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Enriching mutation testing with innovative method
invocation mutation: Filling the crucial missing
piece of the puzzle

Peng Zhang, Zeyu Lu, Yang Wang, Yibiao Yang, Yuming Zhou, Mike Papadakis

Abstract—Mutation testing aims to simulate real-world defects,
but existing tools often struggle to replicate method invocation
defects accurately. To address this, we propose MIN (Method
INvocation mutator), which uses a mapping strategy to pair
method names with corresponding values, ensuring that meth-
ods share argument and return types. This method enhances
the feasibility and realism of mutants by considering factors
such as library methods, access control, inheritance, and static
methods. Experimental results show that integrating MIN into
Major (a popular mutation tool) improves semantic similarity
to real defects by 11%, increases mutant set diversity to 97.5%,
and reduces undetected faults by 38.5%. Furthermore, MIN’s
performance rivals that of state-of-the-art machine learning-
based mutators like CodeBERT, with a 10x speed advantage over
CodeBERT and 4x over DeepMutation in generating compilable
mutants. These findings demonstrate that MIN can significantly
enhance defect simulation and improve the efficiency of mutation
testing.

Index Terms—Defects, method invocation, mutator, mutation
testing.

I. INTRODUCTION

IGH-QUALITY defect datasets are of paramount im-

portance in advancing various activities, such as defect
prediction, localization, and automatic program repair [1]—
[6]. However, a significant challenge faced in this field is the
scarcity of large-scale defect datasets, impeding progress in
these research domains. To address this limitation, researchers
often turn to generating simulated defects using two common
methods: traditional mutation mutators and machine learning-
based mutators trained with state-of-the-art models [7]-[9].
These approaches help compensate for the limited availabil-
ity of real-world defect data and facilitate advancements in
software engineering research.

A significant proportion of real defects in software can
be directly attributed to method invocations, such as calling
incorrect methods or passing incorrect parameters. Osman et
al. conducted a study based on 717 open-source projects and
found that changes to method calls were the most frequent type
of edit made in bug-fix code [10]. To further investigate the
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Fig. 1. Defect types in Defects4J for updating AST nodes.

prevalence of defects related to method calls, we analyzed the
Defects4] dataset, focusing on 707 defects, each localized to a
single class. Out of these defects, 438 were fixed by updating
the code. Since most mutators are designed for updating or
replacement, we manually classified these 438 defects. Figure
1 illustrates the results, revealing that more than one-third of
the defects were found to be related to method calls.

Given the above facts, it becomes evident that mutation
testing tools must be capable of simulating method invocation
defects. However, existing tools, both traditional and machine
learning-based, are inadequate in this area. Traditional mu-
tation analysis tools, for instance, struggle with generating
highly targeted mutants for method calls. A case in point is the
limitation of the Major mutation tool [12], where only one out
of the eight mutators can be directly applied to method calls.
Even then, its mutation is restricted to deleting a void method
call, which is far from sufficient for simulating the variety of
method call defects that might arise.

Learning-based mutators, on the other hand, attempt to
predict method names like “renderWrappedTextBlock”,
but they encounter difficulties due to the unique nature of
such identifiers. Most pre-trained word embeddings, which are
based on natural language, struggle to predict these domain-
specific method names accurately. Furthermore, learning-based
approaches suffer from significant practical drawbacks. These
methods involve encoding the source code into vector inputs
and then decoding these vectors back into code, a process
that incurs substantial time overhead. This adds to the already
burdensome time expense of mutation testing.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

As a result, both traditional and learning-based mutators fail
to effectively handle method invocation defects, highlighting
a critical gap in current mutation testing tools. There is a
pressing need for improved tools that can more effectively
address these challenges.

To address this challenge, we introduce MIN (Method
INvocation mutator), a simple and efficient mutator. MIN
aims to rapidly identify suitable candidates for method name
mutations across the entire project with libraries, replacing
the original names. The main requirement for a candidate is
to possess identical argument types and return type as the
original method, ensuring successful compilation. To this end,
MIN follows a three-step process. First, the entire project,
including libraries, is parsed to extract the argument types and
return type of each method. Second, a mapping is created for
each class, associating feasible method names, parameter lists,
and control modifiers with the same key values. Third, during
mutant generation, we first retrieve the mapped values to ob-
tain the feasible methods. Then we check the control modifiers
and modify the argument order to ensure the generated mutant
conforms to syntactic rules.

Our experiments demonstrate that integrating MIN into
Major yields substantial improvements in performance. Specif-
ically, it yields a 12% enhancement in semantic similarity to
real defects and a 6% increase in defect diversity. Moreover,
MIN effectively identifies 38.5% of previously undetected
faults, underscoring the limitations of existing mutation op-
erators in replicating MIN’s capabilities. Additionally, these
mutants are subsuming mutants. Please refer to RQ4 for a
detailed explanation. Notably, MIN outperforms CodeBERT !
in terms of efficiency. The compilation pass rate of MIN is
6.4 times higher than that of CodeBERT, making it more con-
ducive to integration into Major. In summary, MIN contributes
a valuable addition to Major’s functionality, effectively filling
a crucial gap in the mutation testing puzzle. Its simplicity,
efficiency, and effectiveness make it a compelling choice for
enhancing mutation testing in software development projects.

In summary, our work makes the following key contribu-
tions:

¢ In our study on mutant generation, we demonstrate that
practicality does not necessarily align with complexity.
Despite the allure of complex methods, a traditional
mutation testing tool, with enhancements addressing its
weaknesses, can outshine intricate approaches. Thus, we
introduce a novel mutator named MIN, designed to
address the critical gap of lacking a method invocation
mutation operator in existing mutation testing tools.

o We undertake a comprehensive experiment to assess the
efficacy of MIN from multiple perspectives, including
semantic similarity, diversity of mutant sets, efficiency,
and fault detection capabilities. The experimental findings
demonstrate that MIN significantly enhances the overall
effectiveness of mutation testing tools.

'In this study, CodeBERT is used specifically as a masked language model
(MLM) for generating mutants by predicting method names and arguments.
Unlike general-purpose applications of CodeBERT, our approach focuses
solely on mutations related to method invocations. For clarity and brevity,
we refer to this specific usage as "CodeBERT” throughout the paper.

public void printWrapped(PrintWriter pw, int width, int nextLineTabStop, String text)
{
stringBuffer sb = new StringBuffer(text.length());

renderWirappedTextBlockfsb, width, nextLineTabStop, text);

pw.printin(sb.toString());

public void printWrapped(PrintWriter pw, int width, int nextLineTabStop, String text
{
stringBuffer sb = new StringBuffer(text.length());

renderlirappedTextfsb, width, nextLineTabStop, text);

pw.printin(sb.toString());

Fig. 2. A defect indexed as Cli-33 in Defects4J.

o We have made our MIN implementation and experiment
openly accessible [33], enabling other researchers and
practitioners to replicate and build upon our findings.

The other sections of this paper are arranged as follows:
Section II presents a motivating example. Section III elucidates
the specific methodology of MIN. Section IV explains the
experimental design. Section V reports in detail the experi-
mental results. Section VI introduces relevant work. Section
VII provides some interesting discussions on MIN. Section
VIII addresses potential threats in the experiment. Section IX
concludes with a summary of the entire paper.

II. MOTIVATING EXAMPLE

Figure 2 illustrates the defect in Defects4] [11], [13]
indexed as Cli-33. In this particular case, the method
renderWrappedText is mistakenly called instead of
renderWrappedTextBlock? Now, let us consider sim-
ulating this defect.

In the context of traditional mutation operators, MuJava
[14] does not provide a mutator applicable to this line of
code. However, in PIT [15], [16] or Major [12], there is a
mutator called “void method calls” that can be used for this
purpose. It works by removing a void method call, effectively
deleting the corresponding line. This mutation resulted in
17 failing test cases, but only one of them exposed the
real defect. To quantitatively assess the semantic similarity
between the mutant and the actual defect, we employed the
Ochiai coefficient, which was calculated to be 0.243 (Ochiai =
1/17°5, as explained in Section IV). The coefficient indicates
a low correlation between the mutant and the real defect.

It is essential to mention that in addition to the ‘“void
method calls” mutator in PIT, two more mutators involving
method calls are available [17]. The first mutator varies the
return value of a non-void method to one of (false, 0, 0.0,
’u0000’, null), while the second mutator takes one of the
arguments of a non-void method as the return value directly.
However, these mutators are not applicable to the specific void

2For Cli-33, there is no method renderWrappedTextBlock in the
buggy version. It is added to fix the bug. However, our purpose is to simulate
the bug. As the result, replace the method call is enough and we do not need
to delete the method renderWrappedTextBlock.
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method in Figure 2. This observation highlights the limited
diversity of traditional mutators for method calls, which makes
it challenging to generate adaptive mutants tailored to the
unique characteristics of each project. Furthermore, it is worth
noting that mutators involving method calls constitute only a
small proportion of the total mutators available in the three
tools (MulJava: 0/15, Major: 1/8, PIT: 3/29). This ratio does
not align with the occurrence of this type of defect among
real defects, indicating that the existing set of mutators is not
adequately representative of real-world scenarios.

Let us examine the learning-based mutation operators that
utilize CodeBERT [25] as a model to generate mutants [8],
[21]. Initially, the CodeBERT-based mutation operator masks
the code as follows:

StringBuffer sb =

()i
<mask> (sb, width, nextLineTabStop,
pw.println(sb.toString());

new StringBuffer (text.length

text);

Afterward, the CodeBERT model predicts that the top five
likely tokens to replace the masked one are print, write,
format, wrap, and append. Unfortunately, none of these
five mutants can be successfully compiled. The reason behind
this unsatisfactory outcome is the uniqueness of the identifier
renderWrappedText, which is likely scarcely represented
in the training set. Since CodeBERT is already a code-based
pre-trained language model, there is no reason to believe that
it will achieve better results when using a pre-trained model
based on natural language (e.g., BERT [18]). In the following,
for brevity, we will use CodeBERT to refer to this mutation
generation approach.

Although SemSeed [7], another learning-based approach,
attempts to address the issue of unbound tokens (e.g.,
“renderWrappedTextBlock”), its prediction capability
is limited to the current file and the 1000 most frequent
tokens. This limitation highlights a general drawback of
learning-based approaches: when the expected token is rarely
encountered in the training data, relying on word embeddings
to obtain the correct answer becomes highly improbable.
Notably, the uniqueness of method invocation identifiers poses
a significant challenge for learning-based approaches.

As illustrated in the example above, existing traditional
mutators prioritize generality, lacking the necessary diversity
and effectiveness in handling method invocations. Learning-
based mutators also encounter challenges, particularly in
unique identifier cases. However, method invocation defects
are prevalent and frequently encountered in practical scenarios.
As a result, there is a compelling need for the development
of a straightforward and flexible method invocation mutator
that can adapt to any project. Such a mutator would represent
a significant advancement in the field of mutation testing,
enhancing defect simulation capability in method invocations.

III. APPROACH

Figure 3 provides a high-level overview of MIN. The core
concept behind MIN is to identify feasible methods along
with their arguments. During the mutant generation process,
feasible methods replace the original method, and the order of

arguments may be adjusted to ensure successful compilation.
To enhance the effectiveness and relevance of the mutants
generated, MIN considers several factors, which are detailed
in different sections of the paper. These factors include library
methods (Section III.A), access control modifiers (Section
II.C), inheritance relationships (Section III.C), and the ma-
jority of static methods (Section III.C).

Section III.A explains the procedure of parsing Java
projects. Subsequently, Section III.B demonstrates how MIN
creates a mapping system for efficient matching of viable
methods. Finally, Section III.C describes the process of uti-
lizing the created mapping system to generate mutants effec-
tively.

A. Parsing Java Projects

To explore viable approaches for generating mutants, we
undertake a comprehensive parsing of the entire project. For
this task, we employ JavaParser [19], [20], a well-regarded
parser for the Java language known for its capacity to extract
essential information like modifiers, argument types, and re-
turn types of each method upon its definition. This enables us
to efficiently parse, analyze, transform, and generate code.

In order to ensure effective searching, we categorize these
methods based on the class in which they are defined. Addi-
tionally, to handle the replacement from library methods, we
also parse the Java Development Kit (JDK) classes to gather
crucial information on the methods they contain. For other
library methods, we can acquire the necessary information
by parsing the corresponding source code. It is important
to mention that, during the mutation process, we exclude
generic methods. This decision is driven by the fact that the
determination of their argument types occurs only when they
are invoked, making their inclusion in the mutation process
impractical.

B. Quick Match by a HashMap

After parsing each class, we retrieve all the methods,
including their modifiers, return types, and argument types.
This section will detail the process of computing a distinctive
value for a set of methods belonging to the same class. To
achieve this, we begin by assigning a distinct value for the
i-th type A, which is initially present in both the JDK and
the project. Specifically, v(A) = Prime(i), where Prime(7)
represents the ¢-th prime number.

Next, we categorize all methods into four distinct groups:
(1) void methods without arguments, (2) void methods with
arguments, (3) non-void methods without arguments, and (4)
non-void methods with arguments.

Finally, we calculate a unique value for each method using
various formulas:

e Group A: For a void method m without argument:

map(m) = 1;
e Group B: For a void method m with argument types
(tl,tg, e ,tn)l

map(m) = [[ v(t;)
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Fig. 3. The process of MIN to generate mutants.

o Group C: For a method m return type ¢; without argu-
ment:

map(m) = e v(t)

e Group D: For a method m return type ¢; with argument
types (ta,t3,...,tn):

map(m) = e« T v(t))
j=2

The map values obtained through the aforementioned calcula-
tions offer the following advantages:

o The map values for the four groups of methods are unique
and different from each other;

e In Group B or Group D, methods with the same set of
argument types share the same map value, irrespective of
their order of appearance;

o For any given map value within a class, the corresponding
set of argument types and the return type can be uniquely
determined.

The proofs concerning these properties can be found in the
supplementary material.

After computing the map values for each method, we
construct a single HashMap to store the methods. Each entry
in the HashMap includes the method’s corresponding map
value, as well as its modifier. The order of argument types
is encoded by primes within the map values, as reflected in
Table I. It is worth mentioning that the HashMap for JDK is
already prebuilt in MIN, streamlining the storage process for
JDK methods.

To help understand the real-world distribution of these
method types, we analyzed these JDK methods. The results
are as follows:

e Group A (void methods without parameters): 745 meth-
ods (4.2%)

e Group B (void methods with parameters): 3294 methods
(18.6%)

o Group C (methods with return values but no parameters):
6416 methods (36.1%)

e Group D (methods with both return values and parame-
ters): 7285 methods (41.1%)

This distribution offers insights into the prevalence of different
method types and informs the mapping method’s behavior
when applied to real-world subjects.

C. Generating Mutants

To generate mutants using MIN, we modify two aspects of
method invocations: (I) the method name and (II) the method
parameter list. Regardless of the modification type, the first
thing is to identify a list of feasible methods. The specific
steps are as follows:

1) For a given method call in the source code within class
ClassA, we determine the class ClassB in which the
method is defined.

2) We then search the ancestor classes of ClassB to
construct a class set S.
3) Feasible methods are identified based on the following

rules: (a) if ClassA is equal to ClassB, we search
the methods with the same key value (as described
in Section III.B) in S’s HashMap for ‘“non-private”
methods and ClassB’s HashMap for all methods; (b)
if ClassA is a child of ClassB, we search the the
methods with the same key value in ClassB’s and
S’s HashMap for the “non-private”; and (c) in all other
cases, we only search the the methods with the same
key value in ClassB’s and S’s HashMap for “public”
and “static”® methods.

These rules ensure that the appropriate set of methods is
considered for mutant generation, taking into account class
relationships and access modifiers. This approach allows for
the generation of contextually relevant mutants while preserv-
ing the program’s structural integrity.

Meanwhile, overloading does not introduce ambiguity, as
overloaded methods have distinct argument type lists. Thus,
in cases where overloading occurs within a class, the feasible
method list for each overloaded method remains unambiguous,
since the HashMap key is uniquely determined by the argu-
ment type list. This ensures the correct methods are selected
for mutation, with consideration of the specific argument types
associated with each method call.

Once a list of feasible methods is obtained, the original
method call can be mutated in the following three ways:

1) Mutating only the method name: This requires the pa-
rameter type lists of the original and alternative methods
to be identical. Even if there are multiple parameters

31n this paper, in Section III.A, for “static” methods, we parse it only when
itis “public”. So, we consider static as a kind of access control modifier. When
we want to replace a static method, only the static methods will be searched.
Meanwhile, when we want to replace a non-static method, the static methods
will be put into the candidate.
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TABLE I
HASHMAP EXAMPLE FOR CLI-33.

| Method 1 in the Value List

| Method 2 in the Value List

Key | name arg.  modifier | name arg.  modifier
2014 appendOption [53,2,19] public
3e+214 getArgName [ public getNewLine [1 public
4e+199 | renderWrappedTextBlock  [53,59,59,5] public | renderWrappedText [53,59,59,5] public

of the same type, the parameter list remains unchanged
in this scenario. For example, consider the meth-
ods void MethodA (int a, float m, int b,
int ¢) and void MethodB(int x, float n,
int y, int z). Then (a, m, b, c)
would be modified to MethodB (a, m, b, c).

2) Mutating only the method parameters: This scenario
can be divided into two cases:
1. When the parameter list contains at least
two arguments of the same type: In this case, all
arguments of the same type are reordered in reverse

order. For example, consider the method void
MethodA (float n, float m, int b, int
c) . Then MethodA(n, m, b, c) would be

modified to MethodA (m, n, c, b).

2. When the parameter list contains no arguments
of the same type : If there exists another method im-
plementation with a different parameter order, MIN can
generate mutants by invoking that specific polymorphic
method with the corresponding arguments. For example,
consider the methods, void MethodA (float n,
int c¢) and void MethodA (int ¢, float
n) Then MethodA (n, ) would be modified to
MethodA (c, n).

3) Mutating both the method name and the
method parameters: Consider the methods void
MethodA (int a, float m, int b, int c)
and void MethodB(float n, int x, int vy,
int z). These methods can be interchanged as they
share the same “map value”. However, to align with
the alternative method’s parameter order, adjustments
are required: we will reverse the arguments with the
same type. For example, the three int parameters are
reordered in reverse order, resulting in a mutation from

(a, , , ) to MethodB(m, c, b,
a) . Note that by the “reverse order”, we only generate
one mutant. This is to avoid combinatorial explosion
caused by exhausting all the order.

Besides, we limit MIN to generate at most 10 mutants for

a method call. This can be adjusted in the code according to
actual needs.

D. Example for Cli-33

To demonstrate the process of generating mutants on
method invocation, we use the Cli-33 project as an exam-
ple. First, parsing the entire Cli project yields 543 methods.

Second, we construct a dictionary for all the types that appear
in the project. The dictionary contains information about the
prime numbers for each type: {"Option’: 2, *OptionGroup’:
3, 'String’: 5,..., "URL’: 109}. Next, we build a HashMap
for each class in the Cli project. Because the bug is in
HelpFormatter. java, and the buggy method is also
defined there, we only need to focus on the HashMap built by
HelpFormatter. java in this example. The corresponding
HashMap is in Table 1.

Then when the code contains the call
renderWrappedTextBlock (sb, width,
nextLineTabStop, text), we aim to generate mutants
for this method. We calculate the key Key = 4e+199

based on renderWrappedTextBlock. Using this key,
we query the HashMap (shown in Table I) to retrieve
two feasible methods: renderWrappedTextBlock and
renderWrappedText. These methods are identified as
valid candidates for mutation, as they share the necessary
characteristics to replace the original method in the mutation
process. Then we can check if it can generate 3 types of
mutants:

1) Mutating only the method name: Since the two param-
eter lists are the same ([53,59,59,5]), the first mutant

mutant;  is: (sb,
width, nextLineTabStop, text)
->renderWrappedText (sb, width,
nextLineTabStop, text)

2) Mutating only the method parameters: Since there
are two “59” in the parameter list, the second mutant

mutants: renderWrappedTextBlock (sb,
’ 7 text)
->renderWrappedTextBlock (sb,
nextLineTabStop, width, text)

3) Mutating both the method name and the

method parameters: Since there are two “59”
in the parameter list, we can reserve them when
modifying the method name to get the third mutant
mutants: (sb,

’ ’ text)

->renderWrappedText (sb,
nextLineTabStop, width, text)

It is noteworthy that we observe mutant; being identical to
the real fault in semantics, indicating that our mutation process
was successful in simulating the fault.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

IV. EXPERIMENTAL DESIGN

This section presents the experimental design, including
research questions, benchmarks, setup, methodology, and pro-
cedure. Our goal is twofold: (1) to address the limited ability
of traditional mutation tools to generate method invocation-
related mutants, and (2) to assess whether complex, large-
model-based approaches offer a cost-effective advantage over
our simpler technique.

A. Baselines

Strictly speaking, only CodeBERT and DeepMutation serve
as baselines, as our tool is intended to complement existing
mutation testing rather than replace it. However, we still
present specific results for the full spectrum of mutation
operators in Major as a control, allowing readers to compare
the quality of individual mutation operators. *

1) Major: Major [12] is a widely adopted Java mutation
testing tool. In this paper, we employ all available mutators
(i.e., AOR, LOR, COR, ROR, SOR, ORU, STD, and LVR)
to generate the complete set of possible mutants. However, it
is essential to note a crucial detail about Major’s behavior.
Before conducting mutation testing, Major collects cover-
age information. Consequently, even for mutants can not be
compiled, Major labels them as “killed” if the test cases
cover the modified line. In other words, an uncompilable
mutant is considered “killed” if the test cases execute the
code containing the mutation. However, for MIN, CodeBERT
and DeepMutation, we label the uncompilable mutant as
“survived”. See the Section VII.C for the reasons.

2) CodeBERT: CodeBERT [25] is a pre-trained language
model for programing languages. In [8], [21], they used Code-
BERT to generate mutants via a Masked Language Modeling
(MLM) task. MLM takes a sequence containing a masked
token as input and predicts a suitable replacement. In our
study, CodeBERT is exclusively used to mutate code related
to method calls. For instance, the original code “A(B,C)”
is transformed into three masked snippets: “<mask>(B,C)”,
“A(<mask>,C)”, and “A(B,<mask>)". Then, 5 predictions
are used to generate mutants for each snippet. At the same
time, we will discard the prediction which is the same to the
original.

We only take the method name and parameters into con-
sideration because most of the mutants for other token types
have already been covered by the Major mutators.

3) DeepMutation: DeepMutation [9] is a tool that lever-
ages deep learning techniques to enhance mutation testing
capabilities. Building on recent advancements in machine
learning, DeepMutation utilizes a Recurrent Neural Network
Encoder-Decoder architecture to learn mutants from a vast
dataset comprising approximately 787,000 real faults extracted

4We opt for Major over PIT for two reasons: 1. PIT still exhibits weak
performance in handling method calls (see Section II for a motivating
example); 2. By default, most of PIT’s operators overlap entirely with those of
Major. Therefore, we deemed it satisfactory to utilize Major as a representative
of traditional mutation tools.

3Our considerations for not using IBIR as a baseline are detailed in “Section
VI related work™. In short, IBIR does not provide an operator for modeling
method call defects.

from software programs. This approach complements existing
mutation testing frameworks and enhances their fault-detection
capabilities with mutants learned from actual program faults.
For our comparison, we utilized the open-source code from
the DeepMutation repository without any modifications to
generate the mutants.

B. Benchmark

In our comparison of mutators, we leverage Defects4] [13]
2.0.0, a benchmark comprising 17 real-world Java projects.
This benchmark includes over 800 reproducible real faults
extracted from source code repositories. For each fault, the
benchmark provides a buggy version, a fixed version, and at
least one triggering test case within a manually written test
suite. Note that we only generate mutants on classes (that
were) modified by the bug fix, which is the common practice
in existing studies [21], [22].

For MIN, we successfully executed the mutator on 460 bugs
from the 17 projects, where both Major and MIN mutators
executed within 30 minutes on the fixed versions. However,
26 of these bugs were filtered out for MIN as all mutants
generated by MIN were uncompilable.

For CodeBERT, we obtained results for 289 bugs, with
successful execution within the same time frame. Out of
these 289 bugs, 4 were filtered out because all mutants were
uncompilable.

For DeepMutation, which supports only six projects (Chart,
Closure, Lang, Math, Mockito, and Time), we obtained fewer
results. DeepMutation successfully generated mutants for 152
bugs, producing a total of 114,703 mutants. Since DeepMuta-
tion generates mutants for all the classes instead of modified
classes, we identified 44 bugs that had at least one runnable
mutant in the classes (that were) modified by the bug fix.

Finally, of the 44 defects with runnable mutants in Deep-
Mutation, 19 defects had mutants generated by all three
approaches: MIN, CodeBERT, and DeepMutation.

C. Research Questions

RQ1 (Simulation capability): How does MIN compare
with Major’s single mutator, DeepMutation and CodeBERT
in simulating defects?

The focus of RQI is to compare MIN’s ability to simulate
defects with that of Major’s single mutator, DeepMutation
and CodeBERT, while disregarding efficiency. Each mutation
operator aims to generate mutants to the best of its ability. For
each fault, we calculate the “maximum semantic similarity”
and “diversity” metrics (See next subsection for more details).

RQ2 (Gain of integration into Major): What improvement
is achieved by integrating DeepMutation, CodeBERT or MIN
into Major?

The objective of RQ?2 is to investigate the advantages gained
from integrating DeepMutation, CodeBERT or MIN into the
pre-existing Major tool. It is essential to consider that an
operator might be efficient but redundant, as its functionality
could already be covered by the current set of operators
in Major. In order to answer RQ2, we adopt a simulation
approach by combining and analyzing the kill matrices of
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each tool, avoiding direct modifications to the Major source
code for integration. This allows us to assess the impact of
integration and understand the improvements achieved through
the combination of these tools.

RQ3 (Efficiency of defect simulation): How does MIN
compare to DeepMutation and CodeBERT in terms of the time
it takes to generate a mutant?

The objective of RQ3 is to explore the efficiency of different
mutation tools. To assess this, we compare the average time
taken by MIN, DeepMutation, and CodeBERT to generate a
single mutant.

RQ4 (Fault Detection capability with subsumption):
Does MIN detect more defects than DeepMutation and Code-
BERT?

The objective of RQ4 is to explore the defect detection
capability of MIN in comparison to DeepMutation or Code-
BERT. To evaluate fault detection capability, we employ two
approaches: minimal test suite for killing mutants and sub-
suming mutants revealing faults. Details of these approaches
are provided in the next section.

D. Experimental Setup and Evaluation Methodology

We measure the effectiveness of a mutator from four per-
spectives: (1) the quality of individual generated mutant,
(2) the quality of the entire set of generated mutants, (3)
efficiency, and (4) fault detection capability with subsump-
tion.

1) Semantic similarity: When generating mutants, semantic
similarity is often considered more important than syntactic
similarity [21]. To evaluate the semantic similarity between a
mutant m and a real defect d, one commonly used approach
is the Ochiai coefficient [21], [23]. The Ochiai coefficient is
computed as follows:

Ochiai(m, d) = —2ZL0M) 0 fT(d)] (1)
VIIT(m)] < [fT(d)]

Here, fT denotes the set of test cases that fail when executed
on program. The Ochiai coefficient quantifies the overlap
in failing test cases between a mutant and the real defect,
providing insight into how closely the mutant replicates the
defect’s behavior.

It is important to note that while a mutator may generate
many mutants for a given class, each defective class in com-
monly used defect benchmarks (e.g., Defects4)) is typically
associated with a single documented real-world defect. This
is because these benchmarks are carefully curated to capture
specific bugs found in real-world software. As a result, most
mutants may not be specifically designed to simulate that
particular defect. Consequently, the maximum value of the
Ochiai coefficient among these mutants reflects the mutator’s
capability to accurately simulate the specific defect.

2) Diversity: Generating diverse mutants is a crucial aspect
of an effective mutator. However, quantifying the diversity
among mutants can be challenging, especially when most
mutants exhibit high syntactic similarity with edit distances
of less than 3. Specifically, the syntactic distance [21] is often
measured in terms of the number of tokens changed, as well

as the Bleu score, which compares the similarity between the
generated mutants and the real faults. A smaller edit distance
typically implies that the mutated code closely resembles the
original code in structure, leading to a high syntactic similarity.
To overcome this challenge, we can shift our focus to the
concept of diversity from a semantic perspective. Diverse
mutants can be understood as a set of mutants that excel at
distinguishing between different test suites. For instance, we
can consider a highly diverse mutant set capable of generating
distinct scores for all non-redundant test suites. As the diver-
sity decreases (e.g., by removing some mutants), certain test
suites may transition from having different scores to identical
scores. To measure the loss of diversity, we can calculate
the ratio of pairs of test suites where the score relationship
changes from inequality to equality. This measure, known as
Order Preservation (OP) [24], quantifies the preservation of
the mutation score order, and we utilize it in our study as a
measure of diversity. A higher value of OP indicates a greater
level of diversity among the mutants.

To evaluate the diversity of the complete set of gener-
ated mutants, which includes Major, MIN, DeepMutation and
CodeBERT, we start by assuming that this set exhibits the
highest level of diversity, represented by OP=1. Next, we
systematically analyze subsets of mutants and examine how
well they maintain the mutation score order among test suites
compared to the entire set of mutants. This comparison enables
us to assess the preservation of the mutation score order and,
subsequently, the level of diversity within each subset. By
employing this measure, we can gain valuable insights into
the diversity of mutants generated by different approaches and
effectively assess their capability to produce distinct mutants
6

To compute OP, we first generate a sequence of test suites:

TooNh DTy D DTy # 2

where |T;11| = int(|7;| x 0.5) for i = 0,1,....,k — 1, and
k = int(log, |To|). Next, we compute mutation scores against
the complete set (M) and the subset (M, e.g., MIN mutants)
, resulting in 2(k + 1) mutation scores. Then, we assess the
loss of diversity by counting the number of pairs that have
changed mutation scores as follows:

X — ‘ MS(M,TZ+1)<MS(M,T’1)
U and, MS(Ms, Tiy1) = MS(Ms, T;)
Finally, we determine OP using the formula:
1X]
k

To reduce randomness when generating sequences, we re-
peat the computation of OP for 20 times to obtain an average
value.

OP(s) =1—

®We aim to elucidate the concept of diversity through an analogy: we can
liken each mutant to a judge in a competition, with different sets of test cases
representing the competitors. The diversity of mutants entails preserving a
range of preferences among these judges. Consequently, if, after reducing the
number of judges, competitors who originally received different scores now
achieve the same score, we perceive this as a loss of diversity.
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3) Efficiency: Efficiency is critical in mutation testing due
to the substantial overhead it often imposes. To gauge the
practicality of MIN, we compare it with DeepMutation and
CodeBERT based on the average time required to generate a
single mutant.

For MIN, the reported average time includes the overhead
of parsing the entire project, even though mutants are only
generated for the classes (that were) modified by the bug fix.
Thus, if MIN were used to generate mutants for the entire
project, the average time would likely be shorter than reported.

For CodeBERT, mutants are generated only for the modified
classes, but as CodeBERT processes fixed-length code snippets
for mask prediction, the time remains consistent, whether
applied to a single class or the entire project.

For DeepMutation, it parses the entire project and generates
mutants for the entire project. Therefore, the reported average
time accounts for mutants generated across the entire project.

We did not consider the average execution time of mutants
in our analysis due to potential compilation failures, which
could distort the results. Instead, we focus on the time required
to generate mutants as the primary efficiency metric. We
also report the proportion of successfully compiled mutants
for each mutation operator as supplementary information.
Additionally, the average test execution time for each com-
pilable mutant is included in the supplementary materials,
as mature mutation tools use optimizations (e.g., skipping
test cases after a mutant is killed) to speed up execution.
Since CodeBERT and MIN have not yet implemented such
optimizations, comparing their execution times with Major
would be unfair, which is why this information is provided
separately in the supplementary materials.

4) Fault detection capability with subsumption: An im-
portant aspect of assessing the quality of the mutation test
is its ability to reveal defects. In this study, the “fault de-
tection capability of mutants” refers to the ability of test
cases—designed or selected based on mutants—to detect real
faults in the program. Although mutants themselves do not
detect faults, they serve as proxies for potential defects,
helping to design or identify test cases that can effectively
detect faults when executed. We employ two approaches to
evaluate fault detection capability:

1) Minimal test suite for killing mutants: Drawing from
existing studies [28]-[32], our goal is to discover the
smallest test suite capable of eliminating a given set of
mutants. Subsequently, we assess whether this test suite
can effectively uncover actual defects in the code;

2) Subsuming mutants revealing the faults: We aim to
identify how many mutants possess the following char-
acteristics: they reveal defects previously undetected by
Major and are subsuming. To achieve this, we identify
undetected faults where triggering test cases does not
contribute to Major’s mutation score (i.e., deleting them
will not decrease the mutation score). Then, we add the
new mutants. If any new mutant is only killed by any
triggering test case, we can obtain that a) this mutant is
a subsuming mutant; and b) this mutant reveal the fault.

[l cor M ROR M VR sTD [ AOR [ OrRU I MIN [ CodeBERT [ DeepMutation

1k

04 1

To evaluate the mutators, we need to constructe the kill
matrix (i.e., information on whether a test case can kill a
mutant). The procedure is as follows:

Fig. 4. (RQI1) Diversity for all mutators.

E. Experimental Procedure

o For Major, the results can be directly obtained by running
the defects4j mutation command in Defects4].

o For MIN, CodeBERT, and DeepMutation, the process
includes:

1) Generating the mutant files.

2) Replacing the original files with the generated mu-
tant files.

3) Executing the tests to identify which test cases fail
for each mutant.

Finally, all results are aggregated to construct the kill matrix.
See more details in [33].

V. RESULTS

In this section, we report in detail the results, including
the efficiency-unbounded simulation capability, the gain of
integration into Major, the efficiency of defect simulation and
the fault detection capability.

A. RQI: Simulation capability

Table II presents the average semantic similarity for each
mutator. Taking MIN as an example, MIN successfully gener-
ated 42,619 mutants for 434 faults, including both compilable
and non-compilable mutants. Then for each fault, the highest
Ochiai coefficient is recorded. Finally, the average value is
0.467 for 434 highest Ochiai coefficient values. The results
clearly indicate that MIN performs exceptionally well and
ranks among the top mutation operators in Major. Considering
its superior performance, integrating MIN into the existing set
of mutation operators in Major appears to be a viable option.

Among Major’s mutators, STD (STatement Deletion), COR
(Conditional Operator Replacement), and MIN demonstrate
efficiency by generating a smaller number of mutants per
fault (<100) while maintaining a higher semantic similarity
(>0.450). Conversely, the AOR (Arithmetic Operator Replace-
ment) mutator is deemed inefficient as it produces a large
number of mutants but with a lower semantic similarity below
0.4. The ORU (Operator Replacement Unary), LOR (Logical
Operator Replacement), and SOR (Shift Operator Replace-
ment) mutators have lower frequencies and show weaker
defect simulation abilities. Meanwhile, we must admit that
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TABLE II
(RQ1) AVERAGE SEMANTIC SIMILARITY FOR EACH MUTATOR.

COR ROR LVR STD AOR ORU LOR SOR  CodeBERT MIN  DeepMutation
#faults 436 456 447 453 326 116 94 70 285 434 44
#mutants 34210 53904 54363 30743 55748 1416 2564 1736 342444 42619 462
#mutants/fault 78.5 118.2 121.6 67.9 171.0 12.2 272 24.8 1201.6 98.2 10.5
Avg. Ochiai 0454 0469 0478 0475 0383 0.131 0.115 0.100 0513  0.467 0.132

Note: The number of mutants includes both compilable and non-compilable mutants.

0.008465799

0.078984104

7-0.183860945
0.09100734 —
0.005538794

0.123924889

0.142522628

0.161345522

= COR = ROR LVR STD = AOR = ORU = MIN = CodeBERT = DeepMutation

Fig. 5. (RQI) Percentage of different mutants.

M COR MROR MLVR M STD MAOR M ORU M LOR M SOR I CodeBERT M MIN

S
©
.

(00000 ¢ 00000000 000 S00e

)
p
.
B0 0D G0 DO DD 0D
o esssscsccscesce oo o

e ® o
0.1 «

Fig. 6. (RQ1) Excluding DeepMutation to show diversity for more bugs.

ROR (Relational Operator Replacement) and LVR (Literal
Value Replacement) demonstrate a higher semantic similarity
to defects on average compared to MIN. However, our goal
is not to replace traditional mutation operators with MIN. As
expressed in the title, “Filling the Crucial Missing Piece of
the Puzzle,” our intent is to position MIN as a complementary
addition to traditional mutation testing tools. As a result,
after acknowledging the initial success of MIN, we are more
concerned about whether combining MIN with Major can
significantly improve the effectiveness of Major.

CodeBERT achieves the highest semantic similarity among
the mutators but also generates the most mutants. Meanwhile,
DeepMutation achieves the lowest semantic similarity with
the least mutants. To explain this, it is important to note
that semantic similarity may be influenced by the mutant that
most closely resembles the real defect, leading to potential
confounding effects due to mutation size. As a result,
concluding that CodeBERT is the best mutator based solely
on semantic similarity might not be appropriate (See more
details in Section VII.A). Overall, MIN stands out as an
efficient and effective mutator in terms of semantic similarity,
showing promise for integration into the Major mutation
operator framework.

Next, we delve into the diversity of defects, a metric that
encompasses the value of the entire mutant set rather than in-

dividual mutants. To compare MIN, CodeBERT, and DeepMu-
tation, we analyze all 19 bugs for which all three approaches
successfully generate mutants. Figure 4 illustrates the diversity
across these 19 bugs. Before delving into Figure 4, it’s
prudent to direct our attention to Figure 5, which showcases
the percentage of mutants generated by each operator after
summarizing all 19 defects. This step is crucial as the diversity
contributed by a subset correlates closely with its proportion
of the full set. Therefore, understanding each operator’s share
of the full set is paramount. We find that MIN accounts for
9%, CodeBERT for 20%, DeepMutation for 0.8%, and Major
(comprising COR, ROR, LVR, STD, AOR, and ORU) for
70% (with LOR and SOR generating 0 mutants for the 19
bugs). Then back to Figure 4, across these 19 bugs, MIN
achieved comparable results (0.469) to CodeBERT (0.480),
with both significantly outperforming DeepMutation (0.339).
This indicates that while CodeBERT slightly surpasses MIN
in diversity, their performance remains close. In contrast,
DeepMutation falls considerably behind. The results highlight
the effectiveness of both MIN and CodeBERT in generating
a diverse set of mutants, which is crucial for simulating real-
world defect variations.

However, due to the small number of defects available for
DeepMutation, the overall sample was low, and to further
compare the diversity of MIN and CodeBERT, we compared
on CodeBERT, the 285 defects for which compilable mutants
were generated. Figure 6 shows the comparison results, and
we can see that MIN’s performance (0.717) is comparable to
CodeBERT’s (0.733).

Conclusion: RQ1 - Simulation Capability

The analysis highlights MIN as a strong performer
in defect simulation, achieving an average Ochiai
coefficient of 0.467 across 434 defective classes within
the Major framework. This positions MIN among the
top operators, showcasing its potential to enhance
defect simulation tasks efficiently. CodeBERT, while
achieving the highest semantic similarity (0.513 across
285 defects), generates ten times more mutants than
other operators. This increase in mutants may con-
tribute to its higher similarity but raises concerns about
efficiency and computational cost.

In terms of mutant diversity, MIN performs com-
petitively with CodeBERT, scoring 0.469, just below
CodeBERT’s 0.480, both significantly outperforming
DeepMutation.
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TABLE III
(RQ2) AVERAGE SEMANTIC SIMILARITY FOR EACH INTEGRATION.

Major  Major + CodeBERT ‘ Major  Major + DeepMutation ‘ Major Major + MIN
#faults 285 285 41 41 434 434
#mutants 138142 177757(+29%) | 17981 18200(+1%) | 205008  232537(+13%)
#mutants/fault 484.7 623.7(+29%) | 438.5 443.9(+1%) 472.3 535.8(+13%)
Avg. Ochiai 0.713 0.802(+12%) | 0.686 0.723(+5%) 0.721 0.798(+11%)

B. RQ2: Gains of integration into Major

Since RQ1 shows that CodeBERT slightly outperforms
the others in defect simulation, we are further interested
in understanding the complementary strengths of these tools
when combined with an established baseline. Specifically, we
ask: how much additional benefit does each tool provide when
its mutants are added to those of Major? To answer this, we
compare the performance of the following combinations: MIN
+ Major, CodeBERT + Major, and DeepMutation + Major.

Table III presents the semantic similarity data. It is impor-
tant to note that during the merging process of the two kill
matrices, we filtered out non-compilable mutants generated by
CodeBERT, DeepMutation, and MIN. This step was crucial
as non-compilable mutants should not contribute to the simi-
larity calculation. As observed from the table, DeepMutation
exhibits poor practicality, being applicable to only a few
projects and generating a limited number of mutants, thereby
providing a constrained boost to Ochiai similarity. On the
other hand, CodeBERT significantly enhances similarity, albeit
at the cost of introducing a substantial number of additional
mutants. Conversely, combining MIN with Major emerges as
the optimal choice, striking a balance between the number of
mutants introduced and the degree of similarity enhancement.

Figure 7 shows boxplots that illustrate the diversity. Major
+ MIN + CodeBERT + DeepMutation is not included in the
figure as it represents the highest possible diversity (OP=1).
From the figure, it can be observed that any integration meth-
ods result in significant gains in diversity, with the addition
of MIN offering a more pronounced boost. Diversity(Major +
MIN) = 97.5% is greater than Diversity(Major + CodeBERT) =
96.7%, which is greater than Diversity(Major + DeepMutation)
= 95.4%, and Diversity(Major) = 94.4%. This suggests that
MIN-generated mutants can better simulate defects that cannot
be simulated by existing operators.

To further support these observations, we conducted statis-
tical hypothesis testing to evaluate the significant differences
among the four approaches. A Wilcoxon signed-rank test
was performed, and the p-values were adjusted using the
Benjamini-Hochberg method to control the false discovery
rate. Additionally, we calculated Cliff’s Delta to measure the
effect size. The results are summarized in Table I'V.

From Table IV, we can observe the following:

e Major + MIN vs Others: The p-values for comparisons
involving Major + MIN are all statistically significant
(adjusted p-value less than 0.01), with Cliff’s Delta values
indicating medium to large effect sizes. This underscores
the significant diversity improvement achieved by inte-
grating MIN.

M Major+MIN B Major+CodeBERT Il Major+DeepMutation B Major
1
0.95 i
09 |
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Fig. 7. (RQ2) Diversity for each integration.

e Major + CodeBERT vs Major + DeepMutation: The
comparison between Major + CodeBERT and Major +
DeepMutation has a smaller adjusted p-value (0.005176)
and a relatively low effect size (Cliff’s Delta = 0.108033),
suggesting that the two methods provide somewhat sim-
ilar contributions to diversity.

e Major + DeepMutation vs Major: The adjusted p-value
for this comparison (0.698056) indicates no statistically
significant difference, with a negligible effect size (Cliff’s
Delta = 0.066482). This suggests that DeepMutation does
not contribute significantly to diversity when compared to
Major.

If we combine the results of RQ1, it becomes evident that
while CodeBERT performs well as a single operator, its flaws
in simulations are often coupled by Major. Therefore, the
additional benefit from integrating CodeBERT into Major is
smaller compared to MIN.

Conclusion: RQ2 - Gains of Integration into Major

The integration of MIN, CodeBERT, and DeepMuta-
tion into Major reveals distinct trade-offs. CodeBERT
achieves the highest semantic similarity (0.802) but
increases mutant generation by 29%, raising efficiency
concerns. DeepMutation offers a modest similarity
gain (+5%) with fewer mutants, but its limited ap-
plicability makes it less practical. MIN, on the other
hand, strikes a balance, improving semantic similarity
to 0.798 with only a 13% increase in mutants. It
also provides the highest diversity gain, outperforming
both CodeBERT and DeepMutation, making it a more
efficient and effective addition to Major.

Thus, MIN offers the best balance between defect sim-
ulation, mutant generation, and diversity, positioning
it as the most practical choice for mutation testing in
real-world scenarios.
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TABLE IV
(RQ2) HYPOTHESIS TESTING RESULTS FOR DIVERSITY.

Comparison p-value  Cliff’s Delta  Adjusted p-value  Effect Size
Major + MIN vs Major + CodeBERT 0.000433 0.227147 0.000876 small
Major + MIN vs Major + DeepMutation 0.000438 0.310249 0.000876 small
Major + MIN vs Major 0.000437 0.379501 0.000876 medium
Major + CodeBERT vs Major + DeepMutation ~ 0.004313 0.108033 0.005176 negligible
Major + CodeBERT vs Major 0.000999 0.193906 0.001498 small
Major + DeepMutation vs Major 0.698056 0.066482 0.698056 negligible

C. RQ3: Efficiency of defect simulation

TABLE V
(RQ3) GENERATION TIME FOR EACH MUTATOR.

CodeBERT MIN  DeepMutation
#of all mutants 342444 42619 114703
total gen(;ration time(s) 145025.618  11528.841 81732.039
average time to generate 0424 0271 0713
a mutant(s)
average time to generate 3.655 0362 1,500

a compilable mutant(s)

After analyzing RQ1 and RQ2, we arrive at several key
conclusions: 1. CodeBERT, when used as a standalone op-
erator, marginally outperforms MIN in defect simulation; 2.
DeepMutation demonstrates the poorest performance among
the evaluated options; and 3. The combination of MIN and
Major yields slightly superior defect simulation capabilities
compared to CodeBERT and Major.

Moving forward, we shift our focus to comparing the
efficiency of different operators. If the defect simulation
capabilities are comparable, we will place greater emphasis
on the efficiency of the operators. Specifically, we examine
the efficiency by analyzing the average time taken by each
operator from method initiation to mutant file generation. It is
important to note that we exclude the time taken for mutants
to execute, as non-compilable mutants are significantly with
less execution time. However, the practical utility of non-
compilable mutants is negligible. Additionally, we provide
supplementary information by reporting the percentage of non-
compilable mutants for each operator.

Table V compares the time required to generate mutants by
MIN, CodeBERT, and DeepMutation. Notably, MIN demon-
strates superior efficiency, with the average time for gen-
erating a single mutant being 64% of CodeBERT’s time
and only 38% of DeepMutation’s time. Despite parsing the
entire project, MIN’s focus on generating mutants for a
single class in our settings. It is worth mentioning that the
average time spent by MIN would be even lower if mutants
were generated for the entire project. DeepMutation, although
needing to parse the entire project, already includes mutants
for the entire project in the data presented. On the other
hand, CodeBERT’s time for generating individual mutants
remains relatively consistent across projects, owing to its
fixed-length code snippet approach. For Major, the option
-J-Dmajor.export .mutants=true is required to gen-
erate mutant files using the Java compiler embedded within
Major. However, this approach may lead to failures in com-

piling the target programs since the different Java version. As
a result, we did not include Major in the formal comparisons
in RQ3. Nevertheless, our experimental data indicates that the
average time taken by Major to successfully generate a single
mutant across different projects ranges from 0.006s to 0.138s.

In Table VI, we compare the ratio of uncompilable mu-
tants as supplementary information. The majority of mutants
generated by CodeBERT are invalid, while nearly half of
DeepMutation’s mutants fail to compile. In contrast, MIN
exhibits relatively high-quality mutants, comparable to tradi-
tional operators in terms of the percentage of mutants that
pass compilation. Our further analysis indicates that these non-
compilable mutants primarily stem from challenges in type
inference and resolving inheritance relationships. For example,
in the case of Math-70 (See more details in Section VIL.D),
the method with argument inherited from the parent class,
making it difficult for MIN to determine the type of the actual
parameter when type inference fails. As a result, it generates
an invalid mutant, leading to compilation failure. While more
precise type inference could mitigate such errors, it comes with
significant computational overhead. Therefore, MIN makes a
trade-off between accuracy and efficiency in its design.

Overall, MIN emerges as a promising approach, showcasing
efficient mutant generation with high-quality mutants, posi-
tioning it as a competitive option for mutation testing in
software quality assurance.

Conclusion: RQ3 - Efficiency of Defect Simulation

RQ3 analysis shows that MIN excels in mutant genera-
tion efficiency, requiring only 64% of the time taken by
CodeBERT and 38% of DeepMutation. Additionally,
MIN generates high-quality mutants, with compilable
mutants produced in just 10% of the time taken by
CodeBERT and 24% of DeepMutation on average.
These results make MIN a promising choice for muta-
tion testing, offering faster mutant generation without
compromising quality. Integrating MIN into existing
frameworks can significantly improve both efficiency
and defect simulation.

D. RQ4: Fault detection capability with subsumption

Table VII presents the number of faults detected by each
mutator using the minimal test suite approach. Due to the
stochastic nature of generating the minimal set, the detected
defects may not be integer values. For instance, if the minimal
set is generated 20 times for a single defect and two of these
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TABLE VI
(RQ3) UNCOMPILABLE RATIO FOR EACH MUTATOR.

COR ROR LVR STD AOR ORU LOR SOR CodeBERT MIN  DeepMutation

#of all mutants 34210 53904 54363 30743 55748 1416 2564 1736 342444 42619 462

#of uncompilable mutants 8125 13850 16734 7049 15433 186 766 407 302829 10590 243

uncompilable ratio 0238 0257 0308 0229 0.277 0.131 0303 0.234 0.884  0.252 0.525
TABLE VII TABLE VIII

(RQ4) DETECTED FAULTS BY MINIMAL TEST SUITE.

(RQ4) UNIQUELY DETECTED FAULTS BY SUBSUMING MUTANTS.

DeepMutation =~ CodeBERT MIN MIN  CodeBERT
# of analyzed faults 44 285 434 # of undetected faults by Major 52 52
# of detected faults 5.2 111.75 187 # of new detected faults 20 16
Detected ratio 11.8% 392% 42.9% Detected ratio 38.5% 30.8%

instances detect the defect, then the minimal set detects 0.1
defects for that particular case. In other words, using the
minimal set approach, the defect is detected with a probability
of 0.1. As can be seen from the table, defects are more likely
to be detected using MIN.

Next, we examine the intersection of two criteria: 1. Cases
where Major fails to detect defects (i.e., triggering test cases
do not yield unique mutation score boosts); and 2. Instances
where a new mutator can generate at least one subsuming
mutant that is exclusively killed by triggering test cases.

Initially, we identified the 19 bugs common to MIN, Code-
BERT, and DeepMutation (as illustrated in Figure 4). However,
it was observed that DeepMutation failed to generate mutants
satisfying criterion “2” for any of these bugs, indicating its
ineffectiveness. Consequently, DeepMutation was excluded
from further comparison. Subsequently, we expanded the bug
set to encompass the 289 projects compatible with CodeBERT.
Table VIII presents the findings. Among these 289 bugs, 52
satisfied criterion “1”. Among these bugs, MIN and Code-
BERT generated at least one mutant satisfying criterion “2” for
20 and 16 bugs, respectively. Thus, MIN exhibits a superior
ability to generate subsuming mutants capable of detecting
defects: integrating MIN into Major can reduce the number of
undetected defects by 38.5%.

Conclusion: RQ4: Fault Detection capability with sub-

sumption

In examining the fault detection capability with
subsumption, MIN demonstrates significant promise.
Leveraging the minimal test suite approach, MIN de-
tects defects with a ratio of 42.9%, outperforming both
CodeBERT and DeepMutation. Furthermore, when
considering uniquely detected faults by subsuming mu-
tants, MIN’s integration into Major offers substantial
advantages, reducing the number of undetected faults
by 38.5%. This underscores MIN’s efficacy in en-
hancing fault detection capabilities within the mutation
testing framework.

VI. RELATED WORK

Defect injection encompasses two primary approaches. The
first involves mutators in mutation testing, which inject defects
according to specific rules. The second relies on learning-based
methods, where defects are injected based on trained models.
In traditional mutators, the operators targeting method calls are
relatively limited. Offutt discovered that using just five specific
mutators achieves the same effectiveness as using all mutators
[26]: ABS, AOR, LCR, ROR, and UOI. Notably, none of
these mutators directly focus on method invocation, despite a
considerable proportion of real defects being related to method
invocation. This highlights the urgent need for improving the
ability of mutators to model defects related to method calls in
mutation testing.

Rule-based mutation. IBIR [23] is a framework designed
to automatically inject defects based on bug reports. The
process involves using the bug report to identify a suitable
injection location, followed by the injection itself using man-
ually predefined patterns. Khanfir et al. also discussed the
method invocation pattern, but gave no detailed explanations
on how to match feasible method names. Furthermore, their
implementation [27] does not provide a specific implemen-
tation for the “MethodInvocationMutator,” and none of the
181 mutants generated for the three example projects were
produced by this mutator. As a result, IBIR shows limitations
in generating defects related to method calls. Khanfir et al. re-
ported a semantic similarity below 0.6 for all types of defects,
suggesting room for improvement. To enhance the results of
IBIR, we propose integrating a concrete implementation of
MIN. By doing so, the effectiveness of defect injection related
to method calls could be significantly improved. For our study,
we opted not to include IBIR as a baseline due to its reliance
on additional tools such as bug reports and defect location
tools. This dependence introduces potential complexities and
variations in the results, which could affect the comparative
analysis.

Learning-based mutation. In the field of learning-based
mutators, DeepMutation and CodeBERT have emerged as two
prominent approaches. Their fundamental concept involves
converting code into vectors using pre-trained word embed-
dings, which are then used to train and make predictions using
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a learning model. However, a significant challenge arises from
the fact that these pre-trained word embeddings might not
be well-suited to the specific project being analyzed. Conse-
quently, they may struggle to perform effectively with highly
unique tokens present in the project’s codebase. SeemSed tries
to address this issue to some extent by crawling the top 1000
frequently occurring words from external projects. However,
this approach often fails to include unique method names,
leading to their exclusion from the prediction results. More-
over, integrating complex learning models seamlessly into
existing mutation testing tools proves challenging as a single
mutator. This integration process necessitates vectorizing the
source program first and then predicting mutants individually.
Unfortunately, this approach introduces significant additional
overhead and raises concerns about potential overlap with
traditional mutators.

VII. DISCUSSION
A. The size effect
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Fig. 8. Semantic similarity for Major + MIN and Major + CodeBERT when
size is controlled.

In RQ1 and RQ2, we observed that when the size is not
controlled, the performance on semantic similarity of MIN
and CodeBERT is relatively similar. In this section, we delve
deeper into whether controlling the size of generated mutants
alters this conclusion.

In essence, we investigate the size effect: assuming compu-
tational resources are limited to 100 newly generated mutants,
which approach—MIN or CodeBERT—is more effective to
integrate?

As a result, the practical scenario imposes size control on
the total number of generated mutants, regardless of their
compilability. This introduces the possibility of uncompilable
mutants being included within the 100 sampled mutants.
Figure 8 demonstrates that Major + MIN achieves the highest
semantic similarity, outperforming alternatives.

To conclude, when the size of generated mutants is con-
trolled, MIN demonstrates more pronounced advantages, es-
pecially when the cost of filtering uncompilable mutants is
taken into account. This highlights the practical efficiency and
effectiveness of MIN, making it a superior choice for resource-
constrained scenarios.

B. Implications for developers

The workflow of using MIN is consistent with traditional
mutation testing: developers first conduct mutation testing
by executing tests and identifying surviving mutants. For
these surviving mutants, additional test cases are specifically
designed to attempt to kill them. The value of MIN in this
process lies in evaluating whether the new test cases designed
for MIN mutants are triggering, meaning they can detect real
faults.

Even though developers may not know the real bugs in their
code upfront, the effectiveness of MIN can be assessed through
our experimental setup, which compares against known real-
world bugs. If MIN performs well on benchmarks like De-
fects4], it is reasonable to believe that MIN will also generate
meaningful mutants in real-world settings.

Meanwhile, MIN is assessed based on its ability to generate
subsuming mutants—mutants that reveal faults in ways other
operators cannot. This ensures that MIN adds unique value
beyond traditional mutation operators.

This aspect is reflected in our experiments, particularly in
RQ4 (Fault Detection Capability with Subsumption). Table
VIII highlights the ability of mutation operators to generate
subsuming mutants tied to real faults:

1) We identified projects where Major operators fail to
detect faults (i.e., triggering test cases do not yield
unique mutation score boosts). This implies that the
mutants generated by Major are not fully coupled to
the real faults.

2) For these projects, we examined whether MIN could
generate subsuming mutants that are killed by triggering
tests (indicating coupling to real faults) and not by any
other tests (ensuring subsumption).

Our results show that in these challenging scenarios,
MIN produced at least one subsuming mutant for 38.5% of
these projects, significantly outperforming CodeBERT, which
achieved only 30%.

To summarize, even when developers are unaware of spe-
cific bugs in their code, MIN can be used in the same way as
traditional mutation testing. If we assume that the distribution
of faults in real-world scenarios is similar to Defects4J, MIN
demonstrates a clear advantage:

o Using Major alone: 18.0% (52/289) of defects remain
undetected.

o Using Major + MIN: Only 11.1% (32/289) of defects
remain undetected.

¢ Using Major + CodeBERT: 12.5% (36/289) of defects
remain undetected.

MIN outperforms CodeBERT while generating fewer mu-
tants, making it more efficient and practical for developers.
This suggests that integrating MIN into mutation testing
pipelines can significantly enhance fault detection capability
and efficiency in real-world software development scenarios.

C. Should uncompilable mutants be labeled as killed?

As is well-known, Major marks uncompilable mutants as
“killed”, which is a common practice in mutation testing. The
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reason for this is that uncompilable mutants, which do not
contribute meaningfully to testing, are typically not considered
useful by developers. The focus is on surviving mutants,
which are the ones that could potentially indicate bugs or
weaknesses in the system. However, in this study, we treat
uncompilable mutants as “survived” for MIN, CodeBERT, and
DeepMutation.

This decision stems from the observation that only “killed”
mutants can contribute to the evaluation metrics, specifically
semantic similarity and diversity. Surviving mutants, by def-
inition, do not offer any improvement to these metrics. For
example, if an uncompilable mutant is marked as “killed”, it
could artificially inflate the semantic similarity score, which
would not accurately reflect the practical utility of that mutant.
Therefore, marking uncompilable mutants as “survived” en-
sures that they do not contribute any false positives to the met-
rics. In CodeBERT’s paper [8], they filtered out uncompilable
in advance so that uncompilable mutants do not participate
in the calculation of evaluation metrics. In evaluation, it is
actually equivalent to marking them as alive.

From our point of view, the contradiction arises from two
conflicting statements:

1. Developers should pay attention to surviving mutants, SO
uncompilable mutants, which are essentially useless, should
be marked as “killed”.

2. In mutation testing evaluation, only “killed” mutants
can actually increase the evaluation indicators (e.g., semantic
similarity and diversity). Therefore, uncompilable mutants,
which cannot contribute meaningfully, should not be labeled
as “killed.”

However, the consensus remains that uncompilable mutants
have minimal practical value, and marking them as “killed”
is an accepted practice. While this approach is widely fol-
lowed, we recognize the potential overestimation of Major’s
performance, as uncompilable mutants marked as “killed” can
artificially boost metrics.

Why We Did Not Alter Major’s Setting?

We did not change Major’s default handling of uncompilable
mutants because this setting is almost universally accepted in
mutation testing research. The practice of marking uncompi-
lable mutants as “killed” is entrenched in most studies and
tools, including PIT, which is a widely used mutation testing
framework. By retaining Major’s default setting, we align with
the established norms in the community, allowing for a fair
comparison with previous work.

However, it is important to note that this choice may lead to
an overestimation of Major’s effectiveness in RQ1 and RQ2, as
the marking of uncompilable mutants as “killed” could inflate
its performance. We hope that readers understand this inherent
bias when interpreting the results for Major. However, even
so, MIN demonstrates strong competitiveness, suggesting its
advantages would be even greater with labeling uncompilable
as alive for Major.

In conclusion, while we acknowledge the trade-offs in-
volved in labeling uncompilable mutants as “survived” for
MIN, CodeBERT, and DeepMutation, we believe that this
approach better reflects the practical value of mutants in mu-
tation testing. Although Major’s performance may be slightly

overestimated due to its default settings, we maintain this
approach to ensure consistency with prior research and to
avoid undermining Major’s results unfairly.

D. Case Study

In [22], the authors analyzed the types of defects that Major
is unable to simulate (i.e., triggering test cases kill no mutant)
and provided 13 case studies. Among these, Math-34 and
Closure-11 were excluded due to failures or out-of-time in
running MIN. Meanwhile, we have not found Lang-658 in
Defects 2.0.0. As a result, we present an in-depth analysis
and discussion of the remaining 10 cases.

1) Defects successfully simulated or subsumed by MIN:

o Chart-16: In this case, the code snippet above shows the

difference between the buggy version (indicated with °-)
and the fixed version (indicated with * + ©)

@@ -204,8 +204,8 Q@
}

else {
+ this.seriesKeys = new
Comparable[0];
+ this.categoryKeys = new
Comparable[0];
- this.seriesKeys = null;
- this.categoryKeys = null;

}
}
@@ -335,7 +335,7 @@
if (categoryKeys == null) {
throw new
IllegalArgumentException ("
Null ’'categoryKeys’
argument.") ;
}
+ if (categoryKeys.length !=
getCategoryCount ()) {
- if (categoryKeys.length !=
startData[0] .length) {
throw new
IllegalArgumentException (
"The number of
categories does
not match the data

¥

this.

}

In this case, the 56th mutant generated by MIN subsumes

the original defect. The only test case that killed this

mutant was one of the eight triggering test cases. Based

on the current test suite, this indicates that if we kill this

mutant, we must include one of the triggering test case.
o Math-75:

*/
@Deprecated
public double getPct (Object v) {
+ return getPct ((Comparable<?>) v);
- return getCumPct ( (Comparable<?>)
v);
}
/ * %
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The 30th mutant generated by MIN is identical to the

original defect.
o Closure-92:

@@ -786,7 +786,7 Q@
} else {

// In this case, the name was
implicitly provided by two
independent

// modules. We need to move this
code up to a common module.

+ int indexOfDot = namespace.
lastIndexOf (' .”);
- int indexOfDot = namespace.
indexOf (" .7);
if (indexOfDot == -1) {
// Any old place is fine.
compiler.
getNodeForCodeInsertion (
minimumModule)

// descend so as to get a greedy
algorithm
for (int i = max; 1 >= shortest;
i-—=) |
final CharSequence subSeq =
input.subSequence (index,
index + 1i);
+ final CharSequence result =
lookupMap.get (subSeqg.toString());
- final CharSequence result =
lookupMap.get (subSeq) ;
if (result != null) {
out.write(result.toString
)

return 1i;

The 584th mutant generated by MIN is identical to the

original defect.
2) Defects partially coupled with the MIN mutants:
o Lang-4:

@@ -28,7 +28,7 @@
*/
public class LookupTranslator extends
CharSequenceTranslator {

+ private final HashMap<String,
CharSequence> lookupMap;
- private final HashMap<CharSequence,
CharSequence> lookupMap;
private final int shortest;
private final int longest;
@@ -43,21 +43,21 @@
* @param lookup CharSequencel][]
table of size [%][2]
*/
public LookupTranslator (final
CharSequence[]... lookup) {
+ lookupMap = new HashMap<String,
CharSequence> () ;
- lookupMap = new HashMap<
CharSequence, CharSequence>();

7
int _longest = 0;
if (lookup != null) {

lookup) {
this.lookupMap.put (seq
[0].toString (), seqg

[11);

final int sz = seq[0].
length () ;

if (sz < _shortest) {
_shortest = sz;

}
if (sz > _longest) {

_longest = sz;
}
}
}
shortest = _shortest;
longest = _longest;

@@ -74,7 +74,7 @@

In this case, the second mutant generated by MIN, where
this.lookupMap.put (seq[0].toString(),
seq[l]) was modified to replace instead of
put, partially coupled with the defect. This change
impacted the behavior of the 1ookupMap in handling
LookupTranslator, which in turn influenced the
defect’s manifestation. Among the 14 test cases that
failed, 1 was able to reveal the defect.

Math-11:

@@ -180,7 +180,7 @@
throw new
DimensionMismatchException
(vals.length, dim);
}

+ return FastMath.pow (2 * FastMath.
PI, -0.5 x dim) =
- return FastMath.pow (2 % FastMath.
PI, —-dim / 2) =
FastMath.pow (
covarianceMatrixDeterminant]
, —0.5) =
getExponentTerm(vals);

int _shortest = Integer.MAX_VALUE

The 19th mutant replaced FastMath.pow (2
* FastMath.PI, -0.5 % dim) with
FastMath.atan2 (2 * FastMath.PI, -0.5

* dim) and obtained three failed test cases, one of
which revealed the defect.

Math-94:

for (final CharSequence[] seq

@@ -409,7 +409,7 @@
* @since 1.1

*/
public static int gcd(int u, int v) {
+ if ((u==20) [l (v ==20)) {
- if (u » v == 0) {
return (Math.abs(u) + Math.
abs (v));

}

The 64th mutant replaced return (Math.abs (u) +
Math.abs (v)); with return (Math.abs (u) +
Math.negateExact (v)); and obtained three failed
test cases, one of which revealed the defect.

This case is particularly interesting because the mutant
was not directly injected at the location where the error
occurs. However, it still produced a highly relevant mu-
tant: an experienced programmer would likely consider
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designing test cases involving positive values or overflow
scenarios to distinguish the mutant from the original pro-
gram. Furthermore, they might also notice the potential
risk of overflow when calculating u » v, leading to
a deeper understanding of the defect and its triggering
conditions.

o Time-4:

@@ -461,7 +461,7 @@

System.arraycopy (ivalues, i,
newValues, i + 1,
newValues.length - i - 1);

// use public constructor to
ensure full validation

// this isn’t overly
efficient, but is safe

+ Partial newPartial = new
Partial (newTypes, newValues,
iChronology) ;

- Partial newPartial = new

Partial (iChronology,
newValues) ;
iChronology.validate (
newPartial, newValues);
return newPartial;

newTypes,

}

The first mutant by MIN performs a method call replace-
ment within the constructor of Partial, allowing it to
partially couple with the real defect. Among the 23 test
cases that fail due to this mutant, one is a triggering test
case for the actual defect.

However, the current MIN does not yet target con-
structors, as constructors and other method calls can be
considered two separate areas. In the future, we plan to
extend MIN to handle constructors as well.

3) Defects that MIN failed to simulate or resulted in com-
pilation failures:

o Chart-10:

@@ -62,7 +62,7 @@

* @return The formatted HTML area
tag attribute(s).
x/
public String generateToolTipFragment
(String toolTipText) |

+ return " title=\"" +
ImageMapUtilities.htmlEscape (
toolTipText)

- return " title=\"" + toolTipText

+ "\" alt:\"\ll";
}

Here, ImageMapUtilities.htmlEscape

is a static method. The corresponding class,

ImageMapUtilities, contains only one static

method with a string parameter and a string return type,
leaving no candidates for replacement.

o Lang-51:
@@ -679,7 +679,6 Q@
(str.charAt (1) == 'E’ ||
str.charAt (1) == "e’)
&&

(str.charAt (2) == 'S’ ||
str.charAt (2) == ’'s’);
}
- return false;
}
case 4: {

char ch = str.charAt (0);

Although the context involves the method call
str.charAt (0), the String class in the library
has only one method with an integer parameter and
a character return type, leaving no candidates for
replacement.

o Math-70:

@@ -69,7 +69,7 @@

throws
MaxIterationsExceededException
, FunctionEvaluationException
{
+ return solve(f, min, max);
- return solve (min, max);

The non-compilable mutant generated by MIN was
solve (max, min, £). This mutant was created due
to a misjudgment of £’s type. The type could not be
determined because f is a member variable inherited from
a parent class, and multiple overloaded solve methods
are defined in the class. For efficiency reasons, MIN does
not trace back to parent classes to infer the type. Without
accurate type information in polymorphic contexts, MIN
defaults to using the first matching method signature
based on parameter count, leading to the compilation
eITor.

4) Summary: The case study analysis demonstrates the
effectiveness and limitations of MIN across 10 representa-
tive defects identified in [23]. In 7 of these cases, MIN
successfully enhanced Major’s effectiveness by either fully
replicating, subsuming, or partially coupling with the real
defects. Specifically: Chart-16, Math-75, Closure-92 Lang-4,
Math-11 Math-94, and Time-4. Overall, the findings underline
MIN’s significant contribution to advancing mutation testing
by expanding the scope and precision of defect simulation. By
successfully addressing 7 out of the 10 cases, MIN demon-
strates its capability to model complex defects that remain
challenging for existing tools like Major, validating its role as
a meaningful enhancement in the mutation testing landscape.

VIII. THREATS

The primary threat to our study revolves around the con-
founding effect of mutant size. A key question arises: does
an operator’s high effectiveness stem from its inherent ability
to simulate defects, or is it simply a result of the large
number of mutants it generates? While we acknowledge this
potential concern, directly controlling the number of gener-
ated mutants presents challenges. The volume of generated
mutants is inherently tied to a mutation operator’s capacity.
For example, operators like DeepMutation or Major’s SOR
exhibit limitations in defect generation, applying only to a
small number of cases. Imposing an artificial constraint—such
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as capping all operators at 10 mutants per defect—would
unfairly restrict more capable operators while leaving less
effective ones unaltered.

To mitigate this threat, we designed our experiments to
separate these dimensions as much as possible. When evalu-
ating defect simulation and detection capabilities, we ensured
fairness by assessing every mutant generated by each operator,
regardless of quantity. While generating more mutants can be
advantageous, it also reflects an operator’s strength in defect
simulation. However, this is not always the case; as shown
in Table III, AOR produces significantly more mutants than
MIN yet exhibits lower similarity to real defects. To account
for scale effects, we introduced practical efficiency as an
evaluation metric. By reporting the elapsed time required for
mutant generation, readers can better assess the efficiency of
each mutation operator. This approach allows us to navigate
the complexities of mutant size while maintaining a fair and
comprehensive evaluation.

Additionally, we further discuss the impact of mutant size
in Section VIL.A, particularly in cases where CodeBERT and
MIN perform similarly. Our results indicate that when size is
controlled, MIN demonstrates a clear advantage, reinforcing
its effectiveness beyond mere volume.

Another threat stems from our experimental scope: we
generate mutants only for the classes (that were) modified by
the bug fix, rather than the entire project. While this approach
is consistent with prior work and motivated by practical
considerations—e.g., applying CodeBERT to the entire project
would produce an overwhelming number of mutants—it may
introduce a potential underestimation of the tools’ full capabil-
ities. In some cases, generating mutants for the entire codebase
could lead to stronger fault detection or higher diversity. This
limitation, while partially offset by realism and comparability,
should be acknowledged in interpreting the generalizability of
our results.

Beyond the size and scope effects, our approach has another
limitation: it requires access to the source code of software and
libraries to construct the method HashMap, a crucial part of
the parsing process. While this requirement does not affect
the validity of our results or the general applicability of our
technique, it is an important consideration for tool builders
and researchers implementing similar approaches.

Another limitation lies in the scope of defects considered in
our study. Our evaluation is based on a relatively small set of
19 defects, which may not fully capture the diversity of real-
world software faults. As a result, while our findings highlight
clear trends, they should be interpreted with this limitation
in mind. Future studies incorporating a larger and more
diverse set of defects would further validate and strengthen
our conclusions.

Finally, MIN currently does not generate mutants for class
constructors, which may restrict its applicability in scenarios
where constructor-level mutations are significant. Additionally,
MIN faces challenges when handling generic methods, poten-
tially limiting its ability to generate mutants for all method
types. These constraints should be considered when applying
MIN to projects that heavily rely on constructors or generics,
as they may impact the technique’s generalizability.

IX. CONCLUSION

In conclusion, this study addresses the critical need for
improved defect simulation in mutation testing by introducing
the innovative MIN (Method INvocation mutator). The exper-
imental results underscore MIN’s effectiveness in enhancing
defect simulation capabilities for real defects. Integration of
MIN into Major significantly improves semantic similarity to
real defects by 11%, enhances the diversity of mutant sets
up to 97.5%, and reduces undetected faults by 38.5%. More-
over, MIN exhibits remarkable efficiency and fault detection
capability, being 10 times faster than CodeBERT and 4 times
faster than DeepMutation in generating individual compilable
mutants.

Furthermore, in the context of the burgeoning interest
in advanced machine learning-based mutation operators like
DeepMutation and CodeBERT, this study demonstrates that
integrating MIN into Major enables it to achieve defect
simulation capabilities comparable to integrating the state-of-
the-art CodeBERT mutator into Major. MIN + Major exhibits
performance metrics in terms of semantic similarity and di-
versity that are on par with, if not surpassing, those achieved
by CodeBERT + Major.

These findings highlight the significance of MIN as a
valuable addition to the mutation testing toolkit. By offering
efficient mutant generation, MIN has the potential to revolu-
tionize defect simulation in software quality assurance. Inte-
grating MIN into existing mutation generation tools would not
only enhance defect simulation capabilities but also streamline
the mutation testing process, ultimately leading to improved
software quality and reliability.
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