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Abstract

While modern deep networks have demonstrated remarkable versatility, their training dynamics remain
poorly understood—often driven more by empirical tweaks than architectural insight. This paper investigates
how internal structural choices shape the behavior of learning systems. Building on prior efforts that
introduced simple architectural constraints, we explore the broader implications of structure for convergence,
generalization, and adaptation. Our approach centers on a family of enriched transformation layers that
incorporate constrained pathways and adaptive corrections. We analyze how these structures influence
gradient flow, spectral sensitivity, and fixed-point behavior—uncovering mechanisms that contribute to
training stability and representational regularity. Theoretical analysis is paired with empirical studies on
synthetic and structured tasks, demonstrating improved robustness, smoother optimization, and scalable
depth behavior. Rather than prescribing fixed templates, we emphasize principles of tractable design that
can steer learning behavior in interpretable ways. Our findings support a growing view that architectural
design is not merely a matter of performance tuning, but a critical axis for shaping learning dynamics in

scalable and trustworthy neural systems.

Index Terms

Neural architectures, learning dynamics, training stability, structural priors, deep learning, spectral

analysis, convergence behavior, architectural design, robustness.

I. INTRODUCTION

The design of neural network architectures has long balanced two competing goals: maximizing
expressivity and maintaining trainability. While modern networks achieve state-of-the-art performance
across a wide spectrum of tasks, the learning processes that unfold within them remain difficult to

predict, interpret, or control. This opacity has motivated a growing interest in understanding how



architectural decisions influence the underlying dynamics of training—particularly in settings where
depth, data scarcity, or instability pose practical limitations.

Recent efforts have explored how different forms of structure—ranging from symmetry constraints
to spectral regularization—can shape training behavior. Yet, much of this work remains either
heuristic or narrowly tied to specific tasks or domains. In this paper, we pursue a broader goal: to
investigate how architectural structure, even when modest or non-physical in origin, can systematically
influence core properties of learning, such as gradient propagation, convergence rates, and functional
smoothness.

Building on recent insights that link internal pathways to stability and signal coherence, we explore
a class of structured transformations that decouple primary signal shaping from adaptive correction.
While prior work has demonstrated empirical benefits in training stability and robustness, the present
study takes a second look—with an emphasis on theoretical framing, diagnostic interpretation, and
a more refined understanding of the mechanisms at play.

Our contributions are threefold:

o We formalize the impact of structured transformation pathways on gradient dynamics and

spectral behavior, providing a clean lens to understand their regularizing influence.

« We propose analytical tools and empirical probes that reveal how structural constraints alter

internal representations, affect convergence geometry, and suppress pathological learning regimes.

o We present experiments on synthetic and graph-based settings, illustrating that well-chosen

architectural structure can improve both robustness and generalization, even without explicit

inductive biases or domain knowledge.

Through this work, we aim to clarify how architectural constraints can serve not just as stabilizers
or performance boosters, but as active agents in shaping the flow and evolution of learning itself.
Rather than viewing structure as a limitation, we treat it as a means to uncover new pathways for

understanding and improving the deep learning process.

II. ARCHITECTURAL INFLUENCE ON LEARNING DYNAMICS

The success or failure of training a neural network often hinges on the internal geometry induced
by its architecture. While optimization algorithms operate externally, the curvature, conditioning, and

propagation of gradients are deeply shaped by how transformations are arranged and parameterized.



This section investigates how specific architectural choices—particularly structured transformations

and correction paths—affect key aspects of learning dynamics.

A. Preliminaries and Setup

We consider a feedforward model composed of L layers, each implementing a transformation of

the form:

2O = SO L O 0Dy 1)

Structure-Aware Path A qaptive Correction Path

where SO is a shaping operator that constrains or modulates W (®), and C"¥) is a learnable correction
function. This decomposition generalizes standard affine layers by allowing explicit architectural
constraints to act before optimization begins. We refer to this structured—corrective architecture as a

Physics-Guided Neural Network (PGNN).

B. Gradient Flow and Spectral Conditioning

Let £ be the loss function, and consider the gradient Vo) L. In deep networks, this quantity often
suffers from amplification or attenuation due to repeated matrix products. The introduction of S

effectively regularizes the spectral properties of each transformation:
Tmax (SUWW) < g (W), )

for appropriately chosen S®). As a result, gradient norms remain better conditioned across layers,
reducing the likelihood of vanishing or exploding behavior.

Directional bias: Structured paths bias gradient energy toward dominant modes of S). We
evidence this via Jacobian-spectrum and gradient-norm diagnostics (Sec. VIII) and model-derived

CKA/Subspace-Overlap (Sec. VI).

C. Corrective Paths as Dynamic Modulators

The correction term C) plays a dual role: it preserves model expressivity and absorbs residual
error that structured components cannot capture. Unlike architectural mechanisms such as batch
normalization or residual connections, CY) does not merely pass identity or rescale activations—it

actively learns to modulate the shaped transformation.



This dynamic modulation can be interpreted as a kind of learned response function that adapts to
compensate for rigidity in SUW . As such, the interaction between structured and corrective paths

forms a two-way system: one enforces stable propagation, the other flexibly recovers expressivity.

D. Implications for Depth and Robustness

One of the primary benefits of this formulation is improved depth scalability. By ensuring that each
transformation respects spectral constraints and directional smoothness, the model can be stacked
deeper without requiring skip connections or aggressive normalization. Moreover, the coupling with
C" provides a built-in mechanism for local adaptation, mitigating the risks of structural bias or
underfitting.

These effects are further explored in our empirical section, where we study training dynamics

under perturbations, depth variation, and projection ablations.

III. RELATED WORK

A growing body of research has explored how architectural structure influences the dynamics
and generalization of neural networks. Our work builds on this line of inquiry by proposing
a compositional framework that combines structured transformations with adaptive correction
paths—offering new tools for analyzing and guiding the learning process. In our recent work [1],
we introduced a dual-stage neural architecture in which each layer is decomposed into a structured
transformation followed by an adaptive corrective term. This formulation, grounded in spectral and
geometric constraints, enables provable improvements in gradient conditioning, training stability,
and interpretability—particularly in sparse or low-rank regimes. By embedding architectural priors
directly into the forward computation, the structured-corrective design enhances robustness without
compromising expressivity. The present paper builds on this paradigm by developing a compositional
framework that generalizes corrective paths across space, depth, and semantic roles—laying the
groundwork for more modular and adaptive neural systems.

A. Saxe et al. introduce the Gated Deep Linear Network framework to explain how information
pathways impact dynamics and generalization in multitask and transfer learning settings [2], offering
a high-level abstraction for shared representation learning.

B. Baker provides a detailed analysis of how architectural constraints and activation linearity

affect low-rank gradient dynamics and bottleneck collapse in deep networks [3], with implications



for stable and efficient training. A. Chen et al. propose Structured Neural Networks (StrNN) as a
method for injecting architectural inductive bias into generative and causal inference models [4],
demonstrating data efficiency gains via built-in structural constraints.

C. Lyle et al. explore how plasticity loss in neural networks can be mitigated through architectural
design and normalization strategies [5], arguing that structure serves not just stability but long-term
adaptability.

Z. Gao introduces a self-regularized graph neural network (SR-GNN) that improves stability by
constraining frequency responses in the spectral domain [6], highlighting how structural filtering
supports robust optimization in non-Euclidean domains.

E. Boursier et al. provide a fine-grained analysis of gradient flow in shallow ReLLU networks
with orthogonal inputs [7], establishing convergence guarantees under minimal initialization and
clarifying optimization geometry.

L. Wu and collaborators show that stochastic gradient descent (SGD) implicitly regularizes
networks through dynamical stability, outperforming vanilla gradient descent in generalization,
especially in low-depth settings [8]. F. Sherry et al. propose ResNet-inspired architectures that
encode non-expansive operators via spectral norm constraints, leading to stable and adversarially
robust networks [9].

W. Chen et al. analyze how deep connectivity patterns influence convergence under gradient
descent, using graph-theoretic tools to identify and prune ineffective pathways [10].

A. Damian et al. develop the concept of self-stabilization, showing that gradient descent at the
edge of stability follows a form of projected optimization constrained by sharpness [11], with
theoretical and empirical support across tasks. M. Xu et al. study square-loss deep classifiers and
reveal how normalization, low-rank evolution, and neural collapse emerge as beneficial dynamics,
particularly in sparse or modular architectures [12].

Further recent work continues to highlight how structural and dynamical properties shape deep
learning outcomes. B. Dherin et al. analyze the gradient flow of networks trained with square loss
and orthogonal inputs, showing that common training heuristics influence geometric complexity
and double-descent behavior [13]. C. Lyle et al. explore how changes in the curvature of the
loss landscape affect plasticity in deep networks, linking architectural and optimization choices to
preserved adaptability during training [14].

L. Noci et al. study signal propagation in Transformers, demonstrating how architectural constraints



can mitigate rank collapse and balance gradient flow [15]. F. Chen et al. propose the concept of
stochastic collapse, where gradient noise biases SGD toward simpler subnetworks—enhancing
generalization by aligning optimization with model sparsity [16].

A. Gravina et al. introduce Anti-Symmetric Deep Graph Networks (A-DGNs), a stable architecture
that preserves long-range dependencies and avoids vanishing/exploding gradients in deep graph
models [17].

S. Mittal et al. assess modular neural architectures, finding that while modularity improves
generalization and interpretability, it may require additional inductive biases or design principles to
achieve full specialization [18].

Recent studies have also explored how structural priors interact with self-supervised learning,
symbolic reasoning, and Transformer dynamics—further emphasizing the role of architectural
constraints in shaping learning outcomes.

V. Cabannes et al. analyze how data augmentations, inductive bias, and optimization interact in
self-supervised learning [19], proposing a theoretical framework that links training procedures to
generalization bounds in domain-shifted tasks. R. Riedi et al. study singular value perturbations
in deep networks, showing how architectural choices influence optimization surfaces and lead to
better-conditioned landscapes [20], especially in skip-connected architectures like ResNets.

D. Campbell et al. demonstrate that relational constraints in network architecture can reproduce
human-like biases toward geometric regularity, offering an alternative to symbolic reasoning for
structure discovery tasks [21]. Y. Li et al. provide a mechanistic view of how Transformers learn
semantic topic structures, revealing that embedding and self-attention layers encode co-occurrence
patterns in complementary ways [22]. E. Nichani et al. show that Transformers can learn latent
causal graphs through gradient descent by encoding structure directly into the attention matrix,
leading to robust generalization across reasoning tasks [23].

Further contributions have continued to reveal how architecture and implicit dynamics shape
learning efficiency, generalization, and robustness across various neural settings.

N. Razin et al. study implicit regularization in hierarchical tensor factorizations, showing that
architectural depth in convolutional networks induces regularization toward locality and non-trivial
inductive structure [24]. D. Teney et al. challenge the assumption that random networks behave like
random functions, demonstrating that structural components like ReLU and residual connections

lead to consistent biases and predictive performance [25]. M. S. Nascon et al. investigate the role of



step size in linear diagonal networks, revealing that large step sizes induce sparsity and directional
stability—serving as a form of implicit architectural bias [26].

F. Di Giovanni et al. examine the over-squashing problem in message-passing networks, showing
that width, depth, and graph topology strongly influence the ability of neural networks to propagate
signals effectively [27]. S. Tang et al. explore the connection between architectural design and
adversarial robustness, highlighting how sparsity and attention structures in Vision Transformers
improve generalization over convolutional baselines [28]. K. Kawaguchi et al. analyze the information
bottleneck in deep networks, providing a theoretical link between compression at hidden layers and
reduced generalization error, especially under excess representation [29].

Together, these works reinforce the broader perspective that stability, modularity, and inductive
constraints are not peripheral design considerations—they fundamentally shape how neural systems
learn, generalize, and adapt. Our structured-corrective architecture contributes to this conversation
by providing a principled mechanism to embed stability and adaptability directly into the forward

computation.

IV. GENERALIZATION AND EXPRESSIVE TRADEOFFS

Deep learning models often succeed by balancing two opposing forces: expressivity, which enables
them to fit complex data, and regularization, which prevents overfitting. Traditional approaches achieve
this balance through post-hoc techniques—dropout, weight decay, or early stopping. In contrast, our

architectural formulation embeds this balance directly into the structure of the transformation.

A. Structural Bias as Inductive Prior

The shaping operator S¢) introduces an architectural bias that limits the space of realizable
functions. This acts as an implicit inductive prior, steering the learning process toward solutions
that align with the model’s structural assumptions. For example, a block-diagonal S®) encourages
localized, modular computations, while a smooth spectral filter biases the layer toward low-frequency
behavior.

Such priors are particularly valuable in low-data or noisy regimes, where overparameterized
models are prone to memorization. We observe that networks with structured layers generalize better

on small datasets, even without explicit regularization techniques.



B. Generalization Bounds and Hypothesis Class

Formally, let Hg, denote the hypothesis class of unconstrained MLPs, and Hucturea C Heun be

the class induced by shaping operators. Then the effective class of our model is:

Heff - Hstmctured + Hcorrectmm (3)

where Horrection typically consists of shallow or low-capacity mappings. This formulation narrows
the effective capacity of the network while preserving approximation power.

In theory, the Rademacher complexity of H.g is lower than that of a fully unconstrained deep
network, especially when C) is parametrically limited. This suggests improved generalization

behavior, as validated in our robustness tests.

C. Emergent Modularity and Compositional Behavior

Interestingly, structured layers often encourage decomposable representations, where different
components of the input are processed via relatively independent channels. This emergent modularity
arises even without explicit separation and supports the idea that architectural constraints can lead
to compositional generalization.

We provide qualitative and quantitative evidence of such behavior in downstream tasks, where
structured networks learn interpretable, separable intermediate representations that correlate with

meaningful input factors.

D. A Generalization Bound via Structured Composition

We now formalize how the proposed architecture influences generalization behavior. Let Hg
denote the class of structured linear transformations shaped by S), and H¢ the class of correction

functions (e.g., shallow nonlinear networks). The full transformation class H is defined as:
H = {h(z) = SWz + é(z) | W € R* ¢ € Hcl. 4)

Assume:

« The spectral norm ||S|| < « for some fixed a.
« The weight matrix W is bounded as |W||r < B.
« The correction function class H has Rademacher complexity bounded by R, (H¢) < 5/v/n.

Then we can upper bound the generalization error of the composed model class.



Theorem 1. Let H be the structured architecture class as above, and suppose the loss function
C(h(z),y) is L-Lipschitz and bounded in [0, 1]. Then, with probability at least 1 — 6 over a sample

of size n, every h € ‘H satisfies:

E[((h(r) )] < - gﬁ(h(mi), 0+ 2B e og(1/5)

Proof. We begin with a generalization bound for Lipschitz losses (see Bartlett and Mendelson, 2002).

)

Since ¢ is L-Lipschitz and bounded in [0, 1], with probability at least 1 — ¢, for all h € H:

log(1/0)

E[((h(x), )] < %ié(h(mi),yi) oL oy, (1) + ) B

Let He = {z — SWz : |[W||r < B} and recall that H = Hg + Hc. By subadditivity of

Rademacher complexity:

Rn(H) < Ru(Hs) + Ra(He).

We assume R, (Hc) < B/+/n. It remains to bound R, (Hs). By definition:

n

1
sup _E i (SWx;e)|,
”W”FSB n i=1

9{n(?—[S’) = EO’

for arbitrary unit vector e, where o; are Rademacher variables.
Rewriting this:

1
— "R,

n

i 05" (ex))

Assuming ||z;]| <1 and [|S]]2 < a, we get ||ST(ez; )||r < . Therefore:

Z oS (ex])
i=1

Wilr<B

sup <I/V, i aiST(exiT)>

J

F

< ay/n,

F
by Khintchine—Kahane inequality. Hence:
B B
R, (M) < 2V _ B
n vn
Combining all terms:
(M) < Oy L

A

Substituting into the generalization bound:

E[((h(r),y)] < %Zﬁ(h(xi),yi) + 2L (Ba + ﬁ) . log(l/é)‘

NG 2n



This implies the slightly looser bound (absorbing constants into R, (#H¢) if needed):

E[¢(h(z),y)] < % gﬁ(h(xi), yi) + % R (He) + W

V. CONVERGENCE OF STRUCTURED RECURSIVE DYNAMICS

We now analyze the convergence behavior of networks where the layer transformation is recursively
applied. This setting models architectures that refine their state across multiple steps using a structured
backbone and a corrective component. We ask: under what conditions does this recursive process
converge to a fixed point?

Let the recursive update be defined by:
g = P2 = SWa® + ¢(z), (6)

where:

« ™ € R? is the state at step ¢,
o SW € R% is a structured linear operator,

o ¢:R?Y— R?is a trainable nonlinear mapping.

Theorem.

Theorem 2. Assume SW and ¢ are Lipschitz continuous with constants Ly, Ly such that:
[SWa = SWyl| < Liflz =yl llo(z) — o)l < Lallz = yl],
and that L, + Ly < 1. Then, the recursive sequence 1) = F(2®) converges to a unique fixed
point x*, independent of initialization.
Proof. Let F(x) = SWx + ¢(x). Using the triangle inequality:
[1F(z) = Fy)ll = ISWz + ¢(z) = SWy — o(y)||
< [[SWa = SWyl + [|¢(z) — ¢(y)l
< Lollz =yl + Lallo — yll = (Ln + La) ||z -yl

Let v = L; + Lo, with v < 1. Then F is a contraction. Since R? is a complete metric space,

Banach’s Fixed Point Theorem guarantees:



1) The existence of a unique fixed point z* € R? satisfying F'(z*) = x*,
2) Convergence of the sequence z(*) — x* from any initial point (%),

O]

This result provides a formal convergence guarantee for a wide class of structured architectures
with recursive updates. We next illustrate specific operator and correction choices that satisfy these

conditions in practice.

A. Examples and Interpretations

Theorem 2 guarantees convergence under a simple condition on the combined Lipschitz constants
of the structured linear path and the correction component. We now illustrate concrete instances
where this condition is satisfied.

1) Example 1: Orthogonal Structure with Bounded Nonlinearity: Let S = [ and W be an
orthogonal matrix, so that [|[/Wz — Wyl|| = ||z — y||. Then:

Ly = [|SW] = W] = 1.

If ¢(z) = o - tanh(Bz) with ||[aB| < 0.2, then Ly < 0.2 and total Lipschitz constant becomes
L; 4+ Ly = 1.2. This exceeds 1, so the contraction condition is not satisfied. However, with a
small scaling of W (e.g., ||IW|| = 0.7), the combined Lipschitz constant becomes 0.9, ensuring
convergence.

2) Example 2: Low-Rank Projection and Shallow Residual: Suppose S is a fixed low-rank
projection, e.g., a Laplacian or spectral filter, with induced norm ||S|| = 0.5, and W is arbitrary.
Then ||SW|| < 0.5||W]|. If W is initialized with norm ||[W]| < 1.0, we get Ly < 0.5.

Now let ¢(z) = ReLU(Bx) with || B|| < 0.3. Since ReLU is 1-Lipschitz and the operator norm
of B is 0.3, we get L, < 0.3. Then L; + L, < 0.8 < 1, ensuring contraction and convergence.

3) Example 3: Diagonal Scaling with Smooth Activation: Assume S is the identity and

W = diag()\l, . 7/\d)7

where |)\;| < 0.4. Then ||[SW|| = max; |\;| = 0.4.
Let ¢(z) = o(Bz) with o being a softsign or ELU activation. Suppose ||B|| = 0.5 and the
effective Lipschitz constant of ¢ is bounded by 0.4. Then again L, + L, = 0.8, and convergence

follows.
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These examples demonstrate that a wide class of structured transformations — including filtered,
diagonal, or orthogonally regularized operators — combined with mildly nonlinear corrections,
naturally satisfy the contraction condition. This provides a design lens: rather than enforcing hard
equilibria, one can guide network behavior by simply encouraging contractions via structure and

bounded residuals.

VI. MECHANISTIC EXPLANATION OF PGNN DYNAMICS

The architectural formulation and stability properties of PGNN have been introduced in prior
work [1]. In this section, we focus on complementary diagnostics that reveal how PGNN’s structured

pathways influence internal learning dynamics, generalization behavior, and convergence.

A. Layer-Wise Representation Consistency

To assess internal consistency, we compute the generalization gap at intermediate layers of PGNN
and a standard MLP. For each layer, we measure the mean squared error (MSE) between training and
validation activations. This analysis reveals that PGNN exhibits smaller gaps across layers, suggesting
that its structured transformations promote more stable and generalizable internal representations.

These results are visualized in Figure 1.

Layer-Wise Generalization Gap

I PGNN
s MLP

MSE Gap

Hidden 1 Hidden 2

Figure 1. Layer-wise generalization gaps (MSE) for PGNN and MLP. PGNN shows reduced discrepancy between training and

validation activations.



Model-derived CKA across layers (5 seeds, 1 batch)
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Figure 2. Model-derived CKA and Subspace-Overlap on a synthetic linear+noise classification task (d=16, 2 classes). Results over 5

seeds, single held-out batch; layers L1-L2.

B. Subspace Geometry and Representational Overlap

We quantify representational structure with two standard, self-contained metrics.
Centered linear CKA [30]. Given a held-out batch, let H, € R™*? be centered activations at
layer ¢ and Z € R™*™ be centered targets (or features). With C' = [ — %111

(CHH]C, CZZ7C)p
KA(H,. Z) = .
CRAUH2) = (o aT Ol (0227 Cllr

Subspace-Overlap (SOV). Let Uy, Uy, € R%** be orthonormal bases for the top-k principal-

component subspaces of the centered train and held-out activations at layer ¢. The overlap is the

mean squared cosine of the principal angles:
SOVi(HY, H}®) = 1 10y Unoll -

We use k=16 in all runs.

Results. With two hidden layers and five seeds, PGNN and MLP are broadly comparable. PGNN
shows a small CKA advantage at both layers, while SOV is mixed—slightly lower at L1 and higher
at L2. Figure 2 shows CKA; Table I summarizes SOV (mean+sd over 5 seeds; one held-out batch).



L1 SOV 1 L2 SOV 1

MLP 0.934 £ 0.013 0.940 £ 0.012
PGNN 0923 £ 0.018 0.951 £ 0.016

Table 1
DIAGNOSTIC SOV ON SYNTHETIC LINEAR+NOISE CLASSIFICATION SETUP (D=16, 2 CLASSES); FEATURE-SPACE PCS; MEAN4SD

OVER 5 SEEDS.

C. Equilibrium Interpretation

Unlike standard feedforward models, PGNN layers can be interpreted as recursive systems that
converge toward stable representations. We simulate iterative application of PGNN blocks and

measure convergence behavior using a contraction metric. These results are visualized in Figure 3.

Contraction Metric Over Recursive PGNN Steps

Mean Absolute Change
o o o =
e [=3] [ax] [=]
1 i i 1

o
e
I

o
=]
i

T
0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5

Figure 3. Contraction metric over recursive PGNN iterations. The output stabilizes over time, indicating equilibrium behavior.

These diagnostics collectively demonstrate that PGNN'’s structured design not only improves
training stability but also induces smoother, more robust, and generalizable learning dynam-

ics—complementing its architectural foundations without duplicating prior results.

Implementation details and experimental configurations for all diagnostics are provided in Section VII.



Model CKA 1 Subspace-Overlap 1 Transfer-Probe R? 1

MLP 0.39 £+ 0.02 0.11 & 0.02 1.00 £ 0.00
PGNN 0.40 4+ 0.02 0.13 £+ 0.01 1.00 £+ 0.00
Table 11

SYNTHETIC ALIGNMENT TASK. METRICS COMPUTED FROM model-derived ACTIVATIONS; 5 SEEDS, ONE HELD-OUT BATCH, BEST

HIDDEN LAYER PER SEED.

D. Synthetic Alignment Task (Formal Spec)

Goal. Quantify how closely hidden representations align with a known signal subspace using model-derived (real) activations.
Data. Input dim d=16. Sample an orthonormal basis U € R**¢ (QR on a Gaussian matrix). For each input z ~ AN (0, I4)
define z = U 2. Targets are y = Vz + ¢ with VER™*4 (m=4) and e ~N (0,0 I,,), 0=0.05.
Models. Two hidden layers (width 64). Baseline MLP vs. PGNN with identical parameter budget:

2@ — SO ® =1 +C<z)(x<z—1)) 7

with SW=T unless noted and C") = Linear — ReLU (two blocks total).

Training. Adam (10’3), batch 128, 2000 steps, 5 seeds.

Evaluation (one held-out batch). (i) centered linear CKA between H; and Z; (ii) SOV as mean cos> principal angles
between the top-k right-singular subspaces of train/test activations (per layer); (iii) ridge-probe R? from H, to Z (A=10"%).

Report mean+sd over seeds.

On this controlled task, PGNN shows a small but consistent gain in both CKA (+0.01) and SOV
(+0.02) over the MLP, while the transfer probe saturates at R?~1.0, as expected for the near-linear

ground truth (see Table II).

VII. EMPIRICAL SUPPORT FOR STRUCTURAL HYPOTHESES

This section presents targeted diagnostics that isolate internal mechanisms of PGNN behavior—such
as representation consistency, directional selectivity, and convergence dynamics. These analyses

complement the broader empirical studies presented in Section VIII.

A. Experimental Setup

All experiments were implemented in PyTorch with fixed random seeds to ensure reproducibility.
Synthetic datasets were generated using standard normal distributions, with input dimensions typically

set to d = 16 and batch sizes ranging from 100 to 200 depending on the task. For regression tasks,



outputs were derived from low-dimensional signal components with optional Gaussian noise. For
classification tasks, labels were computed from structured projections or latent mappings.

PGNN layers follow Equation (1). The output of each PGNN block is computed as the sum of the
shaped linear transformation and the correction path. In recursive simulations, PGNN blocks were
applied iteratively for 20 steps to assess convergence behavior. For generalization gap analysis, we
computed the mean squared error (MSE) between training and validation activations at each hidden
layer. Subspace overlap was quantified using cosine squared principal angles. The contraction metric
was defined as the mean absolute change between consecutive recursive outputs.

All models were trained using the Adam optimizer with a learning rate of 10~® and default
PyTorch initialization. Evaluation metrics included training loss, test accuracy, gradient norm tracking,
and robustness under input perturbations. All figures in Sections VI and VII were generated directly

from these setups.

B. Sensitivity to Input Alignment

To validate the hypothesis that structured pathways promote alignment with informative input
directions, we compare training dynamics on two variants of the same synthetic regression task:
one with aligned inputs (signal dimension dominant) and one with permuted or randomized feature
ordering.

Setup. We train identical shallow networks with and without structured projections, using a single
corrective pathway in both. Loss and gradient norms are tracked across epochs.

Observation In the aligned setting, structured networks converge significantly faster and exhibit
lower gradient variance. In the randomized setting, convergence is slower for both, but the structured
network still stabilizes earlier.

Interpretation. This supports the idea that structured transformations facilitate signal flow along

meaningful axes, improving optimization even when corrective flexibility is held constant.

C. Projection Incompleteness and Correction Load

Here we probe how the model behaves when the projection operator is deliberately underspecified
or corrupted (e.g., rank-deficient or noisy basis).

Setup. We evaluate training loss and correction path magnitude across varying projection ranks.
Lower-rank projections simulate settings where structural assumptions are incomplete or partially

inaccurate.



Observation. As the projection rank decreases, the corrective pathway compensates with increased
activity, while training loss remains bounded—up to a critical limit where expressivity collapses.

Interpretation. This supports the claim that the corrective component adaptively compensates
for structural deficiencies, while also suggesting a trade-off space between imposed structure and

correction burden.

D. Stability Under Gradient Perturbation

To assess whether structured transformations induce smoother optimization landscapes, we
introduce gradient noise during training and compare convergence behavior.

Setup. A fixed level of Gaussian noise is added to the gradients at each update step. We track
final accuracy and loss oscillation metrics over multiple seeds.

Observation. Structured networks demonstrate reduced oscillation and more consistent convergence
than their unstructured counterparts.

Interpretation. This lends empirical weight to the theoretical expectation that structural shaping

flattens the local geometry of the optimization surface.

E. Pathway Decoupling Analysis

Finally, we investigate whether the roles of the structured and corrective components remain
distinct throughout training, or whether one dominates over time.

Setup. We monitor the layerwise magnitude of structured output vs. correction output over training
epochs.

Observation. Early in training, both pathways are active; over time, the corrective pathway
attenuates while the structured path remains stable—suggesting an implicit convergence to structured
representations.

Interpretation. This supports the view that the corrective component serves as a transient guide
rather than a persistent crutch, reinforcing the notion of stability through architecture rather than

training heuristics.

VIII. TASK-LEVEL COMPARISON ON FASHION-MNIST

To examine how the proposed structured-corrective architecture behaves in practice, we compare

it against a MLP on a real-world image classification task. This section does not aim to achieve



state-of-the-art accuracy, but instead focuses on emergent training behavior and reliability across

runs.

A. Setup

We consider the Fashion-MNIST (FMNIST) dataset with two-layer networks using either (i)
standard MLP layers or (ii) PGNN blocks as introduced earlier. Both models are trained for 20
epochs using the Adam optimizer and identical hyperparameters. The PGNN model employs an
identity-based shaping operator and a learned correction path, while the MLP baseline is purely

learned.

B. Non-identity S on FMNIST

Beyond the identity-structured variant, we evaluate a fixed low—pass shaping operator inside the

PGNN blocks:
S = CTdiag(L)C, C € R is orthonormal DCT-II, L; = 1[i < 0.25d].

All other settings (width, optimizer, batch size, seeds) are identical to the S=I runs.

Figures 4 to 6 update our FMNIST plots to include this non-identity .S. Across five seeds, PGNN
with low-pass DCT (DCT-LP) closely tracks the identity variant: training loss and test accuracy
curves are nearly overlapping, with a small early-epoch advantage and slightly tighter seed variance

for DCT-LP; final accuracies differ by only a few tenths of a percent from the MLP baseline.

C. Mechanistic diagnostics on FMNIST

We complement the accuracy/loss results with two diagnostics. The total parameter-gradient
ls-norm decays monotonically for both models, with PGNN stabilizing slightly lower after the
first few epochs. The input—logits Jacobian spectrum, averaged over a 32-sample held-out batch,
shows a characteristic pattern: PGNN has larger leading singular values yet a faster tail decay,
indicating stronger sensitivity along a few coherent directions with suppressed high-order responses.
Numerically, the top-3 means are (16.9,12.9,10.9) for MLP and (22.8,15.1,11.1) for PGNN on

the same batch.



—— MLP
PGNN (S=1)
0.88 1 —— PGNN (DCT-LP)

0.87 4

0.86 -

Test accuracy

0.85 1

0.84 4

Figure 4. FMNIST test accuracy (mean =+ sd over 5 seeds). Models: MLP, PGNN with identity S=1, and PGNN with DCT low-pass
S (25% kept).
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Figure 5. FMNIST training cross-entropy loss (mean over 5 seeds). The DCT-LP S follows the identity case closely with a slight

early-epoch advantage.

D. Interpretation

These results suggest that the PGNN architecture not only maintains competitive accuracy, but
also introduces useful regularities during training. The structural path appears to stabilize early
representation learning, while the corrective path allows flexible adaptation, ultimately reducing
sensitivity to initialization and overfitting pressure. These effects complement the theoretical

expectations outlined in earlier sections.
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Figure 6. Initialization sensitivity (mean £ sd over 5 seeds). Shaded bands show seed variance. The non-identity .S yields similar or

marginally lower variance than the identity case.

Gradient-norm during training (FMNIST) Input-logits Jacobian spectrum (FMNIST)

—o— MLP
PGNN

—o— MLP

PGNN
20 A

N

10 4
100

Total gradient norm (L2)

9x 107!

Singular value (mean over 32 held-out samples)

8x 107!

2 4 6 8 10
Epoch Singular-value index

Figure 7. FMNIST mechanistic diagnostics. Left: Total gradient />—norm during training (epochs). Right: Input—logits Jacobian
spectrum on a held-out batch (32 samples; mean singular values). PGNN shows larger leading singular modes and a steeper spectral

tail than the MLP; top-3 means (MLP vs. PGNN): (16.9,12.9,10.9) vs. (22.8,15.1,11.1).

Protocol. Gradient norms are total {5 across parameters per epoch; the Jacobian spectrum is computed
w.r.t. inputs at the logits on a single held-out batch and averaged over 32 samples.

PGNN and the MLP exhibit the same monotonic decline in total gradient norm, but PGNN
stabilizes at a slightly lower level after the first few epochs (Fig. 7, left). The Jacobian spectrum on
a held-out batch shows a characteristic pattern: PGNN has larger leading singular values yet a faster
decay across the tail (right). This indicates stronger sensitivity along a few coherent directions with

suppressed high-order/anisotropic responses—consistent with the structured path acting as a spectral
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Figure 8. Layer-wise alignment on FMNIST (5 seeds). Left: centered linear CKA between hidden activations and one-hot labels.
Right: Subspace-Overlap (k=16) between train and held-out activation subspaces at the same layer. Error bars are meanzsd across

seeds. Protocol matches §VIII.

CKA 1 (mean4sd) SOV, T (meantsd, k=16)
Model L1 L2 Model L1 L2
MLP 0.576 + 0.008 0.641 + 0.010 MLP 0.130 + 0.012 0.131 £ 0.005
PGNN (S=I) 0.562 + 0.008 0.646 £ 0.021 PGNN (S=I) 0.131 + 0.022 0.125 £ 0.012
PGNN (DCT-LP) 0.569 + 0.016 0.636 + 0.027 PGNN (DCT-LP) 0.128 £+ 0.010 0.132 £+ 0.010
Table III

FMNIST LAYER-WISE ALIGNMENT (5 SEEDS). SAME TRAINING PROTOCOL AS § VIII.

shaper.

We evaluate centered linear CKA and Subspace-Overlap SOVE on FMNIST using real activations
(5 seeds, one held-out batch; k=16 top PCs). CKA increases from L1 to L2 for all models, with
a small gain for PGNN (S=I) at L2 (+0.005 over MLP), while SOV16 remains flat around 0.13
across layers and models; PGNN (DCT-LP) behaves comparably.

IX. CONCLUSION

This paper explored a structured architectural paradigm that balances expressive flexibility and
inductive regularity through an explicit separation of transformation and correction. Departing from

traditional end-to-end learning pipelines, we embedded structure directly into the forward computation
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via constrained operators, while preserving adaptability through auxiliary correction paths. This
formulation enables fine-grained control over the hypothesis space and introduces architectural
inductive biases that support both generalization and interpretability.

We formalized the generalization properties of the resulting models, showing how their effective
capacity is shaped by the interaction between structured and corrective components. Theoretical anal-
ysis of recursive dynamics established convergence guarantees under mild assumptions, underscoring
the stability of such architectures beyond standard training regimes.

Empirical investigations confirmed that structure-aware networks exhibit increased robustness to
noise, faster convergence under alignment, and more stable behavior under perturbation. Furthermore,
we showed that even minimal corrective pathways can compensate for structural incompleteness,
creating an expressive but controlled model class.

Taken together, these results highlight the utility of decomposing learning architectures into
structured and adaptive components. Rather than imposing structure as a constraint or using it solely
for interpretability, we demonstrated how structure can be integrated into the model’s inductive
scaffolding—guiding learning while preserving flexibility. This offers a new lens on architectural

design that is compatible with, but independent from, downstream task specialization.
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