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Abstract

While modern deep networks have demonstrated remarkable versatility, their training dynamics remain

poorly understood—often driven more by empirical tweaks than architectural insight. This paper investigates

how internal structural choices shape the behavior of learning systems. Building on prior efforts that

introduced simple architectural constraints, we explore the broader implications of structure for convergence,

generalization, and adaptation. Our approach centers on a family of enriched transformation layers that

incorporate constrained pathways and adaptive corrections. We analyze how these structures influence

gradient flow, spectral sensitivity, and fixed-point behavior—uncovering mechanisms that contribute to

training stability and representational regularity. Theoretical analysis is paired with empirical studies on

synthetic and structured tasks, demonstrating improved robustness, smoother optimization, and scalable

depth behavior. Rather than prescribing fixed templates, we emphasize principles of tractable design that

can steer learning behavior in interpretable ways. Our findings support a growing view that architectural

design is not merely a matter of performance tuning, but a critical axis for shaping learning dynamics in

scalable and trustworthy neural systems.

Index Terms

Neural architectures, learning dynamics, training stability, structural priors, deep learning, spectral

analysis, convergence behavior, architectural design, robustness.

I. INTRODUCTION

The design of neural network architectures has long balanced two competing goals: maximizing

expressivity and maintaining trainability. While modern networks achieve state-of-the-art performance

across a wide spectrum of tasks, the learning processes that unfold within them remain difficult to

predict, interpret, or control. This opacity has motivated a growing interest in understanding how
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architectural decisions influence the underlying dynamics of training—particularly in settings where

depth, data scarcity, or instability pose practical limitations.

Recent efforts have explored how different forms of structure—ranging from symmetry constraints

to spectral regularization—can shape training behavior. Yet, much of this work remains either

heuristic or narrowly tied to specific tasks or domains. In this paper, we pursue a broader goal: to

investigate how architectural structure, even when modest or non-physical in origin, can systematically

influence core properties of learning, such as gradient propagation, convergence rates, and functional

smoothness.

Building on recent insights that link internal pathways to stability and signal coherence, we explore

a class of structured transformations that decouple primary signal shaping from adaptive correction.

While prior work has demonstrated empirical benefits in training stability and robustness, the present

study takes a second look—with an emphasis on theoretical framing, diagnostic interpretation, and

a more refined understanding of the mechanisms at play.

Our contributions are threefold:

• We formalize the impact of structured transformation pathways on gradient dynamics and

spectral behavior, providing a clean lens to understand their regularizing influence.

• We propose analytical tools and empirical probes that reveal how structural constraints alter

internal representations, affect convergence geometry, and suppress pathological learning regimes.

• We present experiments on synthetic and graph-based settings, illustrating that well-chosen

architectural structure can improve both robustness and generalization, even without explicit

inductive biases or domain knowledge.

Through this work, we aim to clarify how architectural constraints can serve not just as stabilizers

or performance boosters, but as active agents in shaping the flow and evolution of learning itself.

Rather than viewing structure as a limitation, we treat it as a means to uncover new pathways for

understanding and improving the deep learning process.

II. ARCHITECTURAL INFLUENCE ON LEARNING DYNAMICS

The success or failure of training a neural network often hinges on the internal geometry induced

by its architecture. While optimization algorithms operate externally, the curvature, conditioning, and

propagation of gradients are deeply shaped by how transformations are arranged and parameterized.
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This section investigates how specific architectural choices—particularly structured transformations

and correction paths—affect key aspects of learning dynamics.

A. Preliminaries and Setup

We consider a feedforward model composed of L layers, each implementing a transformation of

the form:

x(l) = S(l)W (l)x(l−1)︸ ︷︷ ︸
Structure-Aware Path

+ C(l)(x(l−1))︸ ︷︷ ︸
Adaptive Correction Path

, (1)

where S(l) is a shaping operator that constrains or modulates W (l), and C(l) is a learnable correction

function. This decomposition generalizes standard affine layers by allowing explicit architectural

constraints to act before optimization begins. We refer to this structured–corrective architecture as a

Physics-Guided Neural Network (PGNN).

B. Gradient Flow and Spectral Conditioning

Let L be the loss function, and consider the gradient ∇x(l)L. In deep networks, this quantity often

suffers from amplification or attenuation due to repeated matrix products. The introduction of S(l)

effectively regularizes the spectral properties of each transformation:

σmax(S
(l)W (l)) < σmax(W

(l)), (2)

for appropriately chosen S(l). As a result, gradient norms remain better conditioned across layers,

reducing the likelihood of vanishing or exploding behavior.

Directional bias: Structured paths bias gradient energy toward dominant modes of S(l). We

evidence this via Jacobian-spectrum and gradient-norm diagnostics (Sec. VIII) and model-derived

CKA/Subspace-Overlap (Sec. VI).

C. Corrective Paths as Dynamic Modulators

The correction term C(l) plays a dual role: it preserves model expressivity and absorbs residual

error that structured components cannot capture. Unlike architectural mechanisms such as batch

normalization or residual connections, C(l) does not merely pass identity or rescale activations—it

actively learns to modulate the shaped transformation.
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This dynamic modulation can be interpreted as a kind of learned response function that adapts to

compensate for rigidity in S(l)W (l). As such, the interaction between structured and corrective paths

forms a two-way system: one enforces stable propagation, the other flexibly recovers expressivity.

D. Implications for Depth and Robustness

One of the primary benefits of this formulation is improved depth scalability. By ensuring that each

transformation respects spectral constraints and directional smoothness, the model can be stacked

deeper without requiring skip connections or aggressive normalization. Moreover, the coupling with

C(l) provides a built-in mechanism for local adaptation, mitigating the risks of structural bias or

underfitting.

These effects are further explored in our empirical section, where we study training dynamics

under perturbations, depth variation, and projection ablations.

III. RELATED WORK

A growing body of research has explored how architectural structure influences the dynamics

and generalization of neural networks. Our work builds on this line of inquiry by proposing

a compositional framework that combines structured transformations with adaptive correction

paths—offering new tools for analyzing and guiding the learning process. In our recent work [1],

we introduced a dual-stage neural architecture in which each layer is decomposed into a structured

transformation followed by an adaptive corrective term. This formulation, grounded in spectral and

geometric constraints, enables provable improvements in gradient conditioning, training stability,

and interpretability—particularly in sparse or low-rank regimes. By embedding architectural priors

directly into the forward computation, the structured-corrective design enhances robustness without

compromising expressivity. The present paper builds on this paradigm by developing a compositional

framework that generalizes corrective paths across space, depth, and semantic roles—laying the

groundwork for more modular and adaptive neural systems.

A. Saxe et al. introduce the Gated Deep Linear Network framework to explain how information

pathways impact dynamics and generalization in multitask and transfer learning settings [2], offering

a high-level abstraction for shared representation learning.

B. Baker provides a detailed analysis of how architectural constraints and activation linearity

affect low-rank gradient dynamics and bottleneck collapse in deep networks [3], with implications
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for stable and efficient training. A. Chen et al. propose Structured Neural Networks (StrNN) as a

method for injecting architectural inductive bias into generative and causal inference models [4],

demonstrating data efficiency gains via built-in structural constraints.

C. Lyle et al. explore how plasticity loss in neural networks can be mitigated through architectural

design and normalization strategies [5], arguing that structure serves not just stability but long-term

adaptability.

Z. Gao introduces a self-regularized graph neural network (SR-GNN) that improves stability by

constraining frequency responses in the spectral domain [6], highlighting how structural filtering

supports robust optimization in non-Euclidean domains.

E. Boursier et al. provide a fine-grained analysis of gradient flow in shallow ReLU networks

with orthogonal inputs [7], establishing convergence guarantees under minimal initialization and

clarifying optimization geometry.

L. Wu and collaborators show that stochastic gradient descent (SGD) implicitly regularizes

networks through dynamical stability, outperforming vanilla gradient descent in generalization,

especially in low-depth settings [8]. F. Sherry et al. propose ResNet-inspired architectures that

encode non-expansive operators via spectral norm constraints, leading to stable and adversarially

robust networks [9].

W. Chen et al. analyze how deep connectivity patterns influence convergence under gradient

descent, using graph-theoretic tools to identify and prune ineffective pathways [10].

A. Damian et al. develop the concept of self-stabilization, showing that gradient descent at the

edge of stability follows a form of projected optimization constrained by sharpness [11], with

theoretical and empirical support across tasks. M. Xu et al. study square-loss deep classifiers and

reveal how normalization, low-rank evolution, and neural collapse emerge as beneficial dynamics,

particularly in sparse or modular architectures [12].

Further recent work continues to highlight how structural and dynamical properties shape deep

learning outcomes. B. Dherin et al. analyze the gradient flow of networks trained with square loss

and orthogonal inputs, showing that common training heuristics influence geometric complexity

and double-descent behavior [13]. C. Lyle et al. explore how changes in the curvature of the

loss landscape affect plasticity in deep networks, linking architectural and optimization choices to

preserved adaptability during training [14].

L. Noci et al. study signal propagation in Transformers, demonstrating how architectural constraints
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can mitigate rank collapse and balance gradient flow [15]. F. Chen et al. propose the concept of

stochastic collapse, where gradient noise biases SGD toward simpler subnetworks—enhancing

generalization by aligning optimization with model sparsity [16].

A. Gravina et al. introduce Anti-Symmetric Deep Graph Networks (A-DGNs), a stable architecture

that preserves long-range dependencies and avoids vanishing/exploding gradients in deep graph

models [17].

S. Mittal et al. assess modular neural architectures, finding that while modularity improves

generalization and interpretability, it may require additional inductive biases or design principles to

achieve full specialization [18].

Recent studies have also explored how structural priors interact with self-supervised learning,

symbolic reasoning, and Transformer dynamics—further emphasizing the role of architectural

constraints in shaping learning outcomes.

V. Cabannes et al. analyze how data augmentations, inductive bias, and optimization interact in

self-supervised learning [19], proposing a theoretical framework that links training procedures to

generalization bounds in domain-shifted tasks. R. Riedi et al. study singular value perturbations

in deep networks, showing how architectural choices influence optimization surfaces and lead to

better-conditioned landscapes [20], especially in skip-connected architectures like ResNets.

D. Campbell et al. demonstrate that relational constraints in network architecture can reproduce

human-like biases toward geometric regularity, offering an alternative to symbolic reasoning for

structure discovery tasks [21]. Y. Li et al. provide a mechanistic view of how Transformers learn

semantic topic structures, revealing that embedding and self-attention layers encode co-occurrence

patterns in complementary ways [22]. E. Nichani et al. show that Transformers can learn latent

causal graphs through gradient descent by encoding structure directly into the attention matrix,

leading to robust generalization across reasoning tasks [23].

Further contributions have continued to reveal how architecture and implicit dynamics shape

learning efficiency, generalization, and robustness across various neural settings.

N. Razin et al. study implicit regularization in hierarchical tensor factorizations, showing that

architectural depth in convolutional networks induces regularization toward locality and non-trivial

inductive structure [24]. D. Teney et al. challenge the assumption that random networks behave like

random functions, demonstrating that structural components like ReLU and residual connections

lead to consistent biases and predictive performance [25]. M. S. Nascon et al. investigate the role of
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step size in linear diagonal networks, revealing that large step sizes induce sparsity and directional

stability—serving as a form of implicit architectural bias [26].

F. Di Giovanni et al. examine the over-squashing problem in message-passing networks, showing

that width, depth, and graph topology strongly influence the ability of neural networks to propagate

signals effectively [27]. S. Tang et al. explore the connection between architectural design and

adversarial robustness, highlighting how sparsity and attention structures in Vision Transformers

improve generalization over convolutional baselines [28]. K. Kawaguchi et al. analyze the information

bottleneck in deep networks, providing a theoretical link between compression at hidden layers and

reduced generalization error, especially under excess representation [29].

Together, these works reinforce the broader perspective that stability, modularity, and inductive

constraints are not peripheral design considerations—they fundamentally shape how neural systems

learn, generalize, and adapt. Our structured-corrective architecture contributes to this conversation

by providing a principled mechanism to embed stability and adaptability directly into the forward

computation.

IV. GENERALIZATION AND EXPRESSIVE TRADEOFFS

Deep learning models often succeed by balancing two opposing forces: expressivity, which enables

them to fit complex data, and regularization, which prevents overfitting. Traditional approaches achieve

this balance through post-hoc techniques—dropout, weight decay, or early stopping. In contrast, our

architectural formulation embeds this balance directly into the structure of the transformation.

A. Structural Bias as Inductive Prior

The shaping operator S(l) introduces an architectural bias that limits the space of realizable

functions. This acts as an implicit inductive prior, steering the learning process toward solutions

that align with the model’s structural assumptions. For example, a block-diagonal S(l) encourages

localized, modular computations, while a smooth spectral filter biases the layer toward low-frequency

behavior.

Such priors are particularly valuable in low-data or noisy regimes, where overparameterized

models are prone to memorization. We observe that networks with structured layers generalize better

on small datasets, even without explicit regularization techniques.
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B. Generalization Bounds and Hypothesis Class

Formally, let Hfull denote the hypothesis class of unconstrained MLPs, and Hstructured ⊂ Hfull be

the class induced by shaping operators. Then the effective class of our model is:

Heff = Hstructured +Hcorrection, (3)

where Hcorrection typically consists of shallow or low-capacity mappings. This formulation narrows

the effective capacity of the network while preserving approximation power.

In theory, the Rademacher complexity of Heff is lower than that of a fully unconstrained deep

network, especially when C(l) is parametrically limited. This suggests improved generalization

behavior, as validated in our robustness tests.

C. Emergent Modularity and Compositional Behavior

Interestingly, structured layers often encourage decomposable representations, where different

components of the input are processed via relatively independent channels. This emergent modularity

arises even without explicit separation and supports the idea that architectural constraints can lead

to compositional generalization.

We provide qualitative and quantitative evidence of such behavior in downstream tasks, where

structured networks learn interpretable, separable intermediate representations that correlate with

meaningful input factors.

D. A Generalization Bound via Structured Composition

We now formalize how the proposed architecture influences generalization behavior. Let HS

denote the class of structured linear transformations shaped by S(l), and HC the class of correction

functions (e.g., shallow nonlinear networks). The full transformation class H is defined as:

H = {h(x) = SWx+ ϕ(x) | W ∈ Rd×d, ϕ ∈ HC}. (4)

Assume:

• The spectral norm ∥S∥2 ≤ α for some fixed α.

• The weight matrix W is bounded as ∥W∥F ≤ B.

• The correction function class HC has Rademacher complexity bounded by Rn(HC) ≤ β/
√
n.

Then we can upper bound the generalization error of the composed model class.
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Theorem 1. Let H be the structured architecture class as above, and suppose the loss function

ℓ(h(x), y) is L-Lipschitz and bounded in [0, 1]. Then, with probability at least 1− δ over a sample

of size n, every h ∈ H satisfies:

E[ℓ(h(x), y)] ≤ 1

n

n∑
i=1

ℓ(h(xi), yi) +
LαB√

n
+Rn(HC) +

√
log(1/δ)

2n
. (5)

Proof. We begin with a generalization bound for Lipschitz losses (see Bartlett and Mendelson, 2002).

Since ℓ is L-Lipschitz and bounded in [0, 1], with probability at least 1− δ, for all h ∈ H:

E[ℓ(h(x), y)] ≤ 1

n

n∑
i=1

ℓ(h(xi), yi) + 2L ·Rn(H) +

√
log(1/δ)

2n
.

Let HS = {x 7→ SWx : ∥W∥F ≤ B} and recall that H = HS + HC . By subadditivity of

Rademacher complexity:

Rn(H) ≤ Rn(HS) +Rn(HC).

We assume Rn(HC) ≤ β/
√
n. It remains to bound Rn(HS). By definition:

Rn(HS) = Eσ

[
sup

∥W∥F≤B

1

n

n∑
i=1

σi⟨SWxi, e⟩

]
,

for arbitrary unit vector e, where σi are Rademacher variables.

Rewriting this:

=
1

n
Eσ

[
sup

∥W∥F≤B

〈
W,

n∑
i=1

σiS
⊤(ex⊤

i )

〉
F

]
=

B

n
Eσ

[∥∥∥∥∥
n∑

i=1

σiS
⊤(ex⊤

i )

∥∥∥∥∥
F

]
.

Assuming ∥xi∥ ≤ 1 and ∥S∥2 ≤ α, we get ∥S⊤(ex⊤
i )∥F ≤ α. Therefore:∥∥∥∥∥

n∑
i=1

σiS
⊤(ex⊤

i )

∥∥∥∥∥
F

≤ α
√
n,

by Khintchine–Kahane inequality. Hence:

Rn(HS) ≤
Bα

√
n

n
=

Bα√
n
.

Combining all terms:

Rn(H) ≤ Bα√
n
+

β√
n
.

Substituting into the generalization bound:

E[ℓ(h(x), y)] ≤ 1

n

n∑
i=1

ℓ(h(xi), yi) + 2L

(
Bα + β√

n

)
+

√
log(1/δ)

2n
.
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This implies the slightly looser bound (absorbing constants into Rn(HC) if needed):

E[ℓ(h(x), y)] ≤ 1

n

n∑
i=1

ℓ(h(xi), yi) +
LαB√

n
+Rn(HC) +

√
log(1/δ)

2n
.

V. CONVERGENCE OF STRUCTURED RECURSIVE DYNAMICS

We now analyze the convergence behavior of networks where the layer transformation is recursively

applied. This setting models architectures that refine their state across multiple steps using a structured

backbone and a corrective component. We ask: under what conditions does this recursive process

converge to a fixed point?

Let the recursive update be defined by:

x(t+1) = F (x(t)) := SWx(t) + ϕ(x(t)), (6)

where:

• x(t) ∈ Rd is the state at step t,

• SW ∈ Rd×d is a structured linear operator,

• ϕ : Rd → Rd is a trainable nonlinear mapping.

Theorem.

Theorem 2. Assume SW and ϕ are Lipschitz continuous with constants L1, L2 such that:

∥SWx− SWy∥ ≤ L1∥x− y∥, ∥ϕ(x)− ϕ(y)∥ ≤ L2∥x− y∥,

and that L1 + L2 < 1. Then, the recursive sequence x(t+1) = F (x(t)) converges to a unique fixed

point x∗, independent of initialization.

Proof. Let F (x) = SWx+ ϕ(x). Using the triangle inequality:

∥F (x)− F (y)∥ = ∥SWx+ ϕ(x)− SWy − ϕ(y)∥

≤ ∥SWx− SWy∥+ ∥ϕ(x)− ϕ(y)∥

≤ L1∥x− y∥+ L2∥x− y∥ = (L1 + L2)∥x− y∥.

Let γ = L1 + L2, with γ < 1. Then F is a contraction. Since Rd is a complete metric space,

Banach’s Fixed Point Theorem guarantees:



11

1) The existence of a unique fixed point x∗ ∈ Rd satisfying F (x∗) = x∗,

2) Convergence of the sequence x(t) → x∗ from any initial point x(0).

This result provides a formal convergence guarantee for a wide class of structured architectures

with recursive updates. We next illustrate specific operator and correction choices that satisfy these

conditions in practice.

A. Examples and Interpretations

Theorem 2 guarantees convergence under a simple condition on the combined Lipschitz constants

of the structured linear path and the correction component. We now illustrate concrete instances

where this condition is satisfied.

1) Example 1: Orthogonal Structure with Bounded Nonlinearity: Let S = I and W be an

orthogonal matrix, so that ∥Wx−Wy∥ = ∥x− y∥. Then:

L1 = ∥SW∥ = ∥W∥ = 1.

If ϕ(x) = α · tanh(Bx) with ∥αB∥ ≤ 0.2, then L2 ≤ 0.2 and total Lipschitz constant becomes

L1 + L2 = 1.2. This exceeds 1, so the contraction condition is not satisfied. However, with a

small scaling of W (e.g., ∥W∥ = 0.7), the combined Lipschitz constant becomes 0.9, ensuring

convergence.

2) Example 2: Low-Rank Projection and Shallow Residual: Suppose S is a fixed low-rank

projection, e.g., a Laplacian or spectral filter, with induced norm ∥S∥ = 0.5, and W is arbitrary.

Then ∥SW∥ ≤ 0.5∥W∥. If W is initialized with norm ∥W∥ ≤ 1.0, we get L1 ≤ 0.5.

Now let ϕ(x) = ReLU(Bx) with ∥B∥ ≤ 0.3. Since ReLU is 1-Lipschitz and the operator norm

of B is 0.3, we get L2 ≤ 0.3. Then L1 + L2 ≤ 0.8 < 1, ensuring contraction and convergence.

3) Example 3: Diagonal Scaling with Smooth Activation: Assume S is the identity and

W = diag(λ1, . . . , λd),

where |λi| ≤ 0.4. Then ∥SW∥ = maxi |λi| = 0.4.

Let ϕ(x) = σ(Bx) with σ being a softsign or ELU activation. Suppose ∥B∥ = 0.5 and the

effective Lipschitz constant of ϕ is bounded by 0.4. Then again L1 + L2 = 0.8, and convergence

follows.
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These examples demonstrate that a wide class of structured transformations — including filtered,

diagonal, or orthogonally regularized operators — combined with mildly nonlinear corrections,

naturally satisfy the contraction condition. This provides a design lens: rather than enforcing hard

equilibria, one can guide network behavior by simply encouraging contractions via structure and

bounded residuals.

VI. MECHANISTIC EXPLANATION OF PGNN DYNAMICS

The architectural formulation and stability properties of PGNN have been introduced in prior

work [1]. In this section, we focus on complementary diagnostics that reveal how PGNN’s structured

pathways influence internal learning dynamics, generalization behavior, and convergence.

A. Layer-Wise Representation Consistency

To assess internal consistency, we compute the generalization gap at intermediate layers of PGNN

and a standard MLP. For each layer, we measure the mean squared error (MSE) between training and

validation activations. This analysis reveals that PGNN exhibits smaller gaps across layers, suggesting

that its structured transformations promote more stable and generalizable internal representations.

These results are visualized in Figure 1.

Figure 1. Layer-wise generalization gaps (MSE) for PGNN and MLP. PGNN shows reduced discrepancy between training and

validation activations.
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Figure 2. Model-derived CKA and Subspace-Overlap on a synthetic linear+noise classification task (d=16, 2 classes). Results over 5

seeds, single held-out batch; layers L1–L2.

B. Subspace Geometry and Representational Overlap

We quantify representational structure with two standard, self-contained metrics.

Centered linear CKA [30]. Given a held-out batch, let Hℓ ∈Rn×d be centered activations at

layer ℓ and Z∈Rn×m be centered targets (or features). With C = I − 1
n
11⊤,

CKA(Hℓ, Z) =
⟨CHℓH

⊤
ℓ C, CZZ⊤C⟩F

∥CHℓH⊤
ℓ C∥F ∥CZZ⊤C∥F

.

Subspace-Overlap (SOV). Let Utr, Uho ∈ Rd×k be orthonormal bases for the top-k principal-

component subspaces of the centered train and held-out activations at layer ℓ. The overlap is the

mean squared cosine of the principal angles:

SOVk(H
tr
ℓ , H

ho
ℓ ) = 1

k
∥U⊤

tr Uho∥2F .

We use k=16 in all runs.

Results. With two hidden layers and five seeds, PGNN and MLP are broadly comparable. PGNN

shows a small CKA advantage at both layers, while SOV is mixed—slightly lower at L1 and higher

at L2. Figure 2 shows CKA; Table I summarizes SOV (mean±sd over 5 seeds; one held-out batch).
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L1 SOV ↑ L2 SOV ↑

MLP 0.934 ± 0.013 0.940 ± 0.012

PGNN 0.923 ± 0.018 0.951 ± 0.016

Table I

DIAGNOSTIC SOV ON SYNTHETIC LINEAR+NOISE CLASSIFICATION SETUP (D=16, 2 CLASSES); FEATURE-SPACE PCS; MEAN±SD

OVER 5 SEEDS.

C. Equilibrium Interpretation

Unlike standard feedforward models, PGNN layers can be interpreted as recursive systems that

converge toward stable representations. We simulate iterative application of PGNN blocks and

measure convergence behavior using a contraction metric. These results are visualized in Figure 3.

Figure 3. Contraction metric over recursive PGNN iterations. The output stabilizes over time, indicating equilibrium behavior.

These diagnostics collectively demonstrate that PGNN’s structured design not only improves

training stability but also induces smoother, more robust, and generalizable learning dynam-

ics—complementing its architectural foundations without duplicating prior results.

Implementation details and experimental configurations for all diagnostics are provided in Section VII.
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Model CKA ↑ Subspace-Overlap ↑ Transfer-Probe R2 ↑

MLP 0.39 ± 0.02 0.11 ± 0.02 1.00 ± 0.00

PGNN 0.40 ± 0.02 0.13 ± 0.01 1.00 ± 0.00

Table II

SYNTHETIC ALIGNMENT TASK. METRICS COMPUTED FROM model-derived ACTIVATIONS; 5 SEEDS, ONE HELD-OUT BATCH, BEST

HIDDEN LAYER PER SEED.

D. Synthetic Alignment Task (Formal Spec)

Goal. Quantify how closely hidden representations align with a known signal subspace using model-derived (real) activations.

Data. Input dim d=16. Sample an orthonormal basis U ∈Rd×d (QR on a Gaussian matrix). For each input x∼N (0, Id)

define z = U⊤x. Targets are y = V z + ε with V ∈Rm×d (m=4) and ε∼N (0, σ2Im), σ=0.05.

Models. Two hidden layers (width 64). Baseline MLP vs. PGNN with identical parameter budget:

x(l) = S(l)W (l)x(l−1) + C(l)
(
x(l−1)

)
,

with S(l)=I unless noted and C(l) = Linear→ReLU (two blocks total).

Training. Adam (10−3), batch 128, 2000 steps, 5 seeds.

Evaluation (one held-out batch). (i) centered linear CKA between Hℓ and Z; (ii) SOV as mean cos2 principal angles

between the top-k right-singular subspaces of train/test activations (per layer); (iii) ridge-probe R2 from Hℓ to Z (λ=10−3).

Report mean±sd over seeds.

On this controlled task, PGNN shows a small but consistent gain in both CKA (+0.01) and SOV

(+0.02) over the MLP, while the transfer probe saturates at R2≈1.0, as expected for the near-linear

ground truth (see Table II).

VII. EMPIRICAL SUPPORT FOR STRUCTURAL HYPOTHESES

This section presents targeted diagnostics that isolate internal mechanisms of PGNN behavior—such

as representation consistency, directional selectivity, and convergence dynamics. These analyses

complement the broader empirical studies presented in Section VIII.

A. Experimental Setup

All experiments were implemented in PyTorch with fixed random seeds to ensure reproducibility.

Synthetic datasets were generated using standard normal distributions, with input dimensions typically

set to d = 16 and batch sizes ranging from 100 to 200 depending on the task. For regression tasks,
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outputs were derived from low-dimensional signal components with optional Gaussian noise. For

classification tasks, labels were computed from structured projections or latent mappings.

PGNN layers follow Equation (1). The output of each PGNN block is computed as the sum of the

shaped linear transformation and the correction path. In recursive simulations, PGNN blocks were

applied iteratively for 20 steps to assess convergence behavior. For generalization gap analysis, we

computed the mean squared error (MSE) between training and validation activations at each hidden

layer. Subspace overlap was quantified using cosine squared principal angles. The contraction metric

was defined as the mean absolute change between consecutive recursive outputs.

All models were trained using the Adam optimizer with a learning rate of 10−3 and default

PyTorch initialization. Evaluation metrics included training loss, test accuracy, gradient norm tracking,

and robustness under input perturbations. All figures in Sections VI and VII were generated directly

from these setups.

B. Sensitivity to Input Alignment

To validate the hypothesis that structured pathways promote alignment with informative input

directions, we compare training dynamics on two variants of the same synthetic regression task:

one with aligned inputs (signal dimension dominant) and one with permuted or randomized feature

ordering.

Setup. We train identical shallow networks with and without structured projections, using a single

corrective pathway in both. Loss and gradient norms are tracked across epochs.

Observation In the aligned setting, structured networks converge significantly faster and exhibit

lower gradient variance. In the randomized setting, convergence is slower for both, but the structured

network still stabilizes earlier.

Interpretation. This supports the idea that structured transformations facilitate signal flow along

meaningful axes, improving optimization even when corrective flexibility is held constant.

C. Projection Incompleteness and Correction Load

Here we probe how the model behaves when the projection operator is deliberately underspecified

or corrupted (e.g., rank-deficient or noisy basis).

Setup. We evaluate training loss and correction path magnitude across varying projection ranks.

Lower-rank projections simulate settings where structural assumptions are incomplete or partially

inaccurate.
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Observation. As the projection rank decreases, the corrective pathway compensates with increased

activity, while training loss remains bounded—up to a critical limit where expressivity collapses.

Interpretation. This supports the claim that the corrective component adaptively compensates

for structural deficiencies, while also suggesting a trade-off space between imposed structure and

correction burden.

D. Stability Under Gradient Perturbation

To assess whether structured transformations induce smoother optimization landscapes, we

introduce gradient noise during training and compare convergence behavior.

Setup. A fixed level of Gaussian noise is added to the gradients at each update step. We track

final accuracy and loss oscillation metrics over multiple seeds.

Observation. Structured networks demonstrate reduced oscillation and more consistent convergence

than their unstructured counterparts.

Interpretation. This lends empirical weight to the theoretical expectation that structural shaping

flattens the local geometry of the optimization surface.

E. Pathway Decoupling Analysis

Finally, we investigate whether the roles of the structured and corrective components remain

distinct throughout training, or whether one dominates over time.

Setup. We monitor the layerwise magnitude of structured output vs. correction output over training

epochs.

Observation. Early in training, both pathways are active; over time, the corrective pathway

attenuates while the structured path remains stable—suggesting an implicit convergence to structured

representations.

Interpretation. This supports the view that the corrective component serves as a transient guide

rather than a persistent crutch, reinforcing the notion of stability through architecture rather than

training heuristics.

VIII. TASK-LEVEL COMPARISON ON FASHION-MNIST

To examine how the proposed structured-corrective architecture behaves in practice, we compare

it against a MLP on a real-world image classification task. This section does not aim to achieve
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state-of-the-art accuracy, but instead focuses on emergent training behavior and reliability across

runs.

A. Setup

We consider the Fashion-MNIST (FMNIST) dataset with two-layer networks using either (i)

standard MLP layers or (ii) PGNN blocks as introduced earlier. Both models are trained for 20

epochs using the Adam optimizer and identical hyperparameters. The PGNN model employs an

identity-based shaping operator and a learned correction path, while the MLP baseline is purely

learned.

B. Non-identity S on FMNIST

Beyond the identity-structured variant, we evaluate a fixed low–pass shaping operator inside the

PGNN blocks:

S = C⊤ diag(L)C, C ∈ Rd×d is orthonormal DCT-II, Li = 1[ i ≤ 0.25d ].

All other settings (width, optimizer, batch size, seeds) are identical to the S=I runs.

Figures 4 to 6 update our FMNIST plots to include this non-identity S. Across five seeds, PGNN

with low-pass DCT (DCT-LP) closely tracks the identity variant: training loss and test accuracy

curves are nearly overlapping, with a small early-epoch advantage and slightly tighter seed variance

for DCT-LP; final accuracies differ by only a few tenths of a percent from the MLP baseline.

C. Mechanistic diagnostics on FMNIST

We complement the accuracy/loss results with two diagnostics. The total parameter-gradient

ℓ2-norm decays monotonically for both models, with PGNN stabilizing slightly lower after the

first few epochs. The input→logits Jacobian spectrum, averaged over a 32-sample held-out batch,

shows a characteristic pattern: PGNN has larger leading singular values yet a faster tail decay,

indicating stronger sensitivity along a few coherent directions with suppressed high-order responses.

Numerically, the top-3 means are (16.9, 12.9, 10.9) for MLP and (22.8, 15.1, 11.1) for PGNN on

the same batch.
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Figure 4. FMNIST test accuracy (mean± sd over 5 seeds). Models: MLP, PGNN with identity S=I , and PGNN with DCT low-pass

S (25% kept).

Figure 5. FMNIST training cross-entropy loss (mean over 5 seeds). The DCT-LP S follows the identity case closely with a slight

early-epoch advantage.

D. Interpretation

These results suggest that the PGNN architecture not only maintains competitive accuracy, but

also introduces useful regularities during training. The structural path appears to stabilize early

representation learning, while the corrective path allows flexible adaptation, ultimately reducing

sensitivity to initialization and overfitting pressure. These effects complement the theoretical

expectations outlined in earlier sections.
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Figure 6. Initialization sensitivity (mean± sd over 5 seeds). Shaded bands show seed variance. The non-identity S yields similar or

marginally lower variance than the identity case.

Figure 7. FMNIST mechanistic diagnostics. Left: Total gradient ℓ2–norm during training (epochs). Right: Input→logits Jacobian

spectrum on a held-out batch (32 samples; mean singular values). PGNN shows larger leading singular modes and a steeper spectral

tail than the MLP; top-3 means (MLP vs. PGNN): (16.9, 12.9, 10.9) vs. (22.8, 15.1, 11.1).

Protocol. Gradient norms are total ℓ2 across parameters per epoch; the Jacobian spectrum is computed

w.r.t. inputs at the logits on a single held-out batch and averaged over 32 samples.

PGNN and the MLP exhibit the same monotonic decline in total gradient norm, but PGNN

stabilizes at a slightly lower level after the first few epochs (Fig. 7, left). The Jacobian spectrum on

a held-out batch shows a characteristic pattern: PGNN has larger leading singular values yet a faster

decay across the tail (right). This indicates stronger sensitivity along a few coherent directions with

suppressed high-order/anisotropic responses—consistent with the structured path acting as a spectral
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Figure 8. Layer-wise alignment on FMNIST (5 seeds). Left: centered linear CKA between hidden activations and one-hot labels.

Right: Subspace-Overlap (k=16) between train and held-out activation subspaces at the same layer. Error bars are mean±sd across

seeds. Protocol matches §VIII.

CKA ↑ (mean±sd)

Model L1 L2

MLP 0.576 ± 0.008 0.641 ± 0.010

PGNN (S=I) 0.562 ± 0.008 0.646 ± 0.021

PGNN (DCT-LP) 0.569 ± 0.016 0.636 ± 0.027

SOVk ↑ (mean±sd, k=16)

Model L1 L2

MLP 0.130 ± 0.012 0.131 ± 0.005

PGNN (S=I) 0.131 ± 0.022 0.125 ± 0.012

PGNN (DCT-LP) 0.128 ± 0.010 0.132 ± 0.010

Table III

FMNIST LAYER-WISE ALIGNMENT (5 SEEDS). SAME TRAINING PROTOCOL AS §VIII.

shaper.

We evaluate centered linear CKA and Subspace-Overlap SOVk on FMNIST using real activations

(5 seeds, one held-out batch; k=16 top PCs). CKA increases from L1 to L2 for all models, with

a small gain for PGNN (S=I) at L2 (+0.005 over MLP), while SOV16 remains flat around 0.13

across layers and models; PGNN (DCT-LP) behaves comparably.

IX. CONCLUSION

This paper explored a structured architectural paradigm that balances expressive flexibility and

inductive regularity through an explicit separation of transformation and correction. Departing from

traditional end-to-end learning pipelines, we embedded structure directly into the forward computation
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via constrained operators, while preserving adaptability through auxiliary correction paths. This

formulation enables fine-grained control over the hypothesis space and introduces architectural

inductive biases that support both generalization and interpretability.

We formalized the generalization properties of the resulting models, showing how their effective

capacity is shaped by the interaction between structured and corrective components. Theoretical anal-

ysis of recursive dynamics established convergence guarantees under mild assumptions, underscoring

the stability of such architectures beyond standard training regimes.

Empirical investigations confirmed that structure-aware networks exhibit increased robustness to

noise, faster convergence under alignment, and more stable behavior under perturbation. Furthermore,

we showed that even minimal corrective pathways can compensate for structural incompleteness,

creating an expressive but controlled model class.

Taken together, these results highlight the utility of decomposing learning architectures into

structured and adaptive components. Rather than imposing structure as a constraint or using it solely

for interpretability, we demonstrated how structure can be integrated into the model’s inductive

scaffolding—guiding learning while preserving flexibility. This offers a new lens on architectural

design that is compatible with, but independent from, downstream task specialization.
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