Reasoning Systems as Structured Processes:
Foundations, Failures, and Formal Criteria

Saleh Nikooroo and Thomas Engel

saleh.nikooroo@uni.lu,

Abstract—This paper outlines a general formal framework
for reasoning systems, intended to support future analysis
of inference architectures across domains. We model rea-
soning systems as structured tuples comprising phenomena,
explanation space, inference and generation maps, and
a principle base. The formulation accommodates logical,
algorithmic, and learning-based reasoning processes within
a unified structural schema, while remaining agnostic to
any specific reasoning algorithm or logic system. We survey
basic internal criteria—including coherence, soundness, and
completeness—and catalog typical failure modes such as
contradiction, incompleteness, and non-convergence. The
framework also admits dynamic behaviors like iterative
refinement and principle evolution. The goal of this work
is to establish a foundational structure for representing and
comparing reasoning systems, particularly in contexts where
internal failure, adaptation, or fragmentation may arise. No
specific solution architecture is proposed; instead, we aim to
support future theoretical and practical investigations into
reasoning under structural constraint.

Index Terms—Reasoning systems, formal structure, infer-
ence dynamics, failure modes, coherence, soundness, adaptive
reasoning.

I. INTRODUCTION

Reasoning systems are typically formalized within well-
established frameworks such as symbolic logic, optimiza-
tion theory, or machine learning architectures. These
paradigms often operate under the assumptions of full
internal consistency, total deductive closure, or the global
applicability of inference rules. While these assumptions
enable tractable and mathematically elegant systems, they
can obscure or fail to accommodate the real-world char-
acteristics of reasoning: partial information, structural
fragmentation, or evolving principle sets.

This paper departs from traditional models by proposing
a general framework for reasoning systems as structured,
modular entities. Crucially, our formulation does not
presuppose any particular reasoning algorithm or deduc-
tive paradigm; it aims instead to describe the structural
conditions under which reasoning may emerge or fail.

Rather than focusing solely on logical deduction or
optimization performance, we examine reasoning systems
as dynamic processes that interpret phenomena, generate
explanations, and validate them internally against a set of
governing principles.

Our motivation stems from the observation that many
reasoning failures—from logical paradoxes to deadlocks
in constrained systems—are not anomalies but structural
symptoms of rigid or insufficient internal frameworks. To
better understand these limits and potentials, we seek a
formalism that:
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o Captures the internal composition of a reasoning
system, including its inputs, outputs, generative maps,
and principle base;

o Enables a classification of failure modes—such as
contradiction, incompleteness, or non-convergence—
within a unified framework;

e Provides structural criteria for internal coherence,
inference validity, and explanation sufficiency;

« Views reasoning as an iterative and adaptive structural
process, rather than a static rule-based engine.

The remainder of this paper proceeds as follows. In Sec-
tion II, we define a minimal formal structure for reasoning
systems. Section III introduces key notions of coherence,
soundness, and completeness. Section IV categorizes failure
modes and their structural implications. Section V examines
the internal dynamics of reasoning, including fixed-point
behavior and principle drift. Section VI instantiates the
formalism in several reasoning domains. We conclude with
a brief discussion of implications and future directions.

II. FORMAL STRUCTURE OF A REASONING SYSTEM

We define a reasoning system as a structured quintuple:
R = (P7E7f7g’]:[)

where each component plays a distinct functional role:

e P is the set of phenomena, inputs, or observed
problems that the system is intended to interpret or
solve;

o E is the explanation space, consisting of candidate
solutions, hypotheses, or structured outputs;

e f : P — FE is the inference map, producing
explanations from phenomena;

e g: E — P is the generation map, reconstructing or
predicting phenomena from explanations;

« II is the principle system, a set of structural, logical,
or epistemic constraints that govern both f and g.

This formulation is intentionally agnostic to implemen-

tation. For instance:

e In symbolic logic, P may be a set of premises, F
a set of theorems, f a deduction operator, and II a
proof system;

« In constrained optimization, P is the space of objective
functions and constraints, £ the solution space, f a
solver, and II the feasibility conditions;

e In a neural inference setting, f may be a learned
function approximator, while IT encodes architectural
or regularization constraints.

We emphasize that f and g are not necessarily inverses,

nor are they guaranteed to be bijective or even total. In



fact, the limits of their definability and mutual consistency
will be a central concern throughout this work.

The role of II is to constrain the admissibility and
structural behavior of both f and g¢. It may encode
axioms, domain-specific rules, inductive biases, or dynamic
constraints that evolve over time. Importantly, a reasoning
system may be internally well-defined (i.e., f, g exist
and operate) while still violating II, or failing to apply II
consistently.

In what follows, we use this model to analyze the
internal structure, coherence, and failure modes of reasoning
systems in a general and implementation-independent way.

III. COHERENCE, SOUNDNESS, AND VALIDITY

Having established the formal structure of a reasoning
system R = (P, E, f, g, 1), we now define the core internal
criteria by which such a system may be evaluated. These
include:

o Coherence: Whether the explanations produced by f
and their reconstructions via g are consistent with the
original inputs.

o Soundness: Whether all generated explanations re-
spect the governing principles II.

o Completeness: Whether the system is capable of
producing valid explanations for all admissible phe-
nomena in P.

A. Coherence

We define a reasoning system as coherent if, for all
p € P such that f(p) is defined,

g(f(p)) ~p

under a chosen notion of approximation (e.g., exact equality,
semantic closeness, or acceptable reconstruction error).
Coherence captures the ability of a reasoning system to
reconstruct or validate its own interpretive steps.

Perfect coherence implies g o f = idp on the domain
where f is defined. In practice, this is often relaxed to a
tolerable discrepancy, especially in probabilistic or learned
systems.

B. Soundness

A reasoning system is sound if all explanations produced
by f are consistent with the principles in II. That is,

Vpe P, f(p) I

where |= denotes logical or structural satisfaction. Sound-
ness guarantees that inference respects internal rules,
whether logical axioms, physical constraints, or algorithmic
feasibility.

Soundness may also be localized: some systems are
sound only with respect to subsets of II, or under specific
operational contexts.

C. Completeness

We say the system is complete if, for every admissible
p € P, there exists a valid explanation e € E' such that:

flp)=e e =11

This ensures that the reasoning system can handle its full
intended domain without structural blind spots.

Note that completeness is not merely the existence of
f(p) but also its adherence to II. A system may be able
to compute f(p) for all p, yet remain incomplete if those
explanations violate IT.

and

D. Fixed-Point Interpretations

In certain systems, a fixed-point relationship may serve
as an idealization:

flgle)) =e

Such relationships reflect ideal coherence under perfect
invertibility. In general, systems approximate rather than
achieve these fixed points.

and/or g(f(p)) =p

E. Joint Evaluation

The interplay between coherence, soundness, and com-
pleteness reveals much about the system’s structural health:

« A system can be sound but incoherent (e.g., it reasons
correctly but fails to reconstruct inputs).

o It can be coherent but incomplete (e.g., reconstructs
reliably but fails on many inputs).

o Achieving all three properties simultaneously is rare
and often requires tightly constrained II or system
simplification.

These criteria provide a framework for analyzing where
reasoning systems succeed or break down, setting the stage
for the failure typologies to follow.

IV. TYPOLOGY OF FAILURE IN REASONING SYSTEMS

Despite a system’s formal structure and internal con-
straints, reasoning processes often encounter breakdowns.
These failures are not necessarily flaws in implementation
but rather indicators of structural insufficiency, misalign-
ment, or rigidity within the system. We now outline a
typology of such failures, categorized by their causes and
manifestations.

A. Contradiction

A contradiction occurs when the output of the reasoning
process violates the governing principles II. That is, for
some p € P:

flp) I

This can arise from incompatible axioms, overloaded
inference rules, or misaligned generative behavior in g.
Contradictions indicate internal inconsistency and may lead
to epistemic collapse or rejection of the explanation.



B. Incompleteness

A system is said to exhibit incompleteness when it fails
to provide explanations for certain phenomena within its
intended scope. Formally, there exists p € P such that f(p)
is undefined or inadmissible:

fp) ¢ E or f(p) =11

Incompleteness can stem from under-specified principles,
rigid constraint boundaries, or unanticipated problem in-
stances.

dp € P such that

C. Non-Convergence

Some reasoning systems involve iterative or recursive
processes. A failure mode emerges when these iterations do
not converge to a stable explanation. For example, repeated
application of f o g or g o f might yield divergent or
oscillating results:

lim (fog)"(e)

n—00

does not exist

Non-convergence is common in optimization-based, heuris-
tic, or neural reasoning frameworks.

D. Overfitting and Underfitting

When f over-specializes to training or observed in-
stances, the system may become brittle and fail to gen-
eralize—this is overfitting. Conversely, if f is too coarse
or regularized, it may produce vague or non-informative
explanations—this is underfitting.

These behaviors often arise from misaligned II, overly
flexible or overly constrained function classes, or improper
selection of inductive biases.

E. Structural Deadlock

A reasoning system may become structurally inert
when its internal logic is self-consistent but incapable of
progressing in the face of novel or ambiguous inputs. This
deadlock occurs when:

o f is defined but constant or non-responsive across
large regions of P;

o Il prohibits admissible alternatives due to over-
constraint;

« or f outputs trivial explanations (e.g., e = null or
tautologies).

Such deadlocks are particularly insidious, as the system
appears functional but fails to engage meaningfully with
its problem space.

F. Failure Summary

These failure types are not mutually exclusive. A reason-
ing system may simultaneously suffer from contradiction
in some regions, incompleteness in others, and deadlock
elsewhere. The typology above provides a diagnostic
vocabulary for characterizing and comparing reasoning
systems in practice.

In the following section, we explore how such sys-
tems evolve internally—sometimes recovering from failure,
sometimes reinforcing it.

V. INTERNAL DYNAMICS AND REASONING EVOLUTION

Reasoning systems are not always static entities. In many
applications, they operate over time—through iterative re-
finement, self-correction, or evolving structural constraints.
This section explores the internal dynamics of such systems,
focusing on how they respond to error, adapt to novelty,
or restructure themselves without external intervention.

A. Sequential Inference and Iterative Structure

In systems where f or g are defined recursively or in
stages, reasoning proceeds through a sequence of internal
steps:

co=fp), e =1Fflge0)), ---i en=flglen))

This chain may converge, cycle, or diverge depending on
the nature of f, g, and II. The goal of such iterations
may include refining an explanation, validating internal
coherence, or escaping suboptimal initial mappings.

B. Error-Driven Adjustment

Some systems adjust their internal mappings in response
to discrepancies between predicted and observed phenom-
ena:

op =1 —g(f(p))

Such error signals can trigger refinement of f, tuning of
g, or revision of II. This dynamic is especially prominent
in adaptive learning systems, where gradient-based or rule-
based updates aim to reduce reconstruction error or improve
inference fidelity.

C. Principle Drift

Over time, the principle set II may itself evolve:
g —> 1 —» --- — 11,

This evolution may be triggered by contradictions, poor
performance, or the emergence of new problem domains.
Principle drift alters the admissibility conditions and
effectively changes the structure of the reasoning system.
It reflects a meta-level response: rather than repairing f or
g, the system alters what it considers valid.

D. Self-Regularization

Some reasoning systems include built-in mechanisms to
avoid or correct undesirable behavior. These may include:
« Penalizing incoherent mappings (e.g., regularization
terms in optimization);
« Constraining search space to prevent overfitting;
« Disabling unstable regions in f or g through gating
or pruning mechanisms.
These structural safeguards help enforce stability and steer
the system toward valid reasoning behavior without explicit
supervision.

E. Local vs. Global Adaptation

Adaptation may occur locally (e.g., only for specific
phenomena p € P) or globally (altering f, g, or II across
the entire system). Systems that support local updates may
be more resilient but risk fragmentation; global adaptations
offer coherence at the risk of rigidity.



F. Failure Response Modes

Not all systems respond to failure. Some ignore error
entirely; others collapse or halt; others adapt. The presence
or absence of failure-response dynamics—especially prin-
ciple drift and error correction—can be used to classify
systems into static vs. evolving reasoning architectures.

In the next section, we instantiate this framework with
examples drawn from logic, optimization, and learning
systems.

VI. EXAMPLES OF REASONING SYSTEMS

We now illustrate the general framework by instantiating
it in three distinct domains: deductive logic, constrained
optimization, and structured neural inference. These ex-
amples demonstrate the flexibility of the (P, E, f,g,1I)
formulation and how different reasoning paradigms fit
within its structure.

A. Example 1: Deductive Logic System

« Phenomena (P): Sets of premises or assumptions.

« Explanation space (E): Theorems or derived propo-
sitions.

« Inference map (f): A derivation function applying
inference rules (e.g., modus ponens).

« Generation map (g): Reconstructs minimal premises
or antecedents from a given theorem (where applica-
ble).

« Principles (II): Axioms, inference rules, and proof
constraints (e.g., propositional logic axioms).

Coherence in this setting corresponds to whether derived
conclusions can be traced back to accepted premises.
Soundness ensures that all derivations respect logical ax-
ioms. Completeness refers to whether all logically entailed
theorems can be reached.

B. Example 2: Constrained Optimization Solver

« Phenomena (P): Problem specifications—objective

functions and constraint sets.

« Explanation space (£): Candidate solutions or con-

figurations.

« Inference map (f): Optimization routine mapping

problems to solutions.

« Generation map (g): Reconstructs problem structure

from candidate solutions (e.g., via duality).

o Principles (II): Feasibility conditions, KKT con-

straints, or convexity assumptions.

Here, coherence implies that optimal solutions explain
the posed problem faithfully. Soundness requires that
outputs satisfy all constraints. Completeness reflects the
solver’s ability to find feasible solutions across the problem
domain.

C. Example 3: Structured Neural Inference

« Phenomena (P): Input data points or observations
(e.g., images, text).

« Explanation space (F): Feature embeddings, latent
codes, or predicted labels.

o Inference map (f): Neural network performing en-
coding or classification.

o Generation map (g): Decoder or generative model
reconstructing input.

« Principles (IT): Inductive biases encoded by architec-
ture, loss functions, or regularization terms.

Coherence relates to how well reconstructions match
inputs. Soundness reflects whether predictions respect the
model’s inductive assumptions. Completeness captures
whether the model generalizes across the full data dis-
tribution.

D. Cross-Example Summary

Each of the above systems instantiates the same general
structure but emphasizes different components of reasoning:

o Logic emphasizes I (axioms) and f (deduction).

o Optimization emphasizes f and g under feasibility
constraints.

« Neural inference emphasizes learned f, approximate
g, and implicit II via architecture.

This diversity underscores the versatility of the formal
framework, which abstracts away from domain specifics to
analyze structural and functional integrity at a higher level.

In the concluding section, we summarize our contribu-
tions and suggest directions for further research.

VII. RELATED WORK
Structured Reasoning Frameworks and Epistemic Models

Recent work moves beyond classical logic by modeling
reasoning as structured, modular, or coherence-driven rather
than truth-functional. Simon [1] develops a coherence-
based framework for biased reasoning, emphasizing internal
consistency as the main organizing principle—resonant
with our model’s allowance for structural failure and belief
reconfiguration.

Casini [2] provides a flexible logic for conditional
reasoning beyond truth-functional semantics, supporting
the kind of partial inference and non-monotonicity that
our framework tolerates explicitly. Arieli [3] classifies
argumentation schemes via postulate satisfaction, proposing
inferential formalisms that account for contradiction without
collapse, conceptually aligning with our treatment of
epistemic tensions.

Girdenfors [4] offers a geometric model of conceptual
reasoning, and Kido [5] presents probabilistic symbolic
frameworks for structured inference—both motivating our
belief graph’s topological encoding of epistemic struc-
ture. Paulino-Passos [6] interprets explanation as a non-
monotonic reasoning process, suggesting evolving inference
paths; by contrast, we permit persistent contradiction to
co-exist with structural coherence.

Bushuev [7] discusses multimodal reasoning via TRIZ
principles, prioritizing adaptability and contradiction man-
agement—reflecting our interest in epistemic resilience
rather than deductive purity.

Modular, Compositional, and Iterative Architectures

The modular design of reasoning architectures has gained
traction. Christianos et al. [8] propose Pangu-Agent, a
generalist agent embedding reasoning modules for improved



generalization. Creswell [9] builds modular chains of fine-
tuned neural units to enforce reasoning faithfulness and
reduce hallucination, paralleling our interest in structured
yet flexible inference models. SCREWS [10] introduces a
reasoning framework that supports revision and modular
recombination of inference steps. WanJun et al. [11] disen-
tangle representation and reasoning through a compositional
transformer model, while Zhou et al. [12] introduce SELF-
DISCOVER to enable LLMs to autonomously compose
reasoning chains—both reinforcing structural modular-
ity over end-to-end black-box reasoning. Fu [13] offers
MORSE, a dynamic modular reasoning framework tailored
to explanation generation. Hua et al. [14] combine neural
and symbolic reasoning pathways in a two-system model,
advocating for cognitive complementarity—a principle
echoed in our separation of operational and constraint
mappings.

Topological and Graph-Based Representations

Graphical and topological reasoning models provide an
interpretive scaffold. Zhang et al. [15] propose Diagram
of Thought (DoT), using Topos Theory to model LLM
reasoning as a directed acyclic graph. Ho et al. [16] frame
logical traversal as dialectical dialogue trees tolerant to
inconsistency. Zhu et al. [17] propose structural represen-
tation learning to generalize across reasoning types.

Our own belief graphs continue this lineage but shift
emphasis from entailment to structural coherence—allowing
persistent contradiction and cluster-based epistemics.

Meta-Reasoning, Verification, and Dynamic Strategy Con-
trol

Sui [18] proposes Meta-Reasoner, a dynamic controller
for strategy selection during inference time. Xiang [19]
extends this to meta chain-of-thought supervision, en-
hancing internal traceability. Raza [20] explores logical
task verification using solvers, while ReCEval [21] evalu-
ates reasoning chains for correctness and informativeness.
Both highlight meta-level oversight and structural inspec-
tion—similar in spirit to our separation of confidence versus
credibility within belief networks. Ling et al. [22] offers a
deductive framework supporting self-verification and chain
decomposition, reinforcing reasoning transparency. Wei
[23] proposes AlignRAG, a feedback-based framework for
aligning multi-hop retrieval chains—conceptually related
to our epistemic feedback model.

Inductive, Causal, and Failure-Oriented Models

Qiu et al. [24] analyze inductive hypothesis refinement,
revealing limitations in rule application and generaliza-
tion—an issue our model reframes as structural incoherence.
Wang et al. [25] examine transformer generalization failures
as indicators of latent reasoning limits. Tang et al. [26]
present CausalGPT, a multi-agent architecture for causality-
aware reasoning. Saparov [27] offers a formal critique
of LLM proof planning, demonstrating accurate micro-
inference but poor global coherence. Jung et al. [28]
improve reasoning robustness through recursive, logically
consistent explanations, reinforcing our emphasis on it-
erative reasoning integrity. Prystawski [29] proposes that

reasoning arises from local correlations among observed
variables—a structural insight compatible with our model’s
cluster-driven reasoning across graph components.

General Syntheses and Reasoning Surveys

Sun et al. [30] survey reasoning with foundation models,
covering techniques across multi-modal, multi-agent, and
structured reasoning. Plaat [31] consolidates prompting
and stepwise reasoning in LLMs, identifying current gaps
in systematic reasoning. Saied [32] surveys decision-
making frameworks, emphasizing modular decision sup-
port—underscoring the need for structural substrates
like belief graphs. Wang et al. [33] and Radhakrishnan
et al. [34] develop Chain-of-Knowledge prompting and
decomposition-based reasoning, respectively, both contribut-
ing to the understanding of structured deduction.

Summary

Across this landscape, a convergence emerges: toward
frameworks that prioritize internal structure, revision, and
epistemic transparency. Whether through modular reasoning
units, topological encoding, or verification protocols, the
field is moving away from opaque statistical inference
toward explainable, compositional, and resilient systems.
Our proposed belief graph framework fits within this shift,
offering a contradiction-tolerant and structurally explicit
substrate that separates reasoning integration from source
reliability and procedural logic.

VIII. CONCLUSION AND OUTLOOK

This paper has proposed a general framework for rea-
soning systems, formalized as structured entities composed
of phenomena, explanations, inference and generation
mappings, and principle sets. We have shown that this
formulation:

o Captures diverse reasoning paradigms—including
logic, optimization, and learning—under a unified
structural model;

« Defines internal evaluation criteria such as coherence,
soundness, and completeness;

« Supports a detailed typology of failure modes, includ-
ing contradiction, incompleteness, non-convergence,
and deadlock;

o Enables the study of internal dynamics, from iterative
refinement and error correction to evolving principles
and self-regularization.

By decoupling reasoning from any specific implemen-
tation or representational formalism, the model invites
cross-domain analysis of structural reasoning properties. It
offers a foundation for diagnosing reasoning pathologies,
comparing systems, and guiding principled design.

Future Directions

This work opens several avenues for future exploration:

e Modular Composition: How can reasoning systems
be composed from subsystems while preserving or
enhancing structural integrity?

+ Resilience and Repair: Can local adaptations (e.g.,
error-driven refinement) ensure global soundness and
coherence?



o Dynamic Principle Systems: What governs the

evolution of II in adaptive or self-revising systems?

« Evaluation Metrics: Beyond coherence and sound-

ness, what metrics capture the robustness, generality,
or strategic capacity of a reasoning system?

While we have not addressed interaction between distinct
reasoning systems in this work, such considerations lie be-
yond the present scope and are left for future investigation.

In closing, the reasoning system framework offers a
structural and dynamic view of inference architectures.
It emphasizes not only what systems conclude, but how
they operate, evolve, and fail. We believe this perspective
will prove valuable across fields that rely on principled but
adaptable reasoning processes.
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