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Abstract—Despite their impressive performance, contemporary
neural networks often lack structural safeguards that promote
stable learning and interpretable behavior. In this work, we
introduce a reformulation of layer-level transformations that
departs from the standard unconstrained affine paradigm.
Each transformation is decomposed into a structured linear
operator and a residual corrective component, enabling more
disciplined signal propagation and improved training dynamics.
Our formulation encourages internal consistency and supports
stable information flow across depth, while remaining fully
compatible with standard learning objectives and backpropaga-
tion. Through a series of synthetic and real-world experiments,
we demonstrate that models constructed with these structured
transformations exhibit improved gradient conditioning, reduced
sensitivity to perturbations, and layer-wise robustness. We further
show that these benefits persist across architectural scales and
training regimes. This study serves as a foundation for a
more principled class of neural architectures that prioritize
stability and transparency—offering new tools for reasoning
about learning behavior without sacrificing expressive power.

Index Terms—Structured neural transformations, stability,
signal propagation, residual correction, learning dynamics,
gradient flow, architectural robustness, deep learning design.

I. INTRODUCTION

In recent years, deep learning has achieved widespread
success across domains such as vision, language, control,
and scientific computing. These advances, however, have
often come despite a lack of principled architectural design.
Most neural networks are constructed by heuristically stacking
layers, with limited insight into how internal transformations
behave or interact across depth. As a result, models can suffer
from instability, unstructured gradients, and unpredictable gen-
eralization—especially when scaled or deployed in unfamiliar
settings.

This disconnect stands in contrast to classical fields such
as control systems or signal processing, where models are
often designed with explicit internal structure to ensure
analyzability, stability, and robustness. In neural networks,
by comparison, internal mechanisms are frequently opaque,
with little separation between transformation, adaptation, and
correction.

In this paper, we take a step toward narrowing that gap—not
by proposing a new architectural paradigm, but by empirically
studying a class of alternative parameterizations that introduce
internal structure within each transformation. Our goal is
to explore whether such structured parameterizations can
improve the training behavior, interpretability, and robustness
of standard feedforward models, even in small synthetic tasks.

The key idea is to decompose each transformation into two
coordinated components: a primary pathway that enforces
a form of structured signal transformation, and a secondary
pathway that acts as an adaptive correction. The correction
term allows flexibility during learning, while the structured

component aims to promote better-conditioned learning dy-
namics, smoother signal propagation, and improved gradient
flow.

Importantly, the models we study are not derived from phys-
ical laws, nor do they assume any explicit governing equations.
However, their behavior in practice exhibits characteristics
often associated with dynamical systems: gradual convergence,
spectral selectivity, and robustness under input perturbation.
This resemblance motivates a careful empirical study of their
behavior, rather than a wholesale design methodology.

Throughout the work, we ask: Can empirical adjustments to
transformation structure lead to more stable, analyzable learn-
ing behavior—even without global architectural redesign?
While we refrain from general claims, our results provide
early evidence that such directionally guided parameterizations
can yield non-trivial benefits in training stability and model
behavior.

We evaluate the proposed parameterization across several
synthetic and structured tasks, including signal recovery,
graph-based classification, and noise robustness benchmarks.
The analysis focuses on Jacobian conditioning, convergence
behavior under recursive dynamics, activation variance profiles,
and performance under depth scaling.

This study aims to inform future work on network analysis
and reliability by demonstrating that even modest internal
structure—when introduced cautiously—can lead to measur-
able improvements. Our findings support a broader hypothesis:
that learning systems can benefit not just from data, but from
deliberate choices in how internal transformations are formed
and corrected.

II. MOTIVATION

The development of neural network architectures has
traditionally been guided by empirical progress rather than
by systematic principles. This flexibility has enabled rapid
breakthroughs in diverse domains—but it has also led to
architectures that are difficult to interpret, debug, or scale
predictably. As models grow in depth and complexity, their
internal behavior often becomes opaque, with performance
dependent on delicate training recipes and heuristic design
decisions.

In practical applications, a range of persistent challenges
underscores this brittleness. Deep networks frequently exhibit
sensitivity to initialization, vanishing or exploding gradi-
ents, unstructured activations, and poor generalization under
distributional shift. Architectural interventions such as skip
connections, normalization, or layer-wise pretraining are
widely used to address these issues, but they typically operate
as retroactive patches rather than solutions derived from
fundamental design logic.

This paper is motivated by a simple premise: that some
of these issues may be mitigated—not by radical reformu-



lation—but by modest internal adjustments to how transfor-
mations are constructed and corrected. We hypothesize that
introducing minimal structure into the way individual layers
operate can promote more reliable signal flow, improve opti-
mization stability, and produce smoother training dynamics,
especially in settings where explicit regularization is weak or
absent.

Rather than proposing rigid templates or externally-derived
mechanisms, we focus on empirically grounded modifica-
tions to standard transformations. These include coupling
each learned mapping with a corrective component, and
exploring projection-like constraints that guide intermediate
computations without restricting overall function class. Such
refinements are not intended to mimic physical systems or
enforce hard priors, but to encourage more coherent internal
behavior during training.

Our approach reflects a shift in emphasis—from increasing
capacity through parameter count or depth, to fostering be-
havioral consistency through structural cues. The overarching
goal is to study whether simple design elements, inserted
locally at the transformation level, can yield global benefits
in robustness, interpretability, and convergence.

To operationalize this goal, we adopt a design that separates
the transformation into two distinct components: a shaped
mapping and a corrective term. This dual-path configuration is
illustrated in Fig. 1. The input x(l−1) is processed in parallel
through a Structured Path, where a shaping operator (e.g.,
sparsity mask, DCT basis, or graph Laplacian) constrains
the learned weight matrix, and a Correction Path, where
a trainable nonlinear function ϕ(x; θ) compensates for the
structure-imposed limitations. The two contributions are
combined to form the final output. This arrangement balances
structural stability with expressive flexibility, enabling both
coherence and adaptability during training.

In doing so, we aim to open a practical space between fully
heuristic architectures and rigidly engineered systems—a space
where design intuition can inform learning behavior without
constraining expressivity. This is not a call for fixed solutions,
but for a broader recognition that internal structure, even in
soft or learnable form, may serve as a stabilizing influence in
modern neural networks.

Figure 1. Illustration of the proposed structured transformation with corrective
pathway. The input signal x(l−1) is processed through two parallel branches:
a Structured Path (left), where a shaping operator modulates the weight
matrix to enforce stability and signal coherence, and a Correction Path
(right), which uses a trainable nonlinear mapper ϕ(x; θ) to provide flexible
adaptation. The two outputs are combined to yield the final layer output x(l).
This design balances stability by structure with adaptability through learning.

III. RELATED WORK

a) Implicit Regularization and Structural Biases.:
Implicit regularization remains a central explanation for
generalization in overparameterized models. Razin et al. show
that hierarchical tensor factorization induces a locality bias
in convolutional networks [14], while Timor et al. argue that
ReLU networks naturally exhibit low-rank biases, though
gradient flow does not necessarily minimize rank explicitly
[19]. Wu et al. further demonstrate that stochastic gradient
descent promotes dynamical stability more effectively than full-
batch gradient descent, especially under large learning rates
[23]. Nascon et al. analyze minima stability in shallow ReLU
networks, revealing how modest structure shapes convergence
[12]. Similarly, Boursier et al. establish how orthogonal inputs
and initialization impact implicit bias through precise gradient
flow analysis [2].

b) Architectural Constraints and Compositional Struc-
ture.: Internal structure in neural networks—whether in weight
balancing, modularity, or geometric parameterization—can
shape both optimization and generalization. Saxe et al.
introduce the Neural Race framework, explaining how shared
paths in gated architectures facilitate zero-shot generalization
[18]. Chen et al. propose Geometric Parameterization (GmP),
decoupling radial and angular components to improve training
stability in ReLU models [4]. Lepori et al. highlight neural
compositionality, showing how networks can learn to break
down tasks into modular subroutines [7]. Harrison et al. study
how architectural and inductive biases in learned optimizers
improve generalization across tasks [6], while Saul et al. design
weight-balancing schemes that improve convergence without
altering model outputs [17].

c) Training Dynamics and Gradient Behavior.: Gradient
dynamics offer critical insights into training behavior and
implicit biases. Ahn et al. identify an "edge of stability"
regime in two-layer networks with large learning rates, where
gradient descent transitions to threshold-like behavior [1].
Riedi et al. study how skip connections affect the singular
value spectra and optimization landscape in deep networks
[15]. Zhai et al. propose αReparam, a reparameterization
that prevents entropy collapse in Transformers and stabilizes
training across domains [24]. Noci et al. investigate rank
collapse in Transformers and show how architectural scaling
can mitigate it [13].

d) Plasticity, Stability, and Optimization.: Plasticity and
stability have emerged as dual considerations in deep learning.
Lyle et al. (2023) analyze the loss of plasticity in deep
networks and suggest layer normalization and weight decay
as remedies in nonstationary tasks [9]. In a related study, they
investigate how specific parameterization and optimization
choices affect long-term plasticity in reinforcement learning
[10]. Wang et al. present a Lipschitz-constrained architecture
("sandwich layer") that enhances both certified and empirical
robustness [20], while Samanipour et al. introduce Lyapunov-
based controller synthesis methods for stable ReLU net-
works in dynamical systems [16]. Nakamura-Zimmerer et
al. similarly propose feedback-stabilizing architectures with
guaranteed local stability [11].

e) Mechanistic Interpretability and Reasoning.: Recent
work has emphasized uncovering interpretable mechanisms
in network computation. Brinkmann et al. dissect how a
Transformer trained on symbolic multi-step reasoning learns



a depth-bounded recurrent process [3]. Li et al. explore how
attention and embedding layers encode semantic structure
in Transformers by capturing topic-related co-occurrence
statistics [8]. Zhang et al. probe whether Transformers can
perform recursion, concluding that shortcut memorization
often dominates over true structural generalization [25].

f) Domain-Specific Architectures.: Some architectural
advances are designed to address specific domain requirements.
Wortsman et al. show that small-scale Transformers suffer
instabilities akin to large models, and propose mitigation
techniques like warm-up and parameter averaging [22]. Wang
et al. introduce PirateNets, a physics-informed deep learning
framework that improves scalability and stability for PDE
solvers [21]. Gravina et al. present Anti-Symmetric Deep
Graph Networks (A-DGNs), which preserve long-range de-
pendencies without suffering from vanishing or exploding
gradients [5]. Zhen et al. employ partial distance correlation to
analyze and regularize inter-feature behaviors in deep networks
[26].

IV. STRUCTURED TRANSFORMATION WITH CORRECTIVE
PATHWAYS

We propose a refinement to standard neural transformation
layers that introduces an internal structural pathway alongside
a learned correction mechanism. The core idea is to decouple
the signal transformation into two complementary components:
a shaped primary path and a flexible compensatory term. This
formulation retains expressive capacity while supporting more
predictable propagation, smoother optimization, and improved
depth viability.

Let x(l−1) denote the input to layer l. Rather than applying
an unconstrained affine transformation followed by a nonlin-
earity, we define the layer output as:

x(l) = T (l)(x(l−1)) = S(l)W (l)x(l−1) + C(l)(x(l−1)), (1)

where:

• W (l) is a trainable weight matrix,
• S(l) is a fixed or learnable shaping operator that imposes

structural constraints or directional preferences,
• C(l) is a learned correction function that enables flexible

refinement.

The shaping operator S(l) introduces structure into the
transformation by regulating its spectral or spatial behavior.
It may take the form of:

• A fixed sparsity or low-rank template,
• A diagonal or block-diagonal scaling matrix,
• A smooth basis transformation (e.g., DCT, wavelets, or

learned Fourier-like frames).

This allows the main transformation to enforce certain
desirable properties—such as selectivity, regularity, or bounded
amplification—without eliminating the network’s ability to
learn complex mappings.

Meanwhile, the correction term C(l) provides adaptive
flexibility. It may be instantiated as:

C(l)(x) = ϕ(l)(x; θ(l)), (2)

where ϕ(l) is a shallow nonlinear network with parameters
θ(l). This path is unconstrained and compensates for any loss
in expressivity introduced by the structure of S(l)W (l).

A. Interpretable Signal Pathways

By separating the structured transformation from the
adaptive correction, this formulation provides a clearer view
into the role of each pathway. In particular, the shaped path
can be monitored for signal stability, while the correction
path can be studied for local complexity adaptation. This
decomposition facilitates empirical study of learning behavior
and signal propagation within the model, without requiring
interpretability at the individual weight level.

B. Training and Stability Advantages

This design introduces two practical benefits that address
common failure modes in deep learning:

• Improved conditioning: The structured path can be
initialized with controlled scaling and directional regu-
larity, mitigating issues such as exploding or vanishing
gradients.

• Reduced overfitting: By narrowing the degrees of
freedom in the primary transformation, the model is
implicitly regularized. The correction term then learns
only what is necessary for task-specific refinement.

Together, these traits contribute to improved depth viability,
robustness under perturbations, and more stable learning
trajectories. In the following section, we evaluate the impact of
this formulation through diagnostic experiments that measure
gradient flow, spectral behavior, and convergence dynamics.

V. EMPIRICAL OBSERVATIONS AND TRAINING BEHAVIOR

This section documents the initial findings from evaluating
the proposed architecture on synthetic and structured tasks.
We organize observations across five major axes: stability,
spectral behavior, dynamical convergence, training robustness,
and ablation insights. Each experimental group highlights
distinct advantages enabled by the architectural design.

A. Stability and Module-Level Behavior

Jacobian Spectrum Analysis. We computed the Jacobian
H(l) = ∂x(l)/∂x(l−1) for PGNN modules and compared its
singular value spectrum to that of standard MLP layers. As
shown in Fig. 2, PGNN exhibits a more stable and well-
conditioned spectrum—indicating richer local transformations
and less likelihood of gradient collapse.

Figure 2. Singular value spectrum of the Jacobian ∂x(l)

∂x(l−1) for a PGNN
layer (orange, dashed) and a standard MLP layer (blue, solid). PGNN shows
a more stable and rich local transformation profile.

Activation Variance Heatmaps. Fig. 7 displays per-neuron
activation variance across training epochs. The standard MLP
(subfigures a–b) reveals early dominance by a few neurons
and unstable variance dynamics. In contrast, PGNN layers



Figure 3. *
(a) Standard MLP – Layer 1

Figure 4. *
(b) Standard MLP – Layer 2

Figure 5. *
(c) PGNN – Layer 1

Figure 6. *
(d) PGNN – Layer 2

Figure 7. Activation variance heatmaps across training epochs for standard MLP and PGNN models. PGNN layers exhibit more stable, bounded variance
evolution, while the standard MLP shows early neuron dominance and unregulated variance growth.

(subfigures c–d) show smoother and more consistent behavior,
with broader neuron participation and bounded variance
growth.

Residual Correction Profiling. The mean norm of residual
outputs R(l)(x) was tracked during training. As seen in
Fig. 8, residuals dominate early updates but decay over time,
suggesting that the network gradually relies more on the
structured transformation as training proceeds.

Figure 8. Mean norm of residual corrections R(1)(x) and R(2)(x) over
training. Layer 2 stabilizes faster, indicating converging guidance.

B. Spectral Behavior and Structured Selectivity

Multi-Resolution Composition. Fig. 10 shows the training
loss of a PGNN architecture equipped with parallel low- and
high-frequency branches. This setup accelerates convergence

Figure 9. Empirical frequency response of PGNN and MLP under sinusoidal
input sweeps. PGNN shows smoother spectral transitions.

and leads to smoother optimization on structured signals
compared to monolithic MLPs.

Frequency Response Profiling. When subjected to sinu-
soidal input sweeps of increasing frequency, PGNN suppresses
high-frequency content more smoothly than the MLP baseline,
as shown in Fig. 9. This suggests that PGNN exhibits an
implicit low-pass bias, consistent with its structural regularity.

C. Dynamical Behavior and Convergence

Convergence Behavior. Recursive application of the same
PGNN module leads to outputs that settle toward fixed points.
Fig. 11 plots the difference between consecutive outputs, which
decays exponentially, affirming the presence of attractor-like
behavior.



Figure 10. Training loss on multi-scale signal input. PGNN’s compositional
structure supports more efficient convergence.

Figure 11. Convergence of PGNN outputs under recursive application. Rapid
decay of update magnitude confirms dynamical stability.

Energy Descent. The surrogate energy function Et =
∥x(t) − x(t−1)∥2 drops quickly, as depicted in Fig. 12.
The descent reflects convergence under an implicit energy-
minimizing process, without oscillatory behavior.

Figure 12. Energy decay curve under recursive dynamics. PGNN modules
converge to attractors without oscillations.

D. Training Dynamics and Perturbation Robustness

Loss and Gradient Flow. PGNN demonstrates smoother
convergence during training. While it starts slower than the
MLP (Fig. 13), its gradients remain more stable (Fig. 14),

which supports better long-term trainability and reduced need
for normalization.

Figure 13. Training loss for PGNN and MLP. PGNN converges more
smoothly despite slower early progress.

Figure 14. Gradient norm of parameters over training. PGNN exhibits more
stable gradient evolution.

Input Perturbation Test. We tested both models by
injecting Gaussian noise into input samples. As illustrated in
Fig. 15, PGNN exhibits significantly less output deviation,
highlighting inherent robustness induced by its structure.

E. Ablation Studies
Projection Operator Variants. Fig. 16 compares mod-

els with different projection operators: fixed, learned, and
Laplacian-guided. Learned projections slightly improve vali-
dation accuracy but introduce more variance, while Laplacian-
guided versions offer balanced interpretability and stability.

Residual Path Importance. Ablating the residual term
R(l) significantly harms performance, as shown in Fig. 17.
The residual component plays a crucial role in correcting
under-constrained projections.

Depth Sensitivity. Fig. 18 shows that PGNN can scale up to
10 layers without the use of skip connections or normalization.
Beyond this point, the model becomes unstable—suggesting
a graceful degradation threshold.

These empirical results demonstrate that the proposed archi-
tecture maintains stable gradients, exhibits spectral structure,



Figure 15. Output deviation under Gaussian input noise. PGNN exhibits
stronger robustness compared to MLP.

Figure 16. Validation accuracy across projection variants. Learned projections
improve accuracy slightly but at the cost of robustness.

Figure 17. Training loss of PGNN with and without residual correction. The
absence of R(l) leads to performance degradation.

Figure 18. Final MSE vs. depth for PGNN. Models remain stable up to 10
layers.

supports convergence under recursion, and retains robustness
under noise—all without sacrificing scalability. Additional
interpretability studies and theoretical extensions are deferred
to follow-up work.

VI. CONCLUSION

This work presents a principled neural architecture that
departs from conventional monolithic design by introducing
structured transformations augmented with adaptive correction.
The resulting formulation enforces a local organization of com-
putation, enabling stable learning, interpretable intermediate
behavior, and improved generalization across training regimes.

Through a series of experiments on synthetic and structured
data, we have demonstrated several advantages: (i) well-
conditioned Jacobians and smooth gradient flow, (ii) robustness
to input perturbations and depth scaling, and (iii) predictable
convergence dynamics under recursive application. These
traits suggest that structured internal organization—not merely
increased capacity—can lead to more tractable and resilient
learning systems.

While this paper focuses on foundational mechanisms
and empirical validation, the approach invites a broader
reconsideration of how networks are constructed, constrained,
and understood. As learning systems scale in complexity
and responsibility, such principled scaffolding may become
essential—not optional—for building reliable and controllable
AI.
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