proximity to the conventional SC. Following Chapter 5, we consider a
bulk superconductor, translationally invariant in all directions, coupled to a MTI
thin film of thickness d and with in-plane translational symmetry. The induced pair-
ing is evaluated using both the general solution of the unperturbed MTI propagator
and the analytical one valid at the Γ point, discussed in the previous chapter.

The study of the induced pairing correlations serves a dual purpose. First, it
provides a microscopic description of how superconductivity penetrates into the
proximitized surface states of the MTI, allowing us to characterize the spatial pro-
file of the induced correlations and to extract their decay length away from the
interface. Second, it reveals how the interplay between topology and magnetiza-
tion shapes the structure of the superconducting order parameter, influencing its
symmetry properties in both spin and momentum space. In this sense, the present
discussion complements the analysis of topological superconductivity in proximitized
MTIs outlined in the first part of this thesis.

The chapter is organized as follows. In Section 6.1, we refine the assumptions
on the tunneling Hamiltonian and evaluate the induced pairing, focusing on its
spatial dependence along z and deriving an explicit expression for the decay length
in the analytically tractable limit. In Section 6.2, we analyze the spin structure
of the anomalous propagator, decomposing it into singlet and triplet components
and examining how these are affected by the magnetization of the MTI thin film. In
Section 6.3, we turn to the symmetry of the induced correlations in momentum space,
studying the evolution of the even- and odd-parity components under the Zeeman
field and expanding the superconducting order parameter in circular harmonics to
resolve the contributions with different out-of-plane angular momentum. Finally,
we connect the momentum-space structure of the induced pairing to the physics
of the two-dimensional topological superconductor, relating the circular harmonics
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with nonvanishing angular momentum to nontrivial phases hosting chiral Majorana
modes.

6.1 Real–Space Pairing Profile
The anomalous Green’s function in the MTI can be evaluated from the perturbative
expansion introduced in Section 4.3, making use of the unperturbed propagators
derived in Sections 5.1 and 5.2 for the two materials.

In the previous analysis, the tunneling process was assumed to be strictly local
in space, i.e., coupling only electrons at the same position z = z′, as expressed in
Equation (4.66). We now refine this assumption by restricting the tunneling to occur
sharply at the MTI–SC interface, which we place at z0 = 0:

γστ,σ′(z) ≡ γστ,σ′ δ(z − z0) . (6.1)

Alternative spatial profiles centered at z0 could in principle be chosen, but the delta
function form is particularly convenient as it eliminates the real-space integral. With
this assumption, the second-order anomalous propagator of Equation (4.70) reduces
to the following matrix product [153]

F † (2)
MTI(z, z′;ω) =

[
G(0)

MTI(0, z; −ω)
]T

Γ∗ F † (0)
SC (0;ω) Γ† G(0)

MTI(0, z′;ω) , (6.2)

where the in-plane momentum k∥ = (kx, ky) has been omitted for simplicity, and
Γ denotes the 4 × 2 tunneling matrix with elements γστ,σ′ , which are now position
independent. In the following, we restrict to orbital-independent, spin-conserving
tunneling, specified by γστ,σ′ = γ δσσ′ , where γ ∈ C denotes the tunneling amplitude.
In practice, Equation (6.2) can be evaluated in two alternative ways:

(i) using the general momentum-dependent solution of G(0)
MTI presented in Sec-

tion 5.2.2 and valid for generic magnetization and all Hamiltonian parameters;

(ii) employing the analytical expression of G(0)
MTI derived in Section 5.2.3, which

applies at the Γ point under the conditions C0 = 0 and D1 = 0. This solution
is valid in the limit of weak magnetization and for surface states that decay
exponentially away from the interface at z = 0.

Since low-energy transport and topological properties are governed by quasipar-
ticles near the Fermi surface, it is sufficient to characterize the induced pairing at
the Fermi level [89, 144]. Accordingly, we restrict the analysis to ω = 0, which
probes the static, long–time limit of the anomalous correlations. In the following,
we refer to the local Green’s function at coincident coordinates z = z′ evaluated at
the Fermi level, as the “induced pairing”

F †(k∥, z) ≡ F † (2)
MTI(k∥; z, z;ω = 0) . (6.3)

Moreover, we quantify the magnitude of the induced pairing through the Frobenius
norm of the corresponding 4 × 4 matrix, defined as [152, 154]

∥F †(k∥, z)∥2 ≡
∑
σ,σ′

∑
τ,τ ′

∣∣∣F †
στ,σ′τ ′(k∥, z)

∣∣∣2 , (6.4)
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Figure 6.1: Band structure and induced pairing in the (kx, z) plane for the materials
of the Bi2Se3 family at ky = 0. Panels (a,d) correspond to Bi2Se3, (b,e) to Bi2Te3,
and (c,f) to Sb2Te3. The top row displays the band dispersion along kx, obtained by
discretizing Equation (1.48), with the color scale indicating the spin polarization ⟨σz⟩
of the corresponding states. The bottom row displays the magnitude of the induced
pairing obtained from Equation (6.4), and expressed in units of |γ|2. The calculations
assume a MTI thin film of thickness d = 10 nm with magnetization Λ = 20 meV,
proximitized by a SC with µ = 10 meV and ∆ = 5 meV. The remaining parameters
are taken from Table 1.2, setting C0 = −50 meV in Bi2Se3, C0 = −68 meV in Bi2Te3,
and C0 = 45 meV in Sb2Te3, in order to proximitize states near the Γ point.

where σ, σ′ and τ, τ ′ denote the usual spin and orbital degrees of freedom. The mag-
nitude of the induced pairing, obtained from Equation (6.4), is shown in Figure 6.1.

Panels (a,d) correspond to Bi2Se3, panels (b,e) to Bi2Te3, and panels (c,f) to
Sb2Te3. The upper row displays the energy spectra of proximitized MTI thin films
composed of the three compounds of the Bi2Se3 family, with red (blue) color in-
dicating spin-up (spin-down) polarization, as obtained from Equation (1.59). The
spectra are shifted by setting C0 = −50 meV in Bi2Se3, C0 = −68 meV in Bi2Te3,
and C0 = 45 meV in Sb2Te3, in order to induce superconductivity into the states
near the Γ point. The lower row shows the corresponding induced pairing ampli-
tude in the (kx, z) plane at ky = 0, as obtained from the full momentum-dependent
solution of the normal propagator.

For the chosen set of parameters, the proximity effect in all three materials is
induced into the gapped Dirac-cone surface states at E = 0—indicated by the hori-
zontal line in the energy spectra—which thereby acquire a finite pairing amplitude
[28, 30]. Accordingly, the induced superconductivity is maximized at those values
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of kx where the low-energy modes of the MTI are present, while remains negligible
elsewhere. As expected, the anomalous Green’s function is maximal at the interface
and decays into the bulk. This decay is exponential but modulated, with oscilla-
tions that can be related to the real-space profile of the probability density of the
proximitized surface states. The dependence of the induced pairing amplitude on
the out-of-plane coordinate z is shown in Figure 6.2, as obtained from the analytical
solution at the Γ point.
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Figure 6.2: Real-space profiles of the superconducting proximity effect in the com-
pounds of the Bi2Se3 family. Panel (a) displays the magnitude of the induced pairing
at the Γ point, obtained from the analytical solution, and normalized to its value
at the interface z = 0. Panel (b) depicts the probability density |ψ(z)|2 of the
lowest-energy surface state, obtained from the discretization of Equation (1.48) on
a finite lattice with thickness d = 10 nm. For the MTI, we assumed a magnetization
Λ = 20 meV, neglected the trivial energy shift setting C0 = 0, and removed the
particle–hole asymmetry of the Dirac spectrum imposing D1 = 0. For the SC, we
take a chemical potential µ = 10 meV and a superconducting gap ∆ = 5 meV. All
the remaining parameters are taken from Table 1.2.

The figure compares the spatial dependence of the induced pairing magnitude,
shown in panel (a), with the probability density of the lowest-energy surface state,
displayed in panel (b), for the three materials of the Bi2Se3 family. In all cases, the
decay of the induced pairing is mainly determined by the penetration depth of the
proximitized surface states, both exhibiting qualitatively similar spatial profiles and
comparable oscillatory behavior.

The results above were obtained at the high-symmetry point kx = ky = 0 in
momentum space. To characterize how the total magnitude of the induced pairing
evolves with magnetization, it is useful to evaluate a momentum-averaged ampli-
tude of the anomalous Green’s function across the BZ. However, since the induced
correlations are strongly peaked around the Fermi surface of the normal state (see
Figure 6.1), we evaluate the order parameter at the Fermi momentum, which in the
Dirac limit of proximitized surface states can be approximated as

kF ≈ 1
A2

√
C2

0 − Λ2 . (6.5)

Expressing the Green’s function in polar coordinates as F †(k∥, z) = F †(k, θ; z),
where k = |k∥| is the modulus of the in-plane momentum and θ = arctan(ky/kx) its
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polar angle, we define the angularly averaged magnitude as
∥∥∥F †(kF , z)

∥∥∥ ≡ 1
2π

∫ 2π

0
dθ

∥∥∥F †(kF , θ; z)
∥∥∥ . (6.6)

The amplitudes of the superconducting correlations evaluated at the Fermi momen-
tum and averaged over the polar angle θ are shown in Figure 6.3 as a function of
the magnetization in the proximitized MTI thin film, for the different compounds
of the Bi2Se3 family.
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Figure 6.3: Dependence of the induced pairing amplitude at the z = 0 interface
on the magnetization Λ for the three compounds of the Bi2Se3 family. The curves
are obtained by taking the angular average of the Frobenius norm of the anomalous
Green’s function evaluated at the Fermi momentum kF , as defined in Equation (6.6),
and are normalized to their value at Λ = 0. The film thickness and all the Hamilto-
nian parameters are chosen consistently with those used in Figure 6.2.

The figure illustrates how the induced superconducting correlations evolve with
increasing the exchange field. For a weak magnetization, |Λ| ≲ 20 meV, the total in-
duced pairing remains qualitatively unchanged. For larger exchange fields, however,
the superconducting amplitude is progressively suppressed and eventually vanishes.
In particular, for the selected values of C0, an exchange field of Λ ≈ 25 meV opens
a magnetic gap at Γ̄ large enough to eliminate the zero-energy electronic states in
the MTI film, thereby suppressing the proximity effect. This result demonstrates
that induced superconductivity can coexist with the magnetization of the topolog-
ical insulator, provided that low-energy states remain available for the proximity
effect.

6.1.1 Decay Length
An explicit expression for the decay length of the anomalous Green’s function into
the bulk of the MTI thin film can be derived at the Γ point using the analytical
solution. According to Equation (6.2), the real-space dependence of the induced
correlations is entirely governed by the unperturbed normal MTI propagators, whose
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matrix elements in the analytical limit decay exponentially from the interface as

gστ,στ ′(0, z) ∝ e−λσz , (6.7)

as derived in Equation (5.90). Here, λσ denotes the real part of the coefficients
introduced in Equation (5.86), which physically capture the characteristic decay
length of the surface states localized near the z = 0 interface. In the limit of
vanishing excitation energy and weak magnetization Λ ≪ M0, the characteristic
lengths λ↑ and λ↓ become degenerate and reduce to the approximation λ ≈ A1/2B1
given in Equation (5.85). Evaluating the matrix product in Equation (6.2), the
exponential factors e−λσz that describe electron and hole propagating toward the
interface can be factorized. As a result, the spatial profile of the anomalous Green’s
function at the Γ point is governed by an overall exponential modulation e−z/ξind ,
with a characteristic decay length [153]

ξind = 1
λ↑ + λ↓

. (6.8)

The decay length ξind of the superconducting correlations is shown in Figure 6.4
as a function of the Zeeman field for the compounds of the Bi2Se3 family, evaluated
in the analytically tractable limit of kx = ky = 0 and small magnetization. The
figure illustrates that the induced decay length ξind depends only weakly on the
magnetization of the proximitized MTI thin film, with variations of at most about
2% over the range of Zeeman field considered. This demonstrates that the spatial
extent of the induced superconducting correlations is largely insensitive to Λ.
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Figure 6.4: Dependence of the decay length defined in Equation (6.8) on the
magnetization Λ for the three compounds of the Bi2Se3 family. The decay length is
obtained in the analytically tractable limit by evaluating λσ from Equations (5.85)
and (5.86) and is normalized to its value at Λ = 0. All parameters are chosen
consistently with those used in Figure 6.2.
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6.2 Spin Symmetry
To analyze the influence of magnetization on the superconducting order parameter,
we examine the symmetry properties of the induced correlations in spin and momen-
tum space. The anomalous Green’s function is constrained by the Pauli exclusion
principle, which enforces antisymmetry under the exchange of the two electrons [89,
144, 146]:

F †
αβ(kx, ky; z, z′;ω) = −F †

βα(−kx,−ky; z′, z; −ω) . (6.9)
At the Fermi level ω = 0, the propagator must be odd under the exchange of at least
one set of quantum numbers: spin, momentum, or orbital. Since the orbital degree
of freedom is not directly accessible in experiments, our analysis focuses only on the
symmetry structure of the pairing in spin and momentum space.

To systematically classify the different pairing channels, it is convenient to ex-
pand the anomalous propagator F †(k∥, z) over a complete basis {Ba} of 16 orthonor-
mal matrices that span the entire 4 × 4 space. With respect to the Hilbert–Schmidt
inner product [152, 155]

⟨A,B⟩ = Tr
(
A†B

)
, (6.10)

orthonormality is defined as

⟨Bα, Bβ⟩ = Tr
(
B†

αBβ

)
= δαβ . (6.11)

Any 4×4 matrix M acting in this space can then be written as a linear combination
of the basis elements as [152, 155]

M =
∑

a

fa Ba , (6.12)

where the coefficients
fa = Tr

(
B†

aM
)

(6.13)
quantify the weight of the matrix M in the channel a.

A convenient orthonormal basis for the space spanned by spin and orbital degrees
of freedom is provided by the tensor products

{ 1
2
σµ ⊗ τη

∣∣∣ µ, η ∈ {0, x, y, z}
}
, (6.14)

where σµ denote the Pauli matrices acting in spin space, and τη denote the Pauli
matrices acting in orbital space, both including the identity. This set of 16 matrices
forms a complete basis of the 4 × 4 space, allowing one to expand

F †(k∥; z) =
∑
µ,η

fµη(k∥, z) σµ ⊗ τη , (6.15)

where the complex coefficients fµη(k∥, z) encode the entire spin–orbital structure of
the anomalous Green’s function.

In principle, one could analyze the full symmetry of the anomalous propagator by
decomposing it into all 16 spin–orbital channels {σµ⊗τη}. However, since the orbital
degrees of freedom cannot be resolved experimentally, we restrict our analysis to the
spin structure only. Accordingly, we regard the anomalous propagator F †(k∥, z) as
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a 2 × 2 matrix in spin space, where each entry is itself a 2 × 2 block in orbital space.
The Green’s function can then be decomposed in the spin basis alone as

F †(k∥, z) = 1√
2
∑

µ

σµ ⊗ fµ(k∥, z) , (6.16)

where the prefactor 1/
√

2 arises from the normalization of the Pauli basis, and the
projection onto the spin channels is obtained by tracing over the spin indices only

fµ(k∥, z) = Trspin
[(
σ†

µ ⊗ τ0
)

F †(k∥, z)
]
. (6.17)

The coefficients of the expansion fµ(k∥, z) are 2 × 2 matrices in orbital space and
encode the orbital structure of the pairing within each spin channel.

6.2.1 Singlet and Triplet Decomposition
The Pauli basis σµ naturally distinguishes between the antisymmetric and symmetric
components of the spin structure: the spin-singlet contribution is associated with the
antisymmetric matrix σT

y = −σy, while the symmetric spin-triplet contributions are
spanned by the symmetric matrices σ0, σx, and σz. However, to recover the standard
singlet–triplet decomposition and make explicit the physical correspondence with the
spin projection Sz, it is convenient to introduce the orthonormal basis

ss = i√
2σy , s

(0)
t = 1√

2σx , s
(+1)
t = 1

2 (σ0 + σz) , s
(−1)
t = 1

2 (σ0 − σz) ,
(6.18)

where ss projects onto the spin-singlet channel, while s(0)
t and s

(±1)
t select the three

spin-triplet components with Sz = 0,±1, respectively. In terms of this basis, the
anomalous Green’s function can be expanded as

F †(k∥, z) = ss ⊗ fs(k∥, z) +
∑

Sz=0,±1
s

(Sz)
t ⊗ f

(Sz)
t (k∥, z) , (6.19)

with fs and f
(Sz)
t obtained from Equation (6.17), replacing the Pauli matrices with

the basis defined in Equation (6.18).
By writing explicitly the anomalous propagator in the spin basis {|↑⟩ , |↓⟩},

F † =

F †
↑↑ F †

↑↓

F †
↓↑ F †

↓↓

 , (6.20)

one verifies that the coefficients in Equation (6.19) reduce to the standard singlet
and triplet combinations [156–158]. The singlet component, associated with ss, is
given by [153]

fs = 1√
2

(
F †

↑↓ − F †
↓↑

)
, (6.21)

while the triplet components, associated with s
(Sz)
t , are [153]

f
(0)
t = 1√

2

(
F †

↑↓ + F †
↓↑

)
, f

(+1)
t = F †

↑↑, f
(−1)
t = F †

↓↓. (6.22)
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Figure 6.5: Magnitude of the spin-singlet and spin-triplet components as func-
tions of the real-space coordinate z and the magnetization Λ for the compounds of
the Bi2Se3 family. The plots are obtained by taking the Frobenius norm of Equa-
tions (6.21) and (6.22) and averaging over the two-dimensional BZ. Panels (a,d)
correspond to Bi2Se3, panels (b,e) to Bi2Te3, and panels (c,f) to Sb2Te3. In the first
row, each component is evaluated at Λ = 20 meV, with their sum normalized to
unity at the interface z = 0. In the second row, the components are evaluated at
z = 0, and their sum is normalized to unity for any Λ. All parameters are chosen
consistently with those used in Figure 6.1.

The magnitude of the spin-singlet and spin-triplet components defined in Equa-
tions (6.21) and (6.22) and averaged over the two-dimensional BZ, is shown in
Figure 6.5 for the different materials of the Bi2Se3 family.

Panels (a–c) show the spatial profiles of the spin components as a function of
the distance from the MTI–SC interface at z = 0. For each material under consid-
eration, all spin components share the same spatial dependence, corresponding to
the modulated exponential decay of the induced pairing, and differ only by their
overall weight. Panels (d–f) illustrate the influence of magnetization on the super-
conducting correlations evaluated at the interface z = 0. As discussed in Section 1.2,
the Zeeman field breaks time-reversal symmetry, opening a gap in the Dirac cones
and polarizing the surface states near the Γ point [37–39]. The spin structure of
the proximity-induced pairing reflects this behavior. Although the total weight
of singlet and triplet channels remains mainly unaffected by the breaking of time-
reversal symmetry, the relative weights of the individual triplet components follow
the changes in the underlying band structure. In particular, the induced pairing ac-
quires a predominantly spin-polarized character, with the Sz = ±1 triplet channels
becoming dominant, according to the polarization of the proximitized surface states



Chapter 6: Induced Pairing 117

(see Figure 6.1).
It is worth noting that, even in the absence of magnetization (Λ = 0), the

anomalous Green’s function contains both spin-singlet and spin-triplet components.
In a bulk SC, the anomalous Green’s function is even under both frequency and
momentum inversion, and the antisymmetry condition of Equation (6.9) is satisfied
entirely in the spin sector, meaning that only the singlet channel is nonvanishing
[144, 156, 158]. In contrast, for a thin film of topological insulator, spin–orbit
coupling breaks the spin-rotational symmetry, and translational invariance is lost
along the out-of-plane direction z. As a consequence, spin and parity cease to be
good quantum numbers, and the single-particle eigenstates become mixed. Upon
introducing a superconducting pairing, this mixing gives rise to a coexistence of
even- and odd-parity channels, as well as singlet and triplet components with equal
weights [156, 159, 160]. The presence of magnetization lifts the balance between
spin components with different Sz projections: since the proximitized surface states
become spin-polarized, the weight of the corresponding F↑↑ and F↓↓ channels is
enhanced.

6.3 Momentum Symmetry

To analyze the symmetry properties of the induced pairing in momentum space, we
decompose the anomalous MTI Green’s function F †(k∥, z) into its symmetric and
antisymmetric components under the inversion of the in-plane momentum:

F †
odd(k∥, z) = 1

2

[
F †(k∥, z) − F †(−k∥, z)

]
,

F †
even(k∥, z) = 1

2

[
F †(k∥, z) + F †(−k∥, z)

]
.

(6.23)

This decomposition reflects the spatial parity of the superconducting order parame-
ter in the x–y plane: inversion in momentum space corresponds, via Fourier trans-
form, to inversion in real space. Therefore, the symmetric component corresponds to
even-parity pairing, such as s-wave or d-wave, while the antisymmetric component is
related to odd-parity terms, such as p-wave or f -wave [88, 156, 158]. The magnitude
of the even- and odd-parity components, averaged over the two-dimensional BZ, is
shown in Figure 6.6 for the different materials of the Bi2Se3 family.

Panels (a–c) show the spatial profiles of the momentum components away from
the MTI–SC interface at z = 0. As in the spin-resolved case, their spatial dependence
simply follows the exponential decay of the induced pairing, with even- and odd-
parity components sharing the same profile up to an overall constant. Panels (d–f)
illustrate the role of magnetization: in the absence of a Zeeman field (Λ = 0), the
averaged magnitude of even- and odd-parity components is the same, whereas a
finite magnetization (Λ ̸= 0) breaks this balance and enhances the weight of the
unconventional antisymmetric terms, which at lowest order correspond to p- and f -
wave symmetries [156, 159, 160].
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Figure 6.6: Magnitude of the even and odd components in momentum space as
functions of the real-space coordinate z and the magnetization Λ for the compounds
of the Bi2Se3 family. The plots are obtained by taking the Frobenius norm of
Equation (6.23) and averaging over the two-dimensional BZ. Panels (a,d) correspond
to Bi2Se3, panels (b,e) to Bi2Te3, and panels (c,f) to Sb2Te3. In the first row, each
component is evaluated at Λ = 20 meV, with their sum normalized to unity at the
interface z = 0. In the second row, the components are evaluated at z = 0, and
their sum is normalized to unity for any Λ. All parameters are chosen consistently
with those used in Figure 6.1.

6.3.1 Circular Harmonics
The above decomposition illustrates how the symmetric and antisymmetric momen-
tum components of the induced superconducting order parameter are affected by the
magnetization in thin films of MTI materials of the Bi2Se3 family. A more system-
atic analysis can be carried out by expanding the momentum-dependent pairing in
circular harmonics [158, 161, 162], which form a complete basis for integrable func-
tions defined over the two-dimensional BZ. In practice, this involves first separat-
ing the different components fµη(k∥, z) according to the spin–orbital decomposition
provided in Equation (6.15), and then classifying each channel by its momentum
symmetry.

Using polar coordinates, the coefficient quantifying the weight of the anomalous
Green’s function in each channel can be expressed as fµη(k∥, z) = fµη(k, θ, z), where
k = |k∥| denotes the modulus of the in-plane momentum and θ = arctan(kx/ky) its
polar angle. Any square-integrable function fµη(k, θ, z) can then be expanded in
terms of circular harmonics as [153, 161, 162]

fµη(k, θ, z) =
+∞∑

m=−∞
α(µη)

m (k, z) eimθ , (6.24)
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where
α(µη)

m (k, z) = 1
2π

∫ 2π

0
dθ fµη(k, θ, z) e−imθ , (6.25)

specifies the weight of the m-th angular component of the pairing in the selected
spin–orbital channel, and m ∈ Z labels the out-of-plane angular momentum. The
physical meaning of these circular harmonics can be understood by noting that, in a
translationally invariant two-dimensional system, the out-of-plane angular momen-
tum operator is defined as [146]

L̂z = −i ∂
∂θ

, (6.26)

and its action on the circular harmonics is given by

L̂z

[
αm(k, z)eimθ

]
= mαm(k, z)eimθ , (6.27)

meaning that αm(k, z) eimθ is an eigenstate of L̂z with eigenvalue m.
Upon Fourier transforming the circular harmonics gm(k, θ, z) ≡ αm(k, z) eimθ

to real space, the out-of-plane angular momentum m is conserved. Using polar
coordinates in both momentum and real space, the Fourier transform reads

g̃m(r, ϕ, z) =
∫ ∞

0
k dk αm(k, z)

∫ 2π

0
dθ eimθeikr cos(θ−ϕ) . (6.28)

Expanding the complex exponential with the Jacobi–Anger identity and performing
the angular integral yields [161, 163]

g̃m(r, ϕ, z) = α̃m(r, z) eimϕ , (6.29)

with the radial part being

α̃m(r, z) = 2π(−i)m
∫ ∞

0
k dk αm(k, z)J−m(kr) , (6.30)

where Jm is the m-th Bessel function of the first kind. Equation (6.29) shows that
the out-of-plane angular momentum m is conserved in real space.

The physical meaning of the circular harmonics, and their usefulness for classify-
ing the pairing symmetry, follows from their rotational properties. Under a rotation
θ → θ + φ, the real-space harmonics transform as

α̃m(r, z) eimθ −→ α̃m(r, z) eim(θ+φ) = α̃m(r, z) eimϕ eimθ , (6.31)

acquiring a phase factor eimφ determined by the angular momentum m. In other
words, for any m ̸= 0, the circular harmonics change sign under a rotation of angle
π/m, giving rise to characteristic nodal structures. These rotational properties are
connected to the conventional classification of superconducting pairing: m = 0 cor-
responds to the fully isotropic s-wave, |m| = 1 to the twofold p-wave, |m| = 2 to the
fourfold d-wave, |m| = 3 to the sixfold f -wave, and so on [88, 156, 158]. Illustrative
examples of two-dimensional functions constructed from the lowest harmonics are
displayed in Figure 6.7.
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Figure 6.7: Illustrative examples of two-dimensional functions in momentum space
with different angular symmetries, constructed from the lowest circular harmonics.
Panel (a) shows the isotropic m = 0 component, while panels (b,c,d) correspond to
m = 1, 2, 3, respectively. The radial dependence is modeled as the convolution of
a Gaussian centered at k = 0 with the monomial k|m|. Red (blue) regions indicate
the positive (negative) lobes of the functions, normalized to the range [−1, 1]. In all
cases only the real part is shown.

In the following, we exploit the expansion in circular harmonics to distinguish
explicitly the different angular momentum components of the anomalous Green’s
function and to quantify how their relative weights depend on the magnetization
of the MTI. Since momentum symmetry is well defined only within each pairing
channel, we introduce an overall weight proceeding as follows. First, we expand
each channel in the basis of circular harmonics, and extract the coefficients α(µη)

m (k, z)
according to Equation (6.25). We then average over the radial component k of the
in-plane momentum by evaluating the integral

w(µη)
m (z) =

∫
k dk

∣∣∣α(µη)
m (k, z)

∣∣∣2 , (6.32)

where w(µη)
m (z) denotes the weight of the harmonic with angular momentum m in

the µ, η channel. Finally, the total weight of the m-th component is obtained by



Chapter 6: Induced Pairing 121

summing over all pairing channels [153]

wm(z) =
∑
µ,η

w(µη)
m (z) . (6.33)

The weights obtained from the decomposition of the anomalous Green’s function
are shown in Figure 6.8 for the lowest angular momentum harmonics, m = 0 and
m = ±1. The higher-order components are not displayed, as their overall weight is
negligible.
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Figure 6.8: Relative weights of the circular-harmonic components of the induced
pairing amplitude as a function of the magnetization Λ for (a) Bi2Se3, (b) Bi2Te3, and
(c) Sb2Te3. The weights are evaluated at the interface z = 0 using Equation (6.33),
and they are normalized such that the sum of the components with |m| ≤ 3 equals
unity. All parameters are chosen consistently with those used in Figure 6.1.

Consistent with the magnetic profile of the even- and odd-momentum compo-
nents, the symmetric m = 0 term is maximal at Λ = 0 and decreases with increasing
the Zeeman field. In contrast, the antisymmetric components vary monotonically
with Λ, with the m = 1 (m = −1) contribution maximized when the proximitized
states exhibit a net spin-up (spin-down) polarization (see Figure 6.1). It is worth
stressing that, although the two analyses are in qualitative agreement, the relative
weight of the symmetric s-wave term (m = 0) and of the combined p-wave compo-
nents (m = ±1) does not match exactly the average magnitude of the even- and
odd-parity contributions shown in Figure 6.6. This discrepancy can be mainly at-
tributed to two factors. First, the expansion in Equation (6.24) is truncated to the
lowest out-of-plane angular momenta |m| ≤ 3. Second, the definition of the overall
weights wm is not strictly equivalent to the norm of the even and odd components
averaged over the BZ. However, the qualitative behavior remains the same: finite
magnetization suppresses the isotropic m = 0 component, while enhancing either the
m = 1 or m = −1 channel, depending on the spin polarization of the proximitized
surface states [156, 159, 160].

The results discussed above were obtained in the canonical basis of Equa-
tion (1.35), where the spin is quantized along the out–of–plane ẑ axis. To facilitate
a direct comparison with previous analyses of proximity–induced superconductivity
in non–magnetic topological insulators [164, 165], it is instructive to express the
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anomalous Green’s function in a basis that captures the helical nature of the surface
states. For each orbital sector τ , we therefore introduce the spin–helical basis [153]

1√
2

(
|↑ τ⟩ ± eiθ |↓ τ⟩

)
. (6.34)

In the time–reversal–invariant limit Λ = 0, these states exhibit a perfect in-plane
helical spin texture, having expectation values

⟨σ⟩ =
(

±kx

k
, ±ky

k
, 0
)
, (6.35)

which coincide with the characteristic spin–momentum–locked texture of the topo-
logical surface states. This correspondence makes the basis of Equation (6.34) partic-
ularly well suited for analyzing the induced pairing in the Dirac spectrum of the MTI
thin film, where the in–plane spin texture matches that of the helical eigenstates [24,
30]. Within this representation, the BdG Hamiltonian for the proximitized surface
states of a non–magnetic TI assumes the block–diagonal structure characteristic of a
helical superconductor, with two decoupled subsectors that effectively realize p+ ip
pairing structures of opposite chirality [164, 165]. The evolution of the induced cor-
relations in the helical basis of Equation (6.34) is illustrated in Fig. 6.9, displaying
the relative weights of the lowest angular–momentum components of the anomalous
propagator as functions of the magnetization of the MTI film.
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Figure 6.9: Relative weights of the circular–harmonic components of the induced
pairing amplitude, evaluated in the helical basis defined in Equation (6.34), and
plotted as functions of the magnetization Λ for (a) Bi2Se3, (b) Bi2Te3, and (c) Sb2Te3.
The weights are evaluated at the interface z = 0 using Equation (6.33), and they
are normalized such that the sum of the components with |m| ≤ 3 equals unity. All
parameters are chosen consistently with those used in Figure 6.1.

In the spin–helical representation of Equation (6.34), the s-wave component of
the induced pairing with m = 0 remains negligible for all magnetizations when
the proximity effect acts within the Dirac surface spectrum. In the time–reversal–
invariant limit (Λ = 0), the angular–momentum components with m = +1 and
m = −1 exhibit identical weights, indicating that the induced pairing decomposes
into two subsectors of opposite chirality. Taken together, these two subsectors form
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a helical superconducting phase [28, 30, 164, 165]. A finite magnetization breaks the
balance between the two chiral sectors and selects a preferred chirality, enhancing
the corresponding component of the induced pairing and yielding an order parameter
dominated by either the m = +1 or the m = −1 harmonic [157, 166].

It is worth noting that the shape of the induced superconducting pairing in
the BZ is directly linked to the spin polarization of the proximitized surface states.
According to the spectra shown in Figure 6.1, a spin-up (spin-down) polarization
corresponds to an m = +1 (m = −1) phase dependence. We emphasize, however,
that the detailed phase structure of the order parameter depends on the chosen
representation of the Hilbert space, and generally changes when evaluated in a
momentum–dependent basis. For superconductivity induced in Dirac surface states,
our findings remain fully consistent with previous analyses [164, 165].

6.3.2 Topological Implications
The expansion in circular harmonics discussed above not only classifies explicitly the
symmetry of the induced pairing in momentum space but also establishes a direct
connection to the topology of the effective two-dimensional superconducting system.
Indeed, the integer index m specifies the out-of-plane angular momentum associated
with the in-plane rotation of the induced Cooper pairs, and determines the nodal
structure of the pairing function in both momentum and real space. At the same
time, it reflects the Chern number of the BdG Hamiltonian, carrying the relevant
information for the topological classification of the two-dimensional superconducting
phase [167–170].

To illustrate this connection, let us consider the simple case of a spinless two-
dimensional superconductor described by the BdG Hamiltonian (see Equation (2.3))

hBdG(k) =

 εk ∆k

∆∗
k −εk

 , (6.36)

with quasiparticle spectrum

Ek = ±
√
ε2

k + |∆k|2 , (6.37)

where k ≡ (kx, ky) is the two-dimensional momentum, εk denotes the single-particle
parabolic dispersion in k and ∆k ≡ |∆k| eiθk is the superconducting pairing. At the
Fermi surface, the energy gap is controlled by the modulus of the order parameter,
Egap = 2|∆k|, while its phase θk carries the topological information, determining
how the superconducting order parameter winds in real and momentum space.

The relation between the phase of the pairing and the topology of the supercon-
ducting band structure can be made explicit by computing the Chern invariant of
the system. The eigenstates of the Hamiltonian in Equation (6.36) are given by

u
(±)
k = 1√

2

(
± eiθk 1

)T
, (6.38)

with the minus (plus) sign denoting the negative (positive) energy branch of the
Bogoliubov spectrum. For the lowest state, the Berry connection defined in Equa-
tion (1.17) reads

A(k) = i ⟨u(−)
k |∇ku

(−)
k ⟩ = −1

2∇kθk . (6.39)
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The associated Berry phase accumulated by adiabatic transport along a closed loop
on the Fermi surface is

γ =
∮

FS
A(k) · dk = −1

2

∮
FS

∇kθk · dk = −πn , (6.40)

where FS denotes the one-dimensional Fermi contour in the two-dimensional Bril-
louin zone. To preserve the single-valuedness of the order parameter, the variation
of the phase along a closed loop is restricted to multiples of 2π: the integer n thus
quantifies the winding of the superconducting phase θk around the Fermi surface.
Recalling Equation (1.20), the BdG Chern number can be computed as [169, 170]

N = 1
2π

∮
FS

A(k) · dk = −1
2n , (6.41)

which makes explicit the correspondence between the winding number n of the
superconducting phase θk and the BdG topological invariant N . The prefactor 1

2
arises from the unphysical nature of the spinless model, and the correct relation
N = n is recovered once the electron spin is properly taken into account

It is now clear that Equation (6.41) establishes a direct correspondence between
the symmetry of the pairing in momentum space and the topology of the supercon-
ducting band structure. Within the circular-harmonics expansion, the winding of
the superconducting phase is set by the out-of-plane angular momentum: the order
parameter changes sign upon a rotation of an angle π/m, resulting in m windings
around the Fermi surface (see Figure 6.7). Consequently, the isotropic s-wave com-
ponent with m = 0 corresponds to a topologically trivial superconducting phase
with N = 0. In contrast, the p-wave components with m = ±1 give rise to a
chiral TSC characterized by N = ±1, which supports Majorana modes along the
edges. Higher-order harmonics with angular momentum |m| > 1 correspond to
higher Chern-number states [169, 170].

We emphasize that the presence of nonvanishing pairing components with m =
±1 is not by itself sufficient to guarantee the emergence of a topologically non-
trivial phase. Within the decomposition in circular harmonics introduced in Equa-
tion (6.24), the induced pairing ∆(m)

k in channel m exhibits the characteristic depen-
dence eimθ. Using polar coordinates kx = k cos θ and ky = k sin θ, one finds

∆(m)
k = |∆(m)

k | eimθ ∝ 1
k|m| [kx + i sgn(m) ky]|m| . (6.42)

which for the first harmonics reduces to ∆(±1)
k ∝ kx ± iky. A linear combination of

the two m = ±1 components yields

∆k ∝ α(kx + iky) + β(kx − iky) , for α, β ∈ C , (6.43)

so that the superconducting gap becomes proportional to

|∆k|2 ∝ |akx + bky|2 = |a|2k2
x + |b|2k2

y + (ab∗ + a∗b)kxky , (6.44)

where we identified a ≡ α + β and b ≡ i(α − β). For a, b ̸= 0, Equation (6.44)
is nonvanishing everywhere except at kx = ky = 0, which does not belong to the
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Fermi surface. However, if a = 0 or b = 0, the order parameter depends only on a
single momentum component, and the superconducting state becomes gapless, with
a nodal line along ky = 0 or kx = 0, respectively. The condition for realizing a fully
gapped chiral TSC is therefore α ̸= ±β, implying that the two angular momentum
components with m = ±1 must enter the linear combination of Equation (6.43) with
different weights.

This simplified picture illustrates how the topology of the proximitized MTI
thin film can be inferred from the harmonic decomposition in Figure 6.8. For small
Λ, the isotropic m = 0 component dominates, yielding a trivial s-wave state. For
large positive magnetization (Λ ≳ 15 meV), one of the p-wave channels with m = ±1
prevails, determining the chirality and driving the system into a N = ±1 topological
phase. Conversely, for large negative magnetization (Λ ≲ −15 meV), the opposite
channel dominates, selecting the opposite chirality and leading to a N = ∓1 phase
[41, 42, 100, 102]. We stress once more that the dominant m = ±1 component
reflects the spin polarization of the proximitized states in the MTI thin film (see
Figure 6.1). These results are in qualitative agreement with the discussion of the
two-dimensional topological superconductor in Section 2.2.

Summary
In this chapter, we presented a detailed analysis of the superconducting proximity
effect in thin films of magnetic topological insulators. Using the solutions for the
unperturbed propagators of the decoupled materials derived in Chapter 5, we eval-
uated the perturbative correction to the anomalous Green’s function in the MTI,
and examined its spatial profile, together with its evolution under the Zeeman field.
In the analytically tractable limit at the Γ point, and for surface states localized
near the interface, we derived a closed-form expression for the decay length of the
induced pairing, showing that it is mainly determined by the spatial localization of
the proximitized surface states.

Building on this, we analyzed the spin structure of the induced pairing, dis-
tinguishing singlet and triplet contributions and determining their evolution under
finite magnetization. The momentum dependence of the superconducting order pa-
rameter was characterized in a similar way, separating symmetric and antisymmetric
components under in-plane momentum exchange. A more systematic classification
of the momentum structure was obtained by projecting onto circular harmonics,
identifying the dominant angular momentum channels and their evolution with the
Zeeman field. Finally, we connected these symmetry analyses to the topology of the
two-dimensional system, showing how the prevalence of m = ±1 components under
strong magnetization drives the system into a chiral topological superconducting
phase.

The results presented in this chapter complement the discussion on the topolog-
ical properties of the proximitized MTI thin film developed in the first part of the
thesis. There, the system was analyzed within a first-quantized framework, where
the superconducting pairing was introduced as an input parameter in the effective
BdG Hamiltonian, whose energy spectrum revealed the phase transitions and the
emergence of topologically protected boundary modes. Here, by contrast, we em-
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ployed a second-quantized formalism in which the superconducting order parameter
is obtained explicitly from the anomalous Green’s function, providing direct access
to its spatial, spin, and momentum structure. Taken together, these complementary
approaches highlight how the interplay between magnetism, topology, and supercon-
ductivity gives rise to rich physical phenomena, leading to the emergence of exotic
states of matter whose unique properties hold promise for applications in quantum
technologies.



Conclusions and Outlook

Main Results
In this thesis, we investigated the physics of proximitized MTIs of the Bi2Se3 fam-
ily of compounds, focusing on their potential to host nontrivial superconducting
phases and emergent Majorana excitations. The analysis of these hybrid systems
was carried out along two parallel and complementary routes. From a first-quantized
perspective, we modeled the proximity effect within the BdG framework, where the
induced pairing is introduced as an input parameter of the effective Hamiltonian.
Within this approach, we examined how the topological properties of these materials
depend on magnetization and pairing amplitude in confined geometries, and we stud-
ied electronic transport in double normal–superconductor junctions made of MTI
thin films with a proximitized central region. From a second-quantized perspective,
we employed a perturbative approach to describe the induced superconductivity,
explicitly accounting for electron tunneling between the SC and the surface states
of the topological insulating thin film. By deriving the full structure of the induced
anomalous Green’s function in real space, spin, and momentum, we characterized
its symmetry properties and connected them to the topology of the system.

Two original results were presented in Chapter 3, building on Refs. [100, 102].
First, we showed that asymmetric voltage drops across a NSN junction in the linear-
response regime lead to unequal currents on the two sides due to Andreev processes,
yielding a net differential conductance related to the resulting current that flows to
ground from the SC region. In the presence of topologically protected Majorana
states, the scattering probabilities at the two interfaces become equal, enforcing an
antisymmetric profile of this conductance as a function of the bias-splitting param-
eter.

Second, we investigated the transport signatures of the chiral TSC state in the
NSN junction with symmetric bias configuration beyond the linear-response regime.
In this setting, we identified three distinct bias-dependent transport regimes. In
the intermediate one, the differential conductance exhibits pronounced oscillations,
produced by the interference of two propagating modes with different momenta
localized along the same edge of the system. This configuration directly reflects the
emergence of the chiral TSC phase featured by MCPSs.

In the last part, we presented our main findings on the induced pairing in a MTI
thin film proximitized by a conventional s-wave SC. By characterizing the spatial
profile of the induced correlations, we derived an analytical expression for their de-
cay length, showing that it is primarily governed by the decay of the underlying
surface states. We further resolved the structure of the anomalous Green’s function
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in spin and momentum space, demonstrating that spin-polarized pairing channels
dominate at large magnetization in accordance with the polarization of the proxim-
itized surface states. Finally, we connected the momentum structure of the induced
pairing to the topology of the effective two-dimensional superconductor, showing
that increasing the exchange field drives the system into the chiral TSC phase.

Perspectives
From a theoretical perspective, hybrid MTI–SC structures provide a fertile ground
for exploring the emergence of topological superconductivity [41, 45, 46]. The
present thesis has combined effective Hamiltonian modeling, transport analysis, and
many-body Green’s function techniques to establish a coherent picture of how super-
conductivity manifests in proximitized MTIs and how it can give rise to zero-energy
Majorana modes in different geometries. While these results capture the essential
mechanisms, they rely on simplified models that neglect disorder, electron–electron
interactions, and realistic device architectures. Addressing these limitations will
be crucial to provide quantitative guidance for experimental realizations and to
bridge the gap between idealized theoretical models and engineered devices. Be-
yond this, the theoretical framework developed here for the induced pairing can
be naturally extended to more complex hybrid structures, such as superconductor–
normal–superconductor and multiterminal Josephson junctions, enabling a system-
atic investigation of phase-coherent transport, nonlocal correlations, and topological
Josephson effects in the presence of magnetic textures and spin–orbit coupling [171–
173]. Further generalizations of this formalism could be extended to time-dependent
or periodically driven systems, providing a framework to investigate Floquet-induced
topological superconductivity and the non-equilibrium dynamics of Majorana modes
[174–177].

On the experimental side, a major open challenge remains the unambiguous
realization of a solid-state platform hosting topological Majorana quasiparticles.
Despite extensive efforts in the fabrication and characterization of semiconductor
nanowires and proximitized topological insulator films, the experimental evidence
for the expected conductance quantization remains inconclusive [101, 131, 135, 136,
178]. The results presented in this thesis contribute to this ongoing search by iden-
tifying material regimes and device configurations under which proximity-induced
superconductivity in MTIs can realize topological phases with spatially separated
Majorana modes. In this sense, we hope that the theoretical predictions developed
here will help interpret experimental observations and guide the design of optimized
heterostructures and device geometries toward achieving robust Majorana signatures
in topological insulating thin films and nanowires.

From an applied point of view, the most compelling long-term prospect of
proximity-induced superconductivity in topological insulators lies in the potential
use of Majorana quasiparticles as building blocks for topological quantum compu-
tation. The chiral and localized Majorana states discussed in this thesis embody
non-Abelian excitations, whose braiding statistics form the basis for intrinsically
fault-tolerant quantum operations [31–34, 74]. Realizing such a platform, however,
will require substantial advances in material growth and device fabrication, together
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with experimental probes capable of unambiguously distinguishing genuine topolog-
ical Majorana modes from trivial Andreev bound states [101, 135–137]. In parallel,
hybrid MTI–SC systems may also find application as topological spintronic elements
or as platforms to explore magnetoelectric and thermoelectric responses of super-
conducting topological matter, thereby broadening their relevance beyond quantum
computation. Indeed, the coexistence of magnetic order, spin–orbit coupling, and
superconducting correlations in proximitized MTIs enables the emergence of spin-
polarized triplet pairing and controllable spin supercurrents. These features allow
for dissipationless spin transport and for nonreciprocal superconducting devices in
which the supercurrent depends on the magnetization direction, as the spin-polarized
Cooper pairs carry a finite net spin. In this context, proximity-induced triplet cor-
relations could be exploited to design superconducting spin diodes or memory ele-
ments based on magnetization-controlled supercurrents, thereby contributing to the
development of low-dissipation spin-based logic architectures [179–182].

In conclusion, while many challenges remain, the results presented in this work
represent a step toward establishing proximitized MTIs as a versatile platform for
topological superconductivity, providing insights into the role of magnetism in shap-
ing the induced pairing symmetry, the mechanisms underlying the emergence of
Majorana modes, and their observable signatures in transport experiments. The
interplay between magnetism, topology, and superconductivity remains a central
theme in condensed matter physics, driving both fundamental theoretical develop-
ments and the pursuit of practical implementations in topological quantum tech-
nologies. Future progress at the intersection between theoretical physics, materials
science, and device engineering will determine how the concepts explored here will
evolve into experimentally realizable architectures capable of harnessing the unique
properties of Majorana quasiparticles.



Appendix A

Numerical Implementation

In this appendix, we summarize the numerical methods underlying our calculations.
First, in Appendix A.1, we discuss the discretization of continuum Hamiltonians on
a finite lattice with open boundary conditions. Second, in Appendices A.2 and A.3,
we provide further details on the complex band-structure approach employed to
analyze quasiparticle transport in junctions composed of homogeneous sectors.

A.1 Lattice Discretization
To obtain the energy spectrum of a momentum-dependent Hamiltonian in a con-
fined geometry, we discretize the finite direction into a lattice of N sites and ap-
proximate the spatial derivatives by finite differences. For clarity, we consider a
two-dimensional system in which the Hamiltonian depends on the momenta kx, ky.
We impose periodic boundary conditions along the x direction, so that kx remains a
good quantum number, while the y direction is discretized under Dirichlet boundary
conditions, corresponding to a vanishing wavefunction at the edges of the system.
The generalization of this procedure to three-dimensional geometries is straightfor-
ward.

Consider a non–interacting single–particle quadratic Hamiltonian, which can be
expressed in the continuum limit as

h(kx, ky) = Ak2
y +B ky + C , (A.1)

where A ≡ A(kx), B ≡ B(kx) and C ≡ C(kx) are n × n matrices acting on the
n-dimensional single-particle Hilbert space, defined by the tensor product of the in-
ternal degrees of freedom that characterize the system under consideration. Assum-
ing a lattice of finite length Ly along y and imposing Dirichlet boundary conditions,
the wavefunction is required to vanish at the edges of the system, ψ(y = 0) = 0
and ψ(y = L) = 0. In this case, the Schrödinger equation for the single-particle
Hamiltonian h can be rewritten in real space as

h (kx,−i ∂y) ψkx(y) = −A∂2
y ψkx(y) − iB ∂y ψkx(y) + C ψkx(y) = Ekx ψkx(y) , (A.2)

where the momentum operator has been replaced by its real-space representation,
ky → −i ∂y.
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Using the finite difference approximation, the partial derivatives of the wavefunc-
tion can be approximated as [183]

∂yψkx(y) ≈ 1
2a

[ψkx(y + a) − ψkx(y − a)] ,

∂2
yψkx(y) ≈ 1

a2 [ψkx(y + a) − 2ψkx(y) + ψkx(y − a)] ,
(A.3)

where a is the lattice spacing. Plugging Equation (A.3) into Equation (A.2) we
obtain

h (kx,−i ∂y) ψkx(y) ≈ − A

a2 [ψkx(y + a) − 2ψkx(y) + ψkx(y − a)] + C ψkx(y)

− iB
2a

[ψkx(y + a) − ψkx(y − a)] =

= −
[
A

a2 + iB
2a

]
ψkx(y) +

[
C + 2A

a2

]
ψkx(y + a)

−
[
A

a2 − iB
2a

]
ψkx(y − a) ,

(A.4)

and defining the on-site energy and hopping terms as

h0 ≡ C + 2A
a2 , h± ≡ −

[
A

a2 − iB
2a

]
, (A.5)

Equation (A.4) can be rewritten as a tight-binding problem [184]

h+ ψkx(y + a) + h0 ψkx(y) + h− ψkx(y − a) = Ekx ψkx(y) , (A.6)

where y = ma denotes the position of the m-th lattice site with m = 0, 1, . . . , N ,
and the length of the lattice is Ly = (N + 1) a. The above equation in is valid
in the bulk of the lattice, away from the boundaries. Imposing Dirichlet boundary
conditions at y = 0 and y = Ly yields the following additional constraints on the
wavefunction:

h+ ψkx(a) + h0 ψkx(0) = Ekx ψkx(0) ,

h0 ψkx(Ly) + h− ψkx(Ly − a) = Ekx ψkx(Ly) .
(A.7)

The bulk equation in Eq. (A.6), together with the open boundary conditions
specified in Equation (A.7), constitutes a closed system that can be solved by intro-
ducing a transverse wavefunction of the form

Ψkx =
[
ψkx(0) ψkx(a) . . . ψkx(Na)

]T
, (A.8)

which enables to recast the problem as a standard eigenvalue equation

hTB(kx) Ψkx = Ekx Ψkx . (A.9)
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Here, hTB plays the role of a tight-binding Hamiltonian matrix, and in terms of the
on-site and hopping energies it is given by

hTB =



h0 h+ 0 . . . 0

h− h0 h+ . . .
...

0 h− h0 h+

...
0 . . . 0 h− h0


. (A.10)

The tight-binding matrix hTB has dimension (N + 1)n × (N + 1)n, where N + 1
is the number of lattice sites and n is the dimension of the original single-particle
Hamiltonian, determined by the internal degrees of freedom of the electron.

A.2 Momentum Eigenvalue Problem
To model quasiparticle transport in the NSN junction, the continuum Hamiltonian
hBdG ≡ hBdG(kx, ky) for each homogeneous region s ∈ {N1, N2, S} of the system
is discretized on a finite lattice along the transverse directions y and z. For the
longitudinal direction x, along which quasiparticle transport occurs, we employ a
complex band structure approach based on the complex momentum k ≡ kx, ob-
tained under the assumption of translational invariance. Propagating states with
real momentum k can be obtained by solving the energy eigenvalue problem outlined
in Appendix A.1

hBdG(k) Ψk = EΨk , (A.11)

whereas transport in non-translationally invariant systems, such as the NSN junc-
tion, additionally requires evanescent states characterized by complex values of k
[118–122]. For simplicity, the transverse real-space coordinates y and z are omitted
in the following.

We begin by rewriting the Hamiltonian in terms of its k-dependent contributions

hBdG(k) ≡ A + B k + C k2 , (A.12)

where A, B, and C are matrices acting in the Nambu space of the proximitized MTI
system. The explicit expressions for A, B, and C can be obtained by comparison
with the BdG Hamiltonians in Equations (2.17) and (2.19). Introducing the enlarged
wavefunction

Φ =

 Ψk

kΨk

 , (A.13)

the energy eigenvalue problem in Equation (A.11) can be reformulated as a momen-
tum eigenvalue problem at fixed energy [185]. After straightforward algebra, this
yields

ME Φ = kΦ , ME =

 0 1
−C−1(A − E) −C−1B

 , (A.14)
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where 0 and 1 denote the zero and identity matrices, respectively.

It is worth noting that the momentum eigenvalue problem in Equation (A.14)
is defined by a non-Hermitian, energy-dependent matrix ME, so that its eigenval-
ues k are, in general, complex and thus encompass both the propagating and the
evanescent modes allowed at a given energy. In particular, if the system is in a topo-
logical phase, its boundary states are described by evanescent modes: while such
solutions are unphysical in an infinite system, they acquire physical significance in
the description of semi-infinite or finite geometries, such as the homogeneous sec-
tors of the junction [118–122]. The first pair of complex momenta with the smallest
absolute values, obtained as solutions of Equation (A.14) for the two-dimensional
MTI Hamiltonian in Equation (1.58), are shown in Figure A.1 for different energies.
The Hamiltonian is discretized on a finite transverse lattice of width Ly = 1.5 µm
along y, with k ≡ kx denoting the momentum along the longitudinal propagation
direction.
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Figure A.1: (a) Energy spectrum of the two-dimensional Hamiltonian in Equa-
tion (1.58), discretized on a transverse lattice of width Ly = 1.5 µm with peri-
odic boundary conditions along x. (b) Complex plane representation of the first
two momentum solutions with the smallest absolute values, obtained from Equa-
tion (A.14) as a function of energy. The parameters were set to m0 = 1 meV,
m1 = 0.001 meVµm2, vF = 0.26 meVµm, D = 0, and Λ = 0.5 meV.

Panel (a) displays the energy spectrum of the system, which exhibits a gap
around zero energy highlighted by the horizontal dashed lines. As shown in panel (b),
for energies within this gap, E < 0.65 meV, only complex momenta are allowed,
since no real propagating solutions exist. For energies above the gap, the momenta
obtained from Equation (A.14) can be either real, corresponding to the propagating
states, or complex, corresponding to evanescent modes which can emerge in systems
with finite length.
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A.3 Boundary Conditions at the Interfaces
In the following section, we provide additional details on the derivation of the linear
system of equations that governs the boundary conditions at the interface of the
NSN junction, as introduced in Section 3.1.1. The analysis builds upon the complex
band-structure formalism developed in Refs. [118–122].

Within the complex band structure approach, the single particle wavefunction
in each sector of the junction can be written as the superposition

Ψ(s)(x, y) =
∑

k

ck(s) eik(s)x Ψ̃(s)
k (y) , (A.15)

where the set of complex wavenumbers and associated transverse modes {k(s), Ψ̃(s)
k }

are solutions to the momentum eigenvalue problem in Equation (A.14). Denoting
incoming (outgoing) modes as {a(s)

k } ({b(s)
k }), Equation (A.15) can be expressed as

Ψ(s)(x, y) =
∑

k∈s,inp
a

(s)
k eikx Ψ̃(s)

k (y) +
∑

k∈s,out
b

(s)
k eikx Ψ̃(s)

k (y) . (A.16)

While the input coefficients a(s)
k are fixed by the choice of the incoming scattering

state, the outgoing ones b(s)
k represent the unknowns of the scattering problem and

must be determined by constructing the full wavefunction across the entire junction.
At the normal–superconductor interfaces located at x = x1 and x = x2, the

boundary conditions are imposed by enforcing the continuity of both the wavefunc-
tion and its derivative with respect to x, ensuring quasiparticle current conservation
across the interface [100, 118, 119]. Explicitly, one obtains

Ψ(Ni)(xi, y) = Ψ(S)(xi, y) , ∂Ψ(Ni)(x, y)
∂x

∣∣∣∣∣∣
x=xi

= ∂Ψ(S)(x, y)
∂x

∣∣∣∣∣∣
x=xi

. (A.17)

Separating input and output modes, the boundary conditions for the continuity of
the wavefunction at x = x1 take the form∑

k∈S

b
(S)
k eikx1 Ψ̃(N1)

k (y) −
∑

k∈N1,out
b

(N1)
k eikx1 Ψ̃(N1)

k (y) =
∑

k∈N1,inp
a

(N1)
k eikx1 Ψ̃(N1)

k (y) ,

(A.18)
and the one for the conservation of the quasiparticle current is given by
∑
k∈S

b
(S)
k k eikx1 Ψ̃(S)

k (y) −
∑

k∈N1,out
b

(N1)
k k eikx1 Ψ̃(N1)

k (y) =
∑

k∈N1,inp
a

(N1)
k k eikx1Ψ̃(N1)

k (y) .

(A.19)
Analogous equations can be obtained for the interface at x = x2.

To solve this system of equations, it is convenient to project the transverse
wavefunctions Ψ̃k onto the complete discrete set of complex modes through the
overlap matrices [100, 118, 119]

Ms′s
k′k =

∫
dy

[
Ψ̃(s′)

k′ (y)
]†

Ψ̃(s)
k (y) , (A.20)
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in order to remove the explicit dependence on the transverse coordinate y of the
lattice. In this way, Equations (A.18) and (A.19) become∑

k∈S

eikx1 MN1S
kk′ b

(S)
k −

∑
k∈N1,out

eikx1 MN1N1
kk′ b

(N1)
k =

∑
k∈N1,inp

eikx1 MN1N1
kk′ a

(N1)
k ,

∑
k∈S

k eikx1 MSS
kk′ b

(S)
k −

∑
k∈N1,out

k eikx1 MSN1
kk′ b

(N1)
k =

∑
k∈N1,inp

k eikx1 MSN1
kk′ a

(N1)
k ,

(A.21)
and an analogous set of equations can be derived for the interface at x = x2.

Equation (A.21) is defined for each output mode k′ in the normal leads N1,2,
including all possible scattering channels for a quasiparticle injected from lead i = 1.
It is worth noting that the resulting system contains more equations than unknowns:
once the second set of boundary conditions at the interface x = x2 is taken into
account, one obtains

Nunk = N
(N1)
out +N

(N2)
out , Neq = 2Nunk . (A.22)

where N (Ni)
out is the number of output modes in the normal terminal i. A solvable

system is obtained by retaining only half of the equations: wavefunction continuity
is imposed for output modes k′ in lead 1, whereas derivative continuity is imposed
for output modes k′ in lead 2. Since the number of equations scales with the num-
ber of output modes considered, increasing the number of complex wavenumbers
systematically improves the accuracy of the full wavefunction in the junction. More-
over, one can verify that if the basis of output modes and transverse wavefunctions
is sufficiently large, both the continuity of the wavefunction and the continuity of
its derivative are simultaneously satisfied.



Appendix B

Perturbative Expansion

In this appendix, we provide additional details on the evaluation of the first- and
second-order corrections to the normal and anomalous Green’s functions in the MTI,
providing additional details to the discussion presented in Chapter 4.

B.1 Normal Green’s Function

B.1.1 First Order
To compute the first-order term of the Green’s function G(1)(ξ, ξ′), we evaluate the
time-ordered expectation value〈

Tt ψ(ξ)V (t1)ψ†(ξ′)
〉

0
, (B.1)

where V = T + T † is the tunneling Hamiltonian defined in Equation (4.28), and
ξ ≡ (z, t, σ, τ) denotes the complete set of spatial, temporal, spin, and orbital in-
dices associated with each field operator. Up to overall constants, the contribution
associated with T takes the explicit form

〈
Tt ψ(ξ)ψ†(1)ϕs(1′)ψ†(ξ′)

〉
0

= −
〈
Tt ψ(ξ)ψ†(1)ψ†(ξ′)

〉
0

〈
Tt ϕ(1′)

〉
0

= 0 , (B.2)

where we separated the operators acting in the two materials, which commute by
construction as they are independent on the unperturbed ground state, and adopted
the conventions for the primed integration indices introduced in Equation (4.65).
The above expression vanishes identically, as the superconducting correlator contains
an unpaired annihilation operator ϕ, which yields zero when acting on the ground
state. By the same reasoning, the contribution from T † also vanishes. Therefore,
the first-order correction to the normal MTI Green’s function is identically zero:

G(1)(ξ, ξ′) = 0 . (B.3)

For the same reason, all odd terms in the perturbative expansion of Equation (4.55)
vanish.
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B.1.2 Second Order
To compute the second-order correction to the normal Green’s function in the MTI,
we evaluate the time-ordered expectation value〈

Tt ψ(ξ)V (t1)V (t2)ψ†(ξ′)
〉

0
. (B.4)

Among the terms generated by the product V (t1)V (t2), the only nonvanishing con-
tributions are T T † and its Hermitian conjugate T †T , since they contain an equal
number of creation operators ψ† and annihilation operators ψ. After permuting
and relabeling the integration variables, these two contributions reduce to the same
time-ordered bracket, which, up to some constants, can be expressed explicitly as〈

Tt ψ(ξ)ψ†(1)ϕ(1′)ϕ†(2′)ψ(2)ψ†(ξ′)
〉

0
=〈

Tt ψ(ξ)ψ†(1)ψ(2)ψ†(ξ′)
〉

0

〈
Tt ϕ(1′)ϕ†(2′)

〉
0
.

(B.5)

The first bracket can be evaluated through the Wick’s theorem, expanding it
into all possible non-vanishing contractions [143, 145, 148]

〈
Tt ψ(ξ)ψ†(1)ψ(2)ψ†(ξ′)

〉
0

=

=
〈
Tt ψ(ξ)ψ†(1)

〉
0

〈
Tt ψ(2)ψ†(ξ′)

〉
0

−
〈
Tt ψ(ξ)ψ†(ξ′)

〉
0

〈
Tt ψ(2)ψ†(1)

〉
0

=

= −G(0)
MTI(ξ, 1)G(0)

MTI(2, ξ′) + G(0)
MTI(ξ, ξ′)G(0)

MTI(2, 1) ,

(B.6)

where the time-ordered brackets in the second and third rows can be recognized as
different components of the unperturbed MTI Green’s function. Here, we highlighted
the possible contractions with blue (red) lines, corresponding to permutations which
require an even (odd) number of exchanges to sort the fermionic operators in the
desired order. In a similar way, the bracket between SC field operators corresponds
to the unperturbed normal Green’s function in the superconductor〈

Tt ϕ(1′)ϕ†(2′)
〉

0
= iG(0)

SC(1′, 2′) , (B.7)

and we can finally obtain〈
Tt ψ(ξ)ψ†(1)ψ(2)ψ†(ξ′)

〉
0

〈
Tt ϕ(1′)ϕ†(2′)

〉
0

=

= −iG(0)
MTI(ξ, 1)G(0)

SC(1′, 2′)G(0)
MTI(2, ξ′) + iG(0)

MTI(ξ, ξ′)G(0)
SC(1′, 2′)G(0)

MTI(2, 1) .
(B.8)

Since the Hamiltonian does not depend explicitly on time, the Green’s function
depends only on the time difference, and it is convenient to Fourier transform to
frequency space according to

G(0)(ω) =
∫

d(t− t′) eiω(t−t′)G(0)(t− t′) . (B.9)
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By means of Equations (B.8) and (B.9), the second-order correction to the normal
MTI Green’s function in Equation (4.58) can be expressed as

G(2)
MTI(z, z′;ω) =

∫
dz1 dz′

1 dz2 dz′
2 ×{

G(0)
MTI(z, z1;ω) Γ(z1, z

′
1) G(0)

SC(z′
1, z

′
2;ω) Γ†(z2, z

′
2) G(0)

MTI(z2, z
′;ω)

− G(0)
MTI(z, z′;ω) Γ(z1, z

′
1) G(0)

SC(z′
1, z

′
2;ω) Γ†(z2, z

′
2) G(0)

MTI(z2, z1;ω)
}
,

(B.10)

where G(0)
MTI(z, z′;ω) [G(0)

SC(z, z′;ω)] denotes the 4 × 4 (2 × 2) unperturbed normal
Green’s function matrix of the MTI (SC), acting in the spin–orbital space. Assum-
ing a local tunneling as in Equation (4.66), and neglecting the second term which
correspond to a disconnected diagram, the above expression reduces to the compact
result given in Section 4.3.2:

G(2)
MTI(z, z′;ω) =

∫
dz1 dz2 G(0)

MTI(z, z1;ω) Γ(z1) G(0)
SC(z1, z2;ω) Γ†(z2) G(0)

MTI(z2, z
′;ω) .
(B.11)

B.2 Anomalous Green’s Function
B.2.1 Second Order
The odd-order correction to the anomalous MTI Green’s function vanishes for rea-
sons analogous to those of the normal component. We therefore restrict the discus-
sion to the second-order term only.

To evaluate the second-order correction to the anomalous propagator, we need
to compute the time-ordered bracket〈

Tt ψ
†(ξ)V (t1)V (t2)ψ†(ξ′)

〉
0
. (B.12)

Among the terms generated by the product V (t1)V (t2), the only nonvanishing con-
tribution is T †T †, since this is the only term which ensures that the full correlator
contains an equal number of creation operators ψ† and annihilation operators ψ.
The corresponding time-ordered expectation value reads〈

Tt ψ
†(ξ)ϕ†(1′)ψ(1)ϕ†(2′)ψ(2)ψ†(ξ′)

〉
0

=

= −
〈
Tt ψ

†(ξ)ψ(1)ψ(2)ψ†(ξ′)
〉

0

〈
Tt ϕ

†(1′)ϕ†(2′)
〉

0
.

(B.13)

The first term can be evaluated through Wick’s theorem as [143, 145, 148]

−
〈
Tt ψ

†(ξ)ψ(1)ψ(2)ψ†(ξ′)
〉

0
=

〈
Tt ψ(1)ψ†(ξ)

〉
0

〈
Tt ψ(2)ψ†(ξ′)

〉
0

−
〈
Tt ψ(2)ψ†(ξ)

〉
0

〈
Tt ψ(1)ψ†(ξ′)

〉
0

=

= G(0)
MTI(2, ξ)G

(0)
MTI(1, ξ′) − G(0)

MTI(1, ξ)G
(0)
MTI(2, ξ′) ,

(B.14)
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where the blue (red) lines indicate the pairings which require an even (odd) number
of exchanges to sort the fermionic operators in the desired order. Similarly, the
second bracket is proportional to the unperturbed anomalous Green’s function in
the superconductor 〈

Tt ϕ
†(1′)ϕ†(2′)

〉
0

= iF † (0)
SC (1′, 2′) . (B.15)

yielding

−
〈
Tt ψ

†(ξ)ψ(1)ψ(2)ψ†(ξ′)
〉

0

〈
Tt ϕ

†(1′)ϕ†(2′)
〉

0
=

iF † (0)
SC (z′

1t1, z
′
2t2)G

(0)
MTI(2, ξ)G

(0)
MTI(1, ξ′) − iF † (0)

SC (1′, 2′)G(0)
MTI(1, ξ)G

(0)
MTI(2, ξ′) .

(B.16)

Taking advantage of the fermionic anticommutation relations,

F † (0)
SC (1, 2) = −F † (0)

SC (2, 1) , (B.17)

and exchanging the integrated variables, it is straightforward to verify that the
two contributions in the previous expression are equivalent. Substituting Equa-
tion (B.16) into Equation (4.62) and transforming to frequency space using Equa-
tion (B.9), the second-order correction to the anomalous MTI Green’s function can
be written as

F † (2)
MTI(z, z′;ω) =

∫
dz1 dz′

1

∫
dz2 dz′

2

×
[
G(0)

MTI(z1, z; −ω)
]T

Γ∗(z1, z
′
1) F † (0)

SC (z′
2, z

′
1;ω) Γ†(z2, z

′
2) G(0)

MTI(z2, z
′;ω) ,

(B.18)

where F (0)
SC (z, z′;ω) denotes the 2×2 unperturbed anomalous Green’s function matrix

acting in the spin space of the SC. Equation (B.18) represents the most general ex-
pression for the second-order perturbative correction to the anomalous MTI Green’s
function. Under the assumption of local tunneling, as in Equation (4.66), the above
result simplifies to the compact form reported in Section 4.3.2:

F † (2)
MTI(z, z′;ω) =

∫
dz1 dz2

×
[
G(0)

MTI(z1, z; −ω)
]T

Γ∗(z1) F † (0)
SC (z2, z1;ω) Γ†(z2) G(0)

MTI(z2, z
′;ω) .

(B.19)



Appendix C

Analytical Solution

In this appendix, we provide further details on the derivation of the normal-state
MTI Green’s function in the analytical limit introduced in Section 5.2.3.

We set the trivial energy shift to zero (C = 0) and neglect the electron–hole
asymmetry term (D1 = 0). Furthermore, we focus on small excitation energies
around the Fermi level and assume a weak magnetization compared to the bulk
gap. The most general homogeneous solution of Equation (5.80) is given by the
combination of complex exponentials given in Equation (5.83). Without loss of
generality, for z ≤ z′ we can assume

gL
σ+,στ ′(z, z′) = eλ1zl1 + e−λ1zl2 + eλ2zl3 + e−λ2zl4 ,

gL
σ−,στ ′(z, z′) = η1

(
eλ1zl1 − e−λ1zl2

)
+ η2

(
eλ2zl3 − e−λ2zl4

)
.

(C.1)

For z > z′, instead, we assume that the homogeneous solution decay exponentially
away from the z = 0 interface, thus restricting our analysis to surface-localized
modes only. The solution then reads

gR
σ+,στ ′(z, z′) = e−λ1zr2 + e−λ2zr4 ,

gR
σ−,στ ′(z, z′) = −η1 e−λ1zr2 − η2 e−λ2zr4 .

(C.2)

We enforce Neumann boundary conditions at the interface z = 0 by requiring
∂

∂z
gL

σ±,στ ′(z, z′)
∣∣∣∣
z=0

= 0 . (C.3)

Explicitly, this condition yields

λ1l1 − λ1l2 + λ2l3 − λ2l4 = 0 ,

η1λ1l1 + η1λ1l2 + η2λ2l3 + η2λ2l4 = 0 .
(C.4)

Next, we impose continuity of the Green’s function at z = z′,

gL
σ±,στ ′(z = z′, z′) = gR

σ±,στ ′(z = z′, z′) , (C.5)

which explicitly gives

eλ1z′
l1 + e−λ1z′

l2 + eλ2z′
l3 + e−λ2z′

l4 = e−λ1z′
r2 + e−λ2z′

r4 ,

η1eλ1z′
l1 − η1e−λ1z′

l2 + η2eλ2z′
l3 − η2e−λ2z′

l4 = −η1e−λ1z′
r2 − η2e−λ2z′

r4 .
(C.6)
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Finally, we impose the discontinuity of the first spatial derivative at z = z′,[
∂z g

R
στ,στ ′(z, z′) − ∂z g

L
στ,στ ′(z, z′)

]
z=z′

= δττ ′

B1 − tD1
, (C.7)

which originates from the Dirac delta term in Equation (5.74). Explicitly, we obtain

λ1eλ1z′
l1 − λ1e−λ1z′

l2 + λ2eλ2z′
l3 − λ2e−λ2z′

l4

+ λ1e−λ1z′
r2 + λ2e−λ2z′

r4 = − δττ ′

B1 −D1
,

(C.8)

η1λ1eλ1z′
l1 + η1λ1e−λ1z′

l2 + η2λ2eλ2z′
l3 + η2λ2e−λ2z′

l4

− η1λ1e−λ1z′
r2 − η2λ2e−λ2z′

r4 = − δττ ′

B1 +D1
.

(C.9)

Equations (C.4), (C.6), (C.8) and (C.9) represent a system of 6 linear equations
in the 6 unknown functions li, ri and can thus be solved straightforwardly using
matrix techniques. By grouping the unknowns in the following vector

x ≡
(
l1 l2 l3 l4 r2 r4

)T
, (C.10)

the system of linear equations can be easily rearranged in matrix form as

Ax = y± , (C.11)

where the matrix A is given by

A ≡



λ1 −λ1 λ2 −λ2 0 0
η1λ1 η1λ1 η2λ2 η2λ2 0 0
eλ1z′

e−λ1z′
eλ2z′

e−λ2z′ −e−λ1z′ −e−λ2z′

η1e
λ1z′ −η1e

−λ1z′
η2e

λ2z′ −η2e
−λ2z′

η1e
−λ1z′

η2e
−λ2z′

λ1e
λ1z′ −λ1e

−λ1z′
λ2e

λ2z′ −λ2e
−λ2z′

λ1e
−λ1z′

λ2e
−λ2z′

η1λ1e
λ1z′

η1λ1e
−λ1z′

η2λ2e
λ2z′

η2λ2e
−λ2z′ −η1λ1e

−λ1z′ −η2λ2e
−λ2z′


.

(C.12)
and the non-homogeneous term is defined as

y± ≡
(
0 . . . 0 − δττ ′

(B1∓D1) 0
)T

. (C.13)

Solving Equation (C.11), we obtain explicit expressions for the coefficients li ≡
li(z′) and ri ≡ ri(z′), which determine the particular solution of the unperturbed
MTI Green’s function through Equations (C.1) and (C.2). Making use of the
complex-conjugate relations of Equation (5.86), which hold in the regime of weak
magnetization compared to the bulk gap of the topological insulator, the components
of the normal propagator at the interface z = 0 can be expressed in the general form

gστ,στ ′(z = 0, z′) = e−λz′
[
ασ

ττ ′ cos(κz′) + βσ
ττ ′ sin(κz′)

]
. (C.14)
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Figure C.1: Real (left) and imaginary (right) parts of the normal Green’s function
gστ,σ′τ ′ at the Γ point, evaluated at the interface z = 0. The colored solid lines
correspond to the analytical solution in Equation (5.90), while the black dashed lines
denotes the corresponding components extracted from the full solution discussed in
Section 5.2.2. The calculations are performed assuming ω = 1 mev and Λ = 5 meV,
and the Bi2Se3 Hamiltonian parameters listed in Table 1.2.

For compactness, we omit the spin dependence of λi and ηi in what follows. The
coefficients αττ ′ and βττ ′ are given by

α++ = 1
B1 −D1

η1λ1 − η2λ2

λ1λ2 (η1 − η2)
, β++ = − i

B1 −D1

(η1λ1 − η2λ2)(η2λ1 + η1λ2)
λ1λ2 (η1 − η2)(η2λ1 − η1λ2)

;

α+− = − 1
B1 +D1

λ1 − λ2

λ1λ2 (η1 − η2)
, β+− = i

B1 +D1

λ1 + λ2

λ1λ2 (η1 − η2)
;

α−+ = − 1
B1 −D1

η1η2 (λ1 − λ2)
λ1λ2 (η1 − η2)

, β−+ = i
B1 −D1

η1η2 (λ1 + λ2)
λ1λ2 (η1 − η2)

;

α−− = − 1
B1 +D1

η1λ2 − η2λ1

λ1λ2 (η1 − η2)
, β−− = i

B1 +D1

(η1λ2 − η2λ1)(η1λ1 + η2λ2)
λ1λ2 (η1 − η2)(η1λ1 − η2λ2)

.

The analytical solution at the Γ point, evaluated at the interface z = 0 and plot-
ted as a function of the out-of-plane coordinate, is shown in Figure C.1. The colored
solid lines represent the analytical expressions obtained from Equation (C.14), while
the black dashed lines correspond to the same components extracted from the full
numerical solution presented in Section 5.2.2. A direct comparison between the
two makes it evident that, in the regime of small magnetization Λ ≪ M0 and en-
ergies close to the Fermi level ω ≈ 0, the analytical and numerical results coincide.
This agreement is specifically robust when the film thickness is much larger than
the characteristic decay length of the surface states. Under these conditions, the
analytical solution faithfully reproduces the full behavior of the Green’s function,
demonstrating the validity of the closed-form analytical approximation.
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