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Abstract—The internal representations learned by deep
networks are often sensitive to architecture-specific choices,
raising questions about the stability, alignment, and transfer-
ability of learned structure across models. In this paper, we
investigate how structural constraints—such as linear shaping
operators and corrective paths—affect the compatibility of
internal representations across different architectures. Building
on the insights from prior studies on structured transformations
and convergence, we develop a framework for measuring and
analyzing representational alignment across networks with
distinct but related architectural priors. Through a combination
of theoretical insights, empirical probes, and controlled transfer
experiments, we demonstrate that structural regularities induce
representational geometry that is more stable under architectural
variation. This suggests that certain forms of inductive bias not
only support generalization within a model, but also improve
the interoperability of learned features across models. We
conclude with a discussion on the implications of representational
transferability for model distillation, modular learning, and the
principled design of robust learning systems.

Index Terms—Representation alignment, structured transfor-
mations, architectural priors, transfer learning, inductive bias,
feature geometry, cross-model generalization.

I. INTRODUCTION

The success of deep learning has often been attributed to
the remarkable ability of neural networks to learn rich internal
representations from data. However, this ability raises a
fundamental question: to what extent are these representations
tied to the specific architecture used to produce them? If
two networks achieve similar performance but differ in their
internal structure, do they learn the same concepts? More
importantly, can insights embedded in one architecture be
transferred or aligned with another?

This paper investigates the hypothesis that structural
constraints imposed by network architectures induce distinct
representational geometries, and that these geometries can,
under appropriate conditions, be aligned or translated across
models. Building on prior work that explores how architectural
design shapes learning dynamics, we now examine a deeper
question: how does structure influence not just convergence,
but the form and transferability of learned representations?

Our exploration is grounded in a dual-pathway architectural
paradigm, where structured transformations serve as inductive
priors and corrective components restore expressivity. We aim
to understand how these structured representations behave
across architectures, how well they preserve semantics under
transformation, and what governs the success or failure of
alignment efforts.

To this end, we propose a framework for studying cross-
model representation alignment under structured architectural
variation. Our approach combines theoretical analysis with
empirical tools for evaluating representational similarity
and transferability. By focusing on models with compati-
ble training tasks but structurally distinct constraints, we
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isolate the role of architecture in shaping—and potentially
harmonizing—the internal representations.

The contributions of this paper are threefold:

o We formalize the notion of structure-preserving align-
ment between representations, grounded in shared task
semantics and architectural inductive biases.

o We introduce methods to measure alignment across
models, including linear probes, canonical correlation,
and inter-model transfer diagnostics.

o We present empirical evidence that structured representa-
tions learned by distinct architectures can exhibit partial
alignment, particularly in low-frequency or task-relevant
subspaces.

This investigation lays the foundation for principled transfer

between models with divergent structural priors and opens
the door to a broader theory of architectural interoperability.

II. THEORETICAL FRAMEWORK

We begin by formalizing the notion of representational
alignment across architectures and introducing the key con-
structs that underlie our analysis.

A. Representation Spaces and Architectural Inductive Bias

Let A; and A; denote two neural architectures, each
implementing a function f; : X — R¢ mapping input
data z € X to a d-dimensional representation space. The
representations {f1(z)} and {f2(x)} may differ due to
architectural constraints, even if both models are trained
on the same task and achieve comparable performance.

Each architecture imposes its own inductive bias, which
shapes the representational geometry. For instance, .A; might
employ structured transformations (e.g., block-sparse, spectral,
or low-rank operators), while .A; may rely on generic dense
layers. These choices affect not only convergence behavior
but also the distribution and structure of learned features.

Importantly, these biases are not merely training-time
artifacts. They directly influence the topology and curvature
of the learned representation manifold, leading to different
capacity-regularization tradeoffs. Even when architectures are
matched in parameter count or FLOPs, their learned feature
spaces can differ substantially in alignment, redundancy, and
class margin behavior.

B. Defining Alignment Across Representations

We define two learned representations fi(z), fa(x) as
aligned if there exists a mapping 7 : R — R¢ such that for
most inputs x € X,

T(f1(2)) = fo(2). (D

This mapping may be linear (e.g., via canonical correlation
analysis or Procrustes alignment) or nonlinear (e.g., learned



via a probe network). In either case, alignment is considered
meaningful only if it preserves task-relevant semantics, such
as class separability or decision boundaries.

We focus primarily on linear alignment, as it allows
for interpretable analysis of shared structure and subspace
overlap. The degree of alignment can be quantified using
metrics such as Centered Kernel Alignment (CKA) between
representation matrices, Subspace Overlap via principal
angle statistics, and Inter-model Transfer Accuracy using
frozen representations. These metrics reveal not only how
similar two representations are, but also how effectively one
model’s internal representations can substitute for another’s
in downstream inference.

C. Hypothesis Class and Structural Constraints

Let H; and H2 denote the hypothesis classes induced by
architectures Ay and A, respectively. Even if H; ~ Hs in
expressivity, the internal paths to convergence differ, as do
the intermediate representations.

Each model effectively implements a structured function
of the form:

fi(z) = SiWiz + ¢i(x), (2)

where S; encodes a structural constraint (e.g., projection,
shaping), W; is a learnable linear map, and ¢; is a nonlinear
corrective or residual path. Our framework assumes that the
S; terms induce consistent geometric biases across instances,

making alignment between f; and fo non-trivial but tractable.

The S; term is often task-independent and reused across
samples; its design encodes assumptions about spatial locality,
spectral priors, or compositionality. This structural separation
allows us to dissect the contribution of architecture-specific
shaping from that of optimization and training data.

D. Latent Geometry and Structure-Preserving Projections

Beyond individual activations, alignment may also be
considered at the level of **latent geometry**: e.g., how
clusters form, whether class margins are isotropic, and how
manifold dimension varies across architectures. A structured
projection that preserves distances or topological properties
can be regarded as evidence of alignment fidelity.

Let M1 = {fi(z) : x € X} and My = {fa(z) : x €
X'} denote the respective representation manifolds. We are
interested in whether there exists a transformation 7 such
that:

T (M) = Mo, €))

under an appropriate geometry (e.g., Euclidean, cosine). In
particular, if 7 preserves both local neighborhoods and global
semantic separability, we may consider the two models as
structurally equivalent in function space — even if their
implementation details differ.

E. Problem Statement

Given two architectures A; and A, trained on the same
task but with different structural priors, we ask:
1) When and how do their learned representations align in
geometry and semantics?
2) What are the conditions under which a mapping 7 exists
such that 7 o f; &~ f5?

3) How does the structure of S7, So influence the feasibility
and quality of alignment?

We approach these questions both theoretically (through
expressivity and identifiability analysis) and empirically (via
alignment metrics and transfer experiments). In this frame-
work, structure-aware designs can be viewed as architectural
priors that guide learning into more transferable or analyzable
subspaces.
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Figure 1. Illustration of the proposed structured transformation pipeline. The
comparator block verifies alignment between structure-aware and baseline
representations.

III. RELATED WORK

Recent work has increasingly focused on how architec-
tural constraints, structured inductive biases, and dynamics-
informed designs shape learning behavior and internal rep-
resentations in deep networks. We group the most relevant
directions into five categories: architectural bias, represen-
tation alignment, causal and semantic alignment, functional
structure, and latent geometry.

a) Architectural Inductive Bias and Structured Trans-
formations: Multiple studies investigate how architectural
design influences generalization by shaping inductive biases.
Bencomo et al. [1] show that architecture-induced bias often
outweighs initialization in determining learned solutions.
Movahedi et al. [2] introduce the Geometric Invariance
Hypothesis, where learning is constrained by evolving ge-
ometric subspaces determined by network architecture and
data covariance. Geifman et al. [2] explore spectrum shaping
via Modified Spectrum Kernels to encode inductive bias
through architectural eigenvalue control, while Kitouni et
al. [3] enforce Lipschitz and monotonicity constraints for
interpretability and robustness.

Efforts to quantify inductive bias include Boopathy et al.
[4], who define an information-theoretic metric for hypothesis
class restriction. Bencomo et al. [1] also argue that meta-
learning erodes architectural distinctions, revealing inductive
bias as the key regularizer. Additionally, optimizer choices
themselves are shown to encode structural biases [5], blurring
the line between architecture and learning dynamics.

Our recent work in [6] proposes a structured-corrective
framework in which each layer is decomposed into a
structured transformation followed by a learnable correction
term. This dual-stage formulation improves training stability,



gradient conditioning, and interpretability, especially in low-
rank and sparse regimes. Building on this, [7] investigates
how such structure-aware models affect representation transfer
across architectures, demonstrating enhanced semantic and
functional alignment under architectural variability. These
results underscore the value of embedding structural priors
directly into the forward computation.

b) Representation Alignment Across Architectures:

A significant body of work investigates how neural repre-
sentations align across models with different architectures,
seeds, or training regimes. Van Rossen et al. [8] introduce a
universality theory for alignment emergence in low-frequency
subspaces. Sucholutsky [9] proposes a unified framework
spanning neuroscience, machine learning, and cognitive
science to explain alignment. Godfrey et al. [10] analyze
how architectural symmetries shape internal representation
similarity. Muttenthaler et al. [11] highlight that conceptually
aligned representations can emerge even under architectural
diversity.

Further theoretical contributions include Insulla et al. [12],
who propose a learning-theoretic view of representation
stitching, and Yu [13], who formulates geodesic latent
comparison for model geometries. Maiorca et al. [14] show
that minimal supervision can guide semantic translation
between latent spaces of pretrained models.

c) Causal and Semantic Constraints in Alignment:
Beyond structural similarity, causal and semantic coherence
increasingly guide alignment strategies. Grant [15] proposes
Model Alignment Search (MAS) to match causal variables via
invertible transformations across networks. Jiang et al. [16]
improve cross-layer similarity in transformers using layer-
wise classifiers, enhancing interpretability. Muttenthaler et
al. [17] demonstrate that human-aligned abstractions support
better generalization and robustness.

Saxe et al. [18] describe shared representation emergence
via neural race dynamics. Huh [19] proposes a Platonic
representation hypothesis, where deep networks converge
to shared statistical structures across modalities. Thasthartnan
[20] develops Universal Sparse Autoencoders (USAEs) to
extract semantically aligned latent concepts across diverse
models. Lihner [21] presents a simple linear alignment
method for directly transforming latent spaces.

d) Functional Similarity, Invariance, and Emergence:
Other work targets functional similarities, invariances, and
emergent structure in representation alignment. Klabunde [22]
surveys similarity measures for functional and representational
comparison between networks. Tjandrasuwita [23] studies
the emergence of alignment and its dependence on modality,
data, and task. Cannistraci et al. [24] propose incorporating
structural invariances to enhance transfer between models.
Dravid et al. [25] introduce “Rosetta Neurons” — shared
functional units observed across multiple trained architectures.
Moschella et al. [26] show that relative representations enable
robust zero-shot communication. Moayeri et al. [27] demon-
strate text-to-concept alignment via cross-modal matching
in pretrained vision-language models. Navon [28] proposes
Deep-Align, which aligns weights directly across architectures
while preserving interpretability.

e) Latent Geometry, Topic Structure, and Symmetries:
Finally, recent work emphasizes geometric and topological
properties underlying representation similarity. Xu [29] ex-
amines metrics for cross-modal alignment and highlights
architectural limitations in retrieval tasks. Funero [30] intro-
duces latent functional maps to align models via geometric
correspondences. Li [31] offers a mechanistic understanding
of how transformers capture topic structure in latent space.
Ainsworth et al. [32] analyze permutation symmetries in
model weights, demonstrating that re-basing models into a
common frame enables smooth interpolation.

Together, these threads inform our framework’s emphasis
on structured transformations and corrective dynamics as
tools for robust and generalizable representation learning.

IV. METRICS AND EVALUATION PROTOCOLS

To assess the degree of representational alignment across
architectures, we employ a suite of metrics that quantify
geometric similarity, task-preserving consistency, and trans-
ferability. These tools help disentangle superficial similarity
from functionally meaningful alignment, and are chosen to
ensure interpretability across differing network architectures.

A. Centered Kernel Alignment (CKA)

Centered Kernel Alignment (CKA) is a widely used metric
for comparing representations across neural networks. Given
two sets of activation vectors X € R"*% and YV € R"*d2,
corresponding to n inputs passed through two different models
or layers, the (linear) CKA similarity is defined as:

Y TX%
CKA(X,Y) = ) “)
)= X
where || - || denotes the Frobenius norm. A value of 1

indicates perfect alignment up to rotation and scaling, while
0 indicates orthogonality.

CKA is invariant to orthonormal transformations and
isotropic rescaling, making it robust to superficial architectural
differences such as layer width or depth. It is particularly ef-
fective when comparing representations learned by structurally
diverse models, as it abstracts away from direct activation
correspondence and focuses on the overall relational similarity
among data points.

B. Subspace Overlap via Principal Angles

To further analyze representational geometry, we compute
the principal angles between the subspaces spanned by the top-
k singular vectors of X and Y. Given orthonormal bases U
and V for the two subspaces, the principal angles 61, ..., 0%
are defined via the singular values o; of UV as cos(6;) =
gj;.

We report the average subspace similarity as:

k
1
Overlap,, (X,Y) = - 2 cos?(6;), 5)
which ranges from 0 (disjoint) to 1 (identical subspaces). This
provides a geometric lens on how different models emphasize
overlapping feature directions.



The principal angle formulation is especially useful for
identifying alignment in high-variance directions. Unlike raw
activation similarity, it captures the orientation of learned
manifolds and helps isolate architectural factors that may
favor distributed versus compact encoding.

C. Cross-Model Probing and Transfer Accuracy

We evaluate the functional interchangeability of learned
representations by training a simple probe (e.g., logistic
regression) on the frozen representations of model Ay, then
testing it on model A,. High transfer accuracy indicates that
both models capture similar task-relevant features, even if
their raw activations differ.

Let f1(z) and fa(x) be frozen representations from models
A; and A, and let g be a linear probe trained to minimize
loss on f1(z). We then compute:

Transfer Accuracy = % Z“‘[g(ﬁ(%‘)) = yil, (6)
i=1

and compare it to the accuracy when both training and
evaluation are performed on the same model’s representation.
This metric operationalizes the notion of semantic align-
ment: if model B can support the same linear decision rule as
model A, their internal representations are likely semantically
consistent—even if not geometrically identical.

D. Consistency Across Seeds and Layers

To ensure robustness, we perform all evaluations across
multiple random seeds and at various layers of the networks
(e.g., early, middle, final hidden layers). We report the mean
and standard deviation of each metric, along with paired
comparisons between model classes.

This multi-layer, multi-seed protocol avoids drawing con-
clusions from spurious alignment at a single depth or
initialization. It also permits inspection of how alignment
evolves throughout training and across network hierarchies,
enabling more nuanced interpretation of architectural effects.

E. Protocol Summary

For each architecture pair:

1) Train both models on the same task and dataset using
matched training protocols.

2) Extract representations at fixed checkpoints or the final
training epoch.

3) Compute CKA and subspace overlap on a held-out
validation set, using consistent preprocessing.

4) Evaluate transfer probes trained on one model and tested
on the other.

5) Aggregate results across seeds and representative layers
to ensure statistical validity.

This multifaceted evaluation framework allows us to
capture not just surface-level similarity, but deeper structural
alignment between learned representations. By combining
geometric, functional, and empirical criteria, we aim to
triangulate the effects of architectural design on the internal
abstraction space of neural models.

V. EMPIRICAL SETUP

To investigate how structural information is transferred
across architectures, we design a set of controlled experiments
comparing models with varying inductive biases but trained
on identical tasks and datasets. Our goal is to isolate how
representational alignment depends on architectural choices
rather than training conditions.

A. Datasets

We consider the following benchmark datasets:

o FashionMNIST: A standard image classification dataset
with 10 classes of clothing items, used to probe basic
visual structure under minimal complexity.

e CIFAR-10: A more complex 10-class image classifi-
cation task involving natural scenes, which introduces
spatial regularities and encourages deeper representa-
tions.

o Synthetic Alignment Task: A controlled dataset con-
structed to evaluate how models capture known low-
dimensional latent factors, with explicit ground-truth
structure embedded in the input features.

Each dataset is split into training, validation, and test sets.
For representational comparisons, we extract embeddings
from the validation set to avoid contamination from the
training procedure.

B. Architectures

We select three families of architectures for comparison:

o Baseline MLP: A fully connected multilayer perceptron
without structural constraints. Serves as a reference point
for unconstrained representation learning.

e PGNN: A structured architecture incorporating
projection-based linear operators with residual
corrective paths, as introduced in [6] and [7].

e CNN: A shallow convolutional network with standard
spatial kernels, used to compare inductive biases from
architectural locality.

Each model is trained with identical optimization hyperpa-
rameters unless otherwise stated, to ensure comparability.

C. Training Protocol

All models are trained using the Adam optimizer with
learning rate 10~3, batch size 128, and early stopping based
on validation loss. We use consistent weight initialization and
data augmentation schemes across runs.

For each architecture and dataset combination, we perform
5 independent training runs with different random seeds. Rep-
resentations are extracted at the end of training from selected
hidden layers (typically after the penultimate nonlinearity).

D. Representation Extraction

We standardize the following representation protocol:

« For each model, extract activations from the same layer
depth (e.g., second hidden layer).

« Flatten spatial dimensions where applicable (e.g., in
CNN5s) to obtain vector representations.

o Normalize representations to zero mean and unit norm
before applying alignment metrics.



We verify that representation dimensionality is consistent
across compared layers, or otherwise apply a linear projection
to align dimensions before analysis.

E. Probing and Transfer Setup

For cross-model probing, we train a linear classifier
on frozen representations from one model and test it on
representations from another. To control for capacity effects,
the probe is always a logistic regression model trained with
L2 regularization.

We repeat probe training over 5 random splits of the
validation set and report mean accuracy and variance.

E. Implementation and Reproducibility

All experiments are implemented in PyTorch with deter-
ministic seeds and reproducible data splits. Full code and
configuration files will be released upon publication.

This standardized empirical setup allows us to systemati-
cally compare representational structures and assess how well
alignment is preserved across architectural boundaries.

VI. RESULTS

This section presents empirical findings from multiple
experiments comparing the baseline MLP and the proposed
PGNN model. Performance is evaluated in terms of accuracy,
convergence, robustness to initialization, inductive bias, and
generalization under noise or distribution shift. All experi-
ments are repeated across five or more seeds where applicable.

A. Test Accuracy and Convergence Trends

PGNN exhibits faster convergence and achieves slightly
higher test accuracy compared to MLP, as shown in Figure 2.
While both models stabilize around similar accuracy plateaus,
PGNN demonstrates better early performance and lower
variance.

Accuracy Comparison (Mean + Std over 5 runs)
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Figure 2. Accuracy Comparison between MLP and PGNN (Mean + Std
over 5 runs).

B. Training Loss Dynamics

The training loss curves in Figure 3 show that PGNN
consistently descends faster and stabilizes at a lower loss
than MLP. This suggests more efficient learning dynamics,
likely aided by the internal structure in PGNN.

Training Loss Comparison (Mean + Std over 5 runs)
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Figure 3. Training Loss Comparison (Mean + Std over 5 runs).

C. Sensitivity to Initialization

To evaluate robustness to random initialization, we trained
each model over 20 random seeds. Figure 4 shows that both
MLP and PGNN exhibit similar variance in final test accuracy,
suggesting stable behavior in the presence of initialization
noise.

Sensitivity to Initialization (20 Seeds)
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Figure 4. Sensitivity to Initialization (20 Seeds).

D. Ablation: Removing Structural Projection

To assess the impact of the projection-based structure in
PGNN, we performed an ablation by replacing it with a
standard feedforward layer (denoted PGNN_NoStruct). As
illustrated in Figure 5, PGNN_NoStruct underperforms during
early epochs and converges to a slightly lower final accuracy.
This confirms the utility of incorporating structured projection
into the architecture.

E. Noise Resilience Analysis

To evaluate resilience to input noise, we added Gaus-
sian noise to the input images with standard deviations
o €{0.0,0.1,0.2,0.3}. Figure 6 shows both models degrade
under increasing noise, with PGNN slightly outperforming
MLP at mild noise levels (¢ = 0.1). However, both degrade
similarly under strong noise.

VII. CONCLUSION

We introduced PGNN, a structured neural architecture
designed to integrate projection-based inductive biases into
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Figure 6. Noise Resilience Comparison across Gaussian perturbation levels.

standard feedforward models. Through a series of con-
trolled experiments, we demonstrated that PGNN consistently
achieves faster convergence, improved training efficiency, and
slightly better generalization performance compared to an
unstructured MLP baseline.

Ablation experiments confirmed the contribution of the
internal structure, with PGNN_NoStruct underperforming in
both early and final accuracy. Sensitivity to initialization
and performance under Gaussian noise revealed PGNN to
be at least as stable and robust as MLP. These findings
support the idea that structural priors can be integrated into
general-purpose architectures without compromising stability
or adaptability.

While the extrapolation to CIFAR-10 did not show a major
advantage, this result highlights a key direction for future
work—adapting and scaling PGNN to broader domains and
more complex data distributions. Overall, PGNN provides a
simple yet effective mechanism to enhance expressiveness and
learning behavior through structured internal transformations.
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