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ABSTRACT Spatiotemporal organization of individuals within growing bacterial colonies is a key determinant of intraspecific
interactions and colony-scale heterogeneities. The evolving cellular distribution, in relation to the genealogical lineage, is thus
central to our understanding of bacterial fate across scales. Yet, how bacteria self-organize genealogically as a colony ex-
pands has remained unknown. Here, by developing a custom-built label-free algorithm, we track and study the genesis and
evolution of emergent self-similar genealogical enclaves, whose dynamics are governed by biological activity. Topological de-
fects at enclave boundaries tune finger-like morphologies of the active interfaces. The Shannon entropy of cell arrangements
reduce over time; with faster-dividing cells possessing higher spatial affinity to genealogical relatives, at the cost of a well-
mixed, entropically favorable state. Our coarse-grained lattice model demonstrates that genealogical enclaves emerge due
to an interplay of division-mediated dispersal, stochasticity of division events, and cell-cell interactions. The study reports
so-far hidden emergent self-organizing features arising due to entropic suppression, ultimately modulating intraspecific gene-
alogical distances within bacterial colonies.

WHY IT MATTERS Spatiotemporal distribution of bacteria has far-reaching ramifications in the ecology and evolution
of bacterial species and their consortia. Many species are surface associated, yet how they distribute genealogically, i.e.,
how daughter cells distribute in relation to their mother cells, specifically during the early stages of biofilm formation,
remains unknown. By analyzing expanding colonies using a custom-built label-free algorithm, we track bacterial growth,
revealing distinct self-similar genealogical enclaves that intermix over time. While biological activity determines their

intermixing dynamics, emergent topological defects at the interfaces mediate the finger-like morphology of interfacial
domains. Our results demonstrate that proximity to kith and kin—both spatial and genealogical—is intrinsically encoded
in growth from an early developmental stage, signifying its role in mediating fitness and viability.

INTRODUCTION (9,10). The temporal evolution of such structured
living systems is inherently coupled to the ability of in-
dividuals to disperse across different physical and
timescales, allowing for reconfiguration of cell-cell
interaction networks and adjustment of local compo-
sition of biofilms. Consequently, the evolution of
the spatial structure of microbial agglomerations is
central to the cell and lineage fate. Most naturally
occurring bacterial communities comprise multiple
species, which points to their role in promoting coloni-
zation and survivability. Spatial distribution of cell
types and lineages thereof have been frequently found
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Bacterial colonies, comprising one or several species,
execute a range of ecological and biomedical func-
tions (1,2) via cell-cell communication strategies
(3,4), collective behavior (5), response to stresses (6),
and self-regulation of biophysical traits (7,8). A key
factor underpinning the evolutionary success of bac-
teria is their ability to form structured communities
such as biofilms, wherein spatial organization of cells
determines individual and population scale behavior
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cooperative sharing of available resources, production
and exchange of metabolites, and selective amplifica-
tion of beneficial traits, including more effective ab-
sorption of nutrients (9,11). Two fundamental
questions arise in this context: how do cells and their
lineages spatially distribute as they grow within a
monospecific bacterial colony; and how does the
spatial architecture evolve over time, particularly in
the early stages of colony formation (7,8).

Cells in bacterial colonies show several remarkable
features of self-organization (12,13,14) and the impor-
tance of structural order and topological attributes of
cell organization in optimizing growth of such colonies
has been highlighted (7,15). In particular, singularities
in local ordering of cells in colonies, referred to as topo-
logical defects, have been implicated in driving the for-
mation of layers in biofilms for both motile and sessile
bacteria (16,17), which marks a significant step in bio-
film growth and maturation. Topological defects have
also been shown to regulate several other fundamental
features of biofilm growth and propagation such as nav-
igation (18), sporulation (19), and nutrient uptake (20).
Such defects are common in the periphery of bacterial
colonies driving advancing fronts but they are also regu-
larly observed in the interior of the colonies, seemingly
at random (21). Furthermore, as with any structured
living community, a key determinant of its resilience
are interaction between its constituents (22,23). Argu-
ably, the most meaningful interactions in microbial com-
munities are between close relatives on one hand and
spatial neighbors on the other hand (24,25). Therefore,
a mechanistic understanding of the growth of bacterial
communities and designing on-demand effective strate-
giestolimit the growth of deleterious biofilms rely on our
understanding of cellular organization spatially, and in
relation to their lineage kin. For such studies, it is essen-
tial to be able to track cells as they grow and divide over
generations to form progeny chains. Simultaneous
tracking of the cells and their lineage over time is a
key challenge in addressing these questions. In general,
cell tracking thus far has been largely done by fluores-
cent-based tracking methods (26), resulting in several
insights into the spatial organization of cells in colonies
(14,27,28). However, these methods are inadequate for
long-term investigations due to fluorescent bleaching,
and potential chemo- and phototoxic impacts on the
cellular physiology. Consequently, such studies will
benefit from label-free tracking techniques (for instance,
based on image analysis), ultimately allowing accurate
detection of emerging spatial patterns and subtle differ-
ences therein, arising due to varying growth and local
environmental conditions.

In this work, using a custom-built label-free algo-
rithm, we track single cells transforming into sessile
colonies, and study the genesis and evolution of gene-
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alogical enclaves, distinct subcolonies comprising de-
scendants of individual bacterial cells, as the colony
grows onward from a single cell. The analyses of the
emerging intracolony dynamics explains how progeny
cells form enclaves within the colony, displaying
spatial affinity for genealogically close relatives, at
the cost of an entropically favorable option of inter-
mixing. The dynamics of emerging enclaves, along
with those of the topological defects in the colonies,
display a high degree of self-similarity with the col-
onies at large on several key phenotypic traits over
multiple division cycles, an intriguing feature common
in fractals, including natural objects as disparate as
coastlines and vegetables such as broccoli. These
far-from-equilibrium arrangements of cells in such col-
onies represents a distinct yet unifying feature of
pattern formation in nature, uncovering several so-far
hidden features of emergent organization within bac-
terial colonies as presented below.

MATERIALS AND METHODS
Bacterial cultures

The primary strain used in this work is a Gram-nega-
tive bacteria Escherichia coli strain, namely NCM3722
delta-motA. The second species considered in the
study is Vibrio cholerae, to understand the effect of
cell shape (specifically low aspect ratio) on the spatial
distribution of progeny chains. The cells were first
streaked on a standard lysogeny broth (LB) agar plate
and grown by setting the incubator at the appropriate
temperature. After a day of growth in the plate, single
isolated colonies were identified and picked using a
inoculation loop and transferred to liquid LB medium
in a shaker and shaken at 170 rpm. The cells were al-
lowed to grow and divide in the shaker until late expo-
nential phase (with regular subsampling done to track
the cell growth over time by measuring the optical den-
sity), after which the cells were transferred to fresh LB
medium at a dilution factor of 1:1000 (ratio of bacterial
suspension to medium) and grown for ~1.5 — 2 h
(early exponential phase). Around ~ 1 — 1.5 ulL drop-
lets were then inoculated onto a thin layer of specially
designed substrate. At least three biological replicates
for each case were considered in this study and,
further, different locations on the agarose substrate
were imaged, thus utilizing multiple technical repli-
cates from the same sample. More details of the
experimental protocol may be found in (7).

Agar pad preparation and time-lapse imaging

Low melting agarose was mixed with LB medium and
the gel-like solution was poured into the Gene-frame
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FIGURE 1 Emergence of self-similar enclaves in bacterial colonies. (4) Label-free tracking of a bacterial colony reveals partitioning of the
colony into lineage enclaves starting from the initial two cells after the division of the founder cell. (B) Label-free tracking algorithm relies
on frame-to-frame mapping of the centroid of cells to track them as they grow, with additional parameters based on mapping the cell poles
and approximate prediction of daughter cell centroids to identify left out cells and division events. (C) Cell contact number (CCN) analysis to

(legend continued on next page)
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(Thermo Scientific, Germany, Gene Frame with thick-
ness =0.25 mm) pasted on a standard microscopic
glass slide and with a coverslip to seal from the top.
The gel concentration for most of the studies pre-
sented in this work is 1.5%. The effect of substrate
properties was incorporated by varying the gel con-
centration in the range 1-2%. Growing colonies were
observed in phase-contrast mode using Olympus
IX83 microscope with a 60x oil objective (camera Ha-
mamatsu ORCA-Flash, Japan). The whole system
was set inside a thermally insulated temperature-
controlled incubator (PeCon GmbH, Erbach, Germany).
First, we located the coordinates of isolated cells on
the agarose pad and the microscope was automated
to capture these prerecorded coordinates and record
the images of the colonies as they evolved (for the
case merging of two colonies, two nearby cells were
located and images were recorded as cells grew and
divided forming colonies that eventually merged).
The images are taken at regular intervals (typically
3 min). Analysis of phase-contrast images was per-
formed using the open-source softwares Fiji:lmageJ
(29) and llastik (30) and custom-written Python codes.

Image segmentation and label-free tracking

The phase-contrast raw images were preprocessed by
adjusting brightness and subtracting background
noise using Imaged. Then further background filling
was done by applying top-hat and black-hat filter using
Python-OpenCV. A number of these preprocessed im-
ages were trained in llastik by pixel classification of
cells and background. The trained classifier was
then applied to rest of the frames by using batch
processing in llastik. This training step involved
several iterations until high order of segmentation
was achieved. The segmentation was done for frames
until the colony attained MTMT, which was carefully
noted manually by checking the pixel intensity of the
images (Fig. S1, A-D). For the segmented cells, length
(denoted I.) was obtained by calculating the distance
between the cell centroid and the center of two poles
(which are two extreme ends of the contour of a cell).

Cell width (w.) was obtained using length and area of
4a.

cell contour (ac) using we =% The length and width
values thus obtained were further confirmed matching
with extracted values of the major and minor axes
length of each cell contour using the openCV ellipse
fitting. The ellipse fitting also helped us to extract
average orientation angle of cells. The colony outer
boundary was extracted by image dilation and filling,
which was used to extract the outer boundary perim-
eter and effective colony area.

Cell progeny chains were spatially mapped using a
custom-built tracking code written using Python. To
do that, first we extracted the features of the cells in
all frames—centroid positions (x., y.), length (I;), width
(we), and a label (c,) were assigned to all the cells. We
compare two consecutive frames (here referred as
frames t and t + 1) by looking for the “only” cell in
frame t + 1, whose centroid is within a cutoff distance
d(c) from the centroid of a cell in frame t (initial t = 0
is the time when the first pair of daughter cells are
born). This pair of cells whose centroid displacement
is within the cutoff were assigned to the same progeny
chain. The cutoff value is appropriately chosen and
optimized (around ~ 0.75 um, which is of similar order
as cell width). This covers most of the growing cells,
but a few cells may be left out in frame t (either the
cell in frame t has divided into two cells in frame
t+1 or have undergone substantial movement
compared with the cutoff distance). To track the cell
that divides in t + 1, we introduced “dummy” centroids
for cells in frame t. Dummy centroids are points be-
tween the poles and original cell centroid, chosen by
anticipating the centroids of the two daughter cells if
the cell were to divide in the next frame. This helped
us to map the dividing cell in frame t to daughter cells
in frame t + 1. A small number of cells may remain af-
ter this, which may have undergone substantial move-
ment (especially cells located near colony boundary
which have free space to move). These were mapped
by noting the displacement of their poles and the cen-
troids within a cutoff distance in the two consecutive
frames. If necessary, manual correction was done to
rectify identification errors. Thus, we can spatially

calculate neighbors of cells belonging to different progeny chain reveals that most of the cells only have spatial neighbors belonging to their
own progeny chain. (D) The relative distance (Ac) between the centroids of the two enclaves is mapped as a function of time, where tymyr
denotes the time at which MTMT occurs. The error (SD) is shown by the shaded region in the plot. Here, tymr for colonies growing at
25°Cis ~ 332+ 12 min and for colonies growing at 37°C is ~ 145+ 4.5 min. (E) Box-counting method employed to calculate Shannon entropy
(SE) of cell arrangement patterns in colonies. (F) The ordered nature of enclave arrangement pattern vis-a-vis random arrangement patterns
where progeny chain membership is assigned randomly to cells in the colony, fixing colony geometry and proportion of cells in each domain,
two illustrative cases are depicted on the left. On the right, the black curve maps the values of SE for random arrangement patterns of cells in
colonies, while the SE values for enclave arrangements for cells growing at 25 and 37°C are marked in blue and magenta, respectively. (G) The
area of the two enclaves for colonies growing as a function of normalized time. (H) Mean cell length of cells in each of the two enclaves (red
and green) as well as the whole colony (blue) is mapped as a function of normalized time for cells grown at 25 and 37°C. Inset: phenotypic
noise for cell length (quantified by the normalized variance) is plotted for the two enclaves (red and green) and the colony (blue) as a function

of normalized time.
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and temporally track the progeny chains emanating
from the first two daughter cells (Figs. S1 E, F, and S2).

Cell contact number analysis

We compute the average cell contacts (neighbors) of
cells in the colony. For each cell in a given time frame,
we first computed the distance between its centroid
and centroid of other cells, and we collected the cells
that were within cutoff radius ~10 um from the orig-
inal cell. Now, for these cells, we first selected a large
number of points on their boundary and calculated the
distance from points on the boundary of the original
cell. If the minimum distance between two cell bound-
aries was less than a small tolerance value (~ 1.2 um),
then we called them neighbors of the original cell. The
neighbors were matched manually in several in-
stances to ensure correctness (larger tolerances al-
lowed next neighbors to be identified as neighbors
while smaller tolerances sometimes did not identify
neighbors as neighbors). After this, we then looked
at the fraction of inter- and intracontacts (at the level
of progeny chains) based on the descendants of the
first two daughter cells.

Global properties of the enclaves

We now discuss how the centroid, perimeter, common
interface length, and area of enclaves formed by prog-
eny chains of cells were calculated. First we extracted
the arrangement of the cells in the two enclaves based
on the cell label information we get from the tracking
algorithm and, thus, the outline of their outer bound-
aries. Then, we computed their centroid coordinates
using OpenCV (the calculations were done frame by
frame).

To estimate the common interface length of the two
subcolonies, we first computed the perimeters of the
outer boundary of the two enclaves formed by descen-
dant cells, denoted Ps; and Ps,. Since in all the cases
the two enclaves are completely in the interior of the
colony with common interface boundary, the interface
length is simply given by

L o Ps1 + Psy — Lcolony
interface  — 2

where Leoony is the perimeter of the of the entire col-
ony. Again the calculation is carried out frame to
frame to track their temporal evolution.

Shannon entropy for cell arrangement patterns in
colonies

We leverage the concept of Shannon entropy (SE) to
compare and contrast disparate cell arrangement pat-

terns in growing colonies, which we describe now. We
employed a moving box algorithm (box size, s = 5.5
um) with box moved progressively by distance s/2
to run through the cells in the colony. Cells of the
two enclaves having been assigned colors green and
red and represented by their centroids, we calculated
the probability of seeing a red cell or green cell in
each box. Thus, for every box B,

SE(B) = — prlog(p;) — pglog(py)

gives the SE of the arrangement in the box itself,
where p, and py are probability of finding a red and
green cell, respectively. The average SE for each col-
ony was then calculated by averaging the entropy
values obtained for each (moving) box. Next, to get a
measure of the magnitude of the obtained entropy
value in comparison with the entropy values obtained
for all possible cell arrangement patterns, only fixing
colony geometry and the precise number of cells in
each domain, we assigned the two colors red and
green in same proportion to cells in the colony at
random and computed average SE. This calculation
was repeated in each case for 2 x 10° iterations, to
derive the range of values of entropy values sweeping
through the phase space of all possible conformations
and so as to estimate and compare the range of en-
tropy values arising out of real-life patterns.

Geometric features of enclave interface

To quantify enclave invasion, we probed the curvature
of the interfacial curve and other geometric properties
of the invasion front. For computing the local curva-
ture of the interface curve, we utilized the kappa plugin
in Fiji (31). Next, we calculated the area of the invasion
of one enclave into other by a “hull” filling process
to determine the region of invasion. Specifically, the
high-curvature regions which marked the beginning
of the invasion front of one enclave into other
were joined to demarcate a region of invasion (see
Fig. S11). The mean invasion width for enclave inva-
sion by calculated by measuring the width of the inva-
sion fronts in several locations and taking their mean.

Orientation field of cells and topological defect
detection in the colony

For all phase-contrast images, we first measured the
orientation by the structure tensor method. The struc-
ture tensor was computed by taking the outer product
of the image intensity gradient vector with itself for
each pixel, locally averaged within a given Gaussian
window for a size chosen roughly one-quarter the
size of single cell. To retrieve the local orientation
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stored in the structure tensor, eigenvalue analysis was
performed. One of the eigenvectors of the structure
tensor encodes the orientation value (®) at each pixel
lying between — /2 to +m/2 (Fig. S14 A).

Next, we computed the nematic order parameter,

Sk = (sin 2(1))2 + (cos 2<I>>f,

0 <8<

Here, the spatial average is done within fixed-size
square region R (with each square roughly containing
three to four cells) and the moving grid algorithm with
steps of at least one-third size of grid size was em-
ployed to cover the entire colony for averaging
(Fig. S14 B). Only pixels that resided in the bacterial
cells of the colony (white pixels) were taken into ac-
count to compute the local order parameter. This
was done to get rid of the false orientations, especially
at the pixels near the cell boundary regions. Then we
located the positions of low values of the order param-
eter by considering the points where Sz <0.3. Of
these points, local minima of the nematic order param-
eter values were taken as candidates for topological
defect cores. For these possible defect sites, auto-
matic defect detection was done by calculating the to-
pological charge (g) (32). Only two types of defects
(charge +1/2 and — 1/2) were found (Fig. S14 C).
Further manual correction of the defects is done by
checking position of defects between at least two
consecutive frames.

Lattice model of colony growth and enclave
formation

We start with discrete square lattice with 25x 25 sites,
which is large enough to simulate colonies of the size
that are of interest here. We assume that each lattice
site can be occupied by a single bacteria and no site is
allowed to overlap. The initial configuration is of a “red
cell” that is placed at the center of the grid (daughter
1) and its sister a “green cell” (daughter 2) is randomly
allotted a site in the Moore neighborhood of the red
cell. The simulation is then set off from this configura-
tion, with the initial two cells dividing and their
daughter cells dividing and so on and so forth, giving
rise to their progeny chains. Every cell, starting from
the initial two cells and then upon the birth of any
new cell, is assigned a division time chosen at random
using the log normal distribution, with the mean and
standard deviation fixed to be the same as that
gleaned from our biological data for colonies growing
at 25°C (48 + 13 min) and 37°C (21 + 6 min) (as shown
in Fig. S17 A). Based on the assigned division times, at
each time step, we arranged the cells in ascending
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order, with the topmost cell in the list selected for divi-
sion (thus, in the simulation, each time step corre-
sponds to the time when a cell in the colony
divides). Following each cell division event, we let
one daughter cell remain at the same site as its
mother cell site while the other daughter cell is allo-
cated a randomly chosen site from the unoccupied
Moore neighborhood of the site of the mother cell.
The new cells are then assigned division times as
described and the order of the cells according to divi-
sion times is updated. These steps are repeated and
new daughter cells continue to fill up the unoccupied
Moore neighborhood of mother cells. As the number
of cells increase, a stage is reached when the Moore
neighbor of interior cells is completely occupied. For
this, we introduce a shoving algorithm to allocate
space for the daughter cells, whereby a direction
from the mother cell site joining it to one of the sites
in its Moore neighborhood is chosen with the probabil-
ity of that direction being picked being given a weight
to ensure that directions for which fewer cells need to
be shifted is preferred (thus, the weight for a direction
is inversely proportional to the number of cells that lie
in that direction that need to be shoved). The cells are
shifted outward by one site in that direction (mathe-
matically, this is referred to translation along the cho-
sen direction), thus creating an unoccupied site in the
vicinity of the mother cell where one of the daughter
cells is then placed. This rule allows us to effectively
mimic growing bacterial colonies where cells push
and jostle with their neighbors to allocate space for
themselves and their progeny (we also consider an
alternative shoving algorithm where the direction is
chosen at random with equal probability; however,
this does not change our results qualitatively). The
simulation is continued in this manner until the num-
ber of cells increases to values consistent with those
obtained from our biological data. Interenclave con-
tacts of cells in these simulated colonies is calculated
by looking at the number of cells lying in the Moore
neighborhood that belongs to the opposite enclave.
SE is calculated by a box-counting method, with box
sizes chosen to ensure similar number of cells as in
the case of SE calculations performed on our biolog-
ical data. Averaging was done by performing over 20
simulations for each case (Figs. S17, E and F and
S18, A and B). Furthermore, we also consider the
case where upon division cells are not placed in the
immediate Moore neighborhood but are also allowed
to be placed in the Moore neighborhood of the original
cell (thus in the lattice lying two steps away) (Fig. S18,
C and D). In this case as well, the division times were
chosen at random using the log normal distribution,
with the mean and standard deviation fixed to be the
same as that of our biological data for colonies



growing at 25 and 37°C, with all other simulation pa-
rameters the same as in the previous case. Finally,
we also consider simulations where cells belonging
to one progeny chain divide faster while cells
belonging to the other progeny chain divide slower
(Fig. S19).

RESULTS

Emergence of genealogical enclaves in bacterial
colonies

To discern the emergent spatial structure of the
genealogical organization in growing bacterial col-
onies, we tracked and studied intermixing dynamics
of descendants of individual cells in single founder
colonies of surface-associated bacteria, specifically
E. coli. For this, we developed a new label-free tracking
algorithm to spatially trace progeny chains emanating
from the two daughter cells arising from the first
division event of the colony, that of the founder cell
(Figs. T A, ST, and S2). Such tracking is typically car-
ried out by experimental labeling-based methods, usu-
ally involving different species or combinations of
wild- and mutant-type cells. Here, we carry this out in
an entirely label-free manner, leveraging a tracking al-
gorithm that effectively logs the positions of cells as
they grow and recognizes division events, spatially
mapping progeny chains starting from the initial
two cells (Fig. 1 B and materials and methods), after
segmentation of phase-contrast images using the
machine learning tool llastik (30) (see also tracking al-
gorithms such as the fluorescence microscopy-based
Schnitzcells (33) and Supersegger (34), which often
require large amounts of input for image processing
and analysis and newer deep learning-based algo-
rithms (35,36), which give alternative label-free
tracking methods).

For this study, we limit our discussions to mono-
layer configurations of bacterial colonies, i.e., before
the colony undergoes mono- to multilayer transition
(MTMT) (37). The cells of the two progeny chains
undergo spatial intermixing as the colony grows, re-
sulting in dynamic partitioning of the colony into two
domains. Since the colony grows freely on the sub-
strate, a certain degree of intermixing of lineages
can be expected, which is also is seemingly entropi-
cally more favorable. However, we observed that cells
from the two domains arranged themselves into en-
claves, maintaining a spatial affinity for their close
kin (Figs. 1 A and S2), having cell arrangement pat-
terns very similar to that of merging of colonies, in
which case it is more plausible and indeed observed
that the cells from the two initial colonies form en-
claves within the merged larger colony (Fig. S3). This

is further confirmed by contact number analysis of
cells in the colony (materials and methods), which
shows that a large majority of cells in the colony
have very few contacts with cells not in their progeny
chain and, in fact, that such contacts decrease as
the colony matures (Figs. 1 C, 2 B, and S4), consistent
with the formation and consolidation of genealogical
enclaves within the colony. Two interesting features
of enclave formation that we observe additionally
(we discuss them in more detail below), are 1) absence
of “enclosed” enclaves, i.e., cells of one lineage
completely surrounded completely by the cells of the
other lineage (Fig. S10) and 2) the enclave formation
is not evident during the very early stages of the col-
ony formation (after just a couple of division events
[Fig. S12]), independent of activity levels, suggesting
that enclave formation and consolidation occurs at in-
termediate spatial and temporal scales relative to the
timescales of colony development.

To quantify the relative spatial distribution of cells
belonging to the two progeny chains, we tracked
the evolution of the distance between centroid of the
two enclaves (materials and methods). While in the
case where cells from the two progeny chains were
well intermixed, the centroids would have been close
to each other, we observed the opposite, that the
two centroids moved farther and farther away with
time (Fig. 1 D). Thus, we conclusively infer that cells
in progeny chains emanating from the first two
daughter cells preferentially arrange themselves into
enclaves within the colony. We also observe similar
formation of progeny enclaves when we varied sub-
strate properties by varying agarose concentration
(Fig. S5) as well as for V. cholerae colonies, with cells
having comparatively low aspect ratio (Fig. S6), high-
lighting the robustness of these phenomena under
different conditions and species of bacteria.

Such dynamic partitioning of colonies gives rise to
characteristic cell arrangement patterns. To compare
the level of intermixing of these patterns vis-a-vis
randomly intermixed distributions, we calculated the
SE (38) of cell arrangement patterns for bacterial col-
onies (Fig. 1 E) and compared it to SE values obtained
in case of randomly intermixed cell arrangement pat-
terns, while fixing the colony geometry in terms of
the relative positions of the cells as well as the propor-
tion of cells belonging to both the lineages (Fig. 1 F,
left shows two such colonies, see materials and
methods for more details). For this, we use a moving
box algorithm, which locally calculates the SE by
determining the probability of a cell belonging to either
of the lineages in the box and then averaging over the
entire colony, thus capturing the intermixing levels at a
granular level (as detailed in materials and methods).
As the formula for SE suggests, predominant presence
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FIGURE 2 Activity governs dynamics of colony partitioning into genealogical enclaves. (A) Shannon entropy of cell arrangement patterns
emerging from enclave partitioning of colony as a function of normalized time for cells growing at 25°C (blue) and 37°C (magenta). (B) Pro-
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colonies growing at 25°C (blue) and 37°C (magenta). (D) Genealogical enclaves in the colonies are shown (red and green) in two representative
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vasion width (IW) is plotted in the two cases of colonies growing at 25°C (blue) and 37°C (magenta). (/) Probability distribution (PDF) of inva-
sion width in the vicinity of high-curvature regions (IW[«xigs]) of the interfacial curve.

of cells of only one of the lineages, indicative of low or-
der of intermixing, results in low values of SE while
roughly equal presence of cells, indicative of high de-
gree of intermixing, from both the lineages will result
in higher values of SE. Thus, SE acts as an effective
quantifier of the level of mixing displayed by the
mosaic of patterns obtained when cells are assigned
colors based on their ancestral line or otherwise,
with high values suggesting a high order of intermix-
ing and low values suggesting more ordered distribu-
tions. We observed that the SE is much lower
compared with the case of randomly intermixed pat-
terns (Fig. 1 F, right), underscoring the ordered nature
of the spatial distribution of cells in bacterial colonies.
Thus, cell arrangement patterns in bacterial colonies
display much higher level of demixing compared
with the average arrangement patterns when the col-
ony spatial geometry is fixed, which also highlights
that, in fact, natural cell arrangement patterns can
potentially never attain average levels of intermixing.
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Notably, low values of the SE metric as well as the
decreasing nature of its values as colonies grow
(Fig. 2 A) indicate a propensity for ordering and self-or-
ganization as time evolves. This is analogous to the
ubiquity of low thermodynamic entropy (indeed, ther-
modynamic entropy has the same expression as that
of the SE when all microstates are equiprobable) and
entropy reduction in myriad real-life patterns and situ-
ations (39,40), a hallmark of life itself (41). Notably, the
SE metric for cell arrangement gives an effective way
to distinguish spatial and temporal landscapes of bio-
logical systems, as has been applied sometimes for
landscape studies in ecology (42).

We next probed whether cells in one of the enclaves
displayed relatively better growth prospects, due to
the changes in topology under the free expansion of
the colonies on substrates, by measuring the differ-
ence in phenotypic traits of cells in the two domains.
Firstly, we observed that the areas of the domains
are approximately the same, around half the colony



area (Fig. 1 G). The area comprises cells as well as
intercellular voids, pointing to a striking similarity in
the way cells accommodate and adjust spatially in
the two enclaves. Further, mean cellular length,
mean cell elongation rate, and average area of cells
in the two domains show very close similarity with
the colony-level statistics of the same (Figs. 1 H, S7,
and S8, respectively). Next, to compare colony-level di-
vision statistics with that of the two domains, we
calculated the number of division events occurring in
the colony and the domains as a function of time.
While at the single-cell level, this is a highly stochastic
event (Fig. S17 A), we observed that the colony-level
statistics show close proximity to the statistics of
the two domains, as time progresses (Fig. S9). This re-
inforces that the two domains are a self-similar parti-
tion of the colony, transcending the dynamic nature
of such partitioning. Furthermore, we observed that,
in all cases, the two domains retained significant expo-
sure to the surroundings of the colony and no “en-
circled” enclaves (i.e., subenclaves of cells from one
progeny chain completely surrounded by cells from
the other progeny chain) were formed as the colony
grew. Indeed, the enclave perimeter exposed to outer
surroundings is consistently around half the colony
perimeter for both the enclaves (Fig. S10). This is
important since boundary exposure is a crucial marker
of survival fitness as it assures proximity to nutrients
and space for expansion (14). Thus, despite growing
freely in two dimensions and displaying a dynamically
evolving colony geometry, the two domains origi-
nating from progeny chains of the two initial daughter
cells gain very equitable access to growth resources
and, resultantly, display very similar features as the
colony at large.

Activity governs dynamics of genealogical
partitioning of bacterial colonies

A noticeable feature of bacterial growth is the depen-
dence of biological activity (in other words, the rate
at which bacteria assimilate nutrients to grow and
divide, which can be observed by their growth rate)
on factors such as ambient temperature, with cells
growing and multiplying faster at optimal tempera-
tures. While temperature has been used to tune activ-
ity in this work, other factors including nutrient
availability, pH, and antibiotics can as well be used
to modulate activity of expanding bacterial colonies.
This difference in growth rates is quite apparent at col-
ony scale but effect of activity on spatial geometry of
the colony is completely obscured in standard imag-
ing of cells, highlighting the importance of label-free
tracking of cells. We observed an interesting effect
of activity, which we modulate by varying the ambient

temperature, on spatial geometry of colony—at slower
growth rates, the colony displayed more intermixed
structure, while at higher growth rates, the colony is
more ordered and less intermixed. The time series of
SE show that slower-growing colonies consistently
display higher entropy of arrangement patterns
(Fig. 2 A). Similarly, the distance between centroids
of the two enclaves is lower while the proportion of
interenclave contacts is higher for slower-growing col-
onies (Figs. 1 D and 2 B), confirming their higher de-
gree of intermixing and less ordered features. We
also observed a marked preference for narrow front in-
vasion in this case, with thin fingers of cells invading
into the region of the other, while for faster-growing
colonies, wide front invasion is seen with the front
comprising several cells. To quantify this difference,
we study the geometry of interfacial region of the
two domains (materials and methods). We compute
the interfacial length normalized by the colony
perimeter, observing that it is larger for the case of
slow-growing colonies (Fig. 2 C). Further, high-curva-
ture regions along the interface are comparatively
more numerous for slow-growing colonies (Fig. 2, D-
G), the presence of such regions attesting to the
meandering nature of the interface and the affinity
for narrow front invasion, which is characterized by
sharp turns and, consequently, high-curvature hot-
spots along the interface curve (Fig. 2 E) (analogous
to the case of river streams in hilly regions, character-
ized by tight bends and meandering curves compared
with straight wide river streams in the plains). To
quantify the size of the invasion front, we computed
the mean invasion width, precisely identifying the in-
vasion area (materials and methods and Fig. S11).
We observed that mean invasion width is smaller for
slow-growing colonies, highlighting their preference
for narrow front invasion (Fig. 2 H). Finally, to under-
stand the nature of invasion front in the vicinity of
high-curvature regions, we calculated the probability
distribution of invasion width in high-curvature re-
gions, observing that for slower-growing colonies,
peak is attained at low values of width while faster-
growing colonies display a higher peak (Fig. 2 /), reiter-
ating their propensity for narrow and wide front
invasion, respectively. Therefore, we conclude that
biological activity modulates the emergent spatial ge-
ometry of intermixing of cells in colonies, with higher
activity resulting in more ordered, less intermixed col-
onies while lower activity promoting higher degree of
intermixing, characterized by narrow front invasion
of fingers of cells into the territory of the complemen-
tary enclave. It is notable that, at initial times after just
a couple of division events, the colonies all displayed
similar arrangement of cells but evolve with time
into disparate arrangement patterns (Fig. S12). Thus,
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the dependence on activity level of cells on the
arrangement patterns acts out after the colony has
grown beyond a threshold size, reflecting the interme-
diate scale at which the phenomena take effect. This
is further highlighted by the feature of such colonies
to self-organize into a tapestry of small microdomains
of similarly aligned cells, but with the size of such mi-
crodomains decreasing with increasing activity (12).
Interestingly, V. cholerae cells which were grown at ~
25°C showed remarkable similarity of values of SE,
centroid displacement, and normalized interfacial
length with colonies of slow-growing E. coli cells
(Fig. S13, B-D), implying that the dependence of
spatial arrangement of cells on temperature-mediated
activity is robust across cell shape and species.

Genealogical enclave interface as hotspot of
orientational disorder

We seek to understand the mechanics of enclave inva-
sion and its effect on orientational order of cells.
Local orientational order of cells in colonies of nonmo-
tile bacterial species has been shown to emerge
from interaction of steric forces of cells shoving
each other for space on one hand and active extensile
stresses due to cell growth on the other hand, with the
colony behaving like an active nematic liquid crystal
(12,13). We hypothesized that enclave invasion
will necessarily involve a high degree of jostling of
cells, with the interfacial region emerging as a hotspot
of orientational disorder. To investigate this, we
compute the orientation order parameter S (materials
and methods), a metric encapsulating local order in
aligned systems, with S = 1 denoting perfect align-
ment, while low S values signify a high degree of orien-
tational disorder (43). We observe that regions of low S
values tend to be along colony boundary and along the
enclave interface (Fig. 3, A and B). Indeed, restricting
to the colony interior, regions of orientational disorder
occur almost exclusively along the enclave boundary
(Fig. 3, B and C). We next tracked the location of topo-
logical defects in the colony vis-a-vis the spatiotem-
poral evolution of the enclave interface (materials
and methods). Topological defects are singularities
in local orientational field, associated with a break-
down of local orientational order and, thus, regions
of S values are markers of the presence of defects
(15). In the case of bacterial colonies, only + 1/ 2
and —1/2 defects were observed (7,13). In our case,
we observed that +1/2 and — 1/2 defects proliferate
in the vicinity of the enclave interface (Fig. 3 B).
Grouping defects into those that are in the vicinity of
the interface, those lying near the boundary, and those
lying elsewhere, we observed that most defects are in
the first two categories (Fig. 3 C). Furthermore, defects
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in the colony interior regions almost always arise in
the vicinity of the interface (Figs. S14 C and S15).
Thus, while regions of high orientational disorder and
presence of defects in the interior of bacterial colonies
may seem random, label-free cell tracking allows us
unravel this riddle by exposing the active-active
interface (44) of progeny enclaves as a hotspot for
orientational disorder and topological defects. A small
number of defects are observed to arise elsewhere in
the colony. These defects may lie at the interfaces
of subenclaves (comprising the lineages of the first
two cells within an enclave, for instance) or, as has
been suggested, at the boundary of microdomains of
similarly aligned cells (12). But, as we show, the major-
ity of defects in the colony bulk lie adjacent to the
enclave interface, suggesting that the relatively large
sizes of the constituent enclaves, compared with the
subenclaves and microdomains, play a role in the
defect formation close to the enclave interface. It is
also pertinent to note that majority of the cells along
the interface preferentially align parallel to the enclave
interface (Fig. S14 A), as has been observed for inter-
facial regions in several other contexts (44-46).
Nevertheless, this preference is broken into regions
of high curvature of the interface curve and we
observed that regions of high disorder in the orienta-
tional field as well as presence of defects correlated
strongly with regions of high curvature along the inter-
face (Fig. 3 B).

We also tracked the dynamics of defects vis-a-vis
enclave invasion and observed that invasion is typi-
cally initiated by defects as one enclave pushes into
the region of the other. Over time, such invasions
developed while the initial defect persisted in the re-
gion, signifying the role of defects in nucleating and
fostering invasion (Fig. S16). This is highlighted by
looking at defect type distribution in enclave interface
vicinity as a function of activity (Fig. 3 D), which shows
that —1/2 defects manifest in higher numbers for
faster-growing cells. Furthermore, the geometry of de-
fects is closely related to the invasion mode fostered
by them. +1/2 defects have a comet-like shape and
behave like self-propelled particles (47), traveling
comparatively larger distances on average (Fig. S14).
This points to their tendency to form and develop nar-
row front invasions that penetrate deeper (Fig. S16).
However, —1/2 defects have a trifold symmetry and
display a propensity to be “caged” in that they move
comparatively shorter distances, showing a saturating
trend in their movement (Fig. S14 E). This attributes
their tendency to nucleate and develop wide front inva-
sion, hampered by their symmetry from penetrating
deeper but slowly spreading over a larger region
(Fig. S16). Such contrasting features of the movement
of +1/2 and — 1/2 defects have been noted before, for
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bacterial colonies (13) and other biological aggrega-
tions (48).

Adhesion and stochasticity in cell division intervals
mediate enclave evolution

To understand the physical principles underpinning
enclave formation in bacterial colonies, we employed
a lattice cell model. Lattice models have been exten-
sively and fruitfully used to model cellular agglomera-
tions and microbial colonies, including bacterial
colonies (25,49). In our case, starting from a single
cell, a point in a lattice, colonies were simulated to
grow by a division process whereby a cell divided

into two daughter cells with one of the cells occupying
the lattice point corresponding to the mother cell and
the other daughter cell occupying a neighboring cell,
according to specified rules incorporating stochastic-
ity and shoving, which is introduced to simulate the
ways cells jostle and make space in crowded condi-
tions in the colony bulk, reminiscent of jamming in col-
loids (50) and in microbial agglomerations of species
such as yeast (51). Cell division statistics in our simu-
lations followed a log normal distribution with param-
eters determined from our biological data (Figs. S17 A,
4 D, and S17 C; materials and methods). The cell ag-
glomerations were then simulated to grow until they
reach cell numbers at MTMT, consistent with our
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progeny chains colored red and green. (D) The number of cells in each domain is plotted as function of time. (E) Shannon entropy of arrange-
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effect weakening the adhesion of daughter cells. Inset: snapshot of a simulated colony in this case.

biological data. We observed that enclave formation
was always well displayed by the simulated colonies,
with very few isolated, encircled progeny domains
and the two domains displaying very similar size to
each other as they grow (Fig. 4, C-E), a qualitative
agreement with experimental data.

We draw analogy from mixing-demixing in binary
mixtures, where the free energy of the systemis F =
E; — TS™* (52-54), with E; being the interaction
energy and S™* the mixing entropy, which promotes
mixing of the components. In our case, intermixing is
driven up by the shoving of cells, which drives them
farther from their genealogical milieu and promotes in-
termixing. However, as we can observe from colony
growth images, sister cells remain in contact after divi-
sion. This associates an energy cost to cell shoving, to
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separate a cell from its sister. To test this, we slightly
weakened their tendency to remain in contact upon di-
vision (materials and methods). We observed that such
a minor change is in fact sufficient to cause distinctly
different behavior, in particular exhibiting high degree
of intermixing and resulting in an increase in SE with
time (Figs. 4 Fand S18, Cand D), even though viable col-
onies are still formed. This underscores the importance
of adhesion of daughter cells upon division, likely due
to self-recognizing adhesion molecules or mediated
by EPS production (55,56), for the formation of genea-
logical enclaves. In general, intercellular adhesion can
be shown to modulate colony morphology with very
high levels of adhesion giving rise to chaining phenom-
ena in colonies due to cells adhering at their poles after
division (57).



Next, we wanted to probe the effect of self-similar
growth of progeny chains, as displayed by bacterial
colonies as well as our simulations (Figs. 1 G and 4
D), in promoting enclave formation. For this, we differ-
entiated the division times of cells by slowing down
the division time for cells belonging to one progeny
chain. For small differences in division time, enclave
formation is still prevalent (Fig. S19), underlining the
robustness of enclave formation even when varying
growth levels of cells results in a difference in the
number of cells in the progeny chains as they grow
(e.g., when wild-type cells and mutant cells having a
small variation in growth rates are grown together).
However, when the difference in growth rate is large,
leading to larger imbalance between the number of
cells in the progeny chains, we observe a high order
of intermixing (Fig. S19), similar to the case of binary
mixtures, where for low concentrations of one of the
components, mixing is displayed as demixing be-
comes energetically prohibitive (54). This is analo-
gous to the phenomena of clonal expansion, when a
mixture of bacterial strains are grown together and
one of the strains is handed a growth advantage
(58,59). Interestingly, while our simulations run until
the number of cells are similar to cell numbers at
MTMT as in our biological data, we observe that differ-
ences in SE values (Fig. 4 E) and contact numbers
(Fig. S17 E) are seen to become nearly constant.
This suggests that these effects persist even
when the system grows even larger in size, although
eventually limitations in available space and nutrient
availability, which we have not considered in our sim-
ulations, will come into play as colonies grow larger
and might affect cellular organization in colonies.

Finally, our simulations also showed a dependence
of intermixing on activity as our analysis of bacterial
colonies had established. Specifically, we calculated
the proportion of interenclave contacts of cells and
the SE of colonies obtained from lattice model simula-
tions and observed that both are consistently lower for
faster-growing colonies (Figs. 4 Eand S17 Eand F, and
compare with Fig. 2, A and B), suggesting a lower de-
gree of intermixing in this case, as in the case of bac-
terial colonies. Here, activity is encoded by division
times gleaned from our biological data, with less-
active colonies having a wider spread of division
times. Notably, the coefficient of variation in both
cases are the same (~ 0.27), agreeing with results in
(60). Thus, lattice model simulations suggest that sto-
chasticity in cell division times, engineered by biolog-
ical activity, is a factor in determining the disorder in
the emergent organization of cells. This is likely due
to effective space grabbing by both progeny chains
for faster-growing cells, where lesser spread in divi-
sion times ensures that space is filled in orderly

fashion with both progeny chains occupying sites
one after the other. However, for slower-growing cells,
the wide spread in division times can lead to cells from
one progeny chain dividing multiple times before a cell
from the other chain can divide, leading to differential
site occupation, locally in space and time. Still, the
large difference in SE values for cells in bacterial col-
onies suggests that there are other factors at play
as well. For instance, elevated levels of intercellular
adhesion can increase clonal mixing in large colonies
(57). Furthermore, the characteristic patterns forming
due to enclave invasion are reminiscent of mixing of
viscous fluids (61,62), occurring when a low viscosity
liquid displaces a high viscosity liquid under pressure.
In the case of enclave invasion, however, there is no
difference in material properties between the two en-
claves and it is activity that drives the qualitatively
similar invasion dynamics. However, for faster-
growing cells, it is likely that cell-to-cell tensions are
higher near the interface (63), which can increase
effective viscosity for cell aggregates, resulting in
blockage of deeper thin invasions and giving rise to
wide, shallow invasion fronts with more ordered cell
arrangement patterns as observed. A future study uti-
lizing agent-based simulations and more elaborate lat-
tice simulations, incorporating cell orientation, will be
done to understand the role of cell-cell and cell-sub-
strate interactions in activity dependence of intermix-
ing dynamics in growing bacterial colonies.

DISCUSSION

Emergence of genealogical enclaves is a universal
feature of sessile colonies, which is conserved across
temperature differences and activity levels, substrate
properties, and species, as revealed by our custom-
built label-free tracking algorithm. The self-similarity
of the enclaves on several key phenotypic traits sug-
gests comparable growth prospect of the progeny
cells, despite local biophysical differences including
stochasticity in division times (7) and mechanoregula-
tion of the cell growth due to heterogeneous packing
(8). Self-similarity, which refers to the property of an
object of being similar to a part of it, is a key feature
of fractals and several interesting natural objects
display self-similarity including branching in trees,
vegetables such as broccoli, and coastlines across
the globe. Such self-similarity is striking in the case
of bacterial colonies, since stochasticity in phenotypic
traits can get compounded as the colony grows to ef-
fect qualitatively different features in the two en-
claves. Some features of genealogical demixing have
been studied in earlier works (27,58,59,64), which typi-
cally deal with strains of bacteria mixed together in
fixed proportions and grown to much larger size than
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our case. While the central region is mixed, clonal sec-
tors of cells resulting from a demixing of strains in
observed toward the edge of cell agglomerations in
these studies. Size plays a role in the formation of
such sectors since, as the agglomerations grow, the
cells at the expanding front get much better access
to nutrients, while cells trapped behind suffer nutrient
depletion and waste product accumulation (65). On
the other hand, our study starts with a single cell
and the colonies are grown to much smaller sizes, un-
til MTMT is attained, when nutrient availability is uni-
form. In particular, our study studies the genesis of
genealogical enclave formation in bacterial colonies
and shows that it occurs at very early stages of colony
formation, thus hinting at its universal nature in micro-
bial agglomerations.

Biological activity is a key determinant of microbial
life, driving growth and propagation, and modulated by
multiple factors such as temperature and nutrient
availability. However, uncovering the effects of activ-
ity on spatial and genealogical organization of cells
in colonies have remained largely unexplored. Our
work highlights important differences in the way cells
arrange themselves within colonies as a function of
activity: slow-growing cells display higher degree of in-
termixing among progeny chains and a preference for
narrow front enclave invasion, while faster-growing
cells show less intermixing and a preference for wide
front of enclave invasion. Such features remain
completely hidden when standard imaging and anal-
ysis of colonies is done and become apparent only
when we use lineage tracking and in depth quantita-
tive analysis. In general, the methods developed here
allow a comparison between cell organization pat-
terns in diverse settings. Interestingly, somewhat
similar phenomena have been observed when differ-
ently labeled E. coli cells are mixed and grown to
much larger sizes, with the geometry of clonal sectors
showing a difference as incubation temperature is
changed: very few thick sectors are observed at ~
37°C while several thinner spoke-like sectors arise at
~ 25°C (58).

The enclave interface emerges as a hotspot for
orientational disorder, with regions of high disorder
and appearance of topological defects in the colony
interior predominantly occurring near the enclave
interface. Activity dependence is discerned in this
case as well, with faster-growing colonies displaying
a relatively high proliferation of — 1/2 defects in inter-
face vicinity, whose trifold symmetry and suppressed
mobility correlates with a typical wider front of
enclave invasion observed in this case. The role of
the enclave interface as an active-active interface,
near which defect dynamics is an emerging field of
study (44), is also underlined. Further studies in this
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direction, utilizing theoretical and simulation-based
methods, such as phase field modeling, will shed
more light on the morphodynamics of enclave inter-
faces and their relation to the transport properties
of topological defects. Drawing analogy from the
thermodynamics of binary mixtures and phase sepa-
ration, our lattice simulations reveal the critical role
of cell-cell interactions in determining the extent of
lineage mixing. Further work is needed to derive the
precise theoretical underpinnings of the phenomena
of genealogical demixing and to generalize our
methods to study colony growth beyond MTMT,
thus leading to an understanding of lineage distribu-
tions in multilayered colonies. It will be particularly
interesting to compare self-similarity inside layers
and across layers, which will be in effect a display
of multidimensional self-similarity. With bacteria
commonly occurring in multispecies consortia, e.g.,
microbiomes associated with diverse biotic and
abiotic settings, our results also propose potential
mechanistic basis of the evolutionary benefits of
symbiotic relations existing within multispecies sys-
tems. Beyond single species, this work shows a
way in which bacteria in a multispecies community
could benefit doubly: from the enclaves of similar
cells on the one hand, and on the other hand by main-
taining symbiotic relations with other species,
thereby ensuring enhanced chances to fend off
stressors. Looking forward, it would be valuable to
track the growth of healthy versus stressed cells, rep-
resenting diseased and healthy states, to discern dif-
ferences in the way cells organize in such conditions
and their evolution with time. While comparative
studies on species diversity have been done in
several cases (66,67), the emerging spatial patterns
and their genealogical evolution remain lacking. The
methods developed in our work can be utilized to
answer these open and relevant questions, ultimately
to elucidate the role of proximity to kith and kin in
maximizing fitness and viability.
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