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I extend my sincere gratitude to Josué Velázquez Mart́ınez, my coauthor for Chapter
3, for his guidance, thoughtful insight, and inspiring collaboration. His knowledge and
professionalism have profoundly enriched my work. I enjoy our collaboration and hope we
can continue working together in the future. Chapter 2 builds upon my master’s thesis



iv Chapter 0. Acknowledgments

conducted with Ranit Sinha, and I am grateful for his contributions.

My heartfelt appreciation goes to colleagues and friends at LCL and the University of
Luxembourg. The many coffee breaks, meals, ping pong matches, gatherings, and other
interactions made my PhD journey enjoyable. In particular, I thank Benny Mantin,
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Chapter 1

Introduction

Organizations today operate in increasingly complex, uncertain, and competitive envi-
ronments. Operations management equips them with analytical tools to guide informed
and effective operational decisions. For example, retailers must effectively manage lost
sales to maintain competitiveness. Producers should dynamically select supply modes,
and logistics companies must incorporate new features into transportation models to en-
sure resilience, cost efficiency, and sustainability. Advanced critical systems must remain
operational at low maintenance cost by utilizing abundant real-time sensor data.

Although these problems arise in different contexts, they can be expressed as math-
ematical models that reveal their underlying similarities. These mathematical models,
however, can become highly complex in representing real-world problems, which makes
the identification of optimal decisions difficult. For instance, calculating the optimal or-
dering decision for a product is straightforward under the assumption that customers wait
during a stockout, but dropping this assumption generally transforms the problem into a
far greater challenge. Some simplifying assumptions, previously regarded as insignificant,
can now pose major risks to organizations. This situation requires research to develop
effective and practical solutions for more complex and realistic settings.

Economic efficiency, reliability, and sustainability are among the core performance
metrics that define excellence in operations. While the first two metrics have long been
considered in nearly all operational decisions, sustainability only became an important
dimension in the 21st century. Early research in the 1980s, such as Hansen (Hansen and
Lebedeff, 1987), provided evidence that CO2 emissions lead to a rise in global temper-
atures and emphasized their environmental consequences. Across operational domains,
transportation and industry each represent about 22% of the European Union’s CO2 emis-
sions (European Environment Agency, 2021). Sustainability in operations also includes
resource efficiency, which covers the reduction of energy, water, and material consumption
in production and logistics processes. Improved resource efficiency reduces waste, lowers
operational costs, supports environmental objectives, and strengthens approaches that
extend asset life. These observations highlight the critical need to incorporate sustain-
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2 Chapter 1. Introduction

ability into decision making processes. However, sustainability goals introduce additional
costs that organizations must take into account in their operational decisions. Balanc-
ing these costs against efficiency, reliability, and other performance objectives requires
careful consideration of their trade-offs. Optimization models provide a natural frame-
work to evaluate such trade-offs and help decision makers identify solutions that achieve
environmental targets while preserving operational and economic performance.

Operational systems are inherently subject to uncertainty in some decision param-
eters such as demand, supply, and equipment status. Stochastic models capture these
uncertainties and allow researchers to model variability and to evaluate the performance
of different decisions under more realistic conditions. Many stochastic models become
highly complex as a key problem parameter grows, which makes exact solution methods
infeasible. Asymptotic analysis provides a powerful approach to address this challenge by
characterizing the behavior of the system under limiting regimes, such as the high cost of
losing a sale in inventory models, the high payload in routing models, and the long lifetime
of components in maintenance models. This method allows for the derivation of asymp-
totically optimal policies that maintain strong performance in non-asymptotic settings,
without the computational expense of solving a high-dimensional stochastic model.

This thesis addresses two topics: integrating sustainability into certain operations
management problems and developing tractable policies through asymptotic analysis of
high-dimensional stochastic systems.

1.1 Contributions of the thesis

This thesis consists of four independent chapters, which can be categorized according to
the relevant literature as follows: Chapters 2 and 4 focus on stochastic inventory models,
with Chapter 2 on inventory models with two supply modes and Chapter 4 on lost sales
inventory systems. Chapter 3 studies the green routing problem, and Chapter 5 covers
condition-based maintenance of stochastically deteriorating systems. A brief overview of
each chapter is provided below.

1.1.1 Efficient emission reduction through dynamic supply mode
selection

Chapter 2 studies the inbound supply and inventory decisions of a company sourcing
multiple products through a third-party logistics (3PL) provider. Each product can be
shipped using one of two transport modes that vary in cost, lead time, and emissions.
Demand is stochastic for all products. The company makes periodic decisions on order
quantities for both transport modes to minimize long-run average holding, backorder, and
transportation costs while ensuring that total greenhouse gas (GHG) emissions remain
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below a specified target. Assortment-wide constraints are likely to become increasingly
common, either through voluntary measures or government regulation. To address this
problem, we adopt the dual-index policy of Veeraraghavan and Scheller-Wolf (2008) that
dynamically orders shipments to both modes based on on-hand and outstanding inven-
tory. The decision problem is formulated as a non-linear non-convex integer program,
which we reformulate into a large integer programming problem and solve through the
Dantzig-Wolfe decomposition. A comprehensive numerical study based on data from mul-
tiple industries demonstrates the effectiveness of this approach. Our results indicate that
dynamic selection of transport modes leads to significant cost reductions compared to
static policies that rely on a single mode. We also show that applying a single, aggregate
emission target across the entire product assortment yields markedly better economic and
environmental outcomes than assigning separate emission targets to individual products.
Furthermore, our analysis shows that the difference in emissions relative to the differ-
ence in costs between transport modes is the key factor that determines the potential for
emission reduction. Chapter 2 is based on Drent et al. (2023b).

1.1.2 Load asymptotics and dynamic speed optimization for the
greenest path problem: a comprehensive analysis

Chapter 3 investigates the influence of high-resolution elevation data on identifying the
most fuel-efficient, or greenest, paths for trucks that operate in urban environments with
diverse topographies. Using a variant of the Comprehensive Modal Emission Model
(CMEM), we show that both the greenest path and the optimal driving speed depend
on the slope of the road and the payload of the vehicle. On flat networks, the shortest
path (or the fastest in congestion) with a constant speed minimizes fuel consumption,
but in networks with varying elevations, the shortest path may not be the greenest one,
and the speed must be adjusted dynamically along the route. This result highlights
that the traditional practice of selecting paths between origin and destination as a pre-
processing step for pollution routing problems (PRPs) can lead to suboptimal solutions,
and that the path selection should instead be integrated directly within the routing model.
Nonetheless, the integration of path selection adds further complexity to the PRP, which
is inherently NP-hard. We show that the greenest path converges to an asymptotic route
as payload increases, and this limiting path is attained at finite loads. This property can
be used to approximate the greenest paths as input to PRP models.

We carry out comprehensive numerical experiments under free-flow conditions using
geo-spatial data from 25 cities across six continents. We evaluate the advantages of the
greenest path selection and dynamic speed optimization. Our results show that the green-
est paths quickly diverge from the shortest ones, and that dynamic speed optimization
significantly reduces CO2 emissions. We perform an analysis of variation (ANOVA) on
our results and find that the potential for emission reduction is primarily driven by vari-
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ations in road gradients and the relative elevation between origin and destination. We
conduct additional numerical experiments using traffic data for New York City during
rush-hour periods to evaluate the CO2 reduction potential of the greenest path and dy-
namic speed optimization, in traffic congestion, compared to the fastest path with the
traffic speed. Our results indicate that the selection of the greenest paths can substan-
tially reduce CO2 emissions when traffic congestion occurs. Moreover, while adjusting
speeds on uphill segments provides notable emission savings, opportunities to exploit
downhill acceleration are constrained by traffic congestion. This last result highlights
the advantages of scheduling truck deliveries during off-peak periods to reduce emissions.
Chapter 3 is based on Moradi et al. (2024).

1.1.3 Asymptotic optimality of projected inventory level poli-
cies for lost sales inventory systems with large leadtime
and penalty cost

Chapter 4 investigates the performance of the projected inventory level (PIL) policy
in single-item, single-echelon, periodic-review lost sales inventory systems with positive
leadtime and independent and identically distributed (i.i.d.) demand under the long-run
average cost criterion (canonical problem). In these systems the unmet demand is lost and
generates penalty costs. The canonical lost sales inventory problem is a classical challenge
in inventory theory, since the optimal ordering policy can generally be obtained by solving
a high-dimensional dynamic programming problem but this approach suffers from the
“curse of dimensionality”. Consequently, a key area of research in inventory theory focuses
on designing tractable and high-performing control policies for the canonical problem that
are asymptotically optimal in certain regimes.

Prior literature has established that base stock policies are asymptotically optimal
for the canonical problem when the cost of losing a sale grows large (Huh et al., 2009;
Bijvank et al., 2014), whereas constant order policies achieve asymptotic optimality as
the leadtime grows large (Goldberg et al., 2016; Xin and Goldberg, 2016). However,
neither policy is simultaneously optimal across both regimes. The capped base stock
policy (Xin, 2021) is a hybrid policy that reconciles these limitations by using a base
stock policy but individual orders cannot a exceed a cap that is the second policy param-
eter. More recently, the PIL policy has been proposed (van Jaarsveld and Arts, 2024),
which dynamically adjusts orders to maintain the expected inventory level at the time of
replenishement order receipt, leveraging the probabilistic information available at each
decision epoch. van Jaarsveld and Arts (2024) show that the PIL policy outperforms the
base stock policy for a general demand process under mild technical assumptions and
outperforms the constant order policy for exponential demand. Their empirical results
indicate that the PIL policy outperforms both base stock and constant order policies, as
well as capped base stock polcies across a range of demand distributions.
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In Chapter 4, we analyze the asymptotic behavior of the PIL policy under general
demand as both the leadtime and lost sales penalty costs become large. Under mild
assumptions on the demand distribution, we show that the difference in long-run average
cost between the PIL policy and the constant order policy remains bounded. This finding
implies that the PIL policy attains asymptotic optimality as the leadtime increases with
sufficiently high penalty costs, which is new to the literature on lost sales inventory
theory. Our analysis relies on demonstrating that the relative value function under the
constant order policy satisfies the Wiener-Hopf equation. We solve this equation using
ladder process techniques applied to the random walk induced by the constant order
policy. Then, we apply a one-step policy improvement argument to establish our main
convergence result.

1.1.4 Risk or replace: efficient asymptotics for data-driven main-
tenance

Condition-based maintenance (CBM) is an approach that plans interventions for deteri-
orating systems according to their observed operational state. CBM reduces unplanned
downtime, extends usable lifetime, avoids unnecessary replacement, and mitigates the
environmental impact associated with manufacturing and transporting new equipment.
Consequently, it has gained widespread adoption in recent decades. In Chapter 5, we
study a heterogeneous population of components that degrade over time. We consider a
general class of stochastic degradation processes with non-negative and i.i.d. increments
that are characterized by component-specific parameters that remain unobservable to the
decision maker. We rely on degradation data to estimate these parameters and determine
replacement actions at equidistant epochs. The goal is to minimize the long-run average
cost, which incorporates fixed replacement costs, failure costs, and operating costs that
increase as components degrade. This problem can be formulated as a high-dimensional
partially observable Markov decision process (POMDP), which is generally intractable
due to the “curse of dimensionality.” Drent et al. (2023a) develop a tractable POMDP
model for a degradation process that belongs to the one-parameter exponential family,
called the Integrated Bayes Policy.

We develop a tractable, data-driven CBM policy that estimates the optimal policy of
a hypothetical Oracle that has full information of the underlying degradation parame-
ters. We call this policy the Estimated Oracle’s Optimal Policy (EOP). The tractability
of the EOP directly depends on the tractability of the underlying parameter estimation
method. We introduce a scaling regime where both the failure thresholds and cost param-
eters increase proportionally, reflecting practical settings in which component lifetimes
and maintenance costs are large relative to the observation frequency of modern sensors.
In this regime, POMDP-based methods rapidly lose tractability. We show that the regret
of the EOP, defined as the difference between its long-run average cost and that of the
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Oracle, converges to zero in the scaling regime when the parameter estimator is consis-
tent. We benchmark our EOP against the Integrated Bayes Policy using real degradation
data; our policy performs excellently. Through extensive numerical experiments on both
discrete and continuous state spaces, we show that the EOP achieves remarkably low
regret across all settings. In instances where the optimal policy can be computed using
the POMDP method, the optimality gap of the EOP is statistically indistinguishable
from zero.

1.2 Organization of the thesis

Table 1.1 summarizes the main literature streams associated with each chapter, while
Table 1.2 outlines the key methodologies used. Each chapter is self-contained and can be
read independently.

Table 1.1: Navigating the thesis based on related literature stream and scope of analysis.

Topic Scope

Chapter Sustainability Lost sales Dual sourcing Maintenance Transportation Single item Multi item

2 x x x x
3 x x
4 x x
5 x x x

Table 1.2: Navigating the thesis based on main methodology.

Random Renewal Queueing Markov decision Bayesian Column
Chapter Asymptotics walk theory theory theory learning generation Routing Simulation

2 x x
3 x x x
4 x x x x x
5 x x x x x



Chapter 2

Efficient emission reduction through
dynamic supply mode selection

2.1 Introduction

The transportation sector has consistently been one of the most polluting European sec-
tors for more than a decade now, and it is projected to remain so for the foreseeable future
(European Environment Agency, 2020). This, unfortunately, appears to be a trend that
stretches beyond Europe. Recent analysis indicates that the G20 countries, currently
responsible for 80% of the global greenhouse gas (GHG) emissions, will see an increase
of 60% in their transportation sector emissions by 2050 (Vieweg et al., 2018). Prominent
global climate targets, such as the ones outlined in the Paris agreement, will soon be-
come unattainable (European Environment Agency, 2020; United Nations Environment
Programme, 2020).

In light of the above, the European Union (EU) announced the Green Deal in 2019,
a framework containing climate targets and policy initiatives that sets the EU on a path
to reach carbon neutrality by 2050. The Green Deal is legally enshrined in the European
Climate Law, which states that member states are legally committed to meet the tar-
gets, and face penalties in case they do not meet these targets. Being among the most
polluting sectors, a key part of the Green Deal relates to policy initiatives that impact
the transportation sector. For instance, the EU plans to extend the European emissions
trading scheme (EU ETS) to include both road and maritime transport (Abnett, 2020;
Commission, 2020). Under the ETS, which until now includes only air transport, the EU
enforces a cap on the total amount of GHG emissions from sectors covered by the scheme.
The EU also investigates whether to increase fossil fuel taxation, thereby effectively rais-
ing the price of GHG emissions. More and more companies are reducing their emissions
voluntarily as part of their corporate social responsibility. If not penalized by govern-
ments, companies that excessively pollute might still lose revenues as environmentally
conscious customers take their business elsewhere (Dong et al., 2019).

7
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The developments described above highlight the urgency for companies to explicitly
incorporate GHG emissions in their supply chain decision making. In this chapter, we
study the inbound supply mode and inventory decision making of a company that sells an
assortment of products which are sourced from outside suppliers. The company wishes
to keep the total GHG emissions associated with using different supply modes across
the assortment below a certain target level in the most economically viable manner. As
is often the case in practice, the company may rely on a third party logistics (3PL)
provider for the inbound transport of the products. 3PLs typically offer several transport
modes for the transportation of products – these may differ in terms of transportation
costs, transit times, and GHG emissions. Alternatively, there may be different suppliers
(e.g. a near and offshore supplier) for a product that naturally have different costs and
transportation emissions. In the remainder of the chapter, we will use the terminology
of a 3PL provider that offers multiple transportation modes.

The company can utilize the heterogeneity in the fleet of the 3PL to its advantage.
While some transport modes are low emitting but slow, others may be fast but result
in more emissions. Fast transport modes also typically come at the expense of a cost
premium, and yet they are often relied upon when responsiveness is required (e.g. in case
of imminent stock outs). Thus the company should rely dynamically on both transport
modes. Implementing this holistically across the entire assortment of products allows
the company to reduce emissions significantly for products for which it is relatively cost-
efficient to do so and less for products for which this is more expensive. It additionally
enables the company to reduce the total inventory and transportation costs by shipping
the majority of products with a relatively cheap but slow transport modes while simulta-
neously resorting to faster but more expensive and often more polluting transport modes
whenever expedited shipments are needed. While the advantages of dynamically selecting
different transport modes are evident, two important and interrelated questions remain:

1. When should the company ship how many units of which product with what trans-
port mode?

2. What is the value of dynamically shipping products with different transport modes?

These questions are interesting but also intricate when one wishes to answer them for an
entire assortment of products where the combined total of GHG emissions from trans-
portation must not exceed a certain target level.

To tractably answer the questions above, we focus on the setting where the 3PL of-
fers two distinct transport modes for the transport of each product (or, equivalently, the
setting where the company has already decided on the two transport modes for each
product). These transport modes need not be the same for every product; they will
depend on the characteristics of the suppliers as well as the 3PL (e.g., some products
can be transported using aircraft or rolling stock while others can be shipped via inland
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waterways or ocean shipping). We consider long distance and/or high volume trans-
port lanes where the impact of the transport mode decisions of any particular individual
shipper on the actual shipping and carbon footprint is negligible. The company decides
periodically how many units it wishes to transport with what transport mode and in-
curs mode specific unit transportation costs. Shipments arrive at the company after a
deterministic transit time that depends on the transport mode that is used. Demand for
each product in every period is stochastic and independent and identically distributed
across periods. Any demand in excess of on-hand inventory is backlogged and satisfied
in later periods. The company incurs per unit holding and backorder penalty costs, and
the specific cost parameters may vary from product to product. The company seeks to
minimize the long-run average holding, backorder, and transportation costs while keeping
the total long-run average GHG emissions from transportation of the entire assortment
below a certain target level.

It is well-known that the optimal policy for the inventory system described above
is complex, even in the simplest case of a single product and absent of the emission
constraint (Whittemore and Saunders, 1977; Feng et al., 2006). For the control of each
product, we therefore use a heuristic policy that is originally due to Veeraraghavan and
Scheller-Wolf (2008). They show that their so-called dual-index policy performs quite well
compared to the optimal policy. The dual-index policy tracks two inventory positions for
each product: The slow inventory position, which equals the on-hand inventory plus
all in-transit products minus backlog, and the fast inventory position, which is defined
similarly but includes only those in-transit products that are due to arrive within the
transit time of the fastest transport mode. Under the dual-index policy, we place orders
with both modes such that these inventory positions are kept at (or above) certain target
levels, also referred to as base-stock levels. As such, the dual-index policy dynamically
prescribes shipment quantities for both transport modes based on the net inventory level
and the number of products that are still in-transit. To find the optimal base-stock
levels for the entire assortment of products, we formulate the decision problem as a
non-linear non-convex integer programming problem. A partition reformulation of this
problem allows us to use column generation techniques to solve the decision problem.
These techniques enable us to decompose the complex multi-product decision problem
into simpler sub-problems per product. Leveraging a separability result of Veeraraghavan
and Scheller-Wolf (2008), we show that this sub-problem constitutes a special Newsvendor
problem that can be solved efficiently through a simulation-based optimization procedure.

The main contributions of this chapter are:

1. We are the first to study dynamic mode selection for an assortment of products
with stochastic demand where the total average GHG emissions from the inbound
transport of those products must be kept below a certain target level.

2. We provide a tractable optimization model that finds a tight lower bound on the
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optimal solution as well as near-optimal feasible solutions within reasonable time.
We show that our mathematical formulation of the decision problem allows us to de-
compose the non-linear non-convex integer programming problem into sub-problems
per product. We leverage results from Veeraraghavan and Scheller-Wolf (2008) to
show that the sub-problems can be solved efficiently through a one dimensional
search procedure in which each instance constitutes a Newsvendor type problem
that is readily solved through simulation.

3. We perform an extensive computational experiment based on data from different
industries. Through these experiments:

i. We establish the value of dynamic mode selection by comparing our model
with a model in which only one transport mode per assortment product can
be used. This value can go up to 15 percent in cost savings;

ii. We show that decomposing an aggregate carbon emission reduction target into
targets for each product in the assortment individually is financially detrimen-
tal. Our holistic approach can lead to cost savings of over 40 percent relative
to the approach with reduction targets per individual product;

iii. We find that the emission differences between transport modes relative to the
cost difference between modes is the main determinant of emission reduction
potential for a given assortment. In our experiments we find that, 20 percent
of the products for which this ratio is highest contribute between 59 and 94
percent of the emission reduction.

The remainder of this chapter is organized as follows. In Section 2.2, we review the
existing literature and position our work within the literature. Section 2.3 contains the
model description as well as the mathematical formulation of the decision problem. A
column generation procedure to solve the decision problem is provided in Section 2.4.
We subsequently report on an extensive computational experiment in Section 2.5, and
we provide concluding remarks in Section 2.6.

2.2 Related literature

This chapter integrates carbon emissions from inbound transportation into an inventory
system with two supply modes. As such, our work contributes to the large stream of
literature that studies multi-mode or multi-supplier inventory systems. For an excellent
overview of such systems, we refer the reader to the review papers of Thomas and Tyworth
(2006), Engebrethsen and Dauzére-Pérés (2019) and Svoboda et al. (2021), and references
therein. We also contribute to the extensive body of literature that revolves around the
integration of environmental aspects into supply chain decision making; see Dekker et al.
(2012), Brandenburg et al. (2014), Barbosa-Póvoa et al. (2018), and references therein,
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for an overview of this field. In what follows, we focus on contributions that are most
relevant to the present chapter.

The decision how many products to order from which supplier is considered a canonical
problem in the inventory management literature. It has been studied extensively since
the sixties, mostly under the assumption that lead times are deterministic, that unmet
demand is backlogged, and that only two distinct suppliers are at the disposal of the
decision maker; the fastest being more expensive than the slowest. Fukuda (1964) and
Whittemore and Saunders (1977) were the first to study this system. Assuming periodic
review, they show that its optimal policy is a simple base-stock rule only under the
assumption that the difference between the lead times of both suppliers is one period. For
general lead time differences, the optimal policy is complex and can only be computed
through dynamic programming for small instances. Since then, most researchers have
focused on developing well-performing heuristic polices for which the best control policy
parameters can be tractably obtained.

In this chapter, we rely on the so-called dual-index policy to decide upon the shipment
sizes for both transport modes for each product. Under this policy, which is originally
due to Veeraraghavan and Scheller-Wolf (2008), two different inventory positions are
kept track off: One that includes all outstanding shipments and one that includes only
those outstanding shipments that are due to arrive within the lead time time of the
fastest mode. Veeraraghavan and Scheller-Wolf (2008) show numerically that the dual-
index policy performs well compared to the optimal policy. In fact, Drent and Arts
(2022) show that the dual-index policy is asymptotically optimal as the cost of the fastest
transport mode and the backorder penalty cost become large simultaneously. The policy
has received quite some attention in recent years (see, e.g., Sheopuri et al., 2010; Arts
et al., 2011; Sun and Van Mieghem, 2019). We employ the dual-index policy because it
is intuitive, has good performance, and can be optimized efficiently. Unlike the present
work, the dual-index policy has so far been studied exclusively in single product settings
under conventional cost criteria absent of any emission considerations.

Within the transportation literature, inventory systems with multiple transport modes
have received considerable attention too. To properly embed the present work in the ex-
isting literature, we group contributions to this field into two categories depending on
the modelling assumptions regarding the usage of the available transport modes (c.f. En-
gebrethsen and Dauzére-Pérés, 2019). The first category, which we refer to as dynamic
mode selection, is concerned with inventory systems in which multiple transport modes
are used simultaneously over a given (possibly infinite) planning horizon. Since we study
an infinite horizon periodic review inventory model in which products can be transported
with two distinct modes in each period, our work falls into this category – as do all the in-
ventory papers with two suppliers described so far. Only few papers exist in this category
that explicitly account for carbon emissions, and the few that do differ substantially from
the present work in terms of modelling choices as well as analysis. They either assume
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deterministic demand and a finite horizon (Palak et al., 2014) or study the closely related
yet different problem of splitting an order among several transport modes (Konur et al.,
2017). While not explicitly modeling carbon emissions, Dong et al. (2018) and Lemmens
et al. (2019) also study the benefit of dynamically switching between multiple transport
modes in the context of multi-modal transport. They show that this can lead to more
usage of less polluting transport modes without compromising on costs or responsiveness.
Different from our work, all papers mentioned above consider the inventory control and
transport mode decisions for a single product only.

The second category concerns inventory systems in which a single transport mode
is selected a priori at the start of a planning horizon; all replenishment orders until
the end of that planning horizon are then shipped with this mode. We refer to this
category as static mode selection. Two papers belonging to this category are particularly
relevant to our work. Hoen et al. (2014b) study a periodic review inventory system under
backlogging where inbound transport is outsourced to a 3PL that offers multiple transport
modes. Assuming base-stock control for each mode, they are interested in selecting
the transportation mode that leads to the lowest long-run average total cost consisting
of holding, backlogging, ordering, and emission costs. For calculating transportation
emissions, they rely on the well-known NTM methodology (we discuss this methodology
in more detail later in Section 2.3.1 and Appendix 2.A). We extend Hoen et al. (2014b)
in two important directions. First, we move from static to dynamic mode selection,
thereby incorporating the flexibility to dynamically switch between different transport
modes for each product. Second, we consider an assortment of products under a single
constraint on the total average transportation emissions from those products. Hoen et al.
(2014a) consider a similar constraint in a multi-product variant of the setting of Hoen
et al. (2014b) under the assumption that demand is deterministic and inversely related
to the price set by the decision maker. They show that because of the portfolio effect of
such an assortment-wide emission constraint, carbon emissions from transportation can
be reduced substantially at hardly any additional cost.

The dual-index policy studied in this chapter has the appealing feature that it can
mimic static mode selection. This is useful in our computational experiment where we es-
tablish the added value of dynamic mode selection over static mode selection. A closely re-
lated paper in that respect is Berling and Mart́ınez de Albéniz (2016) who study dynamic
speed optimization of a single transport mode in a single-product stochastic inventory
problem. They show that the value of dynamically controlling the speed of outstanding
shipments, as opposed to a static speed policy, can be significant, both financially and
from a carbon emission perspective.

Our review so far has almost exclusively revolved around papers on multi-period
inventory systems. We note that there is also a stream of literature that integrates carbon
emissions into single period multi-supplier models, see e.g., Rosic̆ and Jammernegg (2013),
Arıkan and Jammernegg (2014), and Chen and Wang (2016). Similar to the majority of
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the papers discussed so far, these papers focus on single-product settings.

2.3 Model description

In this section, we first provide a description of the inventory system under consideration
and introduce the notation that we use throughout this chapter. We then describe the
policy we propose to dynamically ship products with two transport modes. We conclude
with providing a mathematical formulation of the decision problem.

2.3.1 Description and notation

We consider a company that sells an assortment of products. The inventories for these
products are replenished from external suppliers through a third party logistics provider
(3PL). A 3PL often offers several transport modes. We focus on the setting where the
company has already decided upon two distinct transport modes that it would like to
use for the transport of each product. These two transport modes will differ in terms
of costs, lead times, emissions, or a combination thereof. Given these two transport
modes for each product, the operational question that remains is how many units of each
product the company should transport using which transport mode at what time so that
costs –holding, backlog, and ordering– are minimized and an overall emission constraint
is met. Companies will increasingly impose such constraints, either voluntarily or due to
government regulation.

The inventory system runs in discrete time with t ∈ N0 denoting the period index.
Without loss of generality, we assume that the period is of unit length and coincides with
the review epoch. Let J = {1, 2, . . . , |J |} denote the nonempty set of products that the
company offers for sale. Demand for product j ∈ J across periods is a sequence of non-
negative independent and identically distributed (i.i.d.) random variables {Dt

j}. Any
demand in excess of on-hand inventory is backlogged. Let I tj denote the net inventory
level (on-hand inventory minus backlog) of product j at the beginning of period t after any
outstanding orders have arrived. Each unit of product j in on-hand inventory (I tj −Dt

j)+

carries over to the next period and incurs a holding cost hj > 0. Similarly, each unit of
product j in backlog (Dt

j − I tj)+ incurs a penalty cost pj > 0. Here we use the standard
notation x+ = max(0, x).

Each product can be shipped using two distinct transport modes from one supplier
(or, equivalently, using one or two distinct transport modes from two distinct suppliers).
Let M = {f, s} denote the set of available transport modes, where we use f and s to refer
to the faster and slower transport mode, respectively. Associated with the transport of
one unit of product j ∈ J with mode m ∈ M is a cost cj,m ≥ 0, a deterministic lead time
lj,m ∈ N0, a distance traveled from the supplier to the company dj,m > 0, and a certain
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number of units CO2 emission ej,m ≥ 0. The weight of one unit of product j is denoted
wj > 0. Recall that the company outsources its transport to a 3PL provider and hence has
no control over the actual shipping. We therefore consider variable emissions that depend
only on product and transport mode specific characteristics as well as on distance traveled,
and we refrain from incorporating a fixed emission factor per actual shipment. This is a
reasonable assumption for long distance and/or high volume transport lanes where the
impact of the decisions of any particular individual shipper on the carbon footprint are
negligible. In line with previous literature that models transportation emissions in the
context of mode selection (e.g., Hoen et al., 2014a,b), we endow ej,m with the following
structure which is based on the NTM methodology:

ej,m = wj(am + dj,mbm), (2.1)

where am ≥ 0 and bm > 0 are a fixed and variable transport mode specific emission
constant, respectively. Consistent with the NTM methodology, we assume that each
product is shipped with an averagely loaded transport mode. We define the lead-time
difference between the fast and slow mode as lj = lj,s − lj,f ≥ 0 for each product j ∈ J .
Conventional literature on dual model problems (e.g., Sheopuri et al., 2010) imposes the
assumption that the cost premium of using the fast mode does not exceed the lead-time
difference multiplied by the penalty costs, i.e., (cj,f − cj,s) < ljpj to ensure that using
the fast mode is attractive. We do not impose this assumption as whether using the
fast supply mode will also depend on the target carbon reduction. When the fast supply
mode is less polluting than the slow mode, the fast mode may become attractive even
when (cj,f −cj,s) < ljpj. Conversely, the fast supply mode may become unattractive when
the fast supply mode is more polluting, even when (cj,f − cj,s) < ljpj. Thus our model
allows for situations where, e.g., the expensive transport mode is either the fastest and
most polluting or the fastest and least polluting. Finally, the amount of items of product
j ∈ J to be shipped with transport mode m ∈ M in period t is denoted by Qt

j,m. With
this notation, observe that shipments Qt−lj,f

j,f and Qt−lj,s

j,s arrive in period t so that we can
write the following recursion for the inventory level I tj of each product j:

I tj = I t−1
j −Dt−1

j +Q
t−lj,f

j,f +Q
t−lj,s

j,s .

All notation introduced so far as well as notation that we will introduce later is
summarized in Table 3.1.

2.3.2 Control policy

It is well-known that even for the simplest case where |J | = 1 and absent of the emission
constraint, the policy that prescribes the optimal shipment quantities is complex and
can only be computed through dynamic programming for very small instances that are
arguably not representative for practice (Whittemore and Saunders, 1977; Feng et al.,
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Table 2.1: Overview of notation.

Notation Description

Sets
J Assortment; Set of all products.
M Set of available transport modes, i.e. M = {f, s}.
Input
Dt

j Random demand for product j ∈ J in period t ∈ N0.
pj Penalty cost for one unit of product j ∈ J in backlog carried over to the next period.
hj Holding cost for one unit of product j ∈ J in on-hand inventory carried over to the next period.
cj,m Cost of shipping one unit of product j ∈ J with transport mode m ∈ M .
lj,m Transportation lead time for product j ∈ J by transport mode m ∈ M .
lj Transportation lead time difference between the fast and slow mode for product j ∈ J , i.e. lj =

lj,s − lj,f .
dj,m Distance for the transport of product j ∈ J with transport mode m ∈ M .
am Fixed emission constant corresponding with transport mode m ∈ M .
bm Variable emission constant corresponding with transport mode m ∈ M .
wj Unit weight of product j ∈ J.
ej,m Total units CO2 emission associated with shipping one unit of product j ∈ J with transport mode

m ∈ M .
Emax The maximally allowable carbon emissions for the transport of the entire assortment of products.
Decision variables
Sj,m Base-stock level for product j ∈ J and transport mode m ∈ M .
∆j Difference between the slow and fast base-stock level for product j ∈ J , i.e. Sj,s − Sj,f .
Sf The vector (S1,f , S2,f , . . . , S|J|,f ).
∆ The vector (∆1,∆2, . . . ,∆|J|).
State variables
It

j Inventory level of product j ∈ J at the beginning of period t ∈ N0 after orders have arrived.
IP t

j,f Fast inventory position of product j ∈ J in period t ∈ N0 before shipping orders.
IP t

j,s Slow inventory position of product j ∈ J in period t ∈ N0 after shipping orders with the fast
transport mode.

Qt
j,m Amount of product j ∈ J shipped with transport mode m ∈ M in period t ∈ N0.

Ot
j The overshoot of product j ∈ J in period t ∈ N0, i.e. (IP t

j,f − Sj,f )+.

Output of model
C(Sf ,∆) Total long-run average holding, backlog, and ordering costs under a given control policy (Sf ,∆).
E(Sf ,∆) Total emissions from transportation under a given control policy (Sf ,∆).
CUB

P (CLB
P ) Upper (lower) bound for the optimal solution to Problem (P ).

2006). For the control of this inventory system, we therefore use a heuristic policy that is
originally due to Veeraraghavan and Scheller-Wolf (2008). They show numerically that
their so-called dual-index policy performs quite well compared to the optimal policy. The
dual index policy tracks two indices: One that contains all orders that are still in-transit
and one that contains only those in-transit orders that are due to arrive within the lead
time of the fast mode. Based on these outstanding orders, the policy dynamically ships
orders with both modes to keep these indices at certain target levels. In line with standard
inventory management nomenclature, we also refer to these target levels as base-stock
levels. More specifically, the policy operates as follows. At the beginning of every period t
after orders Qt−lj,f

j,f and Qt−lj,s

j,s have arrived, we review the fast inventory position, which
includes all in-transit orders – i.e. shipped with both the slow and the fast transport
mode – that will arrive within the lead time of the fast transport mode:

IP t
j,f = I tj +

t−1∑
k=t−lj,f +1

Qk
j,f +

t−lj∑
k=t−lj,s+1

Qk
j,s.

Then, if necessary, we place order Qt
j,f with the fast transport mode to raise the fast

inventory position to its target level Sj,f . That is, the amount of product j shipped in
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period t with the fast transport mode equals:

Qt
j,f = (Sj,f − IP t

j,f )+.

After placing the fast shipment order, we inspect the slow inventory position, which
includes the fast order just placed

IP t
j,s = I tj +

t∑
k=t−lj,f +1

Qk
j,f +

t−1∑
k=t−lj,s+1

Qk
j,s,

and ship an order with the slow transport mode such that this inventory position is raised
to its target level Sj,s, with Sj,s ≥ Sj,f since the fast inventory position is contained in the
slow inventory position. Thus the amount of product j shipped with the slow transport
mode in period t equals:

Qt
j,s = Sj,s − IP t

j,s.

Note that, contrary to the fast inventory position, the slow inventory position can never
be larger than its base stock level Sj,s. After shipping both orders, demand Dt

j is satisfied
or backlogged, depending on whether there is sufficient inventory available or not. The
period then concludes with charging holding or backlog costs.

The order of events in a period t for each product j is thus as follows:

1. Orders Qt−lj,f

j,f and Qt−lj,s

j,s arrive with the fast and slow transport mode, respectively,
and are added to the on-hand inventory I tj .

2. Review the fast inventory position and ship order Qt
j,f with the fast transport mode

at unit cost cj,f .

3. Review the slow inventory position and ship order Qt
j,s with the slow transport

mode at unit cost cj,s.

4. Demand Dt
j occurs and is satisfied from on-hand inventory if possible, and otherwise

backlogged.

5. Incur a cost hj for any unit in on-hand inventory (I tj −Dt
j)+ and a cost pj for any

unit in backlog (Dt
j − I tj)+.

Observe that under a dual-index policy, slow orders entering the information horizon of
the fast transport mode may cause the fast inventory position to exceed its target level.
The amount by which the fast inventory position exceeds its target level is referred to
as the overshoot. The fast inventory position in period t after placing orders with both
modes thus equals Sj,f +Ot

j, where Ot
j denotes the overshoot for product j in period t:

Ot
j = IP t

j,f +Qt
j,f − Sj,f = (IP t

j,f − Sj,f )+.
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Later, in Section 2.4.2, we shall see that computing the steady state distribution of the
overshoot is crucial for determining the performance of a given control policy for a single
product.

We furthermore define ∆j = Sj,s−Sj,f , j ∈ J , so that the control policy for a product
can be specified in terms of its base-stock levels Sj,s and Sj,f or in terms of its base-stock
level for the fast transport mode Sj,f and the difference ∆j. We mostly use the latter
specification in our subsequent analysis. A control policy (Sf ,∆) for the entire assortment
of products consists of the vectors Sf = (S1,f , S2,f , . . . , S|J |,f ) and ∆ = (∆1,∆2, . . . ,∆|J |).

In what follows, for all sequences of random variables X t, we define their stationary
expectation as E[X] = limT→∞(1/T )∑T

t=0 X
t and their distribution as P(X ≤ x) =

limT→∞(1/T )∑T
t=0 1{X t ≤ x}, where 1{A} is the indicator function for the event A.

Whenever we drop the period index t we refer to the generic stationary random variable
X with expectation and distribution as defined above.

2.3.3 Decision problem

For a given control policy (Sf ,∆), we define the total long-run average holding, backlog,
and ordering costs per period for the entire assortment of products as

C(Sf ,∆) =
∑
j∈J

Cj(Sj,f ,∆j)

=
∑
j∈J

(
hjE[(Ij −Dj)+] + pjE[(Dj − Ij)+] +

∑
m∈M

cj,mE[Qj,m]
)
, (2.2)

and the total emissions as

E(Sf ,∆) =
∑
j∈J

Ej(Sj,f ,∆j) =
∑
j∈J

∑
m∈M

ej,mE[Qj,m],

where it is understood that the expectation operators are conditional on the control policy
(Sf ,∆). Veeraraghavan and Scheller-Wolf (2008) show that C(Sf ,∆) is well-defined for
any control policy (Sf ,∆) as long as E[Dj] < ∞ for all products j ∈ J .

The objective of our decision problem is to minimize the total long-run average costs
while keeping the total emissions below a target level Emax. Combining the above-
mentioned leads to the following mathematical formulation of our decision problem which
we refer to as problem (P ):

(P ) min C(Sf ,∆)
subject to E(Sf ,∆) ≤ Emax,

Sf ∈ R|J |, ∆ ∈ R|J |
0 .

Let (S∗
f ,∆∗) denote an optimal solution to problem (P ) and let CP be the correspond-

ing optimal cost. Note that Problem (P ) is a non-linear non-convex knapsack problem
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where more than one copy of each item can be selected. It is well-known that even the
simplest types of such knapsack problems are N P-hard (e.g. Kellerer et al., 2004). Since
our knapsack is more complex, we conclude that Problem (P ) also falls in that same
complexity class; it is hence likely that also for our problem no exact polynomial time
solution algorithm exists.

We remark that Problem (P ) enables companies to reduce carbon emissions from their
inbound logistics by imposing a constraint on the maximally allowable carbon emissions.
This is particularly useful for companies that seek to reduce carbon emissions proactively.
However, companies may also take a reactive position and make supply mode decisions
based only on inventory and transport costs. This cost will also include a carbon emission
price component in regions where emissions are subject to carbon pricing mechanisms
such as carbon crediting or taxing. We now briefly show that our model and analysis also
apply to that setting. To that end, let ce denote the price of one unit of carbon emissions.
This price can also depend on the transport mode m and/or product j, but for ease of
exposition we omit those dependencies. The long-run average costs per period in (2.2)
can now be redefined as follows:

C̃(Sf ,∆) =
∑
j∈J

(
hjE[(Ij −Dj)+] + pjE[(Dj − Ij)+] +

∑
m∈M

(cj,m + ceej,m)E[Qj,m]
)
.

The decision problem is now to minimize the long-run average costs per period:

(P̃ ) min C̃(Sf ,∆)
subject to Sf ∈ R|J |, ∆ ∈ R|J |

0 .

Problem (P̃ ) is less complex than the original decision problem since it does not involve a
constraint that links the individual products. As such, Problem (P̃ ) can be decomposed
in |J | product specific problems, each of which can be solved individually. The column
generation sub-problem that we will discuss in Section 2.4.2 has a similar structure as
the product specific problems of (P̃ ), and the solution method we discuss there thus also
applies to (P̃ ).

2.4 Analysis

This section focuses on finding the optimal control policy for Problem (P ). Our approach
relies on the technique of column generation – also named Dantzig-Wolfe decomposition
after its pioneers (Dantzig and Wolfe, 1960). This technique enables a natural decomposi-
tion of the original multi-product decision problem into smaller single-product problems
that have more structure. We refer the interested reader to Lübbecke and Desrosiers
(2005) for a comprehensive survey on column generation. Below, we first explain how
we apply column generation to Problem (P ), and we then describe a simulation-based
optimization method for solving the sub-problem of this column generation procedure.
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2.4.1 The column generation procedure

We first reformulate decision problem (P ) as an integer linear program in which each
binary decision variable corresponds to a certain combination of values for the decision
variables of our original decision problem. We subsequently relax the integrality con-
straint and we call this problem the master problem (MP). Formally, let Kj be the set
of all possible dual index policies for product j ∈ J . Each policy k ∈ Kj is determined
by its policy parameters Skj,f and ∆k

j . Let xkj ∈ {0, 1} denote the decision variable that
indicates whether policy k ∈ Kj is selected (xkj = 1) for product j ∈ J or not (xkj = 0).
By relaxing the integrality constraint on this binary decision variable, we arrive at the
mathematical formulation of the master problem (MP):

(MP) min
∑
j∈J

∑
k∈Kj

Cj(Skj,f ,∆k
j )xkj (2.3)

subject to
∑
j∈J

∑
k∈Kj

Ej(Skj,f ,∆k
j )xkj ≤ Emax, (2.4)

∑
k∈Kj

xkj = 1, ∀j ∈ J (2.5)

xkj ≥ 0, ∀j ∈ J, ∀k ∈ Kj.

Let CLB
P denote the optimal cost for master problem (MP). Due to the linear relaxation

of the integrality constraint on xkj , an optimal cost CLB
P is also a lower bound on the

optimal cost for Problem (P ), CP .

Due to its large number of decision variables, master problem (MP) is solved using
column generation. To this end, we first restrict master problem (MP) to a small subset
K̃j ⊆ Kj of trivial policies per product j ∈ J (i.e. columns) that are feasible for Problem
(P ) (and thus also for Problem (MP)). Such a trivial policy prescribes, for instance, to
ship orders exclusively with the least polluting mode. This restricted problem is referred
to as the restricted master problem (RMP). We then solve (RMP) to optimality, and we
are interested in new policies k ∈ Kj \ K̃j, j ∈ J , that will improve the objective value of
(RMP) if they are added to K̃j. Such policies k ∈ Kj \ K̃j are identified through solving
a column generation sub-problem for each product j ∈ J . The objective function of such
a sub-problem is the reduced cost as a function of the policy with respect to the current
dual variables obtained through solving (RMP) to optimality. If a policy k ∈ Kj \ K̃j

has a negative reduced cost, then adding that policy as a column to K̃j in (RMP) will
reduce the objective value of (RMP). More formally, the column generation sub-problem
for product j ∈ J has the following form:

(SP(j)) min hjE[(Ij −Dj)+] + pjE[(Dj − Ij)+] +
∑
m∈M

(cj,m − ηej,m)E[Qj,m] − υj,

subject to Sj,f ∈ R, ∆j ∈ R0,

where η denotes the dual variable of (RMP) that corresponds with emission constraint
(2.4) and υj denotes the dual variable of (RMP) that corresponds with constraint (2.5)
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that assures that for each product j ∈ J a convex combination of policies is chosen. Note
that these dual variables can also be interpreted as the Lagrange multipliers of relaxing
the corresponding constraints (Lübbecke and Desrosiers, 2005). If for product j ∈ J a
feasible solution for (SP(j)) exists with a negative objective value (i.e. a negative reduced
cost), then this policy is added to K̃j since the objective value of (RMP) can be improved
when solved with the enlarged set K̃j.

We continue with iterating between optimizing (RMP) and finding new policies through
solving (SP(j)), j ∈ J , until no product for which there is a policy with a negative re-
duced cost exists. An optimal solution for (RMP) is then also an optimal solution for
(MP). If this optimal solution contains integer values only, then it is also an optimal
solution for (P ). If this is not the case, then we solve (RMP) one last time as an integer
program to find an integer solution for (RMP), which is then also a feasible solution for
(P ). Recent inventory literature has shown that solving the restricted master program as
an integer program to arrive at an integer solution leads to good performance in terms of
optimality gaps (e.g., Drent and Arts, 2021; Haubitz and Thonemann, 2021), and often
outperforms alternative approaches such as local searches or rounding procedures (Al-
varez et al., 2013). The corresponding cost of the resulting feasible solution is also an
upper bound, denoted CP

UB, for CP .

In the next section, we provide a simulation-based optimization procedure to solve
the column generation sub-problem (SP(j)).

2.4.2 Solving the column generation sub-problem

The column generation sub-problem (SP(j)) has the same structure as the problem stud-
ied by Veeraraghavan and Scheller-Wolf (2008). We follow their simulation-based opti-
mization procedure to solve (SP(j)). This procedure is grounded in the following sepa-
rability result that allows us to find the optimal Sj,f for a given ∆j as the solution to a
special Newsvendor problem.

Lemma 2.1. (Veeraraghavan and Scheller-Wolf, 2008, Proposition 4.1) The distributions
of the overshoot Oj, the fast transport mode shipment size Qj,f , and the slow transport
mode shipment size Qj,s are functions of ∆j only, independent of Sj,f .

Let Ot
j(∆j) denote the overshoot of product j in period t for a given ∆j. Recall that

the fast inventory position of product j in period t after shipping equals Sj,f + Ot
j(∆j).

Consequently, for the net inventory level of product j in each period t, we can also write

I tj = Sj,f −
(∑t−1

k=t−lj,f
Dk
j −O

t−lj,f

j (∆j)
)
. (2.6)

By plugging (2.6) in the objective function of (SP(j)), and using Lemma 2.1 as well as
the fact that in each period the overshoot is independent of the demand and Sj,f , we
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readily recognize that for given ∆j the objective function is convex in Sj,f . This implies
the following result.

Lemma 2.2. (Veeraraghavan and Scheller-Wolf, 2008, Theorem 4.1) The optimal base-
stock level S∗

j,f for a given ∆j, denoted S∗
j,f (∆j), equals

S∗
j,f (∆j) = inf

{
Sj,f ∈ R : P

(∑lj,f +1
i=1 Di −Oj(∆j) ≤ Sj,f

)
≥ pj
pj + hj

}
.

It now remains to calculate the objective value of SUB(j) for given ∆j and correspond-
ing S∗

j,f (∆j). Observe that in each period immediately after shipping orders with both
modes, the slow inventory position equals the fast inventory position plus the overshoot
and all remaining outstanding slow orders. Since these inventory positions are equal to
their respective base-stock levels following order placement, we have for each product j
in each period t:

Sj,s = Sj,f +Ot
j +

lj−1∑
k=0

Qt−k
j,s . (2.7)

From (2.7) it follows that E[Qj,s] = (∆j − E[Oj])/lj. Since under backlogging the sum
of both orders must on average be equal to the period demand, we finally find E[Qj,f ] =
E[Dj] − E[Qj,s].

To solve (SP(j)), j ∈ J , to optimality, it thus suffices to perform a one-dimensional
search over ∆j. For each ∆j, we compute the stationary distribution of the overshoot.
With this stationary distribution we readily find the optimal base-stock level S∗

j,f (∆j)
through Lemma 2.2 and the total reduced cost through the identities following Equation
(2.7). As there is in general no closed-form expression for the stationary distribution of
the overshoot, we follow Veeraraghavan and Scheller-Wolf (2008) and rely on simulation
to compute this distribution.

Note that our optimization model and analysis readily extends to settings where the
slow transport modes of all (or some) products are operated according to any other
rule that depends only on the current overshoot as well as all in-transit orders that are
not yet included in the fast inventory position. That is, any other rule that depends
only on the information state (Ot

j, Q
t−1
j,s , Q

t−2
j,s , . . . , Q

t−lj+1
j,s ), j ∈ J , t ∈ N0. Most well-

performing control policies satisfy this condition, e.g., the Capped Dual-Index policy
(Sun and Van Mieghem, 2019), the Tailored Base-Surge policy (Allon and Van Mieghem,
2010), and the Projected Expedited Inventory Position policy (Drent and Arts, 2022).
Sheopuri et al. (2010) show that for such control policies, the stationary distribution
of the overshoot is a function of only the parameter(s) for operating the slow transport
mode, and that consequently a Newsvendor result similar to Lemma 2.2 holds for all such
policies.
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2.5 Computational experiment

Our test-bed has three different types of assortments of products, each representing a
different type of industry. The first assortment type consists solely of products for which
emissions from the slowest transport mode are less than the emissions from the faster
transport mode. This assortment is inspired by apparel goods that are delivered from
Vietnam to Europe by sea transport as the slowest mode and by air transport as the
fastest mode. In this example, the fast supply mode has a higher carbon footprint.
The opposite holds for the second assortment type. Here we are inspired by industrial
goods that are delivered from China to Europe by sea transport as the slowest mode
and from Germany by truck as the fastest mode. In this case, the slow supply mode
is associated with more emissions as goods are transported over a longer distance. The
third assortment has products of both types.

We perform a parametric computational experiment. The base case is set up as fol-
lows. We consider 100 products for each assortment type, i.e. |J | = 100. The input
parameters in the base case are identical for all three assortments, except for the carbon
emissions from transportation. For each product j ∈ J , the period demand Dj follows
a negative binomial distribution. To create heterogeneous assortments, the parameters
of this negative binomial distribution are randomly drawn from two separate distribu-
tions for each product j. The mean µDj

:= E[Dj] is randomly drawn from a gamma
distribution with mean 100 and coefficient of variation of 0.5. The coefficient of varia-
tion CVDj

:=
√

Var[Dj]/µDj
is randomly drawn from a shifted beta distribution with

mean 0.9, standard deviation of 0.25, and shifted to the right by 0.3. Since low demand
products typically have higher holding cost, the holding cost hj is negatively correlated
with the mean demand µDj

of each product j through a Gaussian copula with a fitting
covariance matrix. In particular, hj is drawn from a gamma distribution with mean 1
and coefficient of variation equal to CVDj

, with a Pearson correlation coefficient of -0.5.
Details regarding our approach to generate correlated random numbers are relegated to
Appendix 2.B.

We set lj,f and cj,s to 0 for all products, and focus on lj,s and cj,f , which now coincide
with the lead time difference and the cost premium of product j ∈ J , respectively. We
set lj,f = 3 for all products. The back-order penalty cost pj for product j is a function of
its holding cost hj. The ratio between the holding and the penalty cost is an important
determinant of the service level in an inventory system. Therefore we set pj = ψjχ

p
jhj

where ψj is a parameter we use to control the ratio between pj and h, and χpj is a random
perturbation. That is, χpj has a shifted beta distribution with mean 0.98, standard
deviation 0.1, and shifted 0.02 to the right.

The cost premium cj,f of the fast transport mode of product j equals χcjpjlj,f , where
χcj has a beta distribution with mean 0.25 and standard deviation 0.1. Table 2.2 provides
a summary of how we randomly generated the products of the base case; we shortly
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explain how we randomly generated the emission units for these products for all the
three assortment types. In Table 2.2, NB(µ, cv) denotes a negative binomial random
variable with mean µ and coefficient of variation cv, Γ(µ, cv) denotes a gamma random
variable with mean µ and coefficient of variation cv, and B(µ, σ, s) denotes a beta random
variable with mean µ and standard deviation σ that is shifted to the right by s; if we
drop s then this beta random variable is not shifted, i.e. B(µ, σ, s) =d B(µ, σ) + s where
=d denotes equality in distribution.

Table 2.2: Generating the base case input parameters.

Input parameter Generation

|J | 100
Dj NB(µDj

,CVDj
), with µDj

∼ Γ(100, 0.5) and CVDj
∼ B(0.9, 0.25, 0.3)

lj,f 0
lj,s 3
hj Γ(1, 0.5), with ρµDj

,hj
= −0.5

pj ψpχ
p
jhj , with ψp = 9 and χp

j ∼ B(0.98, 0.1, 0.02)
cj,s 0
cj,f χc

jpj lj,f , with χc
j ∼ B(0.25, 0.1)

As explained in Section 2.3, we rely on the NTM framework (NTM, 2015) to set emis-
sions based on the structure of equation (2.1). We apply the NTM framework to data
from the UN Comtrade Database (Database, 2020) to obtain sample emission units; de-
tails regarding this methodology are relegated to appendix 2.A. We then apply maximum
likelihood estimation on these sample unit emissions to obtain three distinct sets of two
distribution functions; two for each assortment type of products. The number of carbon
emission units ej,m for product j ∈ J with transport mode m ∈ M are then randomly
drawn from these distributions. These distributions are presented in Table 2.3. In this
table, LN(µ, σ) denotes a random variable whose logarithm is normally distributed with
mean µ and standard deviation σ, and WB(λ, k) denotes a Weibull random variable with
scale λ and shape k.

Table 2.3: Generating the emission units for the base case.

Assortment type Emission parameter Generation

1
ej,s Γ(0.35, 0.21)
ej,f ej,s + LN(1.52, 0.21)

2 ej,f Γ(0.19, 1.27)
ej,s ej,f + Γ(2.19, 1.27)

3 ej,f WB(0.87, 0.77)
ej,s Γ(3.31, 1.34)

The total allowable carbon emissions from transportation Emax is set as a percentage
of the total reducible carbon emissions. For each instance of the test-bed, the reducible
carbon emissions is defined as the difference between the total amount of carbon emissions
of the control policy that is optimal for Problem (P ) absent of the emission constraint
and the total amount of carbon emissions of the control policy that leads to the lowest
possible total carbon emissions. The latter implies that each product is only shipped



24 Chapter 2. Efficient emission reduction through dynamic mode selection

with its least polluting transport mode. Under the dual-index policy, setting ∆j to zero
implies that all orders for product j ∈ J are shipped with its fastest transport mode.
Alternatively, letting Sj,f go to −∞ implies that all orders for product j are shipped with
its slowest transport mode (Veeraraghavan and Scheller-Wolf, 2008).

To evaluate the effectiveness of the column generation procedure in solving Problem
(P ), we compute for each instance of the test-bed the relative difference between the total
average cost under a feasible solution and the corresponding lower bound. That is,

%GAP = 100 · C
UB
P − CLB

P

CLB
P

,

where CLB
P and CUB

P are obtained using the methods described in Section 2.4. In what
follows, we also refer to this feasible solution as dynamic mode selection (DMS). Hence
the long run average cost of dynamic mode selection equals CUB

P .

To quantify the benefit of using two transport modes dynamically rather than relying
statically on one transport mode, we define for each instance of the test-bed a benchmark
instance in which we can only select one transport mode for each product. As described
above, the dual-index policy can mimic static mode selection (SMS). Hence, to find a
feasible static mode selection solution to this benchmark instance of Problem (P ), we
apply our column generation procedure of Section 2.4 in which we restrict the solution
space for each product j ∈ J such that all orders are shipped with either the fastest or
the slowest transport mode. The mathematical formulation for the static mode selection
approach as well as the benchmark approach described in the next paragraph can be
found in Appendix 2.C. (Note that in the Master Problem (MP) for this approach the
set of possible policies Kj for each product i ∈ J contains only two single transport mode
policies.) The long run average cost of this solution is denoted CSMS

P . To quantify the
value of dynamic mode selection, we compare for each instance of the test-bed the long
run average cost of static mode selection with the long run average cost of dynamic mode
selection. That is,

%SMS = 100 · C
SMS
P − CUB

P

CUB
P

,

where %SMS indicates the relative increase in the long run average cost when the com-
pany chooses to rely on only one transport mode for each product in meeting an assort-
ment wide constraint on total emissions.

To quantify the portfolio effect, we define for each instance of the test-bed an addi-
tional benchmark in which we enforce an emission constraint for each product j ∈ J . This
emission constraint is set as a percentage of the total reducible emissions of the individual
product rather than of the entire assortment of products. We compute a feasible solution
for this benchmark instance with the column generation procedure of Section 2.4, which
can readily be modified so that it can be applied to settings where we have additional
emission constraints. (An alternate solution procedure is to use a simple search proce-
dure per product.) This approach, which we refer to as blanket mode selection (BMS),
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seems a plausible approach for most practitioners. Indeed, they can consider each prod-
uct individually absent of the complicating linking emission constraint and yet they are
guaranteed that the total emissions of the entire assortment is kept below the target level.
The long run average cost of the blanket mode selection approach is denoted CBMS

P . To
quantify the portfolio effect, we compare for each instance of the test-bed the long run
average cost of blanket mode selection with the long run average cost of dynamic mode
selection. That is,

%BMS = 100 · C
BMS
P − CUB

P

CUB
P

,

where %BMS indicates the relative increase in the long run average cost when the com-
pany enforces an emission constraint on each individual product rather than one single
constraint for the emissions from the entire assortment.

In solving the column generation sub-problem for each product, we simulated 10
samples of 9500 time periods following a 5000 time periods warm-up . The width of the
95 percent confidence interval of the long run average cost per period for each product
was no larger than 3 percent of its corresponding point estimate for each instance of
the column generation sub problem that we solved. The average computational time of
our column generation procedure was 23 minutes, 5 minutes for blanket dynamic mode
selection, and less than 5 sec for static mode selection.

2.5.1 Results for the base case

Figure 2.1 presents the normalized optimal average costs of each approach for each as-
sortment group under emission targets that range from from 0 to 100 percent of the total
reducible carbon emissions. Observe that for each assortment group, all approaches have
the same performance when the emission target is set at 100 percent of the total reducible
emissions. In this case, all approaches solely utilize the least polluting transport mode.
Alternatively, when we impose no target on the emissions from transportation, then both
dual mode approaches perform equally well while the static mode selection approach
seems to perform the poorest over all possible emission targets. Indeed, static mode se-
lection is around 15 percent more expensive than both dual dual mode approaches for all
assortment types when transportation emissions are not constrained. Based on Figure
2.1, we conclude that dynamic mode selection, as opposed to static and blanket mode
selection, has great potential to efficiently curb carbon emissions from transportation at
relatively little additional costs across all assortment types.

We explicitly compare our dynamic mode selection with the benchmark approaches
in Figure 2.2, which presents the %SMS and %BMS percentages for each assortment
group under emission targets that range from from 0 to 100 percent of the total reducible
carbon emissions. The figure indicates that the performance of static mode selection
over dynamic mode selection is consistent across all assortments. The relative increase
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(a) Assortment 1: ej,s ≤ ej,f , ∀j ∈ J
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(b) Assortment 2: ej,f ≤ ej,s, ∀j ∈ J
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(c) Assortment 3: Combined
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Figure 2.1: Optimal normalized absolute costs of each approach for different targets on the reducible
emissions.

in its total cost over dynamic mode selection is the largest when there is no emission
target, and gradually decreases as the emission constraint tightens. At moderate carbon
emission targets, around 40 to 60 percent of the total reducible emissions, static mode
selection still leads to increases in the total average cost per period of around 10 to 15
percent for all assortment types.

The performance of the blanket mode selection approach depends on the specific
assortment type. Figure 2.2(a) illustrates that when the unit emissions from the fast
transport mode are more than those from the slow transport mode, the performance of the
blanket mode selection approach seems to be quite reasonable. This can be explained as
in this setting, the cost of the fastest transport mode is larger than the cost of the slowest
transport mode. The most polluting transport mode is thus also the most expensive
transport mode. The portfolio effect is limited for this assortment type.

For the other two assortment types, however, the cheapest transport mode is not
necessarily also the least polluting transport mode, and the portfolio effect is more preva-
lent. Figures 2.2(b) and 2.2(c) show that %BMS can be more than 35 and 20 percent
in assortment type 2 and 3, respectively, under carbon emission reduction targets of 50
percent. The static mode selection approach, which also takes advantage of the portfolio
effect, even outperforms the blanket mode selection approach for quite some emission
targets.

Figure 2.3 shows the usage of the fast supply mode as a function of the carbon emission
reduction target under dynamic mode selection as measured by

%F = 100 · 1
|J |

∑
j∈J

E[Qj,f ]
E[Qj,f ] + E[Qj,s]

.

Dynamic mode selection is economically attractive regardless of emissions targets. Car-
bon reduction targets make dynamic mode selection even more attractive for assortment
type 2, and mixed assortments, but not for assortments of type 1.

To recapitulate, the value of dynamically shipping products with two transport modes
simultaneously rather than statically selecting one transport mode a priori is quite large.
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(a) Assortment 1: ej,s ≤ ej,f , ∀j ∈ J
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(b) Assortment 2: ej,f ≤ ej,s, ∀j ∈ J
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(c) Assortment 3: Combined
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Figure 2.2: Relative surplus of the optimal cost of the alternative approaches (BMS and SMS)
compared to the DMS approach for different targets on the reducible emissions.

(a) Assortment 1: ej,s ≤ ej,f , ∀j ∈ J
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(b) Assortment 2: ej,f ≤ ej,s, ∀j ∈ J
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Figure 2.3: Percentage of products shipped with the fast mode for different carbon emission
reduction targets.

Regardless of the assortment type, %SMS is in between 5 and 15 percent for emission
reduction targets up to 90 percent. The portfolio effect depends on the specific assortment
type. If the least polluting transport mode of each product is also its cheapest transport
mode, then the fastest and most polluting transport modes are typically only relied
upon in case of imminent backorders. This behavior remains in case of an assortment-
wide emission target, and the portfolio effect is consequently rather limited. If the least
polluting transport modes are not necessarily the cheapest transport modes, then there
is substantial value to be reaped in optimizing the assortment of products under a single
emission constraint rather than under separate emission constraints for each individual
product. Indeed, %BMS can go up to 40 and 20 percent for assortment type 2 and 3,
respectively.

Table 2.4 below presents the average relative slack in the emission constraints for each
assortment over the different emission targets considered in the base case analysis. The
table shows that due to the binary nature of the static mode selection approach, the
total average emissions under this approach are often substantially lower than the target
level. This leads to particularly poor performance for assortment type 1. We observed in
our computational experiments that for this assortment type, the static mode selection
approach selects the cheapest and thus least polluting transport mode for almost all
products under each emission target.
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Table 2.4: Average slack in emission constraints for the base case analysis.

Assortment type

Approach 1 2 3

DMS 0.00% 0.00% 0.00%
BMS 0.08% 0.61% 0.12%
SMS 12.16% 0.17% 0.97%

The average %GAP of the base case over all emission targets is less than 0.01 percent,
indicating that the column generation procedure finds feasible solutions that are close to
optimal. Such a low average %GAP occurs because there can be at most 1 product for
which the optimal solution to Problem (MP ) is fractional. Indeed, Problem (MP ) has
|J |+1 constraints and an optimal solution for this problem has the same number of basic
variables. Constraint (2.5) assures that for each product j ∈ J a convex combination of
policies is chosen. As such, there is at least one basic variable for each product j. This
implies that there is at most 1 product for which the optimal solution to Problem (MP )
is fractional.

2.5.2 Determinant of emission reduction potential

The base case analysis of our DMS approach indicates that the emission reductions are
not evenly distributed across the products. Products can be ordered by their contribution
to emission reduction following the DMS optimization. In this manner we can construct
the cumulative reduction in emissions as shown in the Lorenz curves (Figure 2.4) with the
dashed line. Figure 2.4 shows that 20% of the products in assortments 1 through 3 account
for 61.22%, 94.19%, and 91.88% of the emission reduction, respectively. This suggests
that most of the emission reduction can be achieved by using dynamic mode selection for
a limited subset of a given assortment. Although it is possible to determine the limited
subset of products that account for most of the emission reduction after performing the
DMS optimization, it would be convenient to know which products to focus on without
having to solve a sophisticated optimization problem. Suppose we order products in
increasing order of |ej,f −ej,s|

cj,f −cj,s
, i.e., we sort products according to the how much emission

can be saved by using the least polluting transport mode relative to the additional cost of
the faster transport mode. Figure 2.4 shows the cumulative emission saving by products
ordered this way with the solid line. Here we see that focusing on the 20% of products in
assortments 1 through 3 for which |ej,f −ej,s|

cj,f −cj,s
is highest, already achieves 58.93%, 93.63%,

and 82.64% of the potential emission reduction, respectively. Thus firms seeking to
minimize the carbon footprint of their inbound logistics should focus their attention on
products for which the difference in emission in different transport modes is large relative
to the additional cost of fast transportation modes. That is emission differences between
modes relative to cost difference between modes is the main determinant of emission
reduction potential for a given assortment.
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(a) Assortment 1: ej,s ≤ ej,f , ∀j ∈ J
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(b) Assortment 2: ej,f ≤ ej,s,∀j ∈ J
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(c) Assortment 3: Combined
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Figure 2.4: The cumulative emissions reduction share of items arranged based on different
criteria.

2.5.3 Comparative statics

In this section, we study how changes in the input parameters with respect to the base
case affect the performance of the blanket mode selection and the static mode selection
approach. In what follows, we keep the emission target fixed at a 50 percent reduction of
the reducible emissions, and we study the effects of changing a certain input parameter
while generating the other input parameters as in the base case, i.e. as in Table 2.2. We
also investigate the effect of scaling the emission differences between the most polluting
and least polluting transport modes when the target on the total emissions is kept fixed.
To achieve this, we first generate emission units as in the base case. We subsequently
change the emission units of the most polluting transport mode through scaling | ej,s −
ej,f | by a constant δe while keeping the emission units from the least polluting mode
fixed at its base level. The changes in the parameters we investigate are summarized in
Table 2.5.

Table 2.5: Changes in the base case input parameters.

Parameter Generation Base case Changes

|J | 100 |J | ∈ {40, 60, 80}
µDj

Γ(100, CVµDj
) 0.5 CVµDj

∈ {0.3, 0.4, 0.6, 0.7}
CVDj

B(0.9, 0.25, sDj
) 0.3 sDj

∈ {0.2, 0.25, 0.35, 0.4}
ρµDj

,hj
-0.5 ρµDj

,hj
∈ {−0.3,−0.4,−0.6,−0.7}

ψp 9 ψp ∈ {3, 4, 5, 19, 99}
χc

j B(0.25, σc) 0.1 σc ∈ {0.15, 0.2, 0.3, 0.35}
lj,s 3 lj,s ∈ {2, 4}
δe 1 δe ∈ {0.8, 0.9, 1.1, 1.2}

Figure 2.5 shows the effect of changing the coefficient of variation of the gamma
distribution from which we sample the mean demands per period for each product. The
figure indicates that this effect is relatively limited. With respect to the base case, both
%BMS and %SMS only change up to 1 percent point for all three assortment types. We
can draw a similar conclusion for the effect of changing the Pearson correlation coefficient
between the holding cost and the mean demand per period of each product. Figure 2.6
shows that both %BMS and %SMS change at most 1 percent point with respect to the
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base case for all three assortment types.
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(c) Assortment 3
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Figure 2.5: Effect of changing CVµDj
while keeping the rest of the parameters as in the base case.
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Figure 2.6: Effect of changing ρµDj
,hj

while keeping the rest of the parameters as in the base case.

Alterations in the shift parameter of the beta distribution from which we sample the
coefficient of variation of the demand per period for each product has a relatively moderate
effect on both %BMS and %SMS . Figure 2.7 illustrates that for all assortment types,
the %SMS tends to increase in the variability of the demand while the %BMS decreases.
This indicates that the flexibility to dynamically ship products with two transport modes
has particular merit in highly variable demand settings.

Figure 2.8 indicates that for all assortment types, an increase (decrease) in the lead
time difference between the fastest and the slowest transport modes of each product
leads to an increase (decrease) in both %SMS and %BMS . The blanket mode selection
approach seems to be more susceptible to changes in the lead time difference than the
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Figure 2.7: Effect of changing sDj
while keeping the rest of the parameters as in the base case.

static mode selection approach. For assortment type 2, for instance, an increase in the
lead time difference to 4 leads to an increase in %BMS of 7 percent points with respect to
the base case. By contrast, %SMS increases only slightly by 0.5 percent points. This can
be attributed to the fact that the blanket mode selection approach imposes constraints
on the emissions of each individual product while the static mode selection approach
imposes a single constraint on the entire assortment of products.
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Figure 2.8: Effect of changing lj,s while keeping the rest of the parameters as in the base case.

Figure 2.9 illustrates the effect of changing the critical ratio for all products through
varying ψp. We conclude that this effect is quite large. For assortment type 1, for
instance, %SMS varies from 20 percent to 2 percent. While %SMS seems to decrease
in the critical ratio for all products, %BMS tends to increase. For assortment type 2
and 3, for instance, %BMS increases from 15 percent to over 80 percent. These effects
can be explained by the fact that as the critical ratios of all products approach 1, our
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dynamic mode selection approach will mimic the static mode selection approach in which
the assortment wide emission constraint is met by relying on less polluting transport
mode for product for which this is relatively cheap to do so. The blanket mode selection
approach, however, must meet emission targets for each product individually which leads
to poor performance if we increase the critical ratios for all products.
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Figure 2.9: Effect of changing ψp while keeping the rest of the parameters as in the base case.

Figure 2.10 indicates that %SMS decreases in the cost of the fast transport mode.
This can again be explained by the fact that our dynamic mode selection approach will
also rely more on the cheaper transport mode as the cost premium for the fast transport
mode increases, and that consequently the gap with the static mode selection approach
decreases. By contrast, %BMS increases in the cost of the fast transport mode for
assortment type 2 and 3. This can be attributed to the fact that the blanket mode
selection approach, contrary to the other two approaches, imposes itemized emission
constraints and relying on the most expensive but least polluting transport mode is
therefore inevitable. Note that this is not true for assortment type 1 because there
the fast, expensive transport mode is also the most polluting transport mode. We can
draw similar conclusions for the effects scaling the emission units of the most polluting
transport mode, see Figure 2.11. Finally, Figure 2.12 indicates that the impact of the
assortment size on both %SMS and %BMS is relatively limited. With respect to the base
case, both %BMS and %SMS only change up to 2 percent point for all three assortment
types.

2.6 Concluding remarks

As carbon emissions from the transportation sector are projected to increase over the next
decades, it is important for companies to rethink their supply chain strategies and ex-
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Figure 2.10: Effect of changing χc
j while keeping the rest of the parameters as in the base case.
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Figure 2.11: Effect of changing δe while keeping the rest of the parameters as in the base case.

plicitly incorporate carbon emissions into their decision making. In this chapter, we have
studied the inbound transport and inventory management decision making for a company
that sells an assortment of products. The company wishes to minimize inventory costs
while keeping the total emissions from the inbound transport of the entire assortment
below a certain target level. Each product can be shipped using two distinct transport
modes. As each mode has its own merits, we have proposed a dynamic mode selection
model that allows the company to ship products with either mode depending on when one
mode is more favorable than the other. Since the optimal policy for dual transport mode
problems are known to be complex, we have assumed that shipment shipment quantities
for each product are governed by a dual-index policy. We have formulated the resulting
decision problem as a mixed integer linear program that we have solved through a column
generation solution procedure. This column generation procedure decomposes the com-
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(b) Assortment 2

40 50 60 70 80 90 100
11%

11.5%

12%

12.5%

13%

13.5%

14%

|J |

C
o
st

in
c
re

a
se

re
la
ti
v
e
to

D
M

S

SMS

Base
Change

40 50 60 70 80 90 100
30%

31%

32%

33%

34%

35%

36%

|J |

C
o
st

in
c
re

a
se

re
la
ti
v
e
to

D
M

S BMS

Base
Change

(c) Assortment 3
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Figure 2.12: Effect of changing |J | while keeping the rest of the parameters as in the base case.

plex multi-product problem into smaller sub-problems per product. These sub-problems
are readily solved through a simple bisection search over Newsvendor type problems.

In an extensive computational experiment, we have compared the performance of our
dynamic mode selection approach with two alternative approaches that are considered
state of the art. The first benchmark, static mode selection, lacks the flexibility to
dynamically ship products with two transport modes; it rather selects one transport
mode for each product a priori. The second benchmark, blanket mode selection, does
have the flexibility to rely on two transport modes simultaneously but it makes transport
decisions for each product individually rather than holistically for the entire assortment.
Our computational experiments indicate that the value of our dynamic mode selection
approach over the blanket mode selection approach is particularly high for assortments
of products for which the fastest transport modes are not necessarily the most polluting
transport modes. For such settings, our dynamic mode selection approach can reduce
the long run average costs by 40 percent under moderate carbon emission targets. These
huge savings can be attributed to the portfolio effect inherent to our approach. The
computational experiments further indicate that dynamic mode selection can significantly
outperform static mode selection. Under moderate emission targets, dynamically relying
on two transport modes rather than a single transport mode can lead to cost savings of
up to 15 percent.

Future studies can extend the current model by studying other settings with multiple
transport modes such as multiple echelons in a serial system (e.g. Lawson and Porteus,
2000; Arts and Kiesmüller, 2013) or assembly systems (e.g. Angelus and Özer, 2016).
Alternatively one may consider more sophisticated dual mode heuristic policies such as
the projected expedited inventory position policy (Drent and Arts, 2022), capped base-
stock policy (Sun and Van Mieghem, 2019), or vector base-stock policy (Sheopuri et al.,
2010).
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2.A Carbon accounting

In this section, we briefly explain how we determine the distribution functions that we use
for pseudo-random generation of the unit emissions in our computational experiments.
We utilize the Database (2020) to calculate the average unit weights for 122 groups of
products imported by The Netherlands in 2020. These product groups consist of two
categories: (i) apparel goods that are imported from Vietnam and (ii) industrial goods
that are imported from China and Germany. We consider air transport (from Tan Son
Nhat international airport) and sea transport (from Haiphong port) as the fast and slow
transport mode for the apparel category, respectively. For the industrial goods category,
we assume sea transport from Shanghai, China, as the slow mode and road transportation
from Stuttgart, Germany, as the fast mode.

We rely on the Network for Transport Measures methodology (NTM, 2015) to model
and measure transportation emissions based on equation 2.1. This model has been widely
used in literature (e.g., Hoen et al., 2014a,b). Following the NTM methodology, we first
compute the overall carbon emissions generated by a single vehicle and then allocate a
proportion of those emissions to each freight unit carried by the vehicle.

Sea transportation. We assume that all products are shipped via container. The
average age of the container fleet worldwide is around 12 years and the average vessel size
(dwt) of container ships with age 10-14 is 43,993 ton (United Nations Conference on Trade
and Development, 2020). Based on section 7 of the NTM framework and resolutions of
the Marine Environment Protection Committee (International Maritime Organization,
2011), we approximate sea transportation emissions in kilograms of CO2 of one unit
of a certain product with weight w (in kilogram) for a certain trip with distance d (in
kilometers) using the following relation,

esea = w · EIship · 10−3 · d

where EIship is kilograms of CO2 emissions per kilogram weight per kilometer. Further-
more EIship is computed through,

EIship = (a · dwt−c)/(PDRship · LCU)
1.852

where a and c are constants, dwt is the deadweight tonnage of the ship, LCU is aver-
age load capacity utilization, F (LCU) is fuel consumption as a function of load, and
PDRship is the payload of the ship. 1.852 is the nautical mile to km conversion coeffi-
cient. For a container ship, NTM methodology states: a = 0.17422, c = 0.201, LCU =
0.70, F (LCU) = 1, and PDR = 0.8. Succinctly, we have for the total emissions in kilo-
grams of CO2 of one unit of a product with weight w (in kilogram) for a sea trip with
distance d (in kilometers)

esea = w(1.996 · 10−5 · d). (2.8)
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Air transportation. Our calculations for the emissions of air transportation are based
on section 8 of the NTM Framework. We consider an Airbus A310-300 F as the aircraft.
Based on the May 2021 Air Cargo Market Analysis of The International Air Transport
Association, we assume an average international cargo load factor of 65%. Following the
NTM Framework, we have the following relation for air transportation emissions

eair = w

cmax
(CEF + V EF · d),

where cmax is the maximum freight load, CEF is the constant emissions factor, and V EF
is the variable emissions factor. CEF and V EF are the outcomes of applying a linear
regression on real data provided by the NTM. We obtain the CEF and V EF parameters
via interpolation over the associated tables provided by the NTM. We furthermore assume
cmax = 39, 000kg as per section 8.3.1 and perform the interpolation on table 4.1 of section
8.2.1. Succinctly, we have for the total emissions in kilograms of CO2 of one unit of a
product with weight w (in kilogram) for an air trip with distance d (in kilometers)

eair = w(1.525 · 10−1 + 4.938 · 10−4 · d). (2.9)

Road transportation. We rely on Hoen et al. (2014a) to obtain the emission units
of road transportation. They too rely on the NTM framework to estimate CO2 emissions
from road transportation in Europe. In particular, they approximate the total emissions
in kilograms of CO2 of one unit of a product with weight w (in kilogram) for a truck trip
with distance d (in kilometers) as

eroad = w(3.214 · 10−4 + 4.836 · 10−5 · d). (2.10)

Distances. We use NTMCalc Basic 4.0 (NTM, n.d.), which is an online tool provided
by the NTM for approximating emissions, to calculate travel distances between the origin
destination pairs as described at the beginning of this section. Based on this tool we find
that the sea distance between Haiphong and Rotterdam is 9,610 nautical miles (17,798
km) and the sea distance between Shanghai and Rotterdam is 10,525 nautical miles
(19,492 km). The distance traveled by aircraft between Tan Son Nhat international
airport and Rotterdam The Hague Airport is 10,073 km, and the road distance between
Stuttgart and Rotterdam is 633 km. With these distances, we compute the total kilogram
CO2 emissions of one unit of product with weight w for each mode-trip category using
Equations (2.8)-(2.10). We call these emission coefficients and they are presented in Table
2.6 below.

Table 2.6: Emissions coefficients for each mode-trip category.

Industry Slow Mode Fast Mode

Apparel 3.552 · 10−1 5.127
Industrial 3.891 · 10−1 3.093 · 10−2
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Fitting distribution functions. We use the emission coefficients from Table 2.6 to
calculate the unit emissions for the 122 groups of products mentioned at the beginning
of this section. We subsequently use maximum likelihood estimation on the resulting
emission units to find distribution functions from which we can sample the emission units
of the fast and slow transport modes for all three assortment types in our computational
experiment. The emission unit distributions for assortment type 1 are based on the
apparel category, the emission unit distributions for assortment type 2 are based on the
industrial category, and the emission unit distributions for assortment type 3 are based
on both categories. The final distribution functions are provided in Table 2.3.

2.B Generating correlated random numbers

Suppose X and Y are two real random variables with marginal distribution functions
F and G, respectively. Suppose their joint distribution is bi-variate standard normal
Nρ with Pearson’s correlation coefficient ρ = Cov(X, Y )/(

√
Var[X]

√
Var[Y ]) (Nelsen,

2006). Let Z be a vector of size two with independent random elements that have
standard normal distributions Φ, and let W = AZ be a linear combination of Z with

A =
[
1 0
ρ

√
1 − ρ2

]
.

It can be shown that W has a bivariate normal distribution Nρ with covariance matrix
Σ = AAT (see, e.g., Gut, 2009b). We use this result to sample from X and Y as follows:

1. Generate the vector Z =
[
Z1

Z2

]
by independently sampling from a standard normal

distribution function,

2. Calculate the bivariate normal sample W =
[
W1

W2

]
= AZ,

3. Generate the required samples by inversion
[
X

Y

]
=
[
F−1(Φ(W1))
G−1(Φ(W2))

]
.

2.C Benchmark approaches

The mathematical formulation for the blanket mode selection approach, which enforces
emission constraints Emaxj per item j ∈ J , is called Problem (BMS) and is given as follows:

(BMS) min C(Sf ,∆)
subject to Ej(Sj,f ,∆j) ≤ Emaxj , ∀j ∈ J,

(Sj,f ,∆j) ∈ (R × R0), ∀j ∈ J.
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The mathematical formulation for the static mode selection approach, which selects
one transportation mode per item, is called Problem (SMS) and is given as follows:

(SMS) min
∑
j∈J

Cj,s(S∗
j,s)xj,s +

∑
j∈J

Cj,f (S∗
j,f )xj,f

subject to
∑
j∈J

Ej,sxj,s +
∑
j∈J

Ej,fxj,f ≤ Emax,

xj,s, xj,f ∈ {0, 1}, ∀j ∈ J,

where Cj,s(Sj,s) := hjE
[(
Sj,s −∑lj,s

t=0 D
t
j

)+
]

+ pjE
[(∑lj,s

t=0 D
t
j − Sj,s

)+
]

+ cj,sE[Dj], and

Cj,f (Sj,f ) := hjE
[(
Sj,f −∑lj,f

t=0 D
t
j

)+]
+pjE

[(∑lj,f

t=0 D
t
j − Sj,f

)+]
+ cj,fE[Dj] are the aver-

age cost-rate for using the slow and fast transport mode respectively, S∗
j,s := argminSj,s

Cj,s(Sj,s),
and S∗

j,f := argminSj,f
Cj,f (Sj,f ) are the base-stock levels that minimize inventory re-

lated costs when exclusively using the slow and fast transport mode respectively, and
Ej,s := ej,sE[Dj] and Ej,f := ej,fE[Dj] are the emissions per time unit of shipping exclu-
sively with the slow and fast transport mode respectively.



Chapter 3

Load asymptotics and dynamic
speed optimization for the greenest
path problem

3.1 Introduction

The transportation sector is one of the largest sources of anthropogenic CO2 emissions, as
attested by the Intergovernmental Panel on Climate Change (2021), US Environmental
Protection Agency (2022), and the European Environment Agency (2021). In 2020, 36.3%
of U.S. CO2 emissions from fossil fuel combustion came from the transportation sector, of
which 45.2% was generated by heavy-, medium-, and light-duty trucks (US Environmental
Protection Agency, 2022). Similarly, the transportation sector accounted for 22% of the
EU’s CO2 emissions in 2020 (European Environment Agency, 2021). Accordingly, there
has been considerable attention on reducing CO2 emissions through “green routing”;
see e.g. Demir et al. (2012); Scora et al. (2015); Raeesi and Zografos (2019). The
objective to reduce CO2 emissions in transportation aligns with efforts to reduce fuel
expenditure. The reduction of fuel consumption has become imperative as fuel increases
in price and volatility due to recent geopolitical events, namely the Russian invasion of
Ukraine (Goldfarb and Patterson, 2022).

Road gradient and vehicle speed are two major factors that influence the carbon
footprint of a diesel truck (Demir et al., 2014). Demir et al. (2011) demonstrate through
numerical analysis that a medium-duty truck may consume an additional six liters of
diesel per 100 kilometer while traveling up a hill with a 1% gradient. The same study
also shows that increasing the speed of an empty medium-duty truck from 50 km/h to
100 km/h can raise fuel consumption by more than 3% on a level path. Gravity is an
important factor in finding the most efficient path between two points. Johann Bernoulli
posed such a problem as early as 1696, in which a path was deemed efficient if the travel
time was minimized and only gravity could be used to accelerate. The solution to this

39
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problem gave rise to so-called brachistochrone curves, which differ from the shortest path
between two points. Gravity and speed interact when finding the greenest (or most fuel-
efficient) route between two points in a road network. The aim of the present chapter
is to provide a thorough analysis of the difference between shortest paths and greenest
paths as a function of speed and vehicle type for a large variety of geographic settings.

In principle, empirical methods are the most precise way of measuring carbon emis-
sions associated with traversing a road with a certain vehicle at a certain speed. Un-
fortunately, it is not practical to empirically find carbon emissions for all roads, speeds,
and vehicle types as well as many other parameters (e.g. road surface type) that affect
fuel efficiency. Hence, several CO2 emissions models for trucks have been proposed in
literature. Demir et al. (2014) offers a summary of these models. The Comprehensive
Modal Emission Model (CMEM) is an instantaneous emissions modeling approach that
was introduced by Barth et al. (2005); Scora and Barth (2006); Boriboonsomsin and
Barth (2009). Bektaş and Laporte (2011) and Demir et al. (2012) present a simplified
variant of CMEM that is differentiable with respect to speed. This model is convenient in
practical applications. Rao et al. (2016) and Brunner et al. (2021) show that this model
can be made more realistic for cases where a vehicle travels downhill. Their modification
of the CMEM, unfortunately, renders it no longer differentiable at all speeds. Over the
past decade, CMEM has been the prevalent emissions model utilized in green/pollution
vehicle routing problems (e.g. Bektaş and Laporte, 2011; Franceschetti et al., 2013; Huang
et al., 2017; Xiao et al., 2020).

We call an optimization problem that seeks a path between an origin and destination
a path selection problem. In this chapter, we focus on the selection of the greenest
(most fuel-efficient) path. The greenest path is the path with the least CO2 emissions.
Some authors also call this the eco-friendly path (e.g. Scora et al., 2015; Andersen et al.,
2013; Boriboonsomsin and Barth, 2009; Schröder and Cabral, 2019). Path selection is
the backbone of a multitude of transport-based supply chain problems, from strategic
supply chain network design to operational vehicle routing problems. The complexity
of transportation problems forces many solution approaches to use path selection as a
pre-processing activity. It is common to use either the shortest or the fastest path in
this pre-rocessing step. The implicit assumption is that these paths are also the greenest.
In this chapter, we show that the actual topology of urban road networks requires that
we consider the greenest path selection as a part of the main optimization problem, e.g.
vehicle routing problem (VRP) or supply chain network design (SCND).

The development of Geographic Information Systems (GIS) have made high-resolution
geospatial data available at low cost. It is not sufficient to only consider the elevation
of the origin and destination of a path. Rather, for any path, elevation along different
sections of a path determine whether gravity increases or decreases the amount of fuel
needed for travel. Thus, detailed elevation data of each segment of a possible path is
required to find the greenest path. Furthermore, the slope along different segments of a
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path also determines the most fuel efficient speed along each segment of a path.

In this chapter, we show that the most fuel efficient speed will change along different
segments of any path. Thus, dynamic speed optimization is important to find the greenest
path between any origin and destination. The greenest path also depends on the payload
of a vehicle. We prove that the greenest path converges to an asymptotic greenest path as
the payload approaches infinity and that this limiting path is attained for a finite payload.
Our results are illustrated through numerical experiments. These experiments consider
a setting wherein a logistics service provider seeks to reduce the CO2 emissions of their
transport operations. The company’s fleet consists of heavy-, medium-, and light-duty
trucks that operate in an urban environment. We use the modified CMEM proposed by
Brunner et al. (2021) and focus our analysis on the effects that road gradient, speed,
payload, and truck type have on CO2 emissions.

We use an extensive numerical study to provide statistical answers to empirical re-
search questions listed at the end of this section. We utilize the real road network and
elevation data of 25 cities across six continents. It is worth noting that the closest paper
to our work in terms of the CO2 emissions model is Brunner et al. (2021). Apart from
the differences of our objective functions, the main differences between our study and
Brunner et al. (2021) are twofold. Firstly, Brunner et al. (2021) base their analysis on
the static speed policy along different segments of a path. We show that a static speed
policy can be suboptimal in terms of CO2 emissions for traversing a path in a city with
uneven topography. In addition, we demonstrate that the speed policy influences which
path is the greenest. Secondly, Brunner et al. (2021) solve the path selection problem
as a pre-processing activity for their main VRP problem. Moving the path selection to
a pre-processing step forces them to consider fixed loads and speeds. By contrast, we
consider dynamic speed optimization, and study asymptotics greenest paths as payloads
increase. We utilize estimated traffic speeds during rush hour for a large subgraph of
New York City’s road network to study the potential CO2 reduction by choosing the
greenest paths and optimizing speed instead of taking the fastest paths. We also exam-
ine the increased travel duration on the greenest paths, as well as the convergence to the
asymptotic greenest path when traffic congestion occurs.

The main contributions of this chapter are listed below:

1. We show that the greenest path is speed and payload dependent for accurate emis-
sion models. We provide a tractable algorithm to optimize the path and the speed
jointly, where the speed varies along the path.

2. We show that the greenest path converges to an asymptotic greenest path when
the load becomes large and that this path is attained for a finite load in Section
3.3.5. In Sections 3.4.3 and 3.4.4, we show that this convergence happens relatively
quickly in practice. We also show, in Section 3.4.3, that the greenest path for a
slope-dependent optimal speed policy is quite similar to the one associated with
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the static speed policy of Demir et al. (2012), yet significantly different from the
shortest path.

3. We conduct an extensive numerical study with data from 25 cities over 6 continents
and over 3 million origin destination pairs. We use detailed elevation data from U.S.
Geological Survey (2000)’s SRTM 1 Arc-Second Global data set. This thorough
study allows us to answer the following research questions:

(a) How much CO2 emissions can dynamic speed optimization and green path
selection reduce jointly? What are the effects of truck type, payload, and city
on the carbon reduction potential?

(b) What is the marginal contribution of speed optimization and path optimization
in the reduction of CO2 emissions?

(c) How different is the slope-dependent greenest path from the shortest path
(which is the slope-disregarding path)?

(d) What is the impact of the speed policy on the greenest path?
(e) In what settings are the integration of elevation data in path selection most

valuable?

4. We conduct an extensive numerical study with road network, elevation, and speed
data of New York City for more than 20 thousands origin destination pairs. The
traffic speed estimates are collected from Google’s Distance Matrix API. With this
study we answer to the questions 3a through 3d when shortest path is replaced by
the fastest path. We also study the increased time in traffic when the greenest path
and speed optimization are decided.

The rest of this chapter is organized as follows. We review the related literature in
Section 3.2. Section 3.3 describes the mathematical model used in this study and the
policies that can minimize CO2 emissions. Section 3.4 provides the setting and results of
the extensive numerical studies under free-flow conditions. We present the setting and
results of our numerical study under traffic congestion in Section 3.5. Finally, we offer
the conclusions and final remarks in Section 3.7.

3.2 Literature review

Green transportation has been studied extensively over various decision-making settings.
Asghari and Alehashem (2021); Moghdani et al. (2021); Demir et al. (2014) give reviews
on the most important recent literature on the green VRP. Additionally, Waltho et al.
(2019) reviews pivotal studies in the field of green SCND from 2010 to 2017. In most of
the main stream green VRP and SCND, the path between every two nodes of interest
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is computed as a pre-processing step (e.g. Demir et al., 2012). This has been partially
relaxed for the VRP by Behnke and Kirschstein (2017). In other words, road networks are
reduced to distances between origin and destination pairs to simplify later computations.
The implicit assumption is that distances or travel times are the main drivers of costs
and/or emissions. This paper extensively studies to which extent this implicit assumption
is tenable.

A large body of work in the field of green transportation relies on macroscopic (average
aggregate), microscopic (instantaneous) fuel consumption models, or a combination of
both. Demir et al. (2014) and Zhou et al. (2016) provide an extensive review of fuel
consumption models. A number of studies, including Boriboonsomsin et al. (2012); Scora
et al. (2015), and Ericsson et al. (2006), estimate the CO2 emissions of a specific vehicle
based on the measurement of that vehicle. Demir et al. (2014) explain the main factors
that influence fuel consumption in road freight transportation. Among the pertinent
determinants for the case of the greenest path are road gradient, speed, truck type, and
payload.

The path optimization under environmental consideration (the greenest path) has
been explored over the past two decades. This problem can be formulated based on
a variant of the shortest path algorithm of Dijkstra (1959) to minimize the total fuel
consumption of a vehicle between two nodes. Ericsson et al. (2006) studies the CO2

emissions of light-duty cars by using a navigation system that computes the greenest
path based on in-vehicle data and traffic information in Lund, Sweden. They conclude
that selecting the greenest path can reduce fuel consumption by 4% on average in Lund.
Boriboonsomsin et al. (2012) presents an Eco-Routing Navigation System (EFNav) as a
framework to integrate GIS and traffic data with emissions model estimates to compute
eco-friendly paths for light vehicles. Scora et al. (2015) extend the EFNav model to
heavy-duty trucks (EFNav-HDT) and conduct a numerical study to test the benefits of
EFNav-HDT across different vehicle weights in Southern California. Scora et al. (2015)
provide excellent insights into the specifications of the greenest path for trucks. Both
Boriboonsomsin et al. (2012) and Scora et al. (2015) base their studies on the CMEM
model and estimate the energy/emissions model using linear regression over data from
actual measurements. Boriboonsomsin et al. (2012) take advantage of a logarithmic
transformation and Scora et al. (2015) use a minimum fuel cutoff point to avoid negative
fuel consumption results. Andersen et al. (2013) take advantage of free road network data,
such as OpenStreetMap, and use Controller Area Network (CAN bus) data to compute
the greenest path by assigning weights to the different segments of the network. Since
this work does not rely on a fuel consumption model, it is very accurate for the paths
and vehicles for which fuel consumption data is available, but it does not transfer to
other settings without the collection of a large amount of data in that setting. Pamučar
et al. (2016) utilize a similar approach and include other negative externalities associated
with transportation, such as noise, land use, and pollutants other than CO2 . Schröder
and Cabral (2019) consider a Digital Elevation Model and Copert III emissions model to
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compute the greenest path. Dündar et al. (2022) propose an approach to increase the
resolution of the road network and compute the fuel consumption over along a path more
accurately.

Speed optimization as a means to reduce the emissions and driving costs was first
introduced by Demir et al. (2012). Franceschetti et al. (2013) present a speed optimization
technique that can also be used for traffic congestion. Both of these works, as well as
many other well-cited papers, such as Lai et al. (2024), rely on the CMEM model of
Demir et al. (2011), which results in negative fuel consumption over many downhill paths
(Brunner et al., 2021). Brunner et al. (2021) modify the fuel consumption model, yet only
consider a constant travel speed. Some papers consider the fastest path or the emissions
minimizing path under dynamic speeds induced by congestion (e.g. Ehmke et al., 2016a,b;
Huang et al., 2017; Ehmke et al., 2018).

In this chapter, we consider the modified CMEM (Brunner et al., 2021). We explore
the individual and combined effects of elevation, speed optimization, truck type, payload,
and characteristic city topography on CO2 emissions reduction and the greenest path
policies. This chapter, is the first work to provide asymptotic results for a path selection
problem and the the greenest path problem in particular.

3.3 Model Description

In this section, we introduce the notations (Section 3.3.1) and mathematical foundations
of our research, including the CO2 emissions models (Section 3.3.2) together with the
optimal speed policies (Section 3.3.3). We formally introduce the greenest paths between
two locations in a city road network and discuss how optimal speed policies complicate
the computation of the greenest path (Section 3.3.4). We study the asymptotic behavior
of the greenest path when the payload increases (Section 3.3.5). In Section 3.3, we
only consider speed, payload, and/or path (or a single arc) as the explicit arguments of
functions, since these three factors are the focus of our analysis in Sections 3.3.3, 3.3.4,
and 3.3.5.

3.3.1 City Network and Notations

Let a directed graph G = (V,A) represent the road network of a city, where V =
{1, . . . ,m} is the set of m vertices, the points of interest along the roads (e.g. road
intersections), and A ⊆ V × V is the set of arcs (road segments) that connects the ver-
tices. Any arc a ∈ A has the following features: the length δ : A → R++, the angle
θ : A → R, the maximum allowable speed by vmax : A → R++, and the minimum allow-
able speed by vmin : A → R++, where R++ = {x ∈ R : x > 0}. We consider an internal
combustion engine truck that traverses an arc a ∈ A with speed v ∈ [vmin(a), vmax(a)].
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v is constant along arc a, but the speed of the truck can vary on other arcs. The truck
consumes fa liters of diesel fuel and produces ea kilograms of CO2 to traverse arc a ∈ A (v
will be selected to minimize fa and ea according to different emission models). Notation,
including those of truck properties, are listed in Table 3.1.

3.3.2 Emission Models

We discuss two emission models. The first of these models is most commonly used in
recent papers on the green/pollution routing problem (e.g. Bektaş and Laporte, 2011;
Demir et al., 2012; Franceschetti et al., 2013; Dabia et al., 2017). We will call this the
standard model. The second model is a small improvement on the standard model to
disallow negative fuel consumption on downward sloping road segments.

Standard Emissions Model

The CMEM (Barth et al., 2005; Scora and Barth, 2006; Boriboonsomsin and Barth, 2009)
is a microscopic truck fuel consumption model that has been widely used in literature for
pollution/green vehicle routing problems. The Standard model is an instantiation of the
CMEM approach. Suppose a truck with the parameters given in Table 3.1 and payload
l travels along arc a ∈ V with speed v. In the standard emission model introduced by
Bektaş and Laporte (2011) and Demir et al. (2012), the truck’s fuel consumption is given
by:

f̃a(v, l) = Pδ(a)
v

+Qδ(a) (g sin θ(a) + Crg cos θ(a)) (w + l) +Rδ(a)v2 (3.1)

with P = ξkND

κψ
, (3.2)

Q = ξ

1000ηηtfκψ
, (3.3)

R = ξCdρS

2000ηηtfκψ
. (3.4)

The main assumption behind Equation (3.1) is that the truck parameters remain con-
stant along each arc a ∈ V . This model sets aside a number of minor sources of fuel
consumption, such as air conditioning and compressed air systems. Burning one liter of
diesel in a combustion engine produces ce = 2.67 kg/L of CO2 (Agency, 2005). Thus we
find that the CO2 emissions associated with traversing an arc a with load l at speed v is
given by,

ẽa(v, l) = cef̃a(v, l) = 2.67f̃a(v, l)

under the standard model.
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Table 3.1: Overview of notation.

Notation Description

Sets
G Directed multigraph representing the urban road network, G = (V,A).
V Set of vertices of G, V = {1, . . . ,m}, where m is the number of vertices.
A Set of arcs of G, A ⊆ V × V .
Π Set of all paths between a pair of nodes ns, nt ∈ A.
Πd Subset of Π such that for all a ∈ Πd, tanθ(a) < −Cr.

Network Features
δ(a) δ : A → R++, length of arc a ∈ A.
θ(a) θ : A → R, angle of arc a ∈ A.
h′(a) h′ : A → R, augmented ascent of arc a ∈ A, i.e. h′(a) = δ(a) sin (θ(a) + arctanCr)+.
vmax(a) vmax : A → R++, maximum allowable speed for traversing arcs a ∈ A.
vmin(a) vmin : A → R++, minimum allowable speed for traversing arcs a ∈ A.

Parameters
ξ Fuel-to-air mass ratio.
g Gravitational constant (m/s2).
ρ Air density (kg/m3).
Cr Coefficient of rolling resistance.
η Efficiency parameter for diesel engines
ηtf Vehicle drivetrain efficiency.
κ Heating value of a typical diesel fuel (kJ/g).
ψ Conversion factor (g/s to L/s).
w Curb weight (kg).
L Maximum payload (kg).
k Engine friction factor (kJ/rev/L).
N Engine speed (rps).
D Engine displacement (L).
Cd Coefficient of aerodynamic drag.
S Frontal surface area (m2).
ce Fuel’s CO2 Emissions Coefficient.

Variables
l l ∈ R+, payload (kg).
v v ∈ R++, speed of a truck to traverse arc a ∈ A.
cv Constant speed (Equation (3.7)) that minimizes the standard emissions model (Equation (3.1)).
v(a) v : A → R++, speed policy for a truck to traverse arc a ∈ V .
vd(a, l) vd : A× R+ → R++, dynamic speed policy on arc a ∈ A with payload l as per Proposition 3.1.
vs(a) vs : A → R++, static speed policy on arc a ∈ A as per Equation (3.7).
vt(a, l) vt : A× R+ → R++, terminal velocity on arc a ∈ A with payload l as per Proposition 3.1.
ta(v) ta : R++ → R++, traveling time on arc a ∈ A with speed v ∈ R++.
π π ∈ Π, path between a pair of nodes ns, nt ∈ A.
πsp πsp ∈ Π, the shortest path between a pair of nodes (Equation (3.14)).
πg(v, l) πg(v, l) ∈ Π, the most fuel-efficient (greenest) path between a pair of nodes under the speed policy

v and payload l (Equation (3.13)).
π∞(v) π∞(v) ∈ Π, the asymptotic greenest path between a pair of nodes under the speed policy v, i.e.

the greenest path when the payload is arbitrarily large (Proposition 3.4).
f̃a(v, l) f̃a : R++ ×R+ → R++, amount of fuel (liter) that a truck consumes for traversing arc a ∈ V with

speed v and payload l under the standard emissions model (Section 3.3.2).
fa(v, l) fa : R++ ×R+ → R++, amount of fuel (liter) that a truck consumes for traversing arc a ∈ V with

speed v and payload l under the improved emissions model (Section 3.3.2).
ẽa(v, l) ẽa : R++ × R+ → R++, amount of CO2 (kg) that a truck emits for traversing arc a ∈ V with

speed v and payload l under the standard emissions model (Section 3.3.2).
ea(v, l) ea : R++ × R+ → R++, amount of CO2 (kg) that a truck emits for traversing arc a ∈ V with

speed v and payload l under the improved emissions model (Section 3.3.2).
E(π, v, l) Total amount of CO2 emitted by a truck along a path π under the speed policy v and payload l,

i.e. E(π, v, l) =
∑

a∈π
ea(v(a), l).

Improved Emissions Model

Rao et al. (2016) and Brunner et al. (2021) establish that the standard emission model
gives rise to negative fuel consumption on some negative road angles that are not realistic
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for internal combustion engine vehicles. Thus, Brunner et al. (2021) propose the following
adjustment to Equation (3.1):

fa(v, l) = Pδ(a)
v

+
(
Qδ(a) (g sin θ(a) + Crg cos θ(a)) (w + l) +Rδ(a)v2

)+
, (3.5)

where (·)+ = max{·, 0}. Equation (3.5) shows that gravity works in favor of the vehi-
cle over downhills arcs to compensate the energy loss caused by drag and rolling resis-
tance force. This equation assumes that any engine-powered brakes consume a negligible
amount of fuel. The standard and improved emission models (3.1) and (3.5) are identical
on a flat network (θ(a) = 0 for all a ∈ A). We note that a slight modification of the above
models can also allow for electric vehicles with regenerative braking; see Larminie and
Lowry (2012). As before we now find that the CO2 emissions associated with traversing
arc a with load l at speed v is given by,

ea(v, l) = cefa(v, l) = 2.67fa(v, l). (3.6)

3.3.3 Optimal Speed

The most fuel efficient speed to traverse an arc depends on the emission model that
is used. We will show below that there is one optimal speed for all arcs in a network
under the standard emission model, but that the optimal speed may differ by arc for the
improved emission model.

Static Speed Optimization

The speed optimization problem (SO) is to compute the speed policy which minimizes
the carbon emissions when a vehicle travels across an arc a ∈ A. Under the standard
emissions model, SO can be formulated as,

ẽ∗
a = min

v∈[vmin(a),vmax(a)]
ẽa(v, l) and vs(a) = arg min

v∈[vmin(a),vmax(a)]
ẽa(v, l).

This implies that the most fuel efficient speed is the same along any arc a ∈ A and is
given by vs : A → R++ that is defined by,

vs(a) :=


vmin(a) if cv ≤ vmin(a)
cv if vmin(a) < cv ≤ vmax(a)
vmax(a) if vmax(a) < cv,

(3.7)

where cv,

cv = 3

√
P

2R. (3.8)
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is the optimal speed without any speedlimits. Expressions for P and R are given by
Equations (3.2) and (3.4). Equation (3.8) is obtained by solving the first order conditions
to minimize (3.1) with respect to v. Since cv is constant along all arcs, we use the term
static speed policy to denote a policy that will have a vehicle traverse every arc at the
speed vs. We note that for practically meaningful values of vmin(a) and vmax(a) the
optimal speed is usually given by (3.8), or the second case in (3.7).

Dynamic Speed Optimization

In the improved emissions model, the most fuel-efficient speed to traverse an arc depends
on its slope, if the slope is sufficiently negative. Under the improved emissions model
(3.5), the speed optimization problem is formulated as,

e∗
a = min

v∈[vmin(a),vmax(a)]
ea(v, l) and vd(a, l) = arg min

v∈[vmin(a),vmax(a)]
ea(v, l). (3.9)

Note that the derivative of

ea(v, l) = cePδ(a)
v

+ ce
(
Qδ(a)(g sin θ(a) + Crg cos θ(a))(w + l) +Rδ(a)v2

)+

with respect to v is given by

∂ea(v, l)
∂v

=


−cePδ(a)

v2 if 0 ≤ v < vt(a, l)

−cePδ(a)
v2 + 2ceRδ(a)v if vt(a, l) < v(a),

where vt : A× R+ → R+ is defined by,

vt(a, l) :=


√

−Q(g sin θ(a) + Crg cos θ(a))(w + l)
R

, if tan θ(a) < −Cr

0, if tan θ(a) ≥ −Cr.
(3.10)

This derivation shows that the CO2 emissions of an arc ea(v, l) is not differentiable with
respect to v at the point vt(a, l). The speed vt has a physical interpretation as the
terminal velocity of a vehicle on a slope with inclination θ. It is the speed at which the
gravitational force along the slope equals the sum of the drag and rolling resistance forces
(see e.g. Fox et al. (2020)). A vehicle reaches a non-zero terminal velocity on an arc if the
angle falls below − arctanCr. The optimal solution to the speed optimization problem
in (3.9) is slightly more involved as it needs to account for the terminal velocity. The
solution is given in Proposition 3.1.

Proposition 3.1. The optimal solution to the speeds optimization problem in (3.9) is
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given by vd : A× R+ → R++ that is defined by,

vd(a, l) := arg min
v∈[vmin(a),vmax(a)]

ea(v, l)

=


vmin(a), if max{cv, vt(a, l)} ≤ vmin(a)
max{cv, vt(a, l)}, if vmin(a) < max{cv, vt(a, l)} ≤ vmax(a)
vmax(a), if vmax(a) < max{cv, vt(a, l)}.

(3.11)

Proof of Proposition 3.1. We consider the case where the terminal velocity is zero, and
where it is strictly positive separately.

Case 1 (tan θ(a) ≥ −Cr; vt(a, l) = 0): Equation (3.5) reduces to Equation (3.1) so
that one may verify that

vd(a, l) = cv > vt(a, l) = 0.

Case 2 (tan θ(a) < −Cr; vt(a, l) > 0): In this case,

ea(v, l) =
e1
a = cePδ(a)

v
, if 0 ≤ v < vt(a, l)

e2
a = ce

(
Pδ(a)
v

+Qδ(a)(g sin θ(a) + Crg cos θ(a))(w + l) +Rδ(a)v2
)
, if vt(a, l) ≤ v.

It is straightforward to verify that ea(v, l) is continuous, e1
a is convex and non-increasing

in v, and e2
a is convex in v with a minimum at cv. Consequently, the optimal speed

exceeds the terminal velocity, i.e. vd(a, l) ≥ vt(a, l).

As ea(v, l) is convex in v on [vt(a, l),∞), it has an extremum at cv if vt(a, l) ≤ cv, or
at vt(a, l) if vt(a, l) > cv. It follows that the optimal speed is max{cv, vt(a, l)} if it lies
within the allowable speed interval, [vmin(a), vmax(a)]. In case max{cv, vt(a, l)} < vmin(a),
then ea(v, l) is non-decreasing in v ∈ [vmin(a), vmax(a)] and the optimal speed is vmin(a).
If max{cv, vt(a, l)} ≥ vmax(a), then ea(v, l) is non-increasing in v ∈ [vmin(a), vmax(a)] and
the optimal speed is vmax(a). □

The main insight from Proposition 3.1 is that it is efficient to use gravity to reduce the
required engine power and emission. Proposition 3.1 indicates that a static speed policy
is not optimal on a path that contains downhill arcs. Thus, a dynamic speed policy (vd),
as per Proposition 3.1, reduces a truck’s fuel consumption, CO2 emissions, and travel
time since it requires higher speeds on downhills.

3.3.4 The Greenest Path

Let ns and nt be two different vertices of G such that nt is reachable from ns. Let Π be
the set of all possible paths between ns and nt. Under a given speed policy v : A → R++



50 Chapter 3. Load asymptotics and dynamic speed optimization for the greenest path problem

and a constant payload l, the total CO2 emissions of a truck to travel between ns and nt
along a path π ∈ Π, E(π, v, l), is defined as,

E(π, v, l) =
∑
a∈π

ea(v(a), l). (3.12)

Based on this definition, the greenest path problem (GPP) is to compute the path with
the least CO2 emissions, πg, between ns and nt, i.e.

E∗(v, l) = min
π∈Π

E(π, v, l) = min
π∈Π

∑
a∈π

ea(v(a), l), and,

πg(v, l) = arg min
π∈Π

E(π, v, l) = arg min
π∈Π

∑
a∈π

ea(v(a), l). (3.13)

We define the shortest path problem (SPP) as the computation of the minimum-distance
path (πsp) between ns and nt, i.e.

δsp = min
π∈Π

∑
a∈π

δ(a) and πsp = arg min
π∈Π

∑
a∈π

δ(a). (3.14)

The following proposition shows that if the elevation data is ignored and the speeds are
identical along all arcs then the shortest path, πg, is an optimal solution to GPP.

Proposition 3.2. If the road gradient θ(a) = 0 and the speeds v(a) are identical for all
arcs a ∈ A, then the Greenest Path (πg(v, l)) is the Shortest Path (πsp) .

Proof of Proposition 3.2. Let angle θ(a) = 0 for all a ∈ A, and the payload l and speed
policy v(a) be identical, i.e. v(a) = v∗, where v∗ ∈ R is constant. Taking into account
that sin θ(a) = 0 and cos θ(a) = 1 for all a ∈ A, the GPP implies that,

E∗ = ce min
π∈Π

∑
a∈π

Pδ(a)
v(a) +Qδ(a)(g sin θ(a) + Crg cos θ(a))(w + l) +Rδ(a)v(a)2

= ce min
π∈Π

∑
a∈π

Pδ(a)
v∗ +Qδ(a)Crg(w + l) +Rδ(a)v∗2

= ce

(
P

v∗ +QCrg(w + l) +Rv∗2
)

min
π∈Π

∑
a∈π

δ(a)

= ce

(
P

v∗ +QCrg(w + l) +Rv∗2
)
δ∗
ns,nt

.

Thus, the πsp satisfies this problem that proves the proposition. □

When the speeds are bounded by traffic or variable speed limits, then the analogous
result holds for the fastest path. It is straightforward to verify that the greenest path
is the fastest path when all road gradients are zero and the speeds are constant ; see
Proposition 3.2. Further notice that by Proposition 3.1, the speed cv in (3.7) is optimal
for all arcs when θ(a) = 0 for all a ∈ A. This implies that a decision maker will believe
the shortest path is the greenest path when she ignores elevation data.
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Nonetheless, the improved emissions model and Proposition 3.1 show that if the el-
evation data is considered, the speed along each segment of a path can change. Even
under the static speed policy, the greenest path is not necessarily the shortest due to the
non-linearity of emission along an arc when in the gradient. We note that the emission
model does not explicitly account for acceleration and deceleration of a vehicle and so the
estimates emissions E∗(vd, l) are a lower-bound for the CO2 emissions of a truck traveling
from ns to nt.

3.3.5 The Asymptotic Greenest Path

In this section, we explore the greenest path as the payload becomes arbitrarily large.
Let e′

a(v) be the CO2 emissions per unit payload when a truck traverses arc a ∈ A with
speed v, that is to say,

e′
a(v) =ea(v, l)

l
(3.15)

=cePδ(a)
vl

+ ce

(
Qδ(a)(g sin θ(a) + Crg cos θ(a))

(
1 + w

l

)
+ R

l
δ(a)v2

)+
. (3.16)

Consider two distinct connected vertices ns and nt. Observe that under a speed policy
v : A → R+ and a constant load l ∈ R+, the greenest path, i.e. πg(v, l), minimizes the
total CO2 emissions and the total CO2 emissions per unit payload between ns and nt.
Thus, we can interchangeably use the total CO2 emissions and the total CO2 emissions
per unit payload to compute the greenest path.

Let Π be the set of all paths from ns to nt. Let Πd ⊆ Π be the subset of paths Π that
are entirely downhill with a slope below arctan(−Cr), i.e. tan θ(a) < −Cr for all a ∈ π

with π ∈ Πd. We can now state the definition of the asymptotic greenest path:

Definition 3.3. The asymptotic greenest path satisfies

π∞(v) ∈


arg min

π∈Π
lim
l→∞

∑
a∈π

ea(v(a)) if Πd ̸= ∅

arg min
π∈Π

lim
l→∞

∑
a∈π

e′
a(v(a), l) if Πd = ∅.

(3.17)

Note that the set Πd plays an important role in this definition. The emission per
load vanishes for any sufficiently steep down downhill path (Πd ̸= ∅) because gravity will
get the vehicle to its destination. Among all sufficiently steep downhill paths (π ∈ Πd),
the one with the least absolute emission is given by the second case in (3.17). When
gravity does not suffice to move a vehicle from its origin to its destination (Πd = ∅) then
the asymptotic greenest path is the one that minimizes emissions per load; see case 1 in
(3.17). The following proposition demonstrates that π∞(v) exists and provides an explicit
form to compute it.
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Proposition 3.4. π∞(v) exists and can be computed as follows.

π∞(v) ∈

arg minπ∈Πd

∑
a∈π ta(v(a)) if Πd ̸= ∅

arg minπ∈Π
∑
a∈π h

′(a) if Πd = ∅,
(3.18)

where ta : R++ → R++, is defined by

ta(v) = δ(a)
v
,

and h′ : A → R+, is defined by

h′(a) = δ(a) sin (θ(a) + arctanCr)+ ,

if −90◦ < θ(a) + arctanCr < 90◦ for all a ∈ A.

We call π∞(v) the asymptotic greenest path. Proposition 3.4 explains that π∞(v)
is the fastest downward path π ∈ Πd, if Πd is non-empty. Otherwise, it is the path
with the minimum total augmented ascents, h′. Evidently, π∞(v) can be computed using
the algorithms offered to solve the shortest path problem (e.g. Dijkstra (1959)). The
requirement that −90◦ < θ(a) + arctanCr < 90◦ for all a ∈ A is completely benign.

Proof of Proposition 3.4. For all payloads l ∈ R+, and any speed policy v, πg(v, l) exists
from ns to nt, since by Equations (3.6) and (3.15) there are no negative emissions cycles
between the vertices. Suppose that the payload l satisfies,

l ≥ max
a∈A

{
R(vmax(a))2

−Q(g sin θ(a) + Crg cos θ(a)) − w

}
. (3.19)

Then for arc a ∈ A,

ea(v(a), l) =
cePδ(a)

v(a) if tan θ(a) < −Cr

cePδ(a)
v(a) + ce

(
Qδ(a)(g sin θ(a) + Crg cos θ(a))(w + l) +Rδ(a)v(a)2

)
if tan θ(a) ≥ −Cr,

(3.20a)
e′
a(v(a)) =
cePδ(a)
lv(a) if tan θ(a) < −Cr

cePδ(a)
lv(a) + ce

(
Qδ(a)(g sin θ(a) + Crg cos θ(a))(1 + w

l
) + Rδ(a)v(a)2

l

)
if tan θ(a) ≥ −Cr,

(3.20b)

by Equations (3.6) and (3.15).



53 Chapter 3. Load asymptotics and dynamic speed optimization for the greenest path problem

Suppose that Πd is a non-empty set. For this case, we use the total CO2 emissions to
compute the π∞(v). Thus, by Equations (3.20a),

lim
l→∞

∑
a∈π

ea(v(a), l) =

∑
a∈π

ceP
v(a)δ(a) if π ∈ Πd

∞ if π ∈ Π \ Πd.

Then it follows that from Equation (3.17) that

π∞(v) = arg min
π∈Πd

∑
a∈π

cePδ(a)
v(a) = arg min

π∈Πd

∑
a∈π

δ(a)
v(a) = arg min

π∈Πd

∑
a∈π

ta(v(a)),

since P and ce are constant across all arcs a ∈ A.

Now, suppose that Πd is an empty set. For this case, we use the total CO2 emissions
per unit load to compute π∞(v). Thus, by Equation (3.20b),

lim
l→∞

∑
a∈π

e′
a(v(a)) =

∑
a∈π

ceQ(g sin θ(a) + Crg cos θ(a))+δ(a)

=ceQg
√

1 + Cr
2 ∑
a∈π

δ(a) (sin (θ(a) + arctanCr))+

=ceQg
√

1 + Cr
2 ∑
a∈π

δ(a) sin (θ(a) + arctanCr)+ ,

as −90◦ < θ(a) + arctanCr < 90◦ for all a ∈ A by supposition. Again, since ce, Q, and
Cr are constant for all a ∈ A, by Equation (3.17),

π∞(v) = arg min
π∈Π

∑
a∈π

δ(a) sin (θ(a) + arctanCr)+ = arg min
π∈Π

∑
a∈π

h′(a).

Proposition 3.4 demonstrates the convergence of the πg(v, l) to the π∞(v) for a very
large payload. On the other hand, by Proposition 3.2 the shortest path, πsp, is the
greenest path under the dynamic speed policy, i.e. πg(vd, l), if w + l = 0 and vmin(a) ≤
cv ≤ vmax(a) for all a ∈ A. The reason is that if w + l = 0, the dynamic speed policy
equals the static speed policy (vd = vs) by Proposition 3.1. Therefore, one can argue
that πg(v, l) diverges from πsp and converges to the π∞(v) as the load increases. We will
explore this idea in Section 3.4.4 through numerical experiments.

Finally, if the payload l satisfies Inequality (3.19), by Proposition 3.1, vd(a, l), for arc
a ∈ A can be computed as follows.

vd(a) =


vmin(a), if tan θ(a) ≥ −Cr ∧ cv ≤ vmin(a)
cv, if tan θ(a) ≥ −Cr ∧ vmin(a) < cv ≤ vmax(a)
vmax(a), if tan θ(a) < −Cr ∨ tan θ(a) ≥ −Cr ∧ vmax(a) < cv.

Consequently, if vmin(a) and vmax(a) are constant for all arcs a ∈ A and if Πd is non-empty,
then π∞(vd) = π∞(vs), by Proposition 3.4. Evidently, if Πd is empty then Proposition 3.4
requires π∞(v, l) to be independent of the speed policy v. As a result, π∞(vd) = π∞(vs)
if vmin(a) and vmax(a) are constant for all arcs a ∈ A.
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3.4 Numerical Experiments

In this section, we explore the value of using elevation data to inform routing and speed
decisions to reduce emissions over a comprehensive data set. Additionally, we explore
the major drivers of CO2 emissions reduction. We benchmark the greenest path (πg) and
dynamic speed policy (vd) against the shortest path (πsp) and the static speed policy (vs).
Note that the shortest path is also the greenest path under a dynamic speed policy (i.e.
πg(vd, l) = πsp) if the effect of road gradients is ignored, as shown in Proposition 3.2. We
also study how the greenest path changes, πg(v, l), as the payload l increases and how
the asymptotic greenest path π∞(v) performs in terms of CO2 emissions reduction and
similarity to πg(v, l). In our numerical experiments the asymptotic greenest path under
the dynamic speed policy, i.e. π∞(vd), and the one under the static speed policy, i.e.
π∞(vs), are identical since vmin(a) and vmax(a) are constant for all a ∈ A (see Section
3.3.5), i.e. π∞ = π∞(vd) = π∞(vs).

Given a pair of source and target vertices and a constant payload l, we compute the
relative CO2 emissions reduction of one policy in comparison with another. In particular
we study the CO2 reduction of using path-speed policy 2, d2 = (π2, v2, l), relative to
path-speed policy 1, d1 = (π1, v1, l), (%Ed2

d1 ) to quantify the benefit of using the elevation
data in CO2 reduction. That is to say,

%Ed2
d1 = 100 · E(π1, v1, l) − E(π2, v2, l)

E(π1, v1, l)
,

where E(πi, vi, l), i = 1, 2 is the total CO2 emissions as per Equation (3.12). If πi, i = 1, 2,
is a greenest path then πi = πg(vi, l). Similarly, we compute the relative distinction
between the paths of policies π1 and π2 (%δπ2

π1 ) weighted by distance, as follows.

%δπ2
π1 = 100 ·

∑
a∈π1\π2

δ(a) /
∑
a∈π1

δ(a).

Table 3.2 briefly summarizes the ratios that we use in our comparative studies.

In Section 3.4.1, we outline the test-bed that we consider. This test-bed comprises
25 cities and all the ratios in Table3.2 are computed for instances in this test-bed. We
present the results of our computations in Sections 3.4.2 through 3.4.5. Section 3.4.2
focuses on the results for the CO2 emissions reduced by πg and vd relative to πsp and
vs. In Section 3.4.3, we address the distinctions between πg and πsp and the effect of the
speed policies vs and vd on the greenest path. In Section 3.4.4, we study the asymptotic
greenest path π∞ and explore the performance of π∞ relative to the shortest path πsp

and the greenest path πg in terms of CO2 emissions reduction. In Sections 3.4.2 through
3.4.4, we elaborate on how payload affects our results. Finally, Section 3.4.5 concentrates
on the major determinants of CO2 emissions reduction and path alteration.
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Table 3.2: List of ratios used in the comparative studies.

Ratio Description

%E(πg,vd,l)
(πsp,vs,l) Relative CO2 emissions reduction by selecting the greenest path with the dynamic speed policy relative

to the shortest path with the static speed policy given the load l.

%E(πg,vs,l)
(πsp,vs,l) Relative CO2 emissions reduction by selecting the greenest path with the static speed policy relative to

the shortest path with the static speed policy given the load l.

%E(πg,vd,l)
(πsp,vd,l) Relative CO2 emissions reduction by selecting the greenest path with the dynamic speed policy relative

to the shortest path with the dynamic speed policy given the load l.

%E(πg,vd,l)
(πg,vs,l) Relative CO2 emissions reduction by selecting the greenest path with the dynamic speed policy relative

to the greenest path with the static speed policy given the load l.

%E(π∞,vd,l)
(πsp,vd,l) Relative CO2 emissions reduction by selecting the asymptotic greenest path with the dynamic speed

policy relative to the shortest path with the dynamic speed policy given the load l.

%E(π∞,vs,l)
(πsp,vs,l) Relative CO2 emissions reduction by selecting the asymptotic greenest path with the static speed policy

relative to the shortest path with the static speed policy given the load l.

%E(π∞,vd,l)
(πg,vd,l) Relative CO2 emissions reduction by selecting the asymptotic greenest path with the dynamic speed

policy relative to the greenest path with the dynamic speed policy given the load l.

%E(π∞,vs,l)
(πg,vs,l) Relative CO2 emissions reduction by selecting the asymptotic greenest path with the static speed policy

relative to the greenest path with the static speed policy given the load l.

%δπg(vd,l)
πsp Ratio of the length of the shortest path that is not shared with the greenest path under the dynamic

speed policy given the load l.

%δπg(vs,l)
πsp Ratio of the length of the shortest path that is not shared with the greenest path under the static speed

policy given the load l.

%δπg(vs,l)
πg(vd,l) Ratio of the length of the greenest path under the dynamic speed policy that is not shared with the

greenest path under the static speed policy given the load l.

%δπ∞

πg(vd,l) Ratio of the length of the greenest path under the dynamic speed policy that is not shared with the
asymptotic greenest path given the load l.

%δπ∞

πg(vs,l) Ratio of the length of the greenest path under the static speed policy that is not shared with the
asymptotic greenest path given the load l.
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3.4.1 Data and test-bed

We consider the 25 cities shown in Table 3.3 and three truck types, namely heavy-duty
diesel (HDD), medium-duty diesel (MDD), and light-duty diesel (LDD) for which we
utilise the typical parameters as found in Table 3.4 of Koc et al. (2014).

Table 3.3: List of cities and sample sizes.

City Country Number of S-T pairs

Amsterdam Netherlands 146842
Ankara Turkey 114675
Athens Greece 114687
Barcelona Spain 100649
Canberra Australia 131565
Geneva Switzerland 125605
Guadalajara Mexico 126600
Guangzhou China 124940
Huston US 148548
Istanbul Turkey 94999
Johannesburg South Africa 130054
Lima Peru 119174
Los Angeles US 142452
Luxembourg Luxembourg 136201
Madrid Spain 117686
Mexico City Mexico 93076
Monterrey Mexico 128619
Mumbai India 143116
New York US 146875
Rome Italy 124452
San Francisco US 93504
Santiago Chile 142212
Shiraz Iran 90935
Tehran Iran 110104
Tel Aviv Israel 131066

Table 3.4: Truck parameters.

Parameter HDD MDD LDD

w 14000 5500 3500
L 26000 12500 4000
k 0.15 0.2 0.25
N 30 36.67 38.34
D 10.5 6.9 4.5
η 0.45 0.45 0.45
ηtf 0.45 0.45 0.45
ξ 1 1 1
κ 44 44 44
ϕ 737 737 737
Cd 0.9 0.7 0.6
ρ 1.2041 1.2041 1.2041
A 10 8 7
g 9.81 9.81 9.81
Cr 0.01 0.01 0.01

We use OpenStreetMap’s database (OpenStreetMap contributors, 2017) to obtain the
information of a 2D road network including all vertices within a 20 km radius around a
manually selected point for each city. We only use roads that the database designates as
public and driveable (OpenStreetMap contributors, 2022). We only consider arcs with
a gradient ranging from −10% to 10% (i.e. [−5.71◦, 5.71◦]) so that gradients are in line
with the implicit assumptions of the modified emissions model (3.5). We retrieve the
elevation (height above sea level) of the vertices from the U.S. Geological Survey (2000)’s
SRTM 1 Arc-Second Global data sets. We consider payloads of 30%, 40%, 50%, 60%,
70%, and 80% of the maximum capacity for each truck type. For all arcs the vmax = 90
km/h and vmin = 20 km/h.

We select several unique pairs of source and target vertices uniformly at random for
each city. We make sure that the vertices in each pair are non-identical and connected.
The number of selected pairs of vertices (sample size) for each city is presented in Table
3.3.

The Dijkstra algorithm (Dijkstra, 1959) is used to solve the shortest path and the
greenest path problems. We use the arcs’ distance δ(a), a ∈ A, to compute the shortest
path πsp. We consider two speed policies, namely dynamic speed policy, vd, and static
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speed policy, vs to calculate the the CO2 emissions, ea(v, l), for all arcs. Then we use
the calculated ea(v, l) to compute the greenest paths (πg(vd, l) and πg(vs, l)). We use the
Dijkstra algorithm to compute π∞ as per Proposition 3.4.

We consider two sets of ratios, as shown in Table 3.2, to compare the different path
(πsp, πg, and π∞) and speed (vs and vd) policies. The first group of ratios measure the
relative CO2 emissions reduction and the second group measures the geometrical distinc-
tions between the paths. We compute the ratios for a full factorial combination of trucks
and payloads traversing all samples, resulting in a total of more than 58.5 million path
selection instances with a total shortest distance of more than 1.27 billion km. Evidently,
it is hardly possible to determine CO2 emissions experimentally by letting trucks drive
1.27 billion km as the approaches of Boriboonsomsin et al. (2012) and Scora et al. (2015).
The confidence intervals of any estimate reported later are negligibly small due to the
large sample size. Considering the large test-bed, we notice that the distribution and the
sample mean of the ratios varies between different cities. For a given city, we use the
overbar to denote the average of a ratio across all instances within a city. For instance,
%E (πg ,vd,l)

(πsp,vs,l) for a city represents the sample mean of %E (πg ,vd,l)
(πsp,vs,l) for that city.

3.4.2 Results: CO2 Emissions Reduction by Greenest Path and
Dynamic Speed Policy

In this section, we consider the payload as a percentage of the truck’s maximum carry-
ing capacity rather than the payload in kilograms, to make the notations simpler. For
instance, l = 60% indicates that the payload equals 60% of the maximum capacity of the
truck. Since the payload varies the results, we use l = 60% as our base case to maintain
consistency.

Figures 3.1 through 3.4 visualize the empirical distribution of CO2 emissions reduction
ratios for the base case instances. We present the distributions separately for each truck
type and each city. The sample size of each empirical distribution is listed in Table 3.3.

Figure 3.1 shows that %E (πg ,vd,60%)
(πsp,vs,60%) lies between 4.11% and 10.15% for HDD trucks

across all cities except Amsterdam. Figure 3.1 also shows that %E (πg ,vd,60%)
(πsp,vs,60%) decreases

in truck class such that %E (πg ,vd,60%)
(πsp,vs,60%) ranges from 3.27% to 8.65% for MDD, and from

2.41% to 7.00% for LDD trucks, in the same cities. Amsterdam, a known flat city, is the
lone exception, but even here %E (πg ,vd,60%)

(πsp,vs,60%) are 2.44%, 1.78%, and 1.19%, respectively,
showing that it is possible to use significantly more fuel-efficient paths. The distribution
of %E (πg ,vd,60%)

(πsp,vs,60%), on the other hand, sheds more light on the potential CO2 emissions
reduction by using the greenest path with a dynamic speed policy, πg(vd, 60%). In Los
Angeles, for instance, 25% of cases have a %E (πg ,vd,60%)

(πsp,vs,60%) of at least 13.57% for HDD,
10.14% for MDD, and 7.00% for LDD trucks. It may appear that these effects are larger
than the numerical results of earlier studies, for instance Scora et al. (2015); Schröder
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Figure 3.1: Relative CO2 emissions reduction by selecting (πg, vd, 60%) rather than (πsp, vs, 60%).

and Cabral (2019) and Brunner et al. (2021). We submit that this is due to the long tail
of the distribution of fuel savings which is found only with a sufficiently large sample.

To discern the individual effect of road gradient on CO2 emissions reduction, we fix
a speed policy v ∈ {vs, vd} and then take into account the CO2 emissions reduction by
traveling along the greenest path πg(v, l) rather than the shortest path πsp. We consider
two ratios %E (πg ,vs,l)

(πsp,vs,l) and %E (πg ,vd,l)
(πsp,vd,l) to assess this effect. Figures 3.2 and 3.3 indicate the

distribution and mean of these ratios for base case instances in different cities. Figure 3.2
demonstrates that the selection of πg(vs, 60%) rather than πsp can reduce, on average,
1.76% to 8.15% of the CO2 emissions, if l = 60% and vs is decided. As explained before,
this CO2 emissions reduction capacity is lower for the MDD and LDD trucks, yet remains
substantive. In the case of a dynamic speed policy vd, the statistics, i.e. %E (πg ,vd,l)

(πsp,vd,l),
remain close to that of vs, i.e. %E (πg ,vs,l)

(πsp,vs,l), but they are slightly smaller. This implies that
regardless of speed, taking into account the road gradient results in significant reductions
in CO2 emissions.

Next, to investigate the effect of speed policies on fuel-efficient paths and CO2 emis-
sions reduction, we appraise the carbon reduction by modifying the policy from (πg, vs, l)
to (πg, vd, l) for the same truck, i.e. %E (πg ,vd,l)

(πg ,vs,l) . Figure 3.4 shows that for most cities,

%E (πg ,vd,60%)
(πg ,vs,60%) is between 2% and 4%, and in all cases the estimates do not depend on the

truck type.

We contrast %E (πg ,vd,60%)
(πg ,vs,60%) and %E (πg ,vd,60%)

(πsp,vd,60%), as shown in Figure 3.5, in order to ex-
perimentally evaluate the relative efficacy of the greenest path and speed optimization in
reducing CO2 emissions for each type of vehicle (i.e. HDD, MDD, and LDD). For HDD
trucks, the road gradient is more crucial than the dynamic speed policy, whereas the
dynamic speed policy has more impact for LDD trucks. The greenest path and dynamic
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Figure 3.2: Relative CO2 emissions reduction by selecting (πg, vs, 60%) rather than (πsp, vs, 60%).

speed policy can bring down the CO2 emissions of MDD trucks to the same extent.

To analyze the effect of payload on CO2 emissions reduction, we vary payload ratio for
the base case instances (30%, 40%, 50%, 70%, and 80%) and repeat the same experiments.
Figures 3.6 through 3.9 present the distributions of the sample mean of the relative CO2

emissions reduction ratios over the 25 cities, where the sample size of each box plot is
25. The figures also present the alteration of the distributions as the payload increases.
These results show that, on average, %E (πg ,vd,l)

(πsp,vs,l) (Figure 3.6), %E (πg ,vs,l)
(πsp,vs,l) (Figure 3.7), and

%E (πg ,vd,l)
(πsp,vd,l) (Figure 3.8) are non-decreasing in payload. However, all graphs are concave, so

that the growth rate of %E decreases in payload. In many cities, this phenomenon results
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Figure 3.3: Relative CO2 emissions reduction by selecting (πg, vd, 60%) rather than (πsp, vd, 60%).
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(a) HDD Trucks
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Figure 3.4: Relative CO2 emissions reduction by selecting (πg, vd, 60%) rather than (πg, vs, 60%).

in a slow increase, and in one case (Shiraz) slight decrease of %E (πg ,vd,l)
(πsp,vs,l) for HDD trucks.

The same concave pattern takes place for %E (πg ,vd,l)
(πg ,vs,l) (Figure 3.9) with the exception that

the maxima of the concave functions are typically in the MDD or LDD regions. This
result can explain the close range of %E (πg ,vd,l)

(πg ,vs,l) across different truck types as shown in
Figure 3.4.

3.4.3 Results: Paths of the πg(vd, l), πg(vs, l), and πsp

The differences between the greenest path and the shortest path have been covered in
earlier sections, along with an analysis of the impact of speed and road gradient. Although
our findings indicate significant differences in fuel consumption and CO2 emissions, it is
important to consider whether the shortest path’s trajectory differs significantly from the

(a) HDD Trucks

A
th
en
s

Sa
n
Fr
an
ci
sc
o

L
os

A
ng
el
es

A
nk
ar
a

N
ew

Y
or
k

Jo
ha
nn
es
bu
rg

L
im
a

G
ua
da
la
ja
ra

Is
ta
nb
ul

M
on
te
rr
ey

M
ex
ic
o
C
it
y

Sa
nt
ia
go

H
us
to
n

B
ar
ce
lo
na

T
eh
ra
n

M
ad
ri
d

G
en
ev
a

M
um

ba
i

Sh
ir
az

R
om

e

L
ux
em

b
ou
rg

T
el
A
vi
v

G
ua
ng
zh
ou

C
an
b
er
ra

A
m
st
er
da
m

0%

1%

2%

3%

4%

5%

6%

7%

8%

%
E

%E(πg,vs,60%)

(πsp,vs,60%

%E(πg,vd,60%)

(πg,vs,60%)

(b) MDD Trucks
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(c) LDD Trucks
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(c) LDD Trucks
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Figure 3.6: Effect of payload on %E

(πg,vd,l)
(πsp,vs,l) across 25 cities.
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(c) LDD Trucks

30% 40% 50% 60% 70% 80%
0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

Payload (%L)

%
E(π

g
,v

s
,l
)

(π
s
p
,v

s
,l
)

Mean

1
Figure 3.7: Effect of payload on %E

(πg,vs,l)
(πsp,vs,l) across 25 cities.
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(b) MDD Trucks
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(c) LDD Trucks
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Figure 3.8: Effect of payload on %E

(πg,vd,l)
(πsp,vd,l) across 25 cities.

trajectory produced by the greenest path.

To illustrate this difference, we consider a LDD truck that delivers cargo weighing
60% of its maximum capacity from point A to B within a district of Los Angeles, see
Figure 3.10. Figure 3.10 displays the greenest paths (πg(vd, l) and πg(vs, l)) and the
shortest path path (πsp) on the map, and Figure 3.11 shows the elevation of the vertices
and total CO2 emissions for different path and speed choices. In this instance, πsp differs
significantly from πg(vd, l) and πg(vs, l), whereas the two greenest paths share a number
of arcs. In this section, we examine whether such an observation is common throughout
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(a) HDD Trucks
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(b) MDD Trucks
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(c) LDD Trucks
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Figure 3.9: Effect of payload on %E

(πg,vd,l)
(πg,vs,l) across 25 cities.

Figure 3.10: Example of πg(vd, 60%), πg(vs, 60%), πsp (Green/Bold: πg(vd, 60%), Orange/Medium:
πg(vs, 60%), and Red/Thin: πsp).
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Figure 3.11: Elevation of the vertices and CO2 emissions along the paths as per Figure 3.10.

our test-bed.

Figures 3.12 through 3.14 encapsulate the distribution and sample mean of %δ(πg ,vs,60%)
(πg ,vd,60%),
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(a) HDD Trucks
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(c) LDD Trucks
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Figure 3.12: Ratio of the length of πg(vd, 60%) that is not shared with πg(vs, 60%).

%δπ
g(vd,60%)

πsp , and %δπ
g(vs,60%)

πsp for the base cases. Figure 3.12 shows that the average dif-
ference of πg(vs, 60%) and πg(vd, 60%) is between 1.16% and 12.01% across the cities.
In fact, the quartiles of %δ(πg ,vs,60%)

(πg ,vd,60%) show that for the most part πg(vd, 60%) are quite
similar to πg(vs, 60%). In other words, in a majority of instances, the greenest path is
independent of the speed policy. Additionally, for heavier trucks the greenest path is
less likely to vary as a result of speed optimization. Figures 3.13 and 3.14 show that the
distinction between the shortest and the greenest paths, i.e. %δπ

g(vd,60%)
πsp and %δπ

g(vs,60%)
πsp ,

are conspicuously larger than the distinction between the greenest paths, i.e. %δπ
g(vs,60%)

πg(vd,60%).
This gap intensifies with heavier truck classes.
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(b) MDD Trucks
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(c) LDD Trucks
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Figure 3.13: Ratio of the length of πsp that is not shared with πg(vd, 60%).

To expand our understanding of the payload’s influence on paths, we study whether
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(a) HDD Trucks
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(b) MDD Trucks
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(c) LDD Trucks
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Figure 3.14: Ratio of the length of πsp that is not shared with πg(vs, 60%).

πg(vs, l) and πg(vd, l) converge to each other and diverge from πsp as the payload increases.
Figures 3.15 and 3.16 demonstrate that both %δπ

g(vd,l)
πsp and %δπ

g(vs,l)
πsp are non-decreasing in

payload in contrast to %δ(πg ,vs,l)
(πg ,vd,l) which is mostly decreasing, as indicated by Figure 3.17.

Note that, %δπ
g(vs,l)
πsp is always higher than %δπ

g(vd,l)
πsp since the more efficient dynamic

speed policy of πg(vd, l) usually allows for a shorter (and faster) path relative to πg(vs, l).
However, increase in payload erodes the impact of speed policy.
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(b) MDD Trucks
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(c) LDD Trucks
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Figure 3.15: Effect of payload on %δ

πg(vd,l)
πsp across 25 cities.

3.4.4 Results: Performance of the Asymptotic Greenest Paths

The greenest path converges to the asymptotic greenest path for arbitrarily large payloads
as shown in Section 3.3.5. In this section, we study the performance of the asymptotic
greenest path relative to the shortest path and the greenest path. Then we study the
rate of convergence of the greenest path to the asymptotic greenest path for the dynamic
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(b) MDD Trucks
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(c) LDD Trucks
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Figure 3.16: Effect of payload on %δ

πg(vs,l)
πsp across 25 cities.
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Figure 3.17: Effect of payload on %δ

(πg,vs,l)
(πg,vd,l) across 25 cities.

speed policy. In Appendix 3.B we study these things under the static speed policy.
Figures 3.18 and 3.19 show that the distribution of the CO2 emissions reduction of π∞

relative to πsp and πg(vd, 60%) for different cities. Similar to Section 3.4.2, we present
the results for the base cases (60% payload ratio). Figure 3.18 shows that for the most
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Figure 3.18: Relative CO2 emissions reduction by selecting (π∞, vd, 60%) rather than (πsp, vd, 60%).
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part an LDD truck emits slightly more CO2 if it traverses π∞ instead of πsp in 18 cities.
Whereas, the π∞ is greener than the πsp for MDD and HDD trucks in more than 50%
of the instances in all cities. The CO2 emissions reduction of (π∞, vd, 60%) relative to
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Figure 3.19: Relative CO2 emissions reduction by selecting (π∞, vd, 60%) rather than (πg, vd, 60%).

(πg, vd, 60%), i.e. %E (π∞,vd,60%)
(πg ,vd,60%) , is consistent with this observation. Figure 3.19 shows

that the median of extra CO2 emissions along π∞ compared to the πg(vd, 60%) ranges
from 0.48% to 2.70% for LDD trucks. This range decreases to between 0.11% and 1.40%
for MDD trucks, and 0% and 0.45% for HDD trucks. Figure 3.20 shows the distribution
of the sample mean of %E (π∞,vd,l)

(πsp,vd,l) across the 25 cities for various payload ratios, i.e.

%E (π∞,vd,l)
(πsp,vd,l). Correspondingly, Figure 3.21 presents %E (π∞,vd,l)

(πg ,vd,l) . The two figures show
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Figure 3.20: Effect of payload on %E

(π∞,vd,l)
(πsp,vd,l) across 25 cities.

that the average CO2 emissions along π∞ relative to πsp and πg(vd, l) is non-increasing
in load, l. Evidently, πsp outperforms π∞ in terms of average CO2 emissions for LDD
trucks with any payload ratio. Whereas, π∞ is on average greener than πsp for MDD and
HDD truck types for all payload ratios. The mean excess CO2 emissions of π∞ relative
to πg(vd, l) is less than 1%, 2%, and 3% for HDD, MDD, and LDD trucks, respectively.
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(c) LDD Trucks
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1Figure 3.21: Effect of payload on %E
(π∞,vd,l)
(πg,vd,l) across 25 cities.

The median of the difference between πg(vd, l) and π∞, i.e. %δπ∞

πg(vd,60%), varies between
4.97% and 49.14% for the LDD trucks in base cases as Figure 3.22 shows. However, the
similarity increases in MDD and HDD truck types as the median %δπ∞

πg(vd,60%) ranges
from 2.84% to 34.81% for MDD trucks and 0% to 18.14% for HDD trucks. Moreover,
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Figure 3.22: Ratio of the length of πg(vd, 60%) that is not shared with π∞.

the difference between the π(πg ,vd,l) and π∞ reduces in the payload ratio in all truck
types. Figures 3.22 and 3.23 show that πg(vd, l) converges to π∞ in the payload ratio
as established in Proposition 3.4. These results confirm that πg(vd, l) diverges from πsp

(Figures 3.13 and 3.15) and converges to π∞ (Figures 3.22 and 3.23) as the payload (and
curb weight) increases.

3.4.5 Results: Main Determinants

In this section, we address the major determinants of the CO2 emissions reduction and
path alteration. We consider the following input features: city, truck type, payload, the
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Figure 3.23: Effect of payload on %δ

(π∞,vd,l)
(πg,vd,l) across 25 cities.

elevation difference of source and target (∆h), the distance of the shortest path (δsp)
and the standard deviation of the gradients along the shortest path (σsp(θ)). The latter
characterizes the hilliness of the shortest path. All of these features can be efficiently
computed. We use linear regression accompanied by the analysis of variance (ANOVA) to
regress these features against seven responses, namely %E (πg ,vd,l)

(πsp,vs,l), %E (πg ,vd,l)
(πsp,vd,l), %E (πg ,vs,l)

(πsp,vs,l),
%E (πg ,vd,l)

(πg ,vs,l) , %δπ
g(vd,l)

πsp , %δπ
g(vs,l)

πsp , and %δ(πg ,vs,l)
(πg ,vd,l). We apply min-max normalization for the

continuous features and dummy encode the categorical features. The encoding removes
the redundant dummy features including Canberra and HDD among cities and trucks,
respectively. We use the type III sum of squares in the ANOVA. The full report is
available in Appendix 3.A.

Table 3.5: Summary of the linear regression and ANOVA for seven different responses.

%E(πg,vd,l)
(πsp,vs,l) %E(πg,vs,l)

(πsp,vs,l) %E(πg,vd,l)
(πsp,vd,l) %E(πg,vd,l)

(πg,vs,l) %δπg(vs,l)
πsp %δπg(vd,l)

πsp %δ(πg,vs,l)
(πg,vs,l)

Features df R S R S R S R S R S R S R S

σsp(θ) 1 2 + 1 + 1 + 3 + 1 + 1 + 1 +
∆h 1 1 − 2 − 2 − 1 − 4 − 4 − 4 −
δsp 1 7 − 7 + 7 + 4 − 2 + 2 + 2 +
l 1 6 + 3 + 3 + 5 − 6 + 6 + 5 −
City 24 4 ± 4 ± 5 ± 6 ± 3 ± 3 ± 3 ±
Truck 2 5 − 5 − 4 − 7 ± 5 − 5 − 7 +
(Intercept) 1 3 − 6 − 6 − 2 − 7 − 7 − 6 +
R: Feature’s ranking in ANOVA
S: Sign of the feature’s weight in linear regression

Table 3.5 summarizes the ranking and sign of different features in the ANOVA as per
Appendix 3.A. By the results, σsp(θ), i.e. the standard deviation of road gradient along
the πsp has the most explanatory power for CO2 reduction capacity. In addition, σsp(θ)
is has the strongest association with the dissimilarity of the greenest and shortest paths.
That is to say, a higher σsp(θ) indicates a higher potential of CO2 emissions reduction
by selecting the greenest path instead of the shortest path. Next comes difference in
elevation between the target and the source, ∆h, which is negatively associated with
the CO2 emissions reduction capacity. This relation is strongest when comparing the
dynamic speed policy with the static speed policy as in %E (πg ,vd,l)

(πg ,vs,l) . This implies that
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using elevation data in routing policies is more pivotal for downward trips. Table 3.5 also
reveals the positive association of %E (πg ,vd,l)

(πsp,vd,l) and %E (πg ,vs,l)
(πsp,vs,l) with payload. Our analysis

shows that relative dissimilarity of the shortest and greenest paths increases in distance
of the shortest path, i.e. δsp. However, δsp is less important for CO2 emissions reduction.
A city’s individual characteristics have a fair impact on the CO2 emissions reduction
capacity, albeit this effect is not comparable with that of σsp(θ) and ∆h. Finally, the
truck type has an effect that is similar to the payload. It follows that curb weight
and payload of truck are more significant than other parameters for the CO2 emissions
reduction.

3.5 Numerical Experiments with Traffic Information

In this section, we examine how the simultaneous utilization of elevation and traffic data
can guide routing decisions with lower CO2 emissions over a large dataset. We compare
the CO2 emissions of different types of trucks traveling along three types of routes: the
greenest path, πg(v, l), the asymptotic greenest path, π∞(v), and the path with minimum
possible travel duration, the fastest path πfp. These comparisons are made under three
different speed decisions: traffic speed vf , dynamic speed vd, and static speed vs. For
all arcs a ∈ A, the maximum speed vmax is set to the traffic speed vf and the minimum
speed vmin is set to zero.

We consider a strongly connected subgraph of New York city’s road network for our
experiments. The subgraph comprises 39,143 arcs and 23,091 vertices. Similar to Section
3.4, we obtain road network data from OpenStreetMap (OpenStreetMap contributors,
2017) and elevation data from the U.S. Geological Survey (2000)’s SRTM 1 Arc-Second
Global datasets. The specifications of the trucks used in the study are provided in Table
3.4. Since traffic speed information is not publicly available for all arcs, we calculate traffic
speeds using travel distance and duration inquiries from Google’s Distance Matrix API.
We select a time point with anticipated heavy traffic, particularly Wednesday, October
9, 2024, at 7:00 a.m., and set the traffic model to “best-guess”. Given that ta(vf (a)) is
the time to traverse arc a ∈ A with traffic speed of arc a, i.e. vf (a), one can compute
vf (a) by, vf (a) = δ(a)/ta(vf (a)).

We randomly select 20,098 unique pairs of non-identical source and target vertices. For
each pair of source and target and each pair of path-speed policies di = (πi, vi, l), i = 1, 2,
we compute three metrics including the relative CO2 reduction %Ed2

d1 , the relative path
distinction %δπ2

π1 and the relative time increase of selecting d2 instead of d1, %td2
d1 , defined

by,
%td2

d1 = 100 ·
∑
a∈π2 ta(v2) −∑

a∈π1 ta(v1)∑
a∈π1 ta(v1)

.

Table 3.6 briefly summarizes the additional ratios that we use in our studies under
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traffic conditions.

Table 3.6: List of ratios used in the comparative studies in addition to Table 3.2.

Ratio Description

%E(πg,vd,l)
(πfp,vf ,l) Relative CO2 emissions reduction by selecting the greenest path with the dynamic speed policy

relative to the fastest path with the traffic speed given the load l.

%E(πg,vs,l)
(πfp,vf ,l) Relative CO2 emissions reduction by selecting the greenest path with the static speed policy relative

to the fastest path with the traffic speed given the load l.

%E(πg,vd,l)
(πfp,vd,l) Relative CO2 emissions reduction by selecting the greenest path with the dynamic speed policy

relative to the fastest path with the dynamic speed policy given the load l.

%E(πg,vs,l)
(πfp,vs,l) Relative CO2 emissions reduction by selecting the greenest path with the static speed policy relative

to the fastest path with the static speed policy given the load l.

%E(πg(vf ,l),vd,l)
(πfp,vd,l) Relative CO2 emissions reduction by selecting the greenest path under the assumption of driving

at traffic speed but using the dynamic speed policy upon path traversal relative to the fastest path
with the dynamic speed policy given the load l.

%E(πg,vd,l)
(πg(vf ,l),vd,l) Relative CO2 emissions reduction by selecting the greenest path with the dynamic speed policy

relative to the greenest path under the assumption of driving at traffic speed but using the dynamic
speed policy upon path traversal given the load l.

%E(π∞,vd,l)
(πfp,vd,l) Relative CO2 emissions reduction by selecting the asymptotic greenest path with the dynamic speed

policy relative to the fastest path with the static speed policy given the load l.

%δπg(vd,l)
πfp Ratio of the length of the fastest path that is not shared with the greenest path under the dynamic

speed policy given the load l.

%δπg(vs,l)
πfp Ratio of the length of the fastest path that is not shared with the greenest path under the static

speed policy given the load l.

%t(πg,vd,l)
(πfp,vf ,l) Relative time increase by selecting the greenest path with the dynamic speed policy relative to the

fastest path with the traffic speed given the load l.

%t(πg,vd,l)
(πfp,vd,l) Relative time increase by selecting the greenest path with the dynamic speed policy relative to the

fastest path with the dynamic speed policy given the load l.

%t(πg,vs,l)
(πfp,vf ,l) Relative time increase by selecting the greenest path with the static speed policy relative to the

fastest path with the traffic speed given the load l.

%t(πg,vs,l)
(πfp,vs,l) Relative time increase by selecting the greenest path with the static speed policy relative to the

fastest path with the static speed policy given the load l.

3.5.1 Results: Impact of Path and Speed Decisions on CO2
Emissions Reduction

Figure 3.24 demonstrates that %E (πg ,vd,l)
(πfp,vf ,l) ranges from 19.40% to 26.02% for different truck

types and payloads, whereas Figure 3.25 shows that %E (πg ,vd,l)
(πfp,vd,l) varies between 5.80% and

8.91%. Similar statistics are observed for %E (πg ,vs,l)
(πfp,vs,l) as illustrated in Figure 3.26. These

results provide significant evidence that both path selection and speed optimization can
contribute to reducing CO2 emissions in intra-city truck transportation. Additionally, the
reduction potential in CO2 emissions is greater on the greenest path during traffic condi-
tions compared to free-flow situations (cf. Figures 3.2 and 3.3). However, the potential
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Figure 3.24: %E(πg,vd,l)

(πfp,vf ,l) across truck types and payloads in traffic condition.
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Figure 3.25: %E(πg,vd,l)

(πfp,vd,l) across truck types and payloads in traffic condition.
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Figure 3.26: %E(πg,vs,l)

(πfp,vs,l) across truck types and payloads in traffic condition.

reduction in CO2 emissions through a dynamic speed policy versus a static speed policy is
negligible in most instances, as illustrated in Figure 3.27. This figure demonstrates that
the sample mean and third quartiles of %E (πg ,vd,l)

(πg ,vs,l) are below 1% across all truck types
and payloads. This result is primarily because the traffic conditions hinder trucks from
utilizing gravity for acceleration on downhill segments, in most instances. Nevertheless,
optimizing the speed on uphill segments can substantially reduce CO2 emissions. If the
route planner selects the greenest path for traffic speed, πg(vf , l), rather than the fastest
path, and the traveling speed is vd, the average CO2 emissions reduction, %E (πg(vf ,l),vd,l)

(πfp,vd,l) ,
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Figure 3.27: %E(πg,vs,l)

(πg,vd,l) across truck types and payloads in traffic condition.

ranges from 3.01% to 7.03% (see Figure 3.28). Although πg(vf , l) is not the optimal
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Figure 3.28: %E(πg(vf ,l),vd,l)

(πfp,vd,l) across truck types and payloads in traffic condition.

path for minimizing CO2 emissions when vd is decided, a comparison of Figures 3.25 and
3.28 reveals that choosing πg(vf , l) instead of πfp can achieve more than half of the po-
tential CO2 emissions reduction in most instances (the same argument holds under vs).
It is worth noting that CO2 reduction potential of πg(vd, l) (or πg(vs, l)) over πg(vf , l)
is slightly higher for lower payloads (see Figure 3.29). This phenomenon is due to the
convergence of the greenest paths to the asymptotic greenest paths.
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Figure 3.29: %E(πg,vd,l)

(πg(vf ,l),vd,l) across truck types and payloads in traffic condition.
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3.5.2 Results: Increased Travel Duration

Figures 3.30 presents statistics on the increased travel duration when trucks travel on the
greenest paths with vd instead of the fastest path with vf . The figure indicates that, on
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Figure 3.30: %t(πg,vd,l)

(πfp,vf ,l) across truck types and payloads in traffic condition.

average, the travel duration increases relative to the fastest path (incorporating traffic
speed) from 36.53% for LDD trucks with 30% payload to 54.48% for HDD trucks with
80% payload. However, if the speed policy for both greenest path and fastest path is
vd, the average advantage of selecting the fastest path in terms of travel duration is less
than 2.28% (see Figures 3.31). In several instances, a truck traverses the greenest path
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Figure 3.31: %t(πg,vd,l)

(πfp,vd,l) across truck types and payloads in traffic condition.

even faster than the fastest path when the selected speed policy is vd because the fastest
path is found under the assumption of the traffic speed policy. The statistics presented
in Sections 3.5.1 and 3.5.2 clearly show that when the dynamic speed policy is selected,
the CO2 emissions reduction is larger than the increased travel duration. This argument
holds for the static speed policy, vs. The statistics of the static speed policy are presented
in Appendix 3.5.
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3.5.3 Results: Paths of the πg(vd, l), πg(vs, l), πg(vf , l), and πfp

The dissimilarities between the fastest path and the greenest paths is an important factor
in the CO2 reduction potential of the greenest paths, as highlighted in Section 3.5.1.
Figures 3.32 to 3.33 present the statistics for these dissimilarities. Figure 3.32 shows
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Figure 3.32: %δπg(vd,l)

πfp across truck types and payloads in traffic condition.
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Figure 3.33: %δπg(vs,l)

πfp across truck types and payloads in traffic condition.

that, on average, πfp does not share 40.47% to 47.81% of its paths with πg(vd, l). A similar
statistic for πg(vs, l), i.e., %δπ

g(vs,l)
πfp , ranges from 41.01% to 48.62%, which is slightly higher

than that of %δπ
g(vd,l)
πfp (see Figure 3.33). We observed a similar pattern in Section 3.4.3

(see Figures 3.13 and 3.14), where we compared the greenest paths and the shortest path
in the free flow conditions. Regarding the dissimilarity between πg(vd, l) and πg(vs, l), our
experiments show that %δπ

g(vs,l)
πg(vd,l) is zero or negligible for the majority of instances. Figure

3.34 indicates that the first, second, and third quartiles, as well as the upper whisker of
%δπ

g(vs,l)
πg(vd,l), are zero, and the maximum %δπ

g(vs,l)
πg(vd,l) is 2.62% (cf. Figure 3.12). As mentioned

in Section 3.5.1 this result stems from the limitations on maximum speed on the downhill
arcs due to traffic conditions.
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Figure 3.34: %δπg(vs,l)

πg(vd,l) across truck types and payloads in traffic condition.

3.5.4 Results: Asymptotic Greenest Path under Traffic

In Section 3.4.4, we explained that the convergence of greenest paths to the asymptotic
greenest paths is observable for all truck types as the payload increases. This section
examines the asymptotic greenest paths under traffic conditions. We focus exclusively
on π∞(vg), since similar trends can be expected for π∞(vs), as discussed in Section 3.5.3.
Figure 3.35 illustrates the average CO2 reduction achieved by the asymptotic greenest
path compared to the fastest path with the same dynamic speed policy. Specifically,
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Figure 3.35: %E(π∞,vd,l)

(πfp,vd,l) across truck types and payloads in traffic condition.

%E (π∞,vd,l)
(πfp,vd,l) ranges from 2.47% for LLD trucks with 30% payload to 8.50% for HDD trucks

with 80% payload. This result indicates that the CO2 reduction potential of π∞(vg) is
similar to that of πg(vf , l), even slightly higher for MDD and HDD trucks (cf. Figure 3.28).
Figure 3.36 shows the CO2 emissions reduction of the asymptotic greenest path relative
to the greenest path, %Eπ

∞,vd,l
πg ,vd,l . It is straightforward to see that %Eπ

∞,vd,l

πg ,vd,l increases with
truck weight, rising from -3.56% for LLD trucks with 30% payload to -0.45% for HDD
trucks with 80% payload. Figure 3.37 highlights the convergence of the greenest paths to
the asymptotic greenest paths, similar to the tendency observed in Section 3.4.4 for free
flow conditions. Comparing the convergence results under free flow and traffic conditions
in New York city, we can infer that, on average, convergence under traffic occurs more
rapidly than free-flow condition. This phenomenon is due to the limitations on speed
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(a) HDD Trucks
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Figure 3.36: %E(π∞,vd,l)

(πg,vd,l) across truck types and payloads in traffic condition.
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Figure 3.37: %δπ∞(vd)

πg(vd,l) across truck types and payloads in traffic condition.

choices in traffic. In such a case, the selection of paths with less ascent, i.e. h′(a), a ∈ A,
plays a crucial role in the reduction of emissions CO2 .

3.5.5 Conclusions on the role of traffic information

The incorparation of slope information to find the greenest path is even more impor-
tant in heavy traffic than it is in free flow traffic. Comparing the results of dynamic
and static speed optimizations in traffic, we find that optimizing speed on uphill arcs
can significantly reduce CO2 emissions. However, using gravity to accelerate on downhill
arcs is limited due to traffic congestion. From a public policy perspective, this find-
ing reinforces arguments for scheduling truck deliveries during “Off-Hours” when more
environmentally-friendly options for path and speed selection are available (see e.g. New
York City Department of Transportation, 2024). Truck delivery during “Off-Hours” can,
additionally, reduce traffic congestion when trucks traverse uphill roads with optimized
speeds that may be lower than the traffic speed. In Section 3.5.4, we demonstrate that
the greenest path converges to the asymptotic greenest path even faster under traffic
conditions than in free flow conditions.
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3.6 Summary of Key Findings from Numerical Ex-
periments

The first outcome of our experiments in Sections 3.4 and 3.5 is that high-resolution
topographical data should be incorporated into urban truck transportation decisions when
minimizing CO2 emissions is the objective. Specifically, pre-computation of the greenest
paths is not feasible due to the non-linear effects of speed decisions, road gradients, and
payload. A similar argument has previously been made regarding the need to integrate
high-resolution traffic speed data into emissions-minimizing transportation decisions (see
e.g. Ehmke et al., 2016b).

Secondly, our results show that optimal speed decisions are dynamic, with dynamic
speed choices reducing CO2 emissions by 2% to 4% in free-flow conditions compared to
static speed choices. While the difference between dynamic and static speed decisions is
less significant in traffic, we found that optimized speeds still achieve significantly lower
emissions than traffic speeds, even when acceleration is restricted by traffic congestion.

Thirdly, we observed that the greenest path is relatively insensitive to whether speed
decisions are static or dynamic, even in free-flow conditions. Additionally, the greenest
path begins to converge to the asymptotic greenest path at low payload ratios under both
free-flow and traffic conditions. Therefore, a pre-computed greenest path for a given speed
decision (e.g., static) and payload level (e.g., 50% or 100%) can be a good approximation
for the greenest paths across different speed decisions and payloads. This approximation
can help reduce the computational complexity of green transportation problems like PRP.

3.7 Conclusions

In this chapter, we studied the greenest path selection problem for a logistics service
provider that operates a fleet of heavy-, medium-, and light-duty trucks in an urban
environment. We established that the policies for the speed and path that minimize
CO2 emissions are slope-dependent (dynamic). We also showed that the greenest path
converges to a fixed path as the payload increases and provided an efficient algorithm to
compute the asymptotic greenest path. We conducted extensive numerical experiments
using elevation data of 25 cities around the world to investigate the potential CO2 reduc-
tion by such dynamic policies under free flow traffic conditions. The results in section
3.4.2 showed that, on average, the combined dynamic path and speed selection can re-
duce CO2 emissions by 1.19% to 10.15% based on the truck type and city. Our analysis
also showed that in most cities, the average emissions reduction potential of dynamic
speed optimization lies between 2% to 4% regardless of the truck type. Nonetheless, the
effect of slope-dependent path selection (the greenest path) depends on the payload and
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truck type. In section 3.5, for the city of New York we also studied the effect of effective
speed limits due to traffic congestion and found that choosing the greenest path can lead
to even larger CO2 reduction than in free flow traffic conditions. In section 3.4.3, we
explained that the greenest path significantly differs from the shortest path. While the
greenest path depends on the speed policy, the experiments show that this dependence is
weak and that the greenest path under the static speed policy is usually optimal or near
optimal especially when speed is determined by traffic. Moreover, we demonstrated, in
Sections 3.3.5 and 3.4.4, that the greenest path diverges from the shortest path as the
payload increases and converges to the asymptotic greenest path, i.e. the greenest path
for the arbitrary large payloads. Convergence to the asymptotic greenest path is faster
under heavy traffic conditions. These results could be used for the approximation of
the greenest path to simplify complex transportation problems. The analysis of variance
(ANOVA) indicated that the potential CO2 emissions reduction by the greenest path
and the dynamic speed policy is associated positively with the variability of arc gradi-
ents along the shortest path, and negatively with the relative elevation of the source and
target.
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3.A ANOVA Results

Table 3.7: Response: %E(πg,vd,l)
(πsp,vs,l)

Feature df SS MSS F − value p− value

σsp(θ) 1 11771 11771 9061762 < 10−15

∆h 1 22347 22347 17203995 < 10−15

l 1 293 293 225597 < 10−15

δsp 1 47 47 36175 < 10−15

City 24 12477 520 400209 < 10−15

Truck 2 926 463 356459 < 10−15

(Intercept) 1 7265 7265 5592723 < 10−15

Residuals 55415417 71983

Table 3.8: Response: %E(πg,vs,l)
(πsp,vs,l)

Feature df SS MSS F − value p− value

σsp(θ) 1 10020 10020 5973305 < 10−15

∆h 1 6261 6261 3732651 < 10−15

l 1 908 908 541007 < 10−15

δsp 1 225 225 134066 < 10−15

City 24 16178 674 401852 < 10−15

Truck 2 1156 578 344674 < 10−15

(Intercept) 1 420 420 250138 < 10−15

Residuals 55415417 92958

Table 3.9: Response: %E(πg,vd,l)
(πsp,vd,l)

Feature df SS MSS F − value p− value

σsp(θ) 1 7092 7092 6099148 < 10−15

∆h 1 4822 4822 4147274 < 10−15

l 1 816 816 701716 < 10−15

δsp 1 82 82 70510 < 10−15

City 24 10056 419 360351 < 10−15

Truck 2 918 459 394610 < 10−15

(Intercept) 1 347 347 298743 < 10−15

Residuals 55415417 64434

Table 3.10: Response: %E(πg,vd,l)
(πg,vs,l)

Feature df SS MSS F − value p− value

σsp(θ) 1 1431 1431 3270532 < 10−15

∆h 1 16335 16335 37344012 < 10−15

l 1 147 147 335105 < 10−15

δsp 1 870 870 1989427 < 10−15

City 24 3102 129 295466 < 10−15

Truck 2 81 40 91981 < 10−15

(Intercept) 1 10731 10731 24531295 < 10−15

Residuals 55415417 24240
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Table 3.11: Response: %δπg(vs,l)
πsp

Feature df SS MSS F − value p− value

σsp(θ) 1 204303 204303 3344542 < 10−15

∆h 1 15691 15691 256873 < 10−15

l 1 5270 5270 86270 < 10−15

δsp 1 44990 44990 736513 < 10−15

City 24 640819 26701 437105 < 10−15

Truck 2 13408 6704 109750 < 10−15

(Intercept) 1 2732 2732 44716 < 10−15

Residuals 55415417 3385080

Table 3.12: Response: %δπg(vd,l)
πsp

Feature df SS MSS F − value p− value

σsp(θ) 1 208923 208923 3601979 < 10−15

∆h 1 17790 17790 306719 < 10−15

l 1 7602 7602 131065 < 10−15

δsp 1 37788 37788 651499 < 10−15

City 24 577881 24078 415128 < 10−15

Truck 2 18821 9411 162244 < 10−15

(Intercept) 1 3005 3005 51805 < 10−15

Residuals 55415417 3214225

Table 3.13: Response: %δ(πg,vs,l)
(πg,vd,l)

Feature df SS MSS F − value p− value

σsp(θ) 1 1190 1190 74122 < 10−15

∆h 1 596 596 37147 < 10−15

l 1 390 390 24271 < 10−15

δsp 1 1096 1096 68270 < 10−15

City 24 22738 947 59004 < 10−15

Truck 2 310 155 9667 < 10−15

(Intercept) 1 203 203 12647 < 10−15

Residuals 55415417 889779
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3.B Results: Performance of the Asymptotic Paths
with Static Speed policies

(a) HDD Trucks
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Figure 3.38: Relative CO2 emissions reduction by selecting (π∞, vs, 60%) rather than (πsp, vs, 60%).
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Figure 3.39: Relative CO2 emissions reduction by selecting (π∞, vs, 60%) rather than (πg, vs, 60%).
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(a) HDD Trucks
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Figure 3.40: Effect of payload on %E

(π∞,vs,l)
(πsp,vs,l) across 25 cities.
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Figure 3.41: Effect of payload on %E

(π∞,vs,l)
(πg,vs,l) across 25 cities.
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Figure 3.42: Ratio of the length of πg(vs, 60%) that is not shared with π∞.
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(a) HDD Trucks
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Figure 3.43: Effect of payload on %δ

(π∞,vs,l)
(πg,vs,l) across 25 cities.

3.C Results: Increased Travel Duration under vs
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Figure 3.44: %t(πg,vs,l)

(πfp,vf ,l) across truck types and payload in traffic condition.
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Figure 3.45: %t(πg,vs,l)

(πfp,vs,l) across truck types and payloads in traffic condition.



Chapter 4

Asymptotic Optimality of Projected
Inventory Level Policies for Lost
Sales Inventory Systems with Large
Leadtime and Penalty Cost

4.1 Introduction

The control of lost sales inventory systems remains a fundamental challenge in inventory
theory. In such systems, unmet demand caused by stockouts is lost, often resulting in
substantial penalty costs. We consider the canonical lost sales inventory system, which
is a single-item, single-echelon, periodic-review inventory system with a positive leadtime
and independent and identically distributed (i.i.d.) demand under the average cost crite-
rion. This system serves as the foundation for more complex lost sales inventory models.
Therefore, developing well-performing and computationally efficient control policies for
the canonical system is crucial to derive effective policies for real-world lost sales inventory
problems.

The optimal replenishment policy for the canonical system with negligible leadtime
reduces to a newsvendor problem. When the leadtime is positive, the optimal policy
can be found through dynamic programming but this is intractable due to the curse of
dimensionality. Consequently, a key inventory research stream in stochastic lost sales
inventory control focuses on developing simple heuristic policies that perform well under
specific conditions, such as achieving asymptotic optimality in certain scaling regimes. We
refer interested readers to Bijvank et al. (2023), Goldberg et al. (2021), and Bijvank and
Vis (2011), for further discussions on lost sales inventory systems and related asymptotic
optimality results.

Huh et al. (2009) and Bijvank et al. (2014) analyze base-stock policies that place
orders to raise the inventory position to a fixed base-stock level. They establish that such
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policies are asymptotically optimal as the cost of losing a sale grows for a fixed leadtime.
Goldberg et al. (2016) and Xin and Goldberg (2016) demonstrate that a constant order
policy, which places the same order quantity every period, is asymptotically optimal as
the leadtime grows for a fixed cost of losing a sale. Both the base-stock policy and the
constant order policy rely on a single parameter, making them easy to implement in
practice. However, neither policy is optimal across both asymptotic regimes. To address
this limitation, Xin (2021) proposes a two-parameter hybrid policy that integrates the
base-stock and constant order policies, and proves its asymptotic optimality for large
leadtimes. This policy, known as the capped base-stock policy, was initially studied by
Johansen and Thorstenson (2008) and can be readily shown to be asymptotically optimal
as the cost of losing a sale grows large. By adjusting its parameters, the capped base-stock
policy can thus be tailored to achieve asymptotic optimality in either regime.

Recently, van Jaarsveld and Arts (2024) introduced the projected inventory level
(PIL) policy, which places orders to ensure that the expected inventory level at the
time of receipt reaches a fixed target. Unlike constant order and base-stock policies, the
PIL policy dynamically adjusts order quantities by leveraging probabilistic information
available at each decision epoch. van Jaarsveld and Arts (2024) demonstrate that the PIL
policy consistently outperforms the base-stock policy for general demand distributions
and prove that it also outperforms the constant order policy when demand is exponential.
PIL policies are also asymptotically optimal for perishable inventory systems in several
regimes (Bu et al., 2025a,b), and the projection idea is similarly employed by Drent
and Arts (2022) for dual-sourcing inventory systems, where it yields both asymptotic
optimality and strong empirical performance.

Policies developed for the canonical lost sales system can be extended to more com-
plex settings, including systems with non-stationary demand, perishable items, continu-
ous review, partially observable parameters, finite storage capacity, supply uncertainty,
stochastic returns, joint inventory and pricing control, and finite horizon decision making
(see, e.g., Bu et al., 2025a,b, 2024, 2020; Lyu et al., 2024; Bai et al., 2023; Xin, 2022;
Chen et al., 2021).

The asymptotic regimes discussed in the literature only consider one parameter grow-
ing large while keeping all other parameters fixed. However, many practically important
items exhibit both long lead times and high lost-sales costs, including critical components
in aerospace and semiconductor manufacturing and pharmaceuticals used for rare or life-
saving treatments. In this chapter we study the performance of the PIL policy under
a general demand process as the leadtime grows large when the cost of losing a sale is
sufficiently large. Under mild conditions on the demand distribution we show that:

1. The difference between the average cost-rate of the PIL policy and that of the
constant order policy remains bounded by a finite constant.

2. The PIL policy is asymptotically optimal for sufficiently large lost sales penalty
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costs as the leadtime approaches infinity.

Our analysis hinges on new bounds we derive for the solution of the Wiener-Hopf equation
that characterizes the relative value function under the constant order policy. These
bounds follow from studying the ladder processes of a random walk with increments
equal to the per-period excess demand minus the constant order. We then apply a one-
step policy improvement technique to analyze the cost-rate difference between the PIL
and constant order policies.

The rest of the chapter is organized as follows. Section 4.2 introduces the model and
optimization problem (Section 5.3), as well as the main result (Section 4.2.2). Section
4.3 provides the proof of the main result, including the introduction of ladder processes
(Section 4.3.1), the solution to our Wiener-Hopf equation (Section 4.3.2), asymptotic
inventory dynamics (Section 4.3.3), and policy improvement argument (Section 4.3.4)
which completes the proof. A summary of results and final remarks are provided in
Section 4.4. All proofs are included in the Appendix, unless otherwise specified.

4.2 Model and main result

4.2.1 Model

We consider an infinite-horizon periodic review lost sales inventory system. Demand
in period t is denoted Dt and {Dt}t∈N0 (N0 := N ∪ {0}) is a sequence of non-negative
independent and identically distributed random variables with distribution function FD
supported on [0,∞), and finite mean µD := E[D] < ∞ and variance Var[D] := σ2

D ∈
(0,∞). We assume FD(0) = 0 for notational simplicity, though all results remain valid
without this assumption. Each time period t ∈ N0 we receive an order, qt ∈ R+, that is
placed in period t − L, where L ∈ N0 is the deterministic leadtime. Let {Jt}t∈N0 denote
the sequence of inventory level random variables at the beginning of each period before
receiving the order. The state of the system at the start of period t ∈ N0, denoted by
xt ∈ RL+1

+ , is a vector comprising the inventory level in period t as well as the outstanding
orders in the pipeline. That is, xt = (Jt, qt, qt+1, . . . , qt+L−1). We assume that x0 is fixed
and known, and J0 = 0. Demand that exceeds the on-hand inventory Jt + qt is lost at
the end of the period at the unit cost of p ≥ 0. Any surplus inventory at the end of a
period is held at a cost of h ≥ 0 per item. The sequence of events in each period t ∈ N0

is as follows: (1) The state of the system xt is observed and the order qt+L is placed, (2)
The order qt is received, (3) The demand Dt is realized, and (4) the costs of period t are
incurred as p(Dt − qt − Jt)+ + h(Jt + qt −Dt)+ where, (x)+ := max(x, 0). The dynamics
of the inventory level are

Jt+1 = (Jt + qt −Dt)+. (4.1)

A policy π is a set of mappings from the space of the states, xt, to the space of orders,
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qt+L, i.e., {πt : RL+1
+ → R+}t∈N0 . We denote by Π the set of admissible policies. A

policy π is stationary if πt(x) = π0(x) for all t ∈ N0 and x ∈ RL+1. When a policy π is
stationary, we omit the index t in πt, for simplicity. We denote by qt(π) and Jt(π) the
random variables for the order quantity and inventory level respectively under policy π.
We consider two stationary policies: the constant order policy Cr (cf. Xin and Goldberg,
2016) and the projected inventory level (PIL) policy Pξ (cf. van Jaarsveld and Arts, 2024),
where r ∈ [0, µD) is the constant order and ξ ≥ 0 is the projected inventory level. For
t ∈ N0, the constant order policy and PIL policy are expressed by:

Cr(xt) := r, and Pξ(xt) := (ξ − E[Jt+L|xt])+.

Let {{ct(π)}t∈N0}π∈Π be the sequence of cost random variables given by:

ct(π) := h (Jt(π) + qt(π) −Dt)+ + p (Dt − Jt(π) − qt(π))+ .

As a notational convenience, we define D[a,b] = ∑b
t=aDt, and similarly define J[a,b], q[a,b],

and c[a,b](π). Accordingly, the cost-rate function C : Π → R+ is defined as:

C(π) := lim sup
T→∞

E
[
c[L,T ](π)
T − L+ 1

]
.

We will sometimes write the dependence of C(π) on p and L explicitly as C(π | p, L). Let
C∗(p, L) := infπ∈Π C(π | p, L) denote the optimal cost-rate. Huh et al. (2011) show that
a stationary policy π∗ exists such that C(π∗) = C∗. Throughout the chapter we say a
function g is o(f(x)) and write g(x) = o(f(x)) if and only if limx→∞ g(x)/f(x) = 0.

4.2.2 Main result

In this section, we present the main result. For a fixed demand distribution FD and h,
we construct a sequence {ξp}p≥0 such that ξp ∈ arg minξ≥0 limL→∞ C(Pξ | p, L), and a
sequence {rp}p≥0 such that rp ∈ arg minr∈[0,µD) limL→∞ C(Cr | p, L). We now state our
main result.

Theorem 4.1. 1. There exists a constant 0 ≤ M < ∞ such that the optimality gap
of the best PIL policy remains bounded by M for all p ≥ 0 as L tends to infinity,
that is

C
(
Pξp

)
− C(Crp) = lim

L→∞

(
C
(
Pξp

)
− C∗(p, L)

)
< M for all p ≥ 0.

2. The PIL policy is asymptotically optimal for large p when L approaches infinity,
that is,

lim
p→∞

lim
L→∞

C
(
Pξp

)
C∗(p, L) = 1.
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Theorem 4.1 states that the cost-rate of the PIL policy exceeds that of the constant-
order policy by at most a fixed constant M . The constant M depends on certain moments
of a stochastic process induced by the inventory dynamics (see Section 4.G). Since the
constant order policy is asymptotically optimal as the leadtime increases (Goldberg et al.,
2016; Xin and Goldberg, 2016), the optimality gap of PIL policy remains bounded M

under the same condition. This result extends our understanding of the asymptotic
optimality of PIL policies beyond the special case of exponentially distributed demand
addressed in Theorem 2 of van Jaarsveld and Arts (2024).

We note that Theorem 4.1 differs from the asymptotic optimality result for sufficiently
large p presented in van Jaarsveld and Arts (2024) (Theorem 4) in terms of the asymptotic
regime. The analysis in van Jaarsveld and Arts (2024) relies on the comparison of the
PIL policy and the base-stock policy, which is not optimal as the leadtime approaches
infinity. It is worth noting that, unlike the base-stock policy, whose optimality gap grows
unboundedly with the lead time, the optimality gap of the PIL policy remains uniformly
bounded.

4.3 Proof of Theorem 4.1

Assuming exponentially distributed demand, van Jaarsveld and Arts (2024) show that
the relative value function of the constant-order policy is a parabola, and that a one-step
policy improvement yields the PIL policy. This establishes the asymptotic optimality of
the PIL policy as the leadtime grows, since it strictly improves upon the constant-order
policy, which is itself asymptotically optimal (Goldberg et al., 2016). In this chapter,
we extend this approach to general demand distributions with finite second moments by
showing that the relative value function has a quadratic form and a term that grows
sublinearly. Next we use that as the cost of losing a sale grows, the optimal constant
order policy approaches a heavy traffic regime where this sublinear term turns out to be
unimportant and a PIL policy will not be worse than a constant order policy within tight
bounds.

Let Y be a random variable with distribution FY , defined as the difference between
D and the constant order r, i.e. Y := D − r. It is straightforward to verify that FY is
concentrated on [−r,∞), since FY (x) = FD(x + r), and Var[Y ] = Var[D] < ∞. Let
µY := E[Y ] and σ2

Y := Var[Y ].

Definition 4.2. For a constant order policy Cr, r ∈ [0, µD), the relative value function
vr : R+ → R satisfies,

vr(x) := EY
[
h(x− Y )+ + p(Y − x)+ + vr

(
(x− Y )+

)]
− C(Cr), vr(0) = 0, x ≥ 0.

The difference vr(x1)−vr(x2) represents the additional total long-run expected cost when
the system starts from x1 rather than x2 under the constant order policy Cr (cf., Chapter 6
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Tijms, 2003). Goldberg et al. (2016) show that C(Cr) = hE[J∞]+pµY , where J∞ denotes
the steady state inventory level under Cr, i.e., P{J∞ ≤ x} = limt→∞ P{Jt(Cr) ≤ x}.
By Definition 4.2, the relative value function vr(x) can be expressed as a convolution
equation:

vr(x) = ar(x) +
∫ x

−r
vr(x− y)FY (dy), vr(0) = 0, x ≥ 0, (4.2)

where,
ar(x) := hEY [(x− Y )+] + pEY [(Y − x)+] − pµY − hE[J∞]. (4.3)

To simplify notation we introduce the convolution operator, ∗, as follows. Let K : R → R
and F : R → R be two real functions. The convolution of K and F is defined as:

K ∗ F (x) :=
∫ x

−∞
K(x− y)F (dy).

Therefore, Equation (4.2) can be rewritten as,

vr(x) = ar(x) + vr ∗ FY (x), vr(0) = 0, x ≥ 0. (4.4)

Deriving an explicit expression for vr(x) is non-trivial, as Equation (4.4) constitutes a
Wiener-Hopf equation (cf. Asmussen, 1998). However, by analyzing a specific random
walk with i.i.d. increments and its associated ladder processes in Section 4.3.1, we are
able to derive an explicit solution in Section 4.3.2, which enables the remainder of our
analysis.

4.3.1 Ladder processes

Consider a random walk {St := ∑t
i=1 Yi}t∈N0 , with S0 = 0, where {Yt}t∈N0 represents a

sequence of random variables defined by Yt := Dt−r. We introduce two stopping periods
associated with the random walk St. The (weak) ascending ladder period, denoted by τ+,
is the first period (greater than zero) that the random walk attains a non-negative value,
i.e., τ+ := inf{t > 0 : St ≥ 0}. The value of the stopped random walk at τ+, i.e., Sτ+ , is
a random variable known as the first (weak) ascending ladder height, with distribution
function G+(x) = P{Sτ+ ≤ x} supported on [0,∞). The mean and variance of Sτ+ are
denoted by µ+ := E[Sτ+ ] and σ2

+ := Var[Sτ+ ], respectively. Both µ+ and σ+ are finite for
r ∈ [0, µD), and remain so as r approaches µD.

Lemma 4.3. limr↑µD
µ+ and limr↑µD

σ+ exist, and (a) 0 < limr↑µD
µ+ < ∞, and (b)

limr↑µD
σ+ < ∞.

Likewise, the (strict) descending ladder period is the first period (greater than zero)
that the random walk takes a negative value, i.e., τ− := inf{t > 0 : St < 0}. Accord-
ingly, Sτ− , is the first (strict) descending ladder height random variable with distribution
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function G−(x) := P{Sτ− ≤ x} supported on (−∞, 0). We refer interested readers to As-
mussen (2003) for a comprehensive overview of ladder processes. For any non-decreasing
function F : R → R, we let ∥F∥ := limx→∞ F (x). A distribution, F , is called proper if
∥F∥ = 1 and defective if ∥F∥ < 1. There is a well-known result that G+ is proper and G−

is defective since µY > 0 (cf. Theorem VIII 2.4. Asmussen, 2003). This implies that the
probability that τ− is finite cannot be one, i.e. limx→∞ P{τ− < x} < 1, whereas τ+ < ∞
almost surely. Additionally, E[τ+] < ∞, whereas E[τ−] is infinite. By Wald’s identity (cf.
Appendix A Tijms, 2003), µ+ can be expressed as a function of E[τ+] and µY :

µ+ = E[Sτ+ ] = E [∑τ+
t=1 Yt] = E[τ+]E[Y ] = E[τ+]µY .

Let mn denote the partial minimum of the random walk within the first n periods, i.e.
mn := min0≤t<n St. Then, the minimum of the entire random random walk, m, is defined
as m := inf0≤t<∞ St. Define the descending ladder height renewal measure U−(x) :=∑∞
t=0 G

∗t
−(x), where G∗t

− denotes the t-fold convolution of G−, i.e., G∗t+1
− (x) := G∗t

− ∗G−(x),
and G∗0

− (x) = δ0(x), with δ0 representing the probability measure degenerate at 0, i.e.
δ0(x) = 1 if x ≥ 0 and zero otherwise. We can express the distribution function of m as
(cf. Theorem VIII, 2.2. Asmussen, 2003):

P{m ≤ x} = U−(x)
∥U−∥

. (4.5)

Next, Jt is distributed as the waiting time of the t-th customer of a GI/G/1 queue with
inter-arrival distribution FD and service time r. Thus, similar to Proposition, X.1.1.
of Asmussen (2003) J∞

d= − m ( d= denotes equality in distribution) which implies by
Equation (4.5) that:

E[J∞] = −E[m] = 1
∥U−∥

∫ 0

−∞
U−(x)dx. (4.6)

Similar to U−, we define the ascending ladder height renewal measure, U+, by U+ :=∑∞
t=0 G

∗t
+ .

4.3.2 Solution to the Wiener-Hopf equation

We build on the methodology developed by Asmussen (1998) to derive a solution to
Equation (4.4). Asmussen (1998) shows that a solution to the Wiener-Hopf equation
satisfies vr(x) = ar ∗ U− ∗ U+(x). Using this fact leads, after multiple intricate steps, to
the characterization of vr(x) in Theorem 4.4:

Theorem 4.4. The relative value function characterized by Equation (4.4) is given by

vr(x) = hµ+

µD − r

∫ x

0
U+(y)dy − (h+ p)x, x ≥ 0.
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Observe that the ascending ladder process is in fact a renewal process. As such, it
possesses all the general properties of the renewal processes including the following lemma.
Let κ ∈ R+ be expressed by

κ :=


σ2

+ + µ2
+

2µ2
+

if D is non-lattice,

σ2
+ + µ2

+ + µ+

2µ2
+

if D is lattice.

Lemma 4.5. The ascending ladder height renewal measure U+ can be expressed as

U+(x) = 1
µ+

x+ κ+ gr(x).

where gr : R+ → R satisfies |gr(x)| ≤ κ for all x ≥ 0, and gr(x) = o(1).

van Jaarsveld and Arts (2024) show that vr is a quadratic function in the case of
exponential demand. Next, we demonstrate that for a general demand distribution, vr
can be expressed as the sum of a quadratic function and an o(x) term. This result holds
under the sole mild assumption that the demand distribution has a finite second moment.

Theorem 4.6. If r ∈ [0, µD) then for all x ≥ 0,

vr(x) = b(r)
((
x− ξ̃(r)

)2
− ξ̃2(r) + 2µ+

∫ x

0
gr(y)dy

)
,

with,
b(r) := h

2(µD − r) , ξ̃(r) := (µD − r)
(
p

h
+ 1

)
− κ

and gr as specified in Lemma 4.5.

Proof. This follows after some computation from Theorem 4.4 and Lemma 4.5. □

Indeed, gr vanishes faster than o(1) for most practical demand processes. For instance,
it decays exponentially fast, i.e., gr(x) = o(e−αx) with α > 0, if D is non-lattice and
sub-exponential, i.e.,

∫∞
0 eδxG+(dx) < ∞, for some δ > 0 (cf. VII Section 2. Asmussen,

2003). In this case, vr(x) is asymptotically quadratic as x grows large.

Next, suppose that Z is a non-negative random variable. We introduce a sufficient
condition for the existence and finiteness of E[vr(Z)].

Lemma 4.7. Let Z have a finite second moment and r ∈ [0, µD), then |E[vr(Z)]| < ∞.

4.3.3 Inventory dynamics

We next establish useful properties of constant order policies and PIL policies. Recall
that rp ∈ [0, µD) represents the best constant order quantity under a lost sales unit
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penalty cost of p ∈ R+, given a fixed holding cost h, i.e., rp ∈ arg minr∈[0,µD) C(Cr | p, L).
As p increases, it is intuitive that rp converges to µD to minimize the expected lost sales
cost. In this case, the steady-state inventory level J∞(Crp) grows large as µY → 0. Next,
we provide a more detailed elaboration on this intuition. Consider the sequences of the
steady state inventory levels {J∞(Cr)}r∈[0,µD) .
Lemma 4.8. (a) E[J∞(Cr)] is non-decreasing and convex in r,

(b) 2µYE[J∞(Cr)]/σ2
D → 1 as r → µD.

(c) rp is non-decreasing in p ≥ 0,

(d) rp → µD, as p → ∞,

(e)
√

2p
σ2

Dh
(µD − rp) → 1, as p → ∞.

Note that part (e) of Lemma 4.8 implies that limp→∞(rp − µD)/√p ∈ (0,∞), that
is, rp approaches µD at the same rate as 1/√p approaches 0. Bu et al. (2020) have also
established the same result in a more general setting with stochastic supply yield. Our
setting allows for a shorter proof that we provide to make our argument self-contained.

We now shift our attention to the dynamics of the inventory level under PIL policies.
Let {{qt(Pξ)}t∈N0}ξ≥0 be a sequence of random variables representing orders under PIL
policies {Pξ}ξ≥0, where {qt(Pξ)}t=0,...,L−1 are fixed for all ξ ≥ 0 and known almost surely.
Let {{Jt(Pξ)}t∈N0}ξ≥0 be the corresponding sequence of inventory level random variables.
Lemma 4.9. For all t ≥ L + 1 and ξ ≥ 0, the order size qt(Pξ) satisfy: E[qt(Pξ)] ≤
min{ξ, µD}.

The result from Lemma 4.9 leads to Lemma 4.10 which will later be used to show
that the impact of gr on the optimality gap of the PIL policy remains bounded for any p
and large L. This is the sense in which the term of vr(x) that grows sublinearly becomes
unimportant as p grows.
Lemma 4.10. There exists 0 ≤ M < ∞ such that for all t ≥ L + 1, r ∈ [0, µD), and
ξ ≥ 0,

b(r)µ+E
[∫ Jt(Pξ)+qt(Pξ)−r

Jt(Pξ)
gr(y)dy

]
< M.

Next, we define the projected inventory level ξ(r), r ∈ [0, µD) by

ξ(r) := ξ̃(r) + r = µY p

h
+ µD − κ. (4.7)

Notice that, by Lemma 4.8(e), in combination with Lemma 4.3 and Equation (4.7), we
have

0 < ξ(rp)/
√
p < ∞, as p → ∞. (4.8)

That is, ξ(rp) goes to infinity in the order of √
p, as p → ∞. The next section provides

a more detailed analysis of the cost-rate difference between Crp and Pξ(rp).
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4.3.4 Cost-rate difference between PIL and constant order pol-
icy

Next, we derive an upper bound on the cost rate of a family of PIL policies by comparing
it to that of corresponding constant order policies. One classical way of comparing the
performance of two policies is by using the improvement theorem (cf. Theorem 6.2.1.
Tijms, 2003). In general, applying the improvement theorem to our problem requires
the consideration of L+ 1-dimensional state space. However, the state space collapses to
one dimensional for a system under a constant order policy since all order quantities as
identical. Lemma 4.11 adapts the improvement theorem for a constant order policy.

Lemma 4.11. (Similar to Lemma 4 of van Jaarsveld and Arts, 2024) Let t1 ≤ t2,
t1, t2 ∈ N and suppose qt = r for all t ∈ {t1, . . . , t2}. Then,

E[c[t1,t2](Cr)|Jt1 ] = vr(Jt1) − E[vr(Jt2+1)|Jt1 ] + (t2 + 1 − t1)C(Cr).

We are now in the position to prove the main results.

Theorem 4.12. There exists 0 ≤ M < ∞ such that C(Pξp) ≤ C(Pξ(rp)) ≤ C(Crp) + M

for every p ≥ 0.

Proof of Theorem 4.12. In this proof we bound E[c[L, T ]
(
Pξ(rp)

)
− c[L, T ]

(
Crp

)
] for

p ≥ 0. Similar to van Jaarsveld and Arts (2024), the proof relies on a policy P t̃, t̃ ∈ N0,
which uses the PIL policy Pξ̃(rp) to order for t = 1, . . . , t̃ + L, and then orders rp when
t ≥ t̃+ L+ 1, that is,

P t̃
t (x) =

Pξ(rp)(x), t = 1, . . . , t̃+ L,

rp, t = t̃+ L+ 1, . . .

Then,

E[c[L,T ](P t̃) − c[L,T ](P t̃−1)] = E[c[t̃+L,T ](P t̃) − c[t̃+L,T ](P t̃−1)] =
E
[
E
[
c[t̃+L,T ](C(rp))|Jt̃+L = Jt̃+L(P t̃) + qt̃+L(P t̃) − rp

]
− E

[
c[t̃+L,T ](C(rp))|Jt̃+L = Jt̃+L(P t̃)

]]
.

(4.9)

The first equality in (4.9) holds because ct remains the same under P t̃−1 and P t̃ for
t ≤ t̃+L−1. To justify the second equality, first observe that Jt̃+L−1 remains unchanged
under P t̃−1 and P t̃ due to the dynamics of the inventory levels. Second, observe that
under both policies the system receives rp in periods t > t̃ + L. Third, observe that a
system initiated at Jt̃+L(P t̃) and receiving the order quantity qt̃+L(P t̃) is equivalent to
one starting at Jt̃+L(P t̃) + qt̃+L(P t̃) − rp and receiving an order quantity rp. Thus, the
second equality compares the total cost of two systems under Crp with different initial
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inventory levels. Next, we use Lemma 4.11 to expand Equation (4.9) as follows

E
[
c[L,T ](P t̃) − c[L,T ](P t̃−1)

]
= E

[
vrp

(
Jt̃+L(P t̃) + qt̃+L(P t̃) − rp

)
− vrp

(
Jt̃+L(P t̃+1)

)
− vrp

(
JT+1(P t̃)

)
+ vrp

(
JT+1(P t̃)

) ]
.

Let P−1 := Crp . We use a telescopic sum,

E
[
c[L,T ]

(
Pξ(rp)

)
− c[L,T ]

(
Crp

)]
=E

[
c[L,T ]

(
PT

)
− c[L,T ]

(
P−1

)]
=

T−L∑
t̃=0

E[c[L,T ](P t̃) − c[L,T ](P t̃−1)]

=
T−L∑
t̃=0

E[vrp(Jt̃+L(P t̃) + qt̃+L(P t̃) − rp) − vrp(Jt̃+L(P t̃))]−

E[vrp(JT+1(P t̃))] + E[vrp(JT+1(P t̃−1))]. (4.10)

By Theorem 4.6 we notice that for any r ∈ [0, µD), xt ∈ RL+1
+ , t ≥ 0, q̃ ∈ R

E [vr(Jt+L + q̃)|xt] = b(r)E
[(
Jt+L + q̃ − ξ̃(r)

)2
− ξ̃2(r) + 2µ+

∫ Jt+L+q̃

0
gr(y)dy|xt

]
=

b(r)
(

Var[Jt+L|xt] +
(
E[Jt+L|xt] + q̃ − ξ̃(r)

)2
− ξ̃2(r) + 2µ+E

[∫ Jt+L+q̃

0
gr(y)dy|xt

])
.

(4.11)

Using Equation (4.10) combined with (4.11) and some algebra we have

E[c[L,T ](Pξ(rp)) − c[L,T ](Crp)] = E[vrp(JT+1(Pξ(rp)))] − E[vrp(JT+1(Crp))]+
T−L∑
t̃=0

b(rp)E
[
−(Pξ(rp)(xt̃) − rp)2 + 2µ+E

[∫ Jt̃+L(P t̃)+Pξ(rp)(xt̃)−rp

Jt̃+L(P t̃)
grp(y)dy

∣∣∣∣xt̃
]]
.

Then, it follows from Lemma 4.10 that there exists 0 ≤ M < ∞ such that for all p ≥ 0

E[c[L,T ](Pξ(rp)) − c[L,T ](Crp)] <

E
[
vrp(JT+1(Pξ(rp)))

]
− E

[
vrp(JT+1(Crp))

]
+ (T − L+ 1)M − b(rp)

T−L∑
t̃=0

E
[
(Pξ(rp)(xt̃) − rp)2

]
≤ E

[
vrp(JT+1(Pξ(rp)))] − E[vrp(JT+1(Crp))

]
+ (T − L+ 1)M. (4.12)

Notice that the last inequality of (4.12) holds since b(rp) and (Pξ(rp)(xt̃) − rp)2 are non-
negative. We use (4.12) to find an upper bound on the cost-rate of the PIL policy, i.e.,
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C(Pξ(rp)) with respect to the cost-rate of constant order policy C(Crp) when p ≥ 0:

C(Pξ(rp)) = lim sup
T→∞

1
T − L+ 1E[c[L,T ](Pξ(rp))]

< lim sup
T→∞

1
T − L+ 1

(
E[c[L,T ](Crp) + vrp(JT+1(Pξ(rp))) − vrp(JT+1(Crp))] + (T − L+ 1)M

)
=C(Crp) +M + lim sup

T→∞

1
T − L+ 1

(
E[vrp(JT+1(Pξ(rp)))] − E

[
vrp(JT+1(Crp))

])
=C(Crp) +M (4.13)

The last equality holds since both E[vrp(JT+1(Pξ(rp))) and E[vrp(JT+1(Crp))] remain finite
as T → ∞. First, observe, as van Jaarsveld and Arts (2024) do, that 0 ≤ JT+1(Pξ(rp)) ≤
ξ(rp) + LµD for all T ≥ L which ensures that JT+1(Pξ(rp)) has finite first and second
moments. Then it follows from Lemma 4.7 that |E[vrp(JT+1(Pξ(rp)))| < ∞. Second,
JT+1(Crp) converges to the steady state distribution of the inventory level under the
constant order policy Crp , i.e., J∞, as T → ∞. We note that J∞ has a finite first moment
because D has a finite second moment. Additionally, J∞ has a finite second moment
since 0 ≤ ((rp −D)+)3 ≤ r3

p, implying that E
[
((rp −D)+)3]

< ∞ (cf. Theorem X. 2.1.
Asmussen, 2003). Hence, |E[vrp(JT+1(Crp))]| < ∞ due to Lemma 4.7. The optimality of
ξp, i.e., C(Pξp) ≤ C(Pξ(rp)) together with Inequality (4.13) complete the proof. □

Proof of Theorem 4.1. Combining Theorem 4.12 with asymptotic optimality of the con-
stant order policy as L approaches infinity (Goldberg et al., 2016; Xin and Goldberg,
2016) provides the result: There exists 0 ≤ M < ∞ such that for all p ≥ 0:

lim
L→∞

(
C(Pξp) − C∗(p, L)

)
≤ lim

L→∞

(
C(Pξ(rp)) − C∗(p, L)

)
≤ M.

Observe that limp→∞ limL→∞ C∗(p, L) = ∞. Thus,

lim
p→∞

lim
L→∞

C(Pξp)
C∗(p, L) = 1. □

4.4 Concluding remarks

In this chapter, we proved that the PIL policy is asymptotically optimal for sufficiently
large lost sales unit costs as the leadtime approaches infinity, under mild assumptions on
the i.i.d. demand process. This result, combined with van Jaarsveld and Arts (2024),
demonstrates that the PIL policy is asymptotically optimal when the lost sales penalty
cost is large, both in the case of a small leadtime and when the leadtime grows at a rate
faster than the unit cost of lost sales. This makes the PIL policy the only single-parameter
policy that guarantees optimality in both regimes under a general i.i.d. demand. It
remains an open question whether the PIL policy is asymptotically optimal when both
the leadtime and the lost sales unit penalty cost grow at the same rate. To the best of our
knowledge, no simple policies are known to achieve optimality in this asymptotic regime.
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4.A Proof of Lemma 4.3

Part (a) follows from Theorem XVIII.5.1. Feller (1991). The rest is the proof of Part
(b). Observe that E[Y 2] < ∞ only if for some α > 2,

1 − FY (x) = O(x−α) as x → ∞.

This condition is equivalent to

lim
x→∞

E
[
Y 2|Y ≥ x

]
= lim

x→∞

∫∞
x y2FY (dy)
1 − FY (x)

= lim
x→∞

x2(1 − FY (x)) + 2
∫∞
x y(1 − FY (y))dy

1 − FY (x) < ∞. (4.14)

Since for any x ∈ (0,∞), E [Y 2|Y ≥ x] < ∞, and it is finite at the limit x → ∞ by (4.14),
we conclude that,

sup
x≥0

E
[
Y 2|Y ≥ x

]
< ∞. (4.15)

Next, we notice that Sτ+ = Sτ+−1 + Yτ+
d=Sτ+−1 + Y |Y ≥ −Sτ+−1, and Sτ+−1 < 0 by the

definition of τ+. This implies in particular that Sτ+ ≤ Yτ+ almost surely and

E
[
S2
τ+

]
≤ E[Y 2

τ+ ] = E
[
E
[
Y 2|Y ≥ −Sτ+−1

]]
≤ sup

x>0
E
[
Y 2|Y ≥ x

]
< ∞.

Finally E[D2] < ∞ is equivalent to E[Y 2] < ∞ which completes the proof. □

4.B Proof of Theorem 4.4

We use the methodology of solving Wiener-Hopf equations introduced by Asmussen
(1998). A key distinction between our approach and that of Asmussen (1998) lies in the
class of admissible solutions: While Asmussen (1998) restricts attention to non-negative
solutions, we allow for all possible solutions, including non-positive ones. We use the
following lemma to solve Equation (4.4) under this general class of admissible solutions.

Lemma 4.13. (Corollary 3.1 and Proposition 3.3 of Asmussen, 1998)

vr(x) = ar ∗ U− ∗ U+(x), vr(0) = 0, ∀x ≥ 0.

Lemma 4.13 provides a powerful approach for solving the Wiener-Hopf equation (4.4).
Applying Lemma 4.13 to derive vr(x) is intricate and involves multiple steps. The proof
of Theorem 4.4 is provided at the end of this section. The first step in deriving vr(x),
following Lemma 4.13, involves expressing ar(x) in terms of FY (x). This step is necessary
due to the lack of a standard result in the literature that allows direct convolution of ar
in Equation (4.3) with U−. However, as we will later show, existing results from random
walk theory enable the convolution of FY with both U− and U+.
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Lemma 4.14.
ar(x) = (h+ p)

∫ x

−r
FY (y)dy − px− hE[J∞].

Proof of Lemma 4.14. By Equation (4.3):

ar(x) = hEY [(x− Y )+] + pEY [(Y − x)+] − pµY + hE[J∞]
= (h+ p)EY [(x− Y )+] − px+ pµY − pµY + hE[J∞].

Now, we express EY [(x− Y )+] in terms of FY (x) as follows:

EY [(x− Y )+] =
∫ x

−r
(x− y)FY (dy) = xFY (y)

∣∣∣∣x
−r

−
∫ x

−r
yFY (dy).

By assumptions, FY (−r) = 0. Additionally, we use integration by parts to compute∫ x
−r yFY (dy): ∫ x

−r
yFY (dy) = yFY (y)

∣∣∣∣x
−r

−
∫ x

−r
FY (y)dy.

Thus
EY [(x− Y )+] =

∫ x

−r
FY (y)dy,

and
ar(x) = (h+ p)

∫ x

−r
FY (y)dy − px− hE[J∞]. □

By Lemma 4.14, ar is expressed as a linear combination of
∫ x

−r FY (y)dy, x, and the
constant 1. Importantly, the convolution operator possesses both distributive and homo-
geneous properties. These properties enable the separate convolution of

∫ x
−r FY (y)dy, x,

and 1 with U− and U+, providing the basis for the proof of Theorem 4.4.

Derivation of
∫ x

−∞ FY (y)dy ∗ U− ∗ U+(x): The convolution operator satisfies the asso-
ciativity property. Furthermore, the following well-known lemma indicates the relation
between the integration and convolution operators.

Associativity and commutativity of convolution imply that:

∫ x

−∞
FY (y)dy ∗ U− ∗ U+(x) =

∫ x

−∞
FY ∗ U−(y)dy ∗ U+(x). (4.16)

By Equation (4.16), the next steps involve first calculating FY ∗U−, then convolving the
result with U+, and finally integrating the outcome. The following lemma is crucial to
our computations.

Lemma 4.15. (Theorem VIII 3.1. and Corollary 3.2 Asmussen, 2003)

U− ∗ FY = U− +G+ − δ0,
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It follows from commutativity of convolution and Lemma 4.15 that:∫ x

−∞
U− ∗ FY (y)dy ∗ U+(x) =

∫ x

−∞
(U− +G+ − δ0)(y)dy ∗ U+(x) =∫ x

−∞
(G+ − δ0) ∗ U+(y)dy +

∫ x

−∞
U−(y)dy ∗ U+(x). (4.17)

By definition of U+:

G+ ∗ U+ = G+ ∗
∞∑
t=0

G∗t
+ =

∞∑
t=1

G∗t
+ = U+ − δ0. (4.18)

Furthermore, it is a well-known result that the convolution of any function with δ0 returns
the same function. Consequently, the first term of Equation (4.17) can be calculated as
follows:∫ x

−∞
(G+ − δ0) ∗ U+(y)dy =

∫ x

−∞
(U+ − δ0 − U+)dy = −

∫ x

0
δ0dy = −x. (4.19)

Now we address the second term of Equation (4.17),∫ x

−∞
U−(y)dy ∗ U+(x) =

∫ 0

−∞
U−(y)dy ∗ U+(x) +

∫ x

0
U− ∗ U+(y)dy.

We notice that for all x ≥ 0, U−(x) = ∥U−∥. Additionally, 1 ∗ U+ = U+, since for all
x ≤ 0, U+(x) = 0. Thus, by Equation (4.6):∫ x

−∞
U−(y)dy ∗ U+(x) = ∥U−∥E[J∞]U+ + ∥U−∥

∫ x

0
U+(y)dy. (4.20)

The following lemma allows us to relate Equation (4.20) to E[τ+].

Lemma 4.16. (Theorem VIII 2.3. (c) Asmussen, 2003)

∥U−∥ = E[τ+] = (1 − ∥G−∥)−1.

By Lemma 4.16 and Equation (4.20), we can compute the second term of Equation (4.17):∫ x

−∞
U−(y)dy ∗ U+(x) = E[τ+]E[J∞]U+ + E[τ+]

∫ x

0
U+(y)dy. (4.21)

We combine Equations (4.17), (4.19), and (4.21) to compute
∫ x

−∞ FY (y)dy ∗ U− ∗ U+(x):∫ x

−∞
FY (y)dy ∗ U− ∗ U+(x) = E[τ+]

∫ x

0
U+(y)dy + E[τ+]E[J∞]U+ − x. (4.22)

Derivation of x∗U−∗U+(x): It is straightforward to verify that x∗U−(x) =
∫ x

−∞ U−(y)dy,
given the definition and commutativity of the convolution operator. Thus, by Equation
(4.21):

x ∗ U− ∗ U+(x) =
∫ x

−∞
U−(y)dy ∗ U+(x) = E[τ+]

∫ x

0
U+(y)dy + E[τ+]E[J∞]U+. (4.23)
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Derivation of 1 ∗ U− ∗ U+(x): By definition of the convolution operator:

1 ∗ U−(x) =
∫ x

−∞
U−(dy) = U−(x) = ∥U−∥ = E[τ+],

which implies that:

1 ∗ U− ∗ U+(x) = E[τ+]U+. (4.24)

At this point we have all the tools available to prove Theorem 4.4.

Proof of Theorem 4.4. By Lemma 4.13 and Lemma 4.14, for x ≥ 0, vr(x) can be calculated
by:

vr(x) = ar ∗ U− ∗ U+(x) =
(

(h+ p)
∫ x

−r
FY (y)dy − px− hE[J∞]

)
∗ U− ∗ U+(x),

= (h+ p)
∫ x

−r
FY (y)dy ∗ U− ∗ U+(x) − px ∗ U− ∗ U+(x) − hE[J∞]1 ∗ U− ∗ U+(x).

By Equations (4.22), (4.23), and (4.24):

vr(x) = (h+ p)
(
E[τ+]

∫ x

0
U+(y)dy + E[τ+]E[J∞]U+ − x

)
+

− p
(
E[τ+]

∫ x

0
U+(y)dy + E[τ+]E[J∞]U+

)
− hE[J∞]E[τ+]U+.

Simplifying the last expression, we can calculate vr(x) as follows:

vr(x) = hE[τ+]
∫ x

0
U+(y)dy − (h+ p)x.

By Wald’s equality E[τ+]µY = E[Sτ+ ] = µ+, since τ+ is a stopping time for the {St}t∈N

process. Hence:
vr(x) = hµ+

µY

∫ x

0
U+(y)dy − (h+ p)x. □

4.C Proof of Lemma 4.5

For this proof we need two observations. First, for all x ≥ 0:
1
µ+

x ≤ U+(x) ≤ 1
µ+

x+ κ. (4.25)

The left inequality of (4.25) deals with the fact that the expected time until the next
renewal after x (residual life) is non-negative (cf. V. 6. Asmussen, 2003). The right
inequality of (4.25) is Lorden’s Inequality (Lorden, 1970). Next, as x → ∞,

U+(x) = 1
µ+

x+ κ+ o(1). (4.26)

Equation (4.26) is due to the asymptotic expansion of the expected residual life function
(cf. Proposition V 6.1. Asmussen, 2003, for non-lattice D). (4.25) together with (4.26)
provide the result. □
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4.D Proof of Lemma 4.7

By Theorem 4.6,(
Z − ξ̃(r)

)2
− κ ≤ 1

b(r)
(
vr(Z) + ξ̃2(r)

)
≤
(
Z − ξ̃(r)

)2
+ κ.

We take the expectation with respect to Z on all sides,

E
[(
Z − ξ̃(r)

)2
]

− κ ≤ 1
b(r)

(
E[vr(Z)] + ξ̃2(r)

)
≤ E

[(
Z − ξ̃(r)

)2
]

+ κ.

Observe that by definition, Var
[
Z − ξ̃(r)

]
= E

[(
Z − ξ̃(r)

)2
]
−
(
E[Z] − ξ̃(r)

)2
. It follows

that,

Var[Z] +
(
E[Z] − ξ̃(r)

)2
− κ ≤ 1

b(r)
(
E[vr(Z)] + ξ̃2(r)

)
≤ Var[Z] +

(
E[Z] − ξ̃(r)

)2
+ κ.

Notice that Z has finite first and second moments and 0 < µ+, σ+ < ∞ for r ∈ [0, µD),
which implies the result. □

4.E Proof of Lemma 4.8

Consider the sequences of random variables {{Yt(r) = Dt − r}t∈N}r∈[0,µD), sequences of
random walks {{St(r) = ∑t

i=1 Yt(r)}t∈N}r∈[0,µD).

(a) We recall that J∞
d= −m. It is a known result (cf. Proposition VIII 4.5 Asmussen,

2003) that,

E[J∞(Cr)] =
∞∑
t=1

1
t
E[S−

t ] =
∞∑
t=1

1
t
E[(−St)+] =

∞∑
t=1

1
t
E

(tr −
t∑
i=1

Di

)+ .
Let r1, r2 ∈ [0, µD) and r1 ≤ r2. First we prove monotonicity. Observe that

tr1 −
t∑
i=1

Di ≤ tr2 −
t∑
i=1

Di,

almost surely and so

E
[
(tr1 −

t∑
i=1

Di)+
]

≤ E
[
(tr2 −

t∑
i=1

Di)+
]
.

Hence,

E[J∞(Cr1)] =
∞∑
t=1

1
t
E

(tr1 −
t∑
i=1

Di

)+ ≤
∞∑
t=1

1
t
E

(tr2 −
t∑
i=1

Di

)+ = E[J∞(Cr2)].
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Next, we prove convexity. For all 0 ≤ α ≤ 1,(
t(αr1 + (1 − α)r2) −

t∑
i=1

Di

)+

=
(
α

(
tr1 −

t∑
i=1

Di

)
+ (1 − α)

(
tr2 −

t∑
i=1

Di

))+

≤ α

(
tr1 −

t∑
i=1

Di

)+

+ (1 − α)
(
tr2 −

t∑
i=1

Di

)+

, almost surely.

Hence,

2E
(t(αr1 + (1 − α)r2) −

t∑
i=1

Di

)+ ≤

αE

(tr1 −
t∑
i=1

Di

)++ (1 − α)E
(tr2 −

t∑
i=1

Di

)+ ,
which gives,

E[J∞(Cαr1+(1−α)r2)] =
∞∑
t=1

E

(t(αr1 + (1 − α)r2) −
t∑
i=1

Di

)+
≤α

∞∑
t=1

E

(tr1 −
t∑
i=1

Di

)++ (1 − α)
∞∑
t=1

E

(tr2 −
t∑
i=1

Di

)+
=αE[J∞(r1)] + (1 − α)E[J∞(r2)].

(b) Part (b) presents the expected waiting time of a GI/G/1 queue in a heavy traffic
condition. Interested readers may refer to Kingman (1961).

(c) Recall that C(Cr) = hE[J∞(r)] + p(µD − r). By part (a), C(Cr) is convex in r. Let
∂C(Cr) denote the sub-differential of the cost-rate function at r, that is:

∂C(Cr) := {x ∈ R : C(Cr̄) − C(Cr) ≥ x(r̄ − r),∀r̄ ≥ 0}.

By the optimality condition 0 ∈ ∂C(Crp) which is equivalent to p
h

∈ ∂E[J∞(Crp)],
p ≥ 0. It is straightforward to verify that ∂E[J∞(Cr)], r ∈ [0, µD) is an interval
[ar, br] where ar, br are some non-negative real numbers due to part (a). Addition-
ally, for any 0 ≤ r1 ≤ r2 < ∞, br1 ≤ ar2 due to the convexity of E[J∞(Cr)]. This
implies that for p1 ≤ p2, rp1 ≤ rp2 , since pi/h ∈ ∂E

[
J∞

(
Crpi

)]
, for i ∈ {1, 2}, and

either brp1
≤ arp2

or brp2
≤ arp1

.

(d) Next we prove that rp approaches µD as p → ∞. This statement is equivalent
to showing that there exists no 0 ≤ r̃ < µD such that for some p̃ ≥ 0, rp ≤ r̃

for all p ≥ p̃, considering part (c). Assume the contrary that there exist such r̃

and p̃. Consider the sequence {pr = max( hσ2
D

2(µD−r)2 , p̃)}r∈(r̃,µD). By assumption and
convexity of C(Crp), for any r ∈ (r̃, µD):

hE[J∞(Cr̃)] + pr(µD − r̃) ≤ hE[J∞(Cr)] + pr(µD − r).
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It follows that:
pr(r − r̃)

h
≤ E[J∞(Cr)] − E[J∞(Cr̃)] ≤ E[J∞(Cr)].

Therefore by definition of pr

σ2
D(r − r̃)

2(µD − r)2 ≤ E[J∞(Cr)]. (4.27)

Now by part (b), for every ϵ > 0 there exists r̃ϵ ∈ [0, µD) such that for all r ≥ r̃ϵ

E[J∞(Cr)]
σ2
D/(µD − r) < 1 + ϵ.

Let max{r̃, r̃ϵ} < r < µD for some ϵ > 0. We divide both sides of Inequality (4.27)
by σ2

D/(µD − r) which implies that for all ϵ > 0

r − r̃

µD − r
< 1 + ϵ or r − r̃

µD − r
≤ 1 (4.28)

for all r ∈ (max{r̃, r̃ϵ}, µD). Inequality (4.28) cannot hold for all r ∈ (max{r̃, r̃ϵ}, µD)
unless r̃ = µD which contradicts the assumption.

(e) Let Ĉ : [0, µD) → R+ be defined by Ĉ(r) := hσ2
D/ (2(µD − r)) + p(µD − r). Let r̂

denote the minimizer of Ĉ, i.e., r̂p := µD −
√
hσ2/2
√
p

. Now we have

lim
p→∞

C(Cr̂p)
Ĉ(r̂p)

= lim
p→∞

hE[J∞(Cr̂p)] + p(µD − r̂p)
hσ2

D/ (2(µD − r̂p)) + p(µD − r̂p)

= lim
p→∞

hE[J∞(Cr̂p)] +
√
phσ2

D/2√
2phσ2

D

= 1, (4.29)

where the first two equalities use definitions and algebra and the final equality
follows from part (b). Similarly, by part (d) we obtain

lim
p→∞

C(Crp)
Ĉ(rp)

= lim
p→∞

hE[J∞(Crp)] + p(µD − rp)
hσ2

D/ (2(µD − rp)) + p(µD − rp)
= 1. (4.30)

Optimality of rp together with (4.30) implies limp→∞
C(Cr̂p )
Ĉ(rp) ≥ 1. Combining this

with (4.29), we obtain

lim
p→∞

C(Cr̂p)
Ĉ(rp)

= lim
p→∞

√
2hσ2

D

hσ2
D/
(
2√

p(µD − rp)
)

+ √
p(µD − rp)

≥ 1. (4.31)

Observe that hσ2
D/
(
2√

p(µD − rp)
)

+ √
p(µD − rp) ≥

√
2hσ2

D and
√

2hσ2
D < ∞.

This result together with (4.31) yields the result: limp→∞
√
p(µD − rp) =

√
hσ2

D/2.
□
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4.F Proof of Lemma 4.9

We drop Pξ in qt(Pξ), for simplicity of notation. Then we use iteration (4.1) L times to
find

qt+1 =ξ − E[Jt+1 | xt−L+1]
=ξ − EDt−L+1,...,Dt [(((Jt−L+1 + qt−L+1 −Dt−L+1)+ + . . . )+ + qt −Dt)+]
≤ξ − EDt−L+1,...,Dt−1 [Jt] − qt + µD = µD + EDt−L,...,Dt−1 [Jt] − EDt−L+1,...,Dt−1 [Jt].

(4.32)

The first equality holds since for any a ∈ R, a+ ≥ a. The final equality follows from
qt = ξ − E[Jt | xt−L]. Next observe that E[EDt−L,...,Dt−1 [Jt]] = E[EDt−L+1,...,Dt−1 [Jt]]. This
observation combined with (4.32), and Lemma 1 of van Jaarsveld and Arts (2024) imply
the results. □

4.G Proof of Lemma 4.10

Define κ := supr∈[0,µD) κ. Note that κ is strictly positive and finite for all r ∈ [0, µD). This
fact, combined with Lemma 4.3 ensures that 0 < κ < ∞. Furthermore, supr∈[0,µD) µ+ ≤
2κ, and gr(x) ≤ κ for all x ≥ 0 by Lemma 4.5. For ξ ≥ 0, let the random variable Iξ be
given by:

Iξ := hµ+

2(µD − r)

∫ Jt(Pξ)+qt(Pξ)−r

Jt(Pξ)
gr(y)dy.

Then
E[Iξ] ≤ hµ+

2(µD − r)E[qt(Pξ) − r] sup
x
gr(x) ≤ hκ2

The first inequality follows from applying the mean value theorem to Iξ, and the second
inequality from Lemma 4.9and from µ+ ≤ 2κ. □

4.H Proof of Lemma 4.11

We prove the result by induction. The case t2 = t1 holds by the definition of vr (cf.
Definition 4.2). Next assume the result holds for t2 ≥ t1. Then, by Definition 4.2,

E[vr(Jt2+1)|Jt1 ] = E[E[ct2+1(Cr) + vr(Jt2+2) − C(Cr)|Jt2+1]|Jt1 ]
= E[ct2+1(Cr) + vr(Jt2+2)|Jt1 ] − C(Cr).

Plugging this relation into the induction hypothesis we have,

E[c[t1,t2](Cr)|Jt1 ] = vr(Jt1) − E[ct2+1(Cr) + vr(Jt2+2)|Jt1 ] + (t2 + 2 − t1)C(Cr),

which gives the result by algebraic rearrangement. □



Chapter 5

Risk or Replace: Efficient
Asymptotics for Data-Driven
Maintenance

5.1 Introduction

Maintenance strategies are essential to sustain the reliable and efficient operation of crit-
ical systems that degrade over time. Failure of critical systems can cause safety hazards
and substantial economic losses. The Guardian (Goodier and Campbell, 2025) reports
that equipment malfunctions in the UK’s National Health Service (NHS) have led to
almost 100 deaths and harm to nearly 4,000 individuals, since 2022. Some of these inci-
dents are linked to critical device failure in high-risk areas such as neonatal wards and
emergency care. They also estimate that the costs of addressing NHS maintenance prob-
lems have nearly tripled over the past decade, rising from “£4.5 billion in 2012–2013 to
£13.8 billion in 2023–2024”. In the industrial sector, unplanned downtime also imposes
enormous costs. Siemens (2024) find that the 500 globally largest companies lose 11% of
their revenue on unplanned downtime, which amounts to $1.4 trillion per year, more than
the 2024 GDP of the Netherlands (World Bank Group, 2025). The financial impact varies
sharply across industries, from roughly $36,000 per hour in Fast-Moving Consumer Goods
to $2.3 million per hour in the automotive sector. Maintenance decisions affect not only
the reliability and economic performance of industrial systems, but also their environ-
mental footprint. Components that can still function are often replaced unnecessarily.
This replacement creates extra demand for raw materials, energy, and manufacturing,
and leads to avoidable waste and emissions. The transportation of new equipment and
technicians further contributes to the environmental impact. With lifetime extension
and resource efficiency recognized among the core sustainability strategies by interna-
tional and national organizations (see e.g., UN Environment Programme International
Resource Panel, 2018; International Energy Agency, 2019; Thomas, 2023), maintenance
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decisions informed by system condition monitoring offer a practical approach to reduce
the frequency of failure while reducing the footprint of early replacements.

Condition-based maintenance (CBM) is a prominent maintenance strategy that en-
ables organizations to track the condition of their systems and perform maintenance inter-
ventions precisely when necessary. The advancement of sensor technologies has resulted
in an increasing adoption of CBM policies to maintain critical equipment. These tech-
nologies also provide more condition monitoring data, often in real-time, which enables
and motivates the use of more complex yet better-performing data-driven maintenance
decision models. Siemens (2024) estimate that full adoption of CBM by Fortune 500 com-
panies could increase productivity by 5% and reduce maintenance costs by 40%, saving
more than $600 billion per year.

The growing availability of condition monitoring data also transforms CBM strate-
gies and allows organizations to make better use of the information. A traditional, yet
simplistic, approach relies on the data to model the degradation process of an operating
system and then makes CBM decisions under the assumption that all systems degrade
identically (Arts et al., 2024; de Jonge and Scarf, 2020). This assumption has often been
necessary because degradation data were traditionally available only during downtime.
However, recent developments in automatic real-time monitoring (see e.g. GE Health-
Care, 2010; Radiology Business, 2010) allow decision makers to account for differences in
degradation behaviors across individual systems. With such data, decision makers can
integrate learning directly into the CBM problem and make data-driven maintenance de-
cisions that are optimally tailored to each system’s condition and degradation trajectory.
Although this approach yields better decisions, it also introduces substantial computa-
tional complexity, making the CBM problem tractable only under restrictive modeling
assumptions.(Drent et al., 2023a; Chen et al., 2015; Elwany et al., 2011). Even in such
simplified settings, implementation and computation of optimal policies remains a chal-
lenge for practitioners. We therefore develop efficient, data-driven CBM policies that are
computationally tractable, achieve high performance in realistic operating environments,
and offer provable performance guarantees.

Brief Model Explanation. In this chapter, we study a critical component subject
to stochastic degradation over time that must be replaced at the appropriate time to
minimize long-run maintenance and operating costs. We allow both continuous-time and
discrete-time degradation models, while interventions (decisions and replacements) are
restricted to evenly spaced time epochs, typically coinciding with planned site visits or
shutdowns. We consider a general class of degradation models where the total degrada-
tion sustained between any two consecutive epochs are non-negative, independent, and
identically distributed, and satisfy mild technical conditions. These classes contain many
stochastic shock models with cumulative damage, such as compound Poisson processes,
as well as stochastic wear processes, such as the gamma processes. All operating com-
ponents follow the same type of stochastic degradation process, but the parameters of
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these processes differ across components, modeling heterogeneity in the population. For
instance, when degradation is modeled as a compound Poisson shock process, both the
shock arrival rate and the parameters of the compounding (damage) distribution vary
from one component to another. Furthermore, the degradation model parameters for
an operating component are not directly observable and can only be inferred from real-
time sensor measurements. For example, in turbomachinery, measurements of vibration,
pressure, and temperature can be used to infer the underlying degradation process of a
blade. Similarly, in medical imaging, changes in electrical resistance provide information
to estimate the degradation process of X-ray tube filaments. We refer to the collection
of such data as the degradation data, which contains all available relevant information
about the degradation behavior of a component. This degradation data is critical to
learn about the (degradation) parameters of any individual component. The variation in
parameters from one component to the next is modeled by a prior distribution with hy-
perparameters. This assumption is common in practice as the prior distribution models
variation in component characteristics that the manufacturer may provide. A component
is considered to have failed once its degradation level exceeds a failure threshold. In our
model, planned preventive interventions incur a fixed cost, whereas a component failure
incurs both this cost and an additional fixed failure cost. The model also accounts for
a cumulative operating cost that reflects the system’s performance deterioration as the
critical component degrades. Specifically, the operating cost of a new component is zero,
and as the component’s condition worsens, higher costs accumulate in each period. An
example of operating cost is the revenue loss resulting from reduced production due to
component aging. Another example is the increased energy expenditure resulting from
the deterioration of system performance. Such costs vary with the system state and must
be accounted for when determining optimal maintenance decisions. At the beginning of
each period, the decision maker uses the available degradation data to decide whether
to continue operating the component or replace it with a new one. Our objective is to
determine maintenance policies that minimize the long-run average cost-rate, conditional
on the degradation data observed by the decision maker.

A similar problem, under the discounted total cost criterion and for certain degra-
dation models, has been formulated as a multi-dimensional POMDP and solved to op-
timality (see e.g. Drent et al., 2023a). However, POMDP optimization models become
intractable for many degradation models, for large finite state spaces, and for all denumer-
able and continuous state spaces, due to the curse of dimensionality. In this chapter, we
propose a tractable approach that can handle both discrete and continuous state spaces,
accommodate a broad range of degradation models, and support high-dimensional data.
This approach uses the available data to estimate the actions of a hypothetical “Oracle”
who has full knowledge of the true parameters of the operating component’s degradation
process. We first characterize the Oracle’s optimal maintenance policies, which can then
be combined with parameter estimates to produce an estimate of the Oracle’s optimal
policy. Since computing the Oracle’s optimal policies poses significant challenges, we em-
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ploy a renewal-theoretic asymptotic approximation instead, which allows us to introduce
efficient data-driven replacement policies. Then we introduce a scaling regime where both
the failure threshold and the cost parameters increase proportionally, so that the Oracle’s
optimal cost-rate converges to a strictly positive and finite limit. In many real systems,
components operate over long periods relative to the time between two consecutive CBM
decision moments, and the cost of maintenance represents a notable portion of the sys-
tem’s running costs, conditions that motivate our proposed scaling regime. This regime
also characterizes settings where POMDP optimization faces the greatest computational
challenges, as the state space becomes large.

The contributions of this chapter are summarized as follows:

1. We propose simple and efficient data-driven CBM policies capable of handling a
wide range of degradation processes and parameter learning mechanisms. From
a computational perspective, our approach separates parameter learning from the
determination of the replacement policy.

2. We show that the regret of these efficient data-driven replacement policies, that is
the difference between the cost-rates of our data-driven policies and the Oracle’s
optimal cost-rate, converges to zero in our scaling regime, when parameters are
estimated using a consistent estimator. To the best of our knowledge, this is the first
strong convergence result for a data-driven CBM policy under general degradation
and learning processes.

3. We evaluate our policy against the state-of-the-art POMDP-based Integrated Bayes
policy (Drent et al., 2023a) using real degradation data and find that our policy
consistently achieves superior cost-rate performance.

4. In an extensive simulation study, we test our data-driven policies in both discrete
and continuous state spaces and observe that, in both cases, the regret of using
our approach relative to the Oracle’s optimal cost-rate is small, particularly when
failure thresholds are high. We could not statistically distinguish the cost rates of
our data-driven CBM policy from those of the Integrated Bayes policies when the
latter are optimal.

5. Our policy is easily interpretable by practitioners as it relies on three intuitive steps:
(i) The replacement threshold is expressed by specifying the right distance from the
failure threshold, i.e., we specify a safety margin around the failure threshold such
that replacement occurs when the degradation crosses this safety margin; (ii) we
determine what the optimal safety margins are for an Oracle that can observe the
degradation parameters of each component; (iii) the decision maker who cannot
observe the degradation parameters uses a consistent estimator of the parameter
based on the available information and decides to replace or not based on the safety
margin that corresponds to the current estimate of the parameter.
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The remainder of the chapter is organized as follows. Section 5.2 presents a brief
review of the related literature. We introduce our model, outline our arguments, and
state the main theoretical result in Section 5.3. Sections 5.4 and 5.5 develop our pro-
posed adaptive policies and rigorously present the main results, which are proved through
an asymptotic analysis in Section 5.6. In Section 5.8, we compare the performance of
our data-driven policy with the Integrated Bayes policy using real degradation datasets,
and Section 5.7 benchmarks our approach against the Oracle’s optimal policy through
extensive simulations with discrete and continuous state spaces. Finally, we provide our
concluding remarks in Section 5.9.

We finish this section with a few technical definitions. A random variable X is said
to be lattice if and only if there exists a d > 0 and such that ∑n∈Z P(X = nd) = 1 and
non-lattice otherwise. For a lattice random variable, the largest d > 0 that such that∑
n∈Z P(X = nd) = 1 is called the period. A lattice random variable with period d and

its distribution function are called d−lattice.

Let {Xn} be a sequence of random vectors in Rd and let X be another random vector
in Rd. We say Xn converges to X in probability or weakly, written Xn

p−→ X, if for every
ϵ > 0

lim
n→∞

P{∥Xn −X∥ < ϵ} = 1,

where ∥ · ∥ is any norm on Rd. We say Xn converges to X almost surely or strongly,
written Xn

a.s.−−→ X, if
P
{

lim
n→∞

∥Xn −X∥ = 0
}

= 1.

5.2 Literature review

Maintenance optimization models for stochastically deteriorating systems have been ex-
tensively explored in the literature. Comprehensive reviews of the field can be found
in de Jonge and Scarf (2020) and Arts et al. (2024). When the stochastic process for
the deteriorating system is known and the state transitions are observable, a majority of
works on discrete-time CBM use either Markov decision processes (MDP) (see e.g. Der-
man, 1963a,b; Kolesar, 1966; Ross, 1969; Andersen et al., 2022) or renewal theory (see
e.g. Poppe et al., 2018; Zhang et al., 2020) to compute optimal maintenance decisions.
These studies typically assume that all components share the same degradation process
(i.e. a homogeneous population of components), this degradation process is known by
decision makers, and they can perfectly observe the state of the system at any time.
They show that, under these assumptions the optimal policy has a simple structure: a
fixed threshold exists such that it is optimal to replace a component once its degradation
level exceeds this threshold, and to continue operation otherwise. Even when such simple
threshold policies are not optimal, some studies focus on finding the best threshold policy,
as non-threshold policies are difficult to implement in practice (see e.g. Feldman, 1976).
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However, the assumption of homogeneous component behavior seldom holds in practice,
as components typically exhibit distinct degradation dynamics due to differences in their
physical properties and operating conditions. Moreover, the underlying degradation pro-
cess of a component is rarely known in advance and must be inferred from condition
monitoring data. In addition, condition monitoring data can contain noise, and provide
imperfect information about the component’s state. Handling these uncertainties requires
more complex decision making frameworks.

One major research stream to address these assumptions focuses on systems where
low-cost, real-time condition monitoring data is available. This stream has gained at-
tention over the past two decades thanks to technological advancements that make such
data accessible. Studies in this area generally consider a specific stochastic process whose
parameters, drawn from a prior distribution, are learned from observed condition mon-
itoring data. Elwany et al. (2011) consider a Brownian motion wear model with a drift
parameter which is estimated from the latest degradation observation and formulates a
POMDP to compute the optimal condition-based maintenance decisions. In a similar
vein, Chen et al. (2015) focus on the inverse Gaussian wear process, Zhang et al. (2016)
on the gamma process, and van Oosterom et al. (2017) on a Markovian stochastic process
characterized by a finite set of transition matrices. Recently, Drent et al. (2023a) study
compound Poisson shock models, where both the shock arrival rate and the damage pro-
cess parameters are unknown and drawn from some priors. They establish that if the
damage process belongs to a one-parameter exponential family with conjugate priors,
the optimal policy can be computed using a tractable POMDP framework. Drent et al.
(2023a) demonstrate that the optimal replacement policy relies not only on the observed
degradation level but also on other available information, such as the number of shocks
occurring between decision epochs and the component ages.

Our work advances this research stream by broadening both its scope and methodol-
ogy to address a wider and more realistic class of CBM problems. Specifically, our model
accommodates a general non-decreasing independent and identically distributed degra-
dation process with unknown parameters, which are estimated using a general consistent
estimator. To the best of our knowledge, no prior work addresses such a broad range
of degradation and learning processes. Although this problem can in principle be for-
mulated as a POMDP, such an approach becomes computationally intractable for most
realistic degradation and learning processes, particularly when component lifetimes are
long. To overcome this limitation, we propose an alternative renewal-theoretic framework
and establish its asymptotically optimality when both the average component lifetime and
the associated maintenance costs are large. A further notable study in this stream, Kim
(2016), formulates an optimal CBM policy designed to ensure robustness against posterior
mis-specification. It is worth noting that another research stream addresses uncertainty
in observations when real-time condition monitoring data are unavailable or costly to ob-
tain (Girshick and Rubin, 1952; Ross, 1971; Maillart, 2006; Maillart and Zheltova, 2007;
Kim and Makis, 2013; van Staden and Boute, 2021; Khaleghei and Kim, 2021; Zhang and
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Zhang, 2023).

From an optimization perspective, this chapter adopts a renewal-theoretic framework,
in which the replacement of a component constitutes a renewal event, the component’s
lifetime defines the renewal cycle length, and the associated maintenance cost represents
the renewal cycle cost. The use of this paradigm dates back to the classical work of Barlow
and Hunter (1960) on age based maintenance models. Since then, this approach has
been used in some discrete-time CBM papers (Kim and Makis, 2013; Poppe et al., 2018;
Zhang et al., 2020; van Staden and Boute, 2021). Nevertheless, this paradigm has been
less common than MDP models in discrete-time CBM research, as MDP formulations
facilitate both the derivation of structural results and the computation of optimal policies.
It is noteworthy that a few other studies, such as Bérenguer et al. (2003), also use
asymptotic approximations based on the renewal theory for maintenance problems.

5.3 Model

5.3.1 Degradation Process

We consider components that degrade with stationary non-negative independent incre-
ments. The components are indexed in the natural numbers N = {1, 2, . . .}. A decision
maker can decide to replace a component at the beginning of evenly spaced time periods.
Without loss of generality, we rescale time such that a period is one time unit. The
periods are numbered on non-negative integers N0 = N ∪ {0} and forward in time. We
assume that replacement occurs instantaneously, and we define the beginning of a period
t ∈ N0, when a decision is made, as epoch t. The age of an operating component is the
number of epochs elapsed since its installation, with the installation epoch numbered as
0. The degradation increment between age τ − 1 ∈ N0 and τ ∈ N0 of component i ∈ N
is denoted by Xi,τ so that the total degradation at age τ of component i is given by

Si,τ =
τ∑
j=1

Xi,j.

The empty sum is zero such that Si,0 = 0, implying that a new component has no cumula-
tive degradation; that is, the component is in an as-good-as-new state. The component i
fails when the degradation level, Si,τ , exceeds the failure level L < ∞. For each item i ∈ N,
the sequence {Xi,τ}τ∈N are non-negative independently and identically distributed ran-
dom variables with a common probability distribution function FX(· | θi), where θi ∈ Θ
is the parameter of FX(· | θi), and Θ ⊆ Rρ, ρ ∈ N is the parameter space. The parame-
ters, θi, vary across components with a probability distribution function Fθ : Θ → [0, 1]
which is well-defined. Furthermore, the degradation process of components are mutually
independent, with each θi representing an independent realization from Fθ.
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We impose the following conditions on the distribution functions Fθ and FX(· | θ),
θ ∈ Θ, and the random variable Xi,1, i ∈ N.

A.1. Fθ is continuous with a density fθ.

A.2. Fix x ≥ 0; FX(x | θ) is a continuous function of θ.

A.3. Fix θ ∈ Θ; FX(· | θ) is continuous with a density function fX(· | θ) := dFX(x | θ)/dx
or is d−lattice, for some d > 0, with a mass function fX(· | θ).

A.4. There exists a finite length xflat ≥ 0 such that for all x1, x2 ∈ R+, θ ∈ Θ, if x2 ≥
x1 + xflat then FX(x1 | θ) < FX(x2 | θ).

A.5. The increments have strictly positive mean µ(θ) := E[Xi,1 | θi = θ] < ∞ and finite
variance σ2(θ) := Var[Xi,1 | θi = θ] < ∞.

A.6. µ(θi) and σ(θi) are continuous functions of θi.

A.7. The following integrals are finite,

(a)
∫

Θ

1
µ(y)dFθ(y),

(b)
∫

Θ

σ2(y)
µ2(y)dFθ(y).

5.3.2 Observation Process

Let Ti denote the lifetime of the component i ∈ N, which is the age of the component
when it is replaced. Ti is a random variable that depends on the replacement decisions
made for all previous components and on the replacement decision for component i itself.
Let N(t) denote the index of the component that operates at epoch t (before potential
replacement):

N(t) := min
i ∈ N0 :

i∑
j=1

Tj ≥ t

 .
Moreover, let A(t) denote the age of the component that operates at epoch t (before
potential replacement):

A(t) := t−
N(t)−1∑
i=1

Ti.

Note that N(t) and A(t) are random variables. At each epoch, every decision maker has
access to the complete past of components numbers, ages and degradation increments:{
N(j), A(j), SN(j),A(j)

}t
j=0

. Some decision makers may have access to even more infor-
mation and we let Qt denote additional information that becomes available at epoch t.
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For example, Qt may contain (i) the degradation level(s) measured in real-time between
epochs t−1 and t (not only the accumulated level at epoch t) or it may contain (ii) (real-
time) sensor readings that relate to the condition of the component or its degradation
parameter θN(t). Thus, in general, the decision maker has access to the degradation data

It :=
{
N(j), A(j), SN(j),A(j), Qj

}t
j=0

at epoch t, taking values in It. Note that I0 contains all historical data before the start
of the planning horizon. We let F denote the sequence of sigma-algebras generated by
{It}t∈N0 , i.e., F := {Ft}t∈N0 , where Ft = σ(It). (Note that σ is used here to denote an
induced sigma-field, not a standard deviation.) That is, F is the natural filtration of the
underlying probability space.

Note that the true parameters of the degradation processes for the operating compo-
nents N(t) are not included in It. However, we construct a hypothetical decision maker
that does have access to the true degradation parameters θN(t). We call this decision
maker the “Oracle” and note that at epoch t it has access to Ot := It ∪

{
θN(j)

}t
j=0

. As
before, we let O denote the filtration of the Oracle.

5.3.3 Decision Problem

At each epoch t ∈ N0, the decision maker chooses either to continue operating the com-
ponent or to replace it instantaneously, based on the available degradation data up to t,
i.e., It. Furthermore, the costs incurred between epochs t− 1 and t are realized at epoch
t. The chosen action determines the evolution of the system’s state. We next introduce
the cost structure of the model and then formulate the cost optimization problem faced
by the decision maker.

Let cp ∈ R+ denote the cost to replace a component preventively. Correctively re-
placed components incur a cost of cp + cf such that cf ∈ R+ is the additional cost of
corrective replacement. Finally, the system incurs an operating cost between epochs t−1
and t whose expectation depends on the degradation level observed at epoch t and is
given by ℓ : R+ → R+ and we assume that ℓ is non-decreasing, bounded, and continuous
and satisfies the following conditions:

A.8. ℓ(0) = 0 and lim
x→0

ℓ(x)/x = 0,

A.9. ℓ attains its maximum at L; that is, ℓ(x) = ℓ(L) for all x ≥ L.

This last condition serves mainly to simplify notation, and the main results hold (with
minor modifications) without it. The maintenance cost incurred by component i, denoted
by Ci, is then given by,

Ci := cp1Si,Ti
≤L + (cp + cf )1Si,Ti

>L +
Ti∑
τ=1

ℓ(Si,τ ), (5.1)
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where, 1 is the indicator function.

An admissible policy (or simply a policy) π := {πt}t∈N0 is a sequence of functions
πt : It → {continue, replace} that takes in the data available at time t and maps it to a
decision to continue to operate the current component, or replace it. Specifically, for the
decision maker, πt is Ft−measurable, which is equivalent to saying that π is adapted to
F . For the Oracle, π is adapted to O. Under a policy π, the age of component i ∈ N at
its replacement epoch is denoted by Ti(π), and the total maintenance cost by Ci(π). The
(infinite horizon) cost-rate of policy π under filtration F (or O for the Oracle), denoted
g(π), is defined as

g(π) := lim sup
n→∞

∑n
i=1 Ci(π)∑n
i=1 Ti(π) . (5.2)

Let ΠF and ΠO denote the set of policies adapted to F and O, respectively. The optimal
cost-rate under F and O, denoted g∗(F) and g∗(O), respectively, are given by

g∗(F) := inf
π∈ΠF

g(π), g∗(O) := inf
π∈ΠO

g(π). (5.3)

When g∗(F) (g∗(O)) can be attained by a policy, such a policy is said to be optimal and
is denoted π∗(F) (π∗(O)). The objective of the decision maker is to identify an optimal
policy, π∗(F), if one exists.

Examples: Compound Poisson Degradation.

Poisson cumulative damage models have been extensively employed in both the academic
literature and practical applications to characterize the progressive deterioration of com-
ponents or systems under stochastic shocks. In these models, the operating component
experiences shocks that occur according to a Poisson process with rate ν. Each shock
induces an i.i.d. random damage, and the damages accumulate additively over time.
Thus, Xi,τ , i ∈ N, τ ∈ N0, follows a compound Poisson distribution. Here, we omit the
index i, for notational simplicity.

The compound Poisson process is defined as follows. Let M(τ1,τ2], with τ1 < τ2, denote
the number of shocks occurring during the time interval between ages τ1, τ2 ∈ N0, denoted
by (τ1, τ2], and let Zm,τ denote the damage from the m-th shock in the interval (τ − 1, τ ].
The sequence {Zm,τ}m∈N,τ∈N0 consists of non-negative i.i.d. random variables with a
common distribution function FZ(· | θZ) with a mass or density function fZ(· | θZ), where
θZ is the parameter of FZ . The parameter space, Θ, is defined as the set of all possible
values of (ν, θZ) that may be realized across the operating components, i.e., Θ = R++×ΘZ

where ΘZ ⊆ Rρ, ρ ∈ N, denote the spaces from which ν and θZ are drawn according
to the distributions Fν and FθZ

, respectively. Notice that Fν and FθZ
are continuous

with densities fν and fθZ
, respectively. In this case fθ(x,y) = fν(x)fθZ

(y), where x ∈
R++ and y ∈ ΘZ . By the memory-less property we have M[τ1,τ2) = ∑τ2

τ=τ1+1 Mτ , where
Mτ := M[τ−1,τ). Consequently, the cumulative damage between τ − 1 and τ , i.e., Xτ ,
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is given by Xτ = ∑Mτ
m=1 Zm,τ . For any τ ∈ N0, the probability mass function of Mτ , is

fM(x | ν) := P
{
M[τ,τ+1) = x | ν

}
= νxe−ν/x!, where, x ∈ N0. Furthermore, by the law of

total expectation and law of total variance we have

E [Xτ | ν] = νE [Z1,1] , Var [Xτ | ν] = νVar [Z1,1] + ν (E [Z1,1])2 . (5.4)

To facilitate the analysis of our examples we consider two distributions for Zm,τ : (lat-
tice) geometric distribution with parameter θZ = p ∈ (0, 1), and (continuous) exponential
distributions with parameter θZ = ω ∈ R++.

Example 1 (Geometric Compounding). Let Zm,τ be supported on N0 and have
a geometric distribution with the success probability of p ∈ (0, 1), that is, fZ(x | p) :=
P {Zm,τ = x | p} = (1 − p)x p, where x ∈ N0. Next, by the application of the law of total
probability the distribution mass function of Xτ is expressed by

fX (x | ν, p) =


fM (0 | ν) +

∞∑
j=1

fM (j | ν) fNB(0 | j, p), x = 0
∞∑
j=1

fM (j | ν) fNB(x | j, p), x ∈ N,
(5.5)

where fNB(· | j, p) is the negative binomial probability mass function with the j number
of successes and success probability of p, i.e., fNB(x | j, p) :=

(
x+j−1
x

)
(1 − p)xpj, with

x ∈ N0. Additionally by Equations (5.4) we have

µ(ν, p) = ν(1 − p)
p

, σ2(ν, p) = ν(1 − p)(2 − p)
p2 . (5.6)

Example 2 (Exponential Compounding). Let Zm,τ be supported on R+ and have
an exponential distribution with parameter ω > 0, that is, fZ(x | ω) := P {Zm,τ = x | ω} =
ωe−ωx, where x ≥ 0. Accordingly, the probability mass function of Xτ can be expressed,
using the law of total probability, as

fX (x | ν, ω) =


fM (0 | ν) +

∞∑
j=1

fM (j | ν) fEr(0 | j, ω), x = 0
∞∑
j=1

fM (j | ν) fEr(x | j, ω), x > 0,
(5.7)

where fEr(· | j, ω) is the Erlang-j probability density function with the rate ω, i.e.,
fEr(x | j, ω) := ωjxj−1e−ωx/(j − 1)!. By Equations (5.4) the moments of Xτ are given by

µ(ν, ω) = ν

ω
, σ2(ν, ω) = 2ν

ω2 . (5.8)

The degradation data observed by the decision maker at epoch t ∈ N0 includes the
history of replacement times, the number of shocks, and the size of the damages induced
by each shock up to t. That is,

It =
{
N(j), A(j),MN(j),A(j), ZN(j),1,A(j), . . . , ZN(j),MN(j),A(j),A(j)

}t
j=0

.
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This degradation data also enables the computation of XN(t),A(t) and SN(t),A(t). The
functions Fν and FθZ

, as well as FX for every realization of (ν, θZ) are also known. The
decision maker may sequentially estimate (ν, θZ) in a Bayesian manner, based on the
degradation data It using the estimators

(
ν̂ (It) , θ̂Z (It)

)
, with density functions fν(· | It)

and fθZ
(· | It), respectively.

Returning to Examples 1 and 2, we notice that fM(· | ν), fZ(· | p), and fZ(x | ω)
belong to the one-parameter exponential family. This property allows us to select con-
jugate priors for each of these (likelihood) functions, so that the posterior distributions
remain within the same family, and the corresponding parameters can be updated effi-
ciently, conditional on the degradation data It (cf. Section 5.1.5. Ghosh et al., 2007).
The selection of the conjugate priors is as follows.

We first select that fν(·) = fν(· | I0) corresponds to a gamma distribution with shape
α0 and scale β0. The choice of the density function for θZ , i.e. fθZ

(·) = fθZ
(· | I0), depends

on Zm,τ : it follows a beta distribution when Zm,τ is geometric, and a gamma distribution
when Zm,τ is exponential. The selected fν and fθZ

are conjugate priors corresponding to
likelihood functions fM and fZ . In both cases, fθZ

is parametrized by a0 and b0. One can
simply verify that the chosen fν and fθZ

satisfy all conditions specified in Section 5.3.1.

Then, ν̂ (It) follows a gamma distribution with parameters αt and βt. Furthermore,
θ̂Z (It) follows a beta distribution with parameters at and bt if Z1,1 is geometrically dis-
tributed, and a gamma distribution with parameters at and bt if Z1,1 is exponential. We
refer to (αt, βt, at, bt) as hyperparameters. Let MA(t) and XA(t) be the number of shocks
and the degradation increment in the interval (t − 1, t]. Then, the hyperparameters can
be updated as

(αt, βt, at, bt) =
(
αt−1 +MA(t), βt−1 + 1, at−1 +MA(t), bt−1 +XA(t)

)
=
α0 +

A(t)∑
j=1

Mj, β0 + A(t), a0 +
A(t)∑
j=1

Mj, b0 + St

 (5.9)

The entire analysis in our examples can be replicated for many choices for fZ from
the one-parameter exponential distributions if their conjugate priors satisfy the conditions
outlined in Section 5.3.1.

5.3.4 Outline of Arguments and Main Results

In general, proving the existence of π∗(F) and, if it exists, computing it is not trivial.
Moreover, its implementation in practice may be highly challenging, as the policy may
have a complex structure. In certain cases, where the state space is discrete and conjugate
families are used to estimate θ, this problem under the discounted total cost criterion can
be solved, tractably, using a multi-dimensional POMDP (cf. Elwany et al., 2011; Drent
et al., 2023a). However, even in these specific situations, the POMDP becomes intractable
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quickly as the failure level increases. To overcome these challenges, our goal is to construct
policies that approximate the Oracle decisions. Notice that by construction, the Oracle
has access to more information than a real decision maker, and therefore its achievable
cost-rate is less than or equal to that of any other decision maker, since ΠF ⊆ ΠO, i.e.,
the Oracle faces an information relaxation of the problem faced by a real decision maker
and so

g∗(O) ≤ g∗(F), (5.10)

(cf. Blackwell’s informativeness in Blackwell, 1951, 1953). We define the regret associated
with any policy π ∈ ΠF , relative to the Oracle’s optimal policy π∗(O), as REG(π) :=
g(π) − g∗(O). Under this definition, inequality (5.10) is equivalent to stating that the
regret of every policy π ∈ ΠF is nonnegative, i.e., REG(π) ≥ 0.

In the subsequent sections, we develop an efficient policy for non-Oracle decision
makers. This policy is constructed by first estimating the unknown parameters of the
operating component, θN(t), from degradation data, It, using a consistent estimator, and
then estimating the Oracle’s optimal actions based on these parameter estimates. We
impose no assumptions on the parameter estimator other than consistency; in particular,
standard Bayesian estimators, such as the posterior mean, are consistent in our setting
We term this policy the Estimated Oracle’s Optimal Policy (EOP).

We further introduce a scaling regime in which the failure thresholds, L, grow large
together with the cost parameters cp and cf , as well as the total operating cost ∑T

τ=1 ℓ(Sτ )
to ensure that the cost rate of any policy remains finite and positive. Specifically, we
consider a base instance with failure threshold L̃, cost of preventive replacement c̃p,
additional corrective replacement cost c̃f , and operating cost function ℓ̃. Then we create
a continuum of instances for each k > 0 such that it has failure threshold L(k) = kL̃,
cost of preventive replacement cp(k) = kc̃p, additional cost of corrective replacement
cf (k) = kc̃f , and operating cost function ℓ(x, k) = ℓ̃(x/k). Thus, k is a scaling parameter
that increases both the maintenance costs and the failure threshold. This regime is
motivated by practical settings where component lifetimes are typically much longer
than the time between decision epochs, and maintenance costs constitute a significant
share of the average system’s operating expenses per unit time.

Under our scaling regime, the cost-rate and regret functions are parameterized by the
scaling parameter k, that is REGk(π) := gk(π) − g∗

k (cf. Equation (5.2)). We now state
our main theoretical result:
Main Result. The regret associated with using the EOP instead of the Oracle’s optimal
policy vanishes in the limit as k approaches infinity, that is

lim
k→∞

REGk(EOP) = 0.

This result is formally stated in Theorem 5.6. Our main result, together with Equation
(5.10), establishes the asymptotic optimality of the EOP within the proposed scaling
regime.



117 Chapter 5. Risk or Replace: Efficient Asymptotics for Data-Driven Maintenance

We organize our theoretical exposition as follows. Section 5.4 characterizes the Or-
acle’s optimal policy π∗(O), which serves as the basis for the construction of the EOP
in Section 5.5. Our main result is then rigorously presented at the end of Section 5.5.
Subsequently, in Section 5.6 we explain how the results in Section 5.5 can be obtained,
which also provides insights that improve the interpretability of our adaptive policy for
practitioners.

5.4 Oracle’s Optimal Policies

In this section, we address the optimal maintenance policy for the Oracle, i.e., π∗(O),
whose degradation data at each epoch t ∈ N0 contains the parameters of the degradation
process for all operating components up to t, namely θN(1), . . . , θN(t). Throughout this
section, the discussion refers to filtration O, and therefore we omit it from the notation.
For example, we write g∗ := g∗(O) and π∗ := π∗(O). The reader may, however, interpret
O implicitly wherever the context requires.

A replacement policy π is called stationary if and only if πt = πt+1 for all t. The
critical observation to find the optimal policy of the Oracle is that the future evolution
of degradation at epoch t depends on Ot only through θN(t), i.e., {SN(t),A(t), θN(t)}t∈N is a
Markov process for any stationary policy π. The process {SN(t),A(t), θN(t)}t∈N is positive
recurrent because any policy eventually replaces a component (in the worst case after
failure) and expected time between failures are finite (see (5.40) in Appendix 5.C).

A stationary replacement policy π is a parameter-specific threshold policy if there
exists a threshold function ξ : Θ → [0, L] such that at each epoch t ∈ N0 the operating
component is replaced if and only if the degradation level is strictly greater than ξ(θN(t)),
i.e.,

πt(SN(t),A(t)) =
continue if SN(t),A(t) ≤ ξ(θN(t)),

replace if SN(t),A(t) > ξ(θN(t)).
If an Oracle’s optimal policy π∗ exists, then there exists a bounded function v : R+ ×Θ →
R and the optimal cost-rate g∗ ∈ R such that

g∗ + v(s, θ) =


min

{
ℓ(s) + E[v(s+X1,1, θ) | θ1 = θ], ℓ(s) + cp + v̄(θ)

}
, s ≤ L, θ ∈ Θ,

ℓ(s) + cp + cf + v̄(θ), s > L, θ ∈ Θ,
(5.11)

where we use the shorthand for the expected continuation value after replacement,

v̄(θ) =
∫

Θ
E[v(X1,1, θ1) | θ1 = y] dFθ(y),

and π∗ denotes the policy that satisfies the optimality equations (5.11). It can be readily
shown that a parameter-specific threshold policy is optimal under the discounted to-
tal cost criterion. The following theorem states that even under the more challenging
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cost-rate criterion, there exists an optimal policy which is likewise a parameter-specific
threshold policy.

Theorem 5.1. (a) There exists a (cost-rate) optimal policy π∗, where g(π∗) = g∗,

(b) For each θ ∈ Θ, there is an optimal parameter-specific threshold policy, i.e.,

π∗
t (SN(t),A(t)) =

continue if SN(t),A(t) ≤ ξO(θN(t)),
replace if SN(t),A(t) > ξO(θN(t)),

where ξO : Θ → [0, L].

We henceforth restrict attention to the class of parameter-specific threshold policies,
denoted by Π, as Theorem 5.1 establishes that this set contains an optimal policy.

Now, let Ξ denote the set of all threshold functions ξ. Observe that the replacement
of an operating component under the parameter-specific threshold policy π ∈ Π is deter-
mined solely via the threshold function ξ ∈ Ξ; thus, it is straightforward to see that Ξ
and Π are equivalent. With slight abuse of notation, we write the cost-rate of a policy
π ∈ Π with threshold function ξ ∈ Ξ as g(ξ). Accordingly, for the optimal threshold
function ξO, we have g(ξO) = g∗.

We will now study how the cost rate of any threshold policy ξ can be evaluated. To
this end let T (x, θ) be the lifetime of a component with degradation parameter θ if it is
replaced when the degradation exceeds x ∈ R+:

T (x, θ) := inf{τ ∈ N : S1,τ > x, θ1 = θ}.

Similarly, let C(x, θ) denote the costs incurred by a components with degradation pa-
rameter θ that is replaced when it degradation exceeds x ∈ R+:

C(x, θ) := cp1S1,T (x,θ)≤L + (cp + cf )1S1,T (x,θ)>L +
T (x,θ)∑
τ=1

ℓ(S1,τ ), θ1 = θ.

Then the following holds.

Lemma 5.2. Under the policy π ∈ Π characterized by the threshold function ξ ∈ Ξ, with
probability one we have

g(ξ) =

∫
Θ
E[C(ξ(y),y)]dFθ(y)∫

Θ
E[T (ξ(y),y)]dFθ(y)

=
cp +

∫
Θ

cfP{S1,T (ξ(θ1),θ1) > L | θ1 = y} + E

T (ξ(θ1),θ1)∑
τ=1

ℓ(S1,τ )
∣∣∣∣θ1 = y

 dFθ(y)∫
Θ
E[T (ξ(y),y)]dFθ(y)

.

(5.12)
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The intuition behind Lemma 5.2 is that any two components are probabilistically
equivalent, and the corresponding stopping decisions follow the same probabilistic struc-
ture. Equation (5.12) can be equivalently written in terms of the amount by which the
degradation of a component i exceeds ξ(θi) upon replacement. We denote this amount
by the random variable Ỹi(ξ(θi)) where Ỹi(x) is expressed by Ỹi(x) := Si,Ti

− x. Figure
5.1 illustrates a sample degradation path for the first component, failure level L, replace-
ment threshold ξ(θ1), excess degradation Ỹ1(ξ(θ1)), and ϕ (ξ(θ1)), where ϕ(x) := L − x

represents the distance of the point x ∈ [0, L] and L.

0 T1

ξ (θ1)

L

Ỹ1 (ξ (θ1))
ϕ (ξ (θ1))

τ

S1,τ

1

Figure 5.1: A sample degradation path.

Then we have

g(ξ) =
cp +

∫
Θ

cfP {Ỹ1(ξ(θ1)) > ϕ (ξ(θ1)) | θ1 = y
}

+ E

T (ξ(θ1),θ1)∑
τ=1

ℓ(S1,τ ) | θ1 = y

 dFθ(y)
∫

Θ

1
µ(y)

(
ξ(y) + E

[
Ỹ1(ξ(θ1)) | θ1 = y

])
dFθ(y)

,

(5.13)
Note that Si,Ti

= ∑Ti
τ=1 Xi,τ = ξ(θi) + Ỹi(ξ(θi)) so that by Wald’s identity E[T (ξ, θi)] =

(ξ(θi) + E[Ỹi(ξ(θi))])/µ(θi).

Equation (5.12) (and equivalently (5.13)) implies that any function ξ ∈ Ξ satisfies∫
Θ
E[C(ξ(y),y)]dFθ(y) − g∗

∫
Θ
E[T (ξ(y),y)]dFθ(y) ≥ 0,

where equality holds if and only if ξ corresponds to the optimal threshold function, i.e.,
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ξ = ξO. This property can be exploited to develop an iterative procedure to compute the
optimal cost-rate and corresponding policies.

Define h̃ : R × [0, L] × Θ → R as

h̃(λ, x, θ) :=

cp + cfP
{
Ỹ1(x) > ϕ (x)

∣∣∣∣θ1 = θ
}

+ E

T (x,θ1)∑
τ=1

ℓ(S1,τ )
∣∣∣∣∣∣θ1 = θ

− λ

µ(y)

(
ξ(y) + E

[
Ỹ1(x)

∣∣∣∣θ1 = θ
])
,

(5.14)

and let the threshold ξ̃λ(θ) minimize h̃(λ, x, θ) for a given λ ∈ R and θ ∈ Θ. It follows
that, for λ ∈ R, the threshold function ξ̃ ∈ Ξ satisfies

ξ̃λ ∈ arg min
ξ∈Ξ

h(λ, ξ, θ), ∀θ ∈ Θ.

Notice that ξ̃g∗ determines the optimal threshold function ξO, and by optimality∫
Θ
h̃(g∗, ξ̃g∗ ,y)dFθ(y) = 0.

We build on the seminal results of Aven and Bergman (1986) to present the following
lemma, which ensures sequential convergence to g∗.

Lemma 5.3. (a) g∗ is the unique solution to the equation λ = g(ξ̃λ).

(b) If λ1 ∈ R, and λj+1 = g(ξ̃λj
), for j ∈ {2, 3, . . . }, then

lim
j→∞

λj = g∗.

Lemma 5.3 provides a fixed-point iteration to compute g∗ and, consequently, the
optimal replacement thresholds. Notice that the functions in (5.13) and (5.14) can, in
general, be numerically evaluated through simulation.

5.5 Asymptotically Optimal Adaptive Replacement
Policies

5.5.1 Estimated Oracle’s Optimal Policy (EOP)

In this section, we study a non-Oracle decision maker who seeks to determine the optimal
policy under the filtration F , i.e., π∗(F). At each epoch t ∈ N0, the (true) parameter
of the operating component θN(t) is unknown to the decision maker and can only be
estimated conditional on the degradation data It. Since only the information related to
the operating component is relevant for estimation, we focus on an arbitrary component
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without loss of generality. Let θN(t0+τ) ∈ Θ, denote the (true) parameter of the component
installed at t0 and aged τ , with t0, τ ∈ N0. The decision maker estimates θN(t0+τ), based
on the degradation data It0+τ , using a point estimator θ̂(It0+τ ). For instance, the decision
maker first uses the prior distribution Fθ, which represents the baseline belief Fθ(· | I0), to
update her knowledge of θN(t0+τ) by obtaining a posterior distribution Fθ(· | It0+τ ). She
then estimates θN(t0+τ) using the posterior mean, which is the Bayes estimator under the
squared error loss function. Note that the information before t0 is irrelevant for posterior
updating and estimation. Therefore, we suppress the index of the operating component
and t0, for notational convenience, whenever the context permits. We also assume that
θ̂(Iτ ) ∈ Θ with probability 1, without loss of generality. The point estimator θ̂(Iτ ) is
said to be (weakly) consistent if θ̂(Iτ )

p−→ θ. In the following, we restrict attention to
consistent point estimators and refer to them simply as point estimators.

At each epoch, the point estimate of the parameter can be used to compute a replace-
ment threshold based on the full-information (Oracle) optimal policy. If the estimate
were equal to the true parameter, the resulting threshold would coincide with the optimal
full-information threshold. In particular, the optimal threshold ξO (θ) can be estimated
by ξO

(
θ̂(Iτ )

)
. This requires us first to calculate g∗ using Lemma 5.3, then to obtain

ξO as the minimizer of h̃(g∗, x, θ) according to Equation (5.14), and finally to compute
ξO
(
θ̂(Iτ )

)
. Unfortunately, applying Equations (5.13) and (5.14) is generally difficult,

as analytical expressions for P
{
Ỹ1(ξ(θ1)) ≤ x | θ1 = θ

}
, E

[∑T (ξ(θ),θ)
τ=1 ℓ(S1,τ )

∣∣∣∣θ1 = θ
]
, and

E
[
Ỹ1(ξ(θ1))

∣∣∣∣θ1 = θ
]

are not readily available. However, we construct computationally
efficient approximations of these functions and prove their asymptotic optimality as the
failure threshold grows large.

Let Y (θ), θ ∈ Θ be a random variable such that

P{Y (θ) ≤ x} =



1
µ(θ)

∫ x

0
(1 − FX(y, θ)) dy if FX is continuous,

d

µ(θ)

⌊x/d⌋−1∑
j=0

(1 − FX(jd, θ)) if FX is d−lattice,
(5.15)

where empty sums are 0 by definition and

E[Y (θ)] =


σ2(θ) + µ2(θ)

2µ(θ) if FX is continuous,

σ2(θ) + µ2(θ)
2µ(θ) + d

2 if FX is d−lattice.
(5.16)
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Define r : [0, L] × Θ → R+ as

r(x, θ) =


E [ℓ(X1,1) | θ1 = θ] + 1

µ(θ)

∫ x

0
E [ℓ(X1,1 + y) | θ1 = θ] dy, if Fx is continuous,

E [ℓ(X1,1) | θ1 = θ] + d

µ(θ)

⌊x/d⌋−1∑
j=0

E
[
ℓ(X1,1 + jd)

∣∣∣∣θ1 = θ
]
, if Fx is d-lattice.

(5.17)
We will later show that Y is the asymptotic expansion of Ỹi, for all i ∈ N as the replace-
ment thresholds tend to infinity. Similarly, r(ξ(θ), θ) provides the asymptotic expansion
of E

[∑T (ξ(θ),θ)
τ=1 ℓ(S1,τ )

∣∣∣∣θ1 = θ
]

in the same limiting regime. Based on these asymptotic
expansions, we approximate the cost-rate function g(ξ) by γ(ξ) given by

γ(ξ) :=
cp +

∫
Θ

(cfP {Y (y) > ϕ (ξ(y))} + r(ξ(y),y)) dFθ(y)∫
Θ

1
µ(y) (ξ(y) + E[Y (y)]) dFθ(y)

, (5.18)

(cf. Equation (5.13)). Morover, we approximate the function h̃ by h expressed as

h(λ, x, θ) := cp + cfP {Y (θ) > ϕ (x)} + r(x, θ) − λ

µ(θ) (x+ E[Y (θ)]) , (5.19)

(cf. Equation (5.14)).

Let ξλ minimize h for fixed λ ∈ R, i.e., ξλ(θ) ∈ arg min
x∈[0,L]

h(λ, x, θ), θ ∈ Θ. We propose

to use the heuristic threshold functions ξλ(θ) instead of ξ̃λ. While the computation of
h̃(λ, x, θ) as per Equation (5.14) could pose challenges, h(λ, x, θ) can be calculated by
Equation (5.19) using the distribution function and the first two moments of X1,1, having
parameter θ. The next theorem explains that the heuristic threshold functions ξλ(θ) can
be simply calculated using conventional search methods. This allows us to approximate
the optimal cost-rate g∗ with the approximated optimal cost-rate γ∗ through an iterative
approach similar to Lemma 5.3.

Define Dh : R × [0, L] × Θ → R as

Dh(λ, x, θ) =
cf (1 − FX(ϕ(x) | θ)) + E [ℓ (x+X1,1) | θ1 = θ] − λ, if Fx is continuous,

cfd

(
1 − FX

(
d

⌊
ϕ(x)
d

− 1
⌋∣∣∣∣∣θ
))

+ E
[
ℓ

(
d

⌊
x+X1 1

d
− 1

⌋) ∣∣∣∣∣θ1 = θ

]
− λ, if Fx is d-lattice.

(5.20)
Dh represents the rate of change of h when x is increased by an infinitesimal amount if
FX is continuous, or by one unit if FX is d−lattice. For any fixed λ ∈ R and θ ∈ Θ, let
Dλ,θ denote the set of the roots of Dh(λ, x, θ), i.e.,

Dλ,θ :=


{x ∈ [0, L] : Dh(λ, x, θ) = 0} , if Fx is continuous,{
jd : j ∈ N, j ≤ L

d
,Dh(λ, x, θ) = 0

}
, if Fx is d-lattice.
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If Dh(λ, x, θ) in strictly negative for all values of x ∈ [0, L], then Dλ,θ := {L}. Conversely,
if Dh(λ, x, θ) is strictly positive for all Dλ,θ := {0}. Clearly, Dλ,θ is a closed and bounded
set, and therefore it admits a well-defined minimum element.

Theorem 5.4. (a) γ∗ is the unique solution to the equation λ = γ(ξλ).

(b) Choose λ1 ∈ R, and λj+1 = γ(ξλj
), j = 1, 2, . . . Then

lim
j→∞

λj = γ∗.

(c) Dh(λ, x, θ) is non-decreasing in x; and ξλ(θ) is given by

ξλ(θ) =


min {x ∈ [0, L] : x ∈ Dλ,θ} , if Fx is continuous,

min
{
jd : j ∈ N, j ≤ L

d
, jd ∈ Dλ,θ

}
, if Fx is d-lattice.

By Theorem 5.4, the heuristic threshold ξλ(θ) can be obtained through the appli-
cation of any root finding technique, such as bisection, on Dh. Consequently, we can
efficiently compute the approximated optimal cost-rate γ∗ via the iterative procedure
stated in Part (b) of Theorem 5.4. The resulting approximated optimal threshold func-
tion, ξA(θ) := ξγ∗(θ), θ ∈ Θ, minimizes γ(ξ). Finally, the integrals over the parameter
space in the numerator and denominator of Equation (5.18) can be efficiently evaluated
using numerical techniques, such as Monte Carlo or Gaussian quadrature methods, once
ξλ is specified.
Remark 5.5. When ℓ(x) is constant for all x ∈ R+, the computation of ϕ(ξA

λ (θ)) =
L − ξλ(θ) reduces to identifying a specific quantile of FX(· | θ), similar to the classical
newsvendor problem. In particular, for continuous degradation processes we have that

ϕ(ξA
λ (θ)) = F−1

X (1 − λ/cf | θ).

Now, we propose our Estimated Oracle’s Optimal Policy (EOP) with its adaptive
thresholds expressed as

ξP (Iτ ) := ξA
(
θ̂(Iτ )

)
(5.21)

In summary, EOP thresholds can be computed as follows:

1. Compute γ∗ using Fθ(· | I0), as specified in Theorem 5.4,

2. For a component aged τ compute ξP(Iτ ), as given in Equation (5.21),

3. Continue operating the component while Sτ ≤ ξP(Iτ ); replace otherwise.

EOP is broadly applicable across various degradation and estimation processes, as its
parameter estimation and decision making steps are decoupled and operate independently.
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For practical implementation, the policy can be explained to practitioners in terms of
an estimator of the safety margin around the failure level, defined by ϕ (ξP(Iτ )). This
estimator provides an indicator of how close the system is to its failure level, so the
decision maker can take informed replacement actions while accounting for uncertainty
in both the degradation and parameter estimates.

Examples (Continued): Compound Poisson Degradation.

We continue Examples 1 and 2 from Section 5.3.3 to illustrate the practical implemen-
tation of our adaptive threshold policies. We demonstrate how to obtain closed-form
expressions for the distribution function and expectation of Y based on Equations (5.15)
and (5.16), as well as for ξλ and γ∗ according to Theorem 5.4. Finally, we show how to
determine ξP(Iτ ) using the posterior mean following Equation (5.21) for both examples.

Example 1 (Continued): Geometric Compounding. We first describe the com-
putation of ξλ(ν, p) based on Theorem 5.4(c). Let FNB(· | l, p) denote the distribution
function of a negative binomial random variable with parameters l and p. Then

FX(x | ν, p) =
x∑
j=0

fX(j | ν, p) = fM(0 | ν) +
x∑
j=0

∞∑
l=1

fM (l | ν) fNB(j | l, p)

=fM(0 | ν) +
∞∑
l=1

fM (l | ν)FNB(x | l, p). (5.22)

We use Theorem 5.4(c) together with Equation (5.22) to derive a relation for ξλ.

Next, we describe the calculation of γ∗ using Theorem 5.4(b). The key steps are to
evaluate P{Y (ν, p) ≤ x} and E[Y (ν, p)] that allow the calculation of γ(ξ) according to
Equation (5.18). By Equation (5.15), when FX is 1−lattice and x ∈ N, we have

P{Y (ν, p) ≤ x} = 1
µ(θ)

x−1∑
j=0

(1 − FX(j | θ)) = 1
µ(θ)

x−1∑
j=0

1 −
j∑
l=0

fX(l | θ)


= 1
µ(θ)

x−
x−1∑
j=0

(x− j)fX(j | θ)


= 1
µ(θ)

x− xFX(x− 1 | θ) +
x−1∑
j=0

jfX(j | θ)
 . (5.23)

We use Equation (5.7) to derive a relation for the last term in (5.23). Let µNB(l, p) :=
l(1 − p)

p
denote the mean of a negative binomial random variable with parameters l and
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p, then
x−1∑
j=0

jfX(j | ν, p) =
x−1∑
j=1

∞∑
l=1

fM (l | ν) jfNB(j | l, p) =
x−1∑
j=1

∞∑
l=1

fM (l | ν) j
(
j + l − 1

j

)
(1 − p)jpl

=
x−1∑
j=1

∞∑
l=1

fM (l | ν) l(1 − p)
p

(
j + l − 1
j − 1

)
(1 − p)j−1pl+1

=
x−1∑
j=1

∞∑
l=1

fM (l | ν)µNB(l, p)fNB(j − 1 | l + 1, p)

=
∞∑
l=1

fM (l | ν)µNB(l, p)FNB(x− 2 | l + 1, p) (5.24)

Combining (5.8), (5.23), (5.22), and (5.24) gives us

P{Y (ν, p) ≤ x} =
p

ν(1 − p)

(
x (1 − fM(0 | ν)) +

∞∑
l=1

fM(l | ν)
(
µNB(l, p)FNB(x− 2 | l + 1, p) − xFNB(x− 1 | l, p)

))
(5.25)

By Equations (5.8) and (5.16)

E[Y (ν, p)] = (ν(1 − p)/p)2 + ν(1 − p)(2 − p)/p2

2ν(1 − p)/p + 1
2 = ν(1 − p) + 2

2p . (5.26)

Using (5.18) together with (5.25) and (5.26), one can compute γ(ξ) efficiently. Subse-
quently, γ∗ is determined using the iterative algorithm described in Theorem 5.4(b). Once
γ∗ is computed, ξA(ν, p) = ξγ∗(ν, p) can be calculated efficiently.

Next, we describe how to compute the EOP threshold using the available degradation
data Iτ = (Sτ ,Mτ , τ) for the first component, where the decision epoch coincides with
the component’s age.

We use Equation (5.9) to update the posterior and use the posterior mean as the
point estimator of the parameter, that is

θ̂(Iτ ) =
(
ν̂(Iτ ), θ̂Z(Iτ )

)
=
(
ατ
βτ
,

aτ
aτ + bτ

)

=
(
ατ−1 +Mτ

βτ−1 + 1 ,
aτ−1 +Mτ

aτ−1 + bτ−1 +Mτ +Xτ

)
=
(
α0 +∑τ

j=1 Mj

β0 + τ
,

a0 +∑τ
j=1 Mj

a0 + b0 +∑τ
j=1 Mj + Sτ

)
,

(5.27)

and
ξP(Iτ ) = ξA

(
ν̂(Iτ ), θ̂Z(Iτ )

)
.

Example 2 (Continued): Exponential Compounding. In the following, we
adapt the previous analysis by replacing the geometric compounding distribution with an
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exponential distribution with a similar analytical framework. We omit some intermediate
derivation steps, as the reader can follow from the geometric compounding example. Let
FEr(· | l, ω) be the Erlang−l distribution function with rate ω. Then FX(· | ν, ω) is given
by

FX(x | ν, ω) = fM(0 | ν) +
∞∑
l=1

fM(l | ν)FEr(x | l, ω). (5.28)

Let the mean of the Erlang−l distribution be µEr(l, ω) := l/ω. Then

P{Y (ν, ω) ≤ x} =
ω

ν

(
x (1 − fM(0 | ν)) +

∞∑
l=1

fM(l | ν)
(
µEr(l, ω)FEr(x | l + 1, ω) − xFNB(x | l, ω)

))
.

(5.29)

and
E[Y (ν, ω)] = ν + 2

ω
. (5.30)

Having these results, one can compute ξγ∗ using Theorem 5.4. Next, the hyperparameters
can be updated as per (5.9), that is

θ̂(Iτ ) =
(
ν̂(Iτ ), θ̂Z(Iτ )

)
=
(
ατ
βτ
,
aτ
bτ

)

=
(
ατ−1 +Mτ

βτ−1 + 1 ,
aτ−1 +Mτ

bτ−1 +Xτ

)
=
(
α0 +∑τ

j=1 Mj

β0 + τ
,
a0 +∑τ

j=1 Mj

b0 + Sτ

)
, (5.31)

The difference between (5.31) and (5.27) lies in the distribution of θZ : when the com-
pounding distribution is exponential, fθZ

is the density of a Gamma distribution, whereas
under geometric compounding, θZ follows a Beta distribution. Finally, our EOP thresh-
olds are expressed as follows

ξP(Iτ ) = ξA
(
ν̂(Iτ ), θ̂Z(Iτ )

)
.

5.5.2 Scaling Regime and Main Asymptotic Optimality Results

Our analysis so far provides a tractable policy that fully exploits the available data for
decision making in an otherwise intractable maintenance problem. Beyond tractability, a
key performance measure of any policy is its optimality gap, which we examine in the ar-
guments that follow. We restrict our study to large failure thresholds for several reasons.
First, as the average time to failure increases, exact methods quickly become intractable,
and heuristics such as the one we propose become particularly attractive due to their
tractability advantages. Second, from a practical perspective, new equipment often op-
erates for a relatively long time before failing. Finally, in terms of learning effectiveness,
short failure times leave little opportunity for accurate parameter estimation, which lead
to high estimation errors. In such cases, the problem can be reduced to a homogeneous
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population, as posterior distributions just before replacements are nearly identical across
components.

Next, we study the EOP thresholds ξP(Iτ ) under the scaling regime described in
Section 5.3.4, and formally state our main result that REGk(ξP(Iτ )) vanishes as the
scaling parameter increases. Let, for k > 0, Ξk be the set of all threshold functions
ξ : Θ → [0, L(k)]. Define gk : Ξk → R+ and γk : Ξk → R+ by

gk (ξ) :=

cp(k) +
∫

Θ

cf (k)P
Ỹ1 (ξ(θ1)) > ϕk (ξ(θ1))

∣∣∣∣∣∣θ1 = y

+ E

T (ξ(θ1),θ1)∑
τ=1

ℓ(S1,τ , k)
∣∣∣∣∣∣θ1 = y

 dFθ(y)

∫
Θ

1
µ(y)

ξ(y) + E

Ỹ1 (ξ(θ1))
∣∣∣∣∣∣θ1 = y

 dFθ(y)

(5.32)

and

γk (ξ) :=
cp(k) +

∫
Θ

(cf (k)P {Y (y) > ϕk (ξ(y))} + rk (ξ,y)) dFθ(y)∫
Θ

1
µ(y) (ξ(y) + E [Y (y)]) dFθ(y)

, (5.33)

where ϕk(x) := L(k) − x, x ∈ [0, L(k)], and rk : [0, L(k)] × Θ → R+ as

rk(x, θ) =



E [ℓ(X1,1, k) | θ1 = θ] + 1
µ(θ)

∫ x

0
E [ℓ(X1,1 + y, k) | θ1 = θ] dy, if Fx is continuous,

E [ℓ(X1,1, k) | θ1 = θ] + d

µ(θ)

⌊
x/d

⌋
∑
j=0

E [ℓ(X1,1 + jd, k) | θ1 = θ] , if Fx is d-lattice.

(5.34)
Define the minimizers of gk and γk by

ξO
k ∈ arg min

ξ∈Ξk

gk (ξ) , and, ξA
k ∈ arg min

ξ∈Ξk

γk (ξ) ,

Then our EOP thresholds in the scaling regime are defined as

ξP
k (Iτ ) := ξA

k

(
θ̂(Iτ )

)
. (5.35)

Next, we present the main theoretical result of this chapter.

Theorem 5.6. As k → ∞, the cost-rate of the EOP thresholds converge to the cost-rate
of the Oracle’s optimal policy, that is

lim
k→∞

gk (ξP
k ) − gk (ξO

k ) = lim
k→∞

REG(ξP
k ) = 0.

Theorem 5.6 establishes that the cost-rates of our EOP thresholds are asymptotically
optimal as k → ∞.
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5.6 Asymptotic Analysis

We next outline the main steps of the proof of Theorem 5.6.

1. We first show that, under the scaling regime, both ξO
k (θ) and ξA

k (θ) diverge to infinity
for all θ ∈ Θ as k → ∞, while the cost-rate function gk(ξ) and its approximation
γk(ξ) remain bounded for all threshold functions ξ. We further show that, as k
increases, the gap between gk(ξO

k ) and gk(ξA
k ) vanishes, i.e., gk(ξA

k ) − gk(ξO
k ) → 0.

The proof proceeds by establishing the convergence of each function appearing in
the expression of gk in (5.32) to its corresponding counterpart in γk as defined in
(5.33).

2. We next show that, under the EOP threshold function ξP
k , the lifetime of an operat-

ing component also diverges, as k → ∞. Specifically, let Tk(θ1) denote the lifetime
of the first component under the sequence of EOP thresholds {ξP

k (Iτ )}Tk(θ1)
τ=1 , where

k is the scaling parameter. Let ξP
k,last(θ1) denote the random variable corresponding

to the last EOP threshold at which the component is replaced by component 2, i.e.,
ξP
k,last(θ1) := ξP

k

(
ITk(θ1)

)
. We show that Tk(θ1) → ∞ as k → ∞, which implies that

for large k the decision maker’s error in estimating the true parameter θ1 from the
degradation data becomes negligible. The same argument holds for all components
i ∈ N. We use this result together with the (weak) consistency of the estimator to
prove that the cost-rate of replacing at ξP

k,last(θi), i.e., g(ξP
k,last), converges to gk(ξO

k )
as k becomes large.

While this section presents the main asymptotic results, the full mathematical proofs are
detailed in the Appendix.

5.6.1 Asymptotics of the Oracle’s Optimal Thresholds

Our construction of the Oracle’s approximate optimal threshold function ξA relies on the
asymptotic expansion of the overshoot random variable from classical renewal theory. In
our setting, this result takes the following form:

Lemma 5.7. (Theorems 2.6.1 and 2.6.2 Gut, 2009a) For all i ∈ N and θi ∈ Θ, as
ξ(θi) → ∞,

(a) P{Ỹi(ξ(θi)) ≤ x} → P{Y (θi) ≤ x} for all x ≥ 0,

(b) E[Ỹi(ξ(θi))] → E[Y (θi)].

We now present the convergence results for different functions used to construct gk in
(5.32).
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Lemma 5.8. Let for the sequence of threshold functions
{
ξ(k) ∈ Ξk

}
k>0

, we have limk→∞ ξ(k)(θ)/k >
0 for all θ ∈ Θ. Then, as k → ∞

(a) For all θ ∈ Θ, E

T(ξ(k)(θ1),θ1)∑
τ=1

ℓ(S1,τ , k)
∣∣∣∣∣∣θ1 = θ

− rk
(
ξ(k)(θ), θ

)
→ 0,

(b)
∫

Θ
E

T(ξ(k)(θ1),θ1)∑
τ=1

ℓ(S1,τ , k)
∣∣∣∣∣∣θ1 = y

 dFθ(y) −
∫

Θ
rk
(
ξ(k)(y),y

)
dFθ(y) → 0,

(c)
∫

Θ
P
{
Ỹ1(ξ(k)(θ1)) > ϕk

(
ξ(k)(θ1)

) ∣∣∣∣θ1 = y
}
dFθ(y)−

∫
Θ
P
{
Y (y) > ϕk

(
ξ(k)(y)

)}
dFθ(y) →

0

(d) 1
k

∫
Θ

ξ(k)(y) + E
[
Ỹ1(ξ(k)(θ1))

∣∣∣∣θ1 = y
]

µ(y) dFθ(y) − 1
k

∫
Θ

ξ(k)(y) + E [Y (y)]
µ(y) dFθ(y) → 0

Lemma 5.8 indicates that as the scaling parameter k increases, each function in (5.32)
converges to its counterpart in (5.33), when the threshold functions scale at least linearly
with respect to k. Intuitively, this leads to the convergence of the gap between gk and
γk, which is formalized in the next lemma.

Lemma 5.9. For the sequence of
{
ξ(k) ∈ Ξk

}
k>0

that, for all θ ∈ Θ, satisfies limk→∞ ξ(k)(θ)/k >
0

lim
k→∞

(
gk
(
ξ(k)

)
− γk

(
ξ(k)

))
= 0.

Lemmas 5.8 and 5.9 apply only to threshold functions whose growth is asymptotically
linear in k. A natural question is whether the minimizers of gk and γk, i.e.,

ξO
k ∈ arg min

ξ∈Ξk

gk (ξ) , and, ξA
k ∈ arg min

ξ∈Ξk

γk (ξ) ,

fall into this class. The following lemma establishes that both threshold functions indeed
satisfy this property.

Lemma 5.10. For θ ∈ Θ

(a) limk→∞ ξO
k (θ)/k ∈ (0, L̃],

(b) limk→∞ ξA
k (θ)/k ∈ (0, L̃],

We can now apply Lemma 5.9 and 5.10 to establish the following convergence result
for the cost-rates of gk and γk.

Theorem 5.11. As k → ∞,
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(a) gk(ξA
k ) − gk(ξO

k ) → 0.

(b) gk(ξA
k ) − γk(ξA

k ) → 0.

Theorem 5.11(a) shows that the optimality gap resulting from the use of the threshold
function ξA

k in place of the optimal threshold ξO
k vanishes as k increases. Part (b) shows

that if gk (ξA
k ) is predicted by γk (ξA

k ), the prediction gap tends to zero for sufficiently large
k.

5.6.2 Asymptotic Analysis of the EOP Thresholds

We begin our analysis with the first component; the same reasoning applies to any op-
erating component. By Lemma 5.10 together with Equations (5.35) one can verify that
ξP
k (Iτ ) diverge as k increases, i.e., for all τ ∈ N0,

lim
k→∞

ξP
k (Iτ ) = lim

k→∞
ξA
k

(
θ̂(Iτ )

)
= ∞, almost surely. (5.36)

By combining the divergence result in (5.36) with the strong law for counting processes
(Theorem 2.5.1 in Gut, 2009a), we obtain that, for the true parameter θ1 ∈ Θ,

lim
k→∞

Tk(θ1) = ∞ almost surely. (5.37)

Equation (5.37) implies that the number of observations also diverges as k approaches
infinity. Consequently, the errors in estimating the true parameter, θ1, by the point
estimators θ̂(Iτ ) vanish due to consistency. The following lemmas state this observation
in detail and establish the corresponding convergence results for the EOP thresholds, the
total operating cost, and the probability of failure at replacement as k becomes large.
Let θ̂(Iτ )

p−→ θ1, for θ1 ∈ Θ.

Lemma 5.12. As k → ∞,

(a) For θ1 ∈ Θ, θ̂
(
ITk(θ1)

)
p−→ θ1;

(b) For θ1 ∈ Θ, 1
k
ξP
k,last(θ1)

p−→ 1
k
ξA
k (θ1);

(c) 1
k

∫
Θ

1
µ(y)

(
ξP
k,last(y) + E

[
Y (ξP

k,last (y))
])
dFθ(y) p−→ 1

k

∫
Θ

1
µ(y) (ξA

k (y) + E [Y (ξA
k (y))]) dFθ(y);

(d) 1
k

∫
Θ
rk
(
ξP
k,last(y),y

)
dFθ(y) p−→ 1

k

∫
Θ
rk (ξA

k (y),y) dFθ(y);

(e)
∫

Θ
P
{
Y (y) > ϕk

(
ξP
k,last(y)

)}
dFθ(y) a.s.−−→

∫
Θ
P {Y (y) > ϕk (ξA

k (y))} dFθ(y).

Lemma 5.12 leads to Theorem 5.6.
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5.7 Simulation Study Results

In this section, we present the results of an extensive simulation study. The objectives of
this study are threefold.

1. To evaluate the performance of the asymptotically optimal adaptive threshold policy
relative to the optimal policy under the same filtration, when computation of the
latter is feasible;

2. To compare the performance of the asymptotically optimal adaptive threshold pol-
icy with the Oracle optimal policy;

3. To analyze the optimality and prediction gaps associated with the Oracle’s asymp-
totically optimal policy.

In this study, we assume that decision makers have access to the true hyperparameters
(α0, β0, a0, b0). This assumption allows us to isolate the impact of the policies of interest
on the cost rates from the effect of estimation errors in the prior, which would arise if
the prior were learned from historical data. The latter effect is examined in Section 5.8,
where we observed that the EOP performs remarkably well under such conditions.

Our study addresses two settings in terms of degradation state spaces: discrete, i.e.
1−lattice, and continuous. The discrete setting is characterized by a compound Poisson
process with geometric compounding, whereas the continuous setting is characterized
by a compound Poisson process with exponential compounding. Example 1 details the
computation of the EOP thresholds in the discrete setting, and Example 2 extends this to
the continuous setting. The optimal policy g∗(F) can be computed in a tractable manner
using the integrated Bayes approach introduced in Drent et al. (2023a); however, this is
feasible only for the discrete setting. Hence, we do not compute g∗(F) for the continuous
state space.

A tractable implementation of the integrated Bayes approach requires truncating both
the cumulative number of shocks and the ages of the components, whereas the asymptot-
ically optimal adaptive threshold policy does not. This truncation, however, affects the
resulting updated posteriors. The cost-rate of the EOP is calculated under both the full
observations, denoted g(ξP), and the truncated observations, denoted g(ξP,trunc), to assess
the impact of truncation.

We are interested in the regret (relative to the Oracle) of the adaptive policies ξ ∈
{ξP, ξP,trunc, ξIB}, defined as %REG(ξ) := 100 · (g(ξ) − g∗(O)) /g∗(O), which serves as a
common performance metric across all policies and both discrete and continuous settings.
As noted earlier, %REG (ξIB) is only available for discrete state space. We are also
interested in the optimality gap and prediction gap of ξA with respect to ξO, defined
as %OPT := 100 · (g (ξA) − g∗(O)) /g∗(O) and %PRED := 100 · (γ∗ − g (ξA)) /g (ξA),
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respectively. %OPT measures the relative additional cost incurred by using ξA instead of
ξO as the Oracle’s optimal decision, while %PRED quantifies how far the approximated
Oracle’s optimal cost-rate γ∗ deviates from the true value g (ξA).

We construct a comprehensive testbed for our simulation study, shown in Table 5.1,
and conduct experiments across all combinations of the parameter values, with cp = 1.
The shock arrival process follows a gamma prior with α0 = β0, yielding a mean of 1. For
instances with a discrete state space, the damage process follows a Beta prior, whereas
for instances with a continuous state space, it follows a Gamma prior, with a0 = b0

in both cases, which gives means of 0.5 and 1, respectively. We vary the coefficients
of variation to assess the impact of the degree of heterogeneity across instances. We
consider three operating cost functions ℓ0(x) = 0, ℓ1(x) = cp min{x, L}

L2/2 + L+ 1, and ℓ2(x) =

cp(min{x, L})2

L3/3 + L2 + L+ 1. The selection of ℓ1 and ℓ2 is such that the expected total operating

cost at failure is approximately the same value as cp when µ(θ) = 1, and σ2(θ) is negligible.

Table 5.1: Input parameters for numerical studies.

Input parameter No. of Choices Values

1 Coefficient of variation for the prior of the shock arrival process, cv2
ν 2 0.3, 0.6

2 Coefficient of variation for the prior of the damage process, cv2
θZ

2 0.04, 0.08
3 Failure threshold, L, 3 10,20,30
4 Additional corrective maintenance cost, cf 2 4,9
5 Operating cost, ℓ 3 ℓ0, ℓ1, ℓ2

We compute γ∗ using Theorem 5.4(b) with Monte Carlo integration using 105 samples
per integral. The value of g∗ is obtained from Lemma 5.3(b), with Monte Carlo integra-
tion using 105 samples per integral and 4 × 103 simulated components per expectation
function. This ensures that the confidence intervals for the computed γ∗ and g∗ remain
small. We simulate 104 components for each policy ξ ∈ {ξP, ξP,trunc, ξIB} and compute the
cost-rate across all components. Each simulation is repeated 10 times to keep the confi-
dence intervals for the performance metric small. The policy ξIB is obtained by solving
the optimality Equations (10) in Drent et al. (2023a), modified to account for the oper-
ating cost, with a discount factor of 0.99 and a truncation of the number of shocks and
components’ age at 40, 50, and 60 when the failure level is 10, 20, and 30, respectively.

The results of the simulation study are reported in Tables 5.2 and 5.3. The results
in Tables 5.2 and 5.3 indicate that EOP thresholds perform well in both discrete and
continuous settings, with a mean %REG(ξP) of 6.59% and 3.3%, respectively. The regret
of EOP relative to the integrated Bayes method is negligible, implying that EOP performs
as well as the optimal policy in our experiments. As the failure threshold L increases
from 10 to 30, mean %REG(ξP) decreases from 11.05% to 3.06% in the discrete setting
and from 6.1% to 1.4% in the continuous setting, consistent with our main convergence
result (Theorem 5.6). Moreover, %REG(ξP) increases with the corrective maintenance
cost cf , because higher cf leads to smaller optimal thresholds, which in turn increase
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Table 5.3: Results of the simulation study - continuous state space

%REG
(
ξP
)

%OPT %PRED

Input Values Min Mean Max Min Mean Max Min Mean Max

L
10 2.42 6.11 12.72 0.28 0.77 1.82 -1.34 -0.58 -0.11
20 0.70 2.51 6.81 0.11 0.66 2.55 -0.48 -0.18 0.19
30 0.08 1.38 4.55 0.00 0.48 1.74 -0.73 -0.12 0.39

cv2
ν

0.3 0.08 3.53 12.72 0.00 0.50 1.63 -1.19 -0.30 0.09
0.6 0.28 3.14 12.61 0.11 0.77 2.55 -1.34 -0.29 0.39

cv2
θZ

0.04 0.08 3.00 10.05 0.00 0.79 2.55 -0.74 -0.19 0.39
0.08 0.13 3.67 12.72 0.00 0.49 1.74 -1.34 -0.40 0.19

cf
4 0.08 2.45 7.69 0.00 0.47 1.99 -0.78 -0.21 0.28
9 0.29 4.22 12.72 0.02 0.81 2.55 -1.34 -0.37 0.39

ℓ
ℓ0 2.12 5.71 12.72 0.05 1.14 2.55 -1.30 -0.24 0.39
ℓ1 0.28 2.17 8.02 0.00 0.41 0.93 -1.34 -0.38 -0.09
ℓ2 0.08 2.12 8.04 0.00 0.37 0.86 -1.17 -0.26 0.00

Total 0.08 3.33 12.72 0.00 0.64 2.55 -1.34 -0.29 0.39

the approximation gap between ξA and ξO and amplify estimation errors of θ̂(Iτ ). Both
tables show that the EOP thresholds effectively adapt to situations where the system
incurs operating costs. We observe from the results that the optimality gap of using
ξA instead of ξO is small, indicating that ξA provides an excellent approximation to the
Oracle’s optimal thresholds. Finally, the prediction gaps are more significant when the
state space is discrete than in the continuous one, where they are negligible.

5.8 Case Study Results

In this section, we evaluate the performance of our EOP thresholds using real degradation
data from the case study on Interventional X-ray (IXR) systems presented in Drent et al.
(2023a). Below, we provide a brief summary of this case study and refer the interested
reader to Drent et al. (2023a) for a more detailed discussion.

IXR systems are advanced imaging platforms used in hospitals to support minimally
invasive procedures, such as cardiac or vascular interventions. Their most critical and
costly replacement components are X-ray tubes, which gradually lose efficiency over time
as the tungsten filaments inside them evaporate through high-temperature heating. Dur-
ing operation, these filaments emit electrons that are directed toward a target to generate
X-ray images. Unexpected tube failures can force procedures to stop or be rescheduled,
delay critical patient care, and generate substantial corrective maintenance expenses.

Filament condition monitoring is performed primarily through real-time measure-
ments of electrical resistance. The measurements are then processed to generate a one-
dimensional degradation indicator for the filaments, which is stored in the database of the
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IXR system. Major manufacturers of IXR systems, such as Philips Healthcare, require
maintenance strategies that exploit these real-time measurements to prevent tube failure
while maximizing their useful life.

Drent et al. (2023a) provide time series degradation data for 52 filaments obtained
from lab experiments by Philips Healthcare. The set of these 52 time series is denoted
J and its cardinality |J | = 52. They describe how the data are preprocessed, including
statistical tests to assess filament heterogeneity and to verify that electric shocks follow
a Poisson process. They also justify modeling the damage process as geometric. Next,
they show how, under this assumption, the policy adapted to F can be computed as
the optimal solution of a Partially Observable Markov Decision Process (POMDP). The
resulting policy is optimal within the assumed model, though not necessarily for the
specific case data. This policy is called the Integrated Bayes Policy (IBP). The IBP
specifies adaptive replacement thresholds that depend on the information available at
time t, denoted by ξIB(It).

The condition-based maintenance problem in this case study aligns with Example
1, for which our EOP thresholds ξP can be efficiently applied. Notice that ξP(It) is
significantly more computationally efficient than ξIB(It), often by more than an order of
magnitude. In fact, ξIB(It) becomes numerically intractable as the failure level increases.
The only computationally intensive step in applying ξP(It) is the calculation of γ∗ via
Theorem 5.4(b), which requires numerical integration. We perform this using Monte
Carlo methods. However, γ∗ needs to be computed only when the hyperparameters
are updated The runtime to update the posterior and to evaluate ξP(It) is negligible. In
contrast, solving a POMDP is NP-hard, so exact solutions might become computationally
intractable for some realistic problem sizes.

In the following, we evaluate the performance of ξP relative to ξIB, which is the cur-
rent state-of-the-art strategy, using the 52 degradation time-series provided by Drent
et al. (2023a). This assessment automatically benchmarks our approach against the other
state-of-the-art methods presented in Drent et al. (2023a). We focus on cost savings per-

centages, defined as %SAV = ḡ(ξIB) − ḡ(ξP)
ḡ(ξIB) × 100 where ḡ(·) denotes the average cost

function. Note that (α0, β0, a0, b0) is not known a priori in this problem. We therefore use
a sample from J , called the training set, to estimate these hyperparameters via maximum
likelihood estimation (MLE), as described in Appendix C of Drent et al. (2023a). Since
%SAV depends on the estimated (α0, β0, a0, b0), we generate multiple training sets from
J , denoted by Jtraining. We choose the sizes of the training sets

∣∣∣∣Jtraining

∣∣∣∣ from {5, 10, 15},
and for each size, we randomly draw 150 subsets from J , each of which provides an esti-
mate of the hyperparameters. This procedure gives us 450 bootstrapping instances. For
each instance, we compute %SAV based on the training set, denoted Jtest := J \Jtraining.
cp and cf are chosen as 1 and 4, respectively. We compute the integrals in Equation (5.18)
using Monte Carlo sampling with 5 × 104 samples, which gives narrow 95% confidence
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intervals. The results of our study are presented in Table 5.4.

Table 5.4: Results of the case study.∣∣∣Jtraining
∣∣∣ %SAV

5 -0.35
10 1.09
15 1.17

Total 0.63

Table 5.4 shows that our asymptotically optimal adaptive threshold policy slightly
reduces the average maintenance cost-rate by 0.63% compared to the integrated Bayes
policy across the bootstrapping instances. The results indicate that the integrated Bayes
policy performs slightly better for small training sets, i.e., when

∣∣∣∣Jtraining

∣∣∣∣ = 5, whereas
the asymptotically optimal adaptive threshold policy slightly outperforms the integrated
Bayes policy for larger training sets, i.e., when

∣∣∣∣Jtraining

∣∣∣∣ = 10 or 15. We observe that
these results remain consistent when using smaller sample sizes to compute the integrals
in Equation (5.18), for example, as small as 104. These results demonstrate that our
asymptotically optimal adaptive threshold policy is not only substantially faster than
the integrated Bayes policy but also achieves strong cost-rate performance on real data.
From a managerial perspective, this combination of computational and cost-rate efficiency
makes it highly suitable for real-time maintenance decision making.

5.9 Conclusion

In this chapter, we have studied the condition-based maintenance (CBM) problem for
a heterogeneous population of components that undergo non-negative i.i.d. degradation
processes with parameters unknown to the decision maker. At equidistant time epochs,
the decision maker receives real-time degradation information and must choose between
replacing the operating component or allowing it to continue functioning. The cost of
replacing a failed component is considerably higher than that of a healthy component,
and the system experiences a non-negative operating cost that rises with the degradation
level. At each time epoch, the degradation data is collected and used to learn the unknown
parameters of the degradation process via a consistent estimator. The decision maker then
determines the maintenance action to minimize the cost-rate (long-run average cost). In
general, this problem can be solved using a partially observable Markov decision process
(POMDP). It is well known that POMDPs suffer from the curse of dimensionality.

We have proposed the Estimated Oracle’s Optimal Policy (EOP) that chooses the
CBM actions based on estimates of the optimal decision of an Oracle who has the full
information of the true parameters of the degradation processes. Furthermore, we have
introduced a scaling regime in which the failure level, cost parameters, and total oper-
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ating costs grow jointly. This scaling regime captures the practical settings where the
components’ lifetime and the maintenance costs are much larger than the frequency of
degradation measurements. This common setting also represents conditions under which
conventional POMDP approaches become intractable as the state space grows large. We
have proved that regret of the EOP, i.e., the difference between its cost-rate and that
of the Oracle, converges to zero in our scaling regime, which also implies its asymptotic
optimality. We have evaluated the performance of the EOP on real degradation data of
IXR systems relative to the state-of-the-art Integrated Bayes policy (Drent et al., 2023a),
which computes replacement policies using a POMDP model. Our results show that
employing the EOP, on average, achieves a 0.63% cost reduction compared to the Inte-
grated Bayes policy. We have conducted an extensive numerical experiment including
discrete and continuous state spaces to test the performance of the EOP the Oracle’s
optimal policy. We have observed that the relative regret of our EOP is small in both
types of state spaces, with the average relative regret of 6.59% in discrete state space
and 3.3% in continuous state space. We have not been able to statically distinguish the
regret of the EOP from the POMDP’s (on average 7.11%) which could only be computed
in the discrete setting. To the best of our knowledge, our EOP is the first data-driven
CBM policy that can accommodate a wide range of degradation and parameter learning
processes, provides an asymptotic performance guarantee, and has achieved remarkable
results on real-life degradation data as well as numerical experiments across both discrete
and continuous state spaces.

5.A Lemma 5.13: On the Finite Expected Lifetime
of Components

Lemma 5.13. Under any policy π, the expected lifetime and the expected maintenance
cost of an operating component i ∈ N are finite, i.e., E[Ti] < ∞, and E[Ci] < ∞.

Proof of Lemma 5.13. We upperbound E[Ti] using the expected lifetime of the component
under the policy that only replaces upon failure. Note that Ti(L, θi) is the time until
failure of the i-th component. Let Ui be the renewal measure of FX(· | θi) defined by
Ui(x) := ∑∞

τ=0 F
∗τ
X (x | θi) with F ∗τ

X (· | θi) denoting the τ -fold convolution of FX(· | θi),
and F ∗0

X the distribution function degenerate at the origin. Next, For all x ≥ 0,

1
µ(θi)

x ≤ Ui(x) ≤ 1
µ(θi)

x+ 2E [Y (θi)]
µ(θi)

, (5.38)

where E[Y (θi)] is given by (5.16). The left inequality in (5.38) follows from the non-
negativity of the residual life after x (cf. V.6. Asmussen, 2003), and the right inequality
in (5.38) is Lorden’s inequality (Lorden, 1970). Moreover, from renewal theory,

E[T (L, θi)] = Ui(L) + 1 (5.39)
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(cf. Theorem V.2.4. Asmussen, 2003). Equation (5.38) together with (5.39) imply

0 ≤ E[E[T (L, θi) | θi]] ≤ LE
[

1
µ(θi)

]
+ 2E [Y (θi)] + 1 < ∞, (5.40)

where the last inequality follows from Assumption A.7. Next,

E[Ci] ≤ cp + cf + E

T (L,θi)∑
τ=1

ℓ(L)
 = cp + cf + ℓ(L)E[T (L, θi)] < ∞. (5.41)

The first inequality in 5.41 follows from the definition of Ci according to Equation (5.1)
and the upperbound on ℓ(·) as per Assumption A.9, and the second inequality from
(5.40). □

5.B Proof of Theorem 5.1

Consider the following Bellman optimality equations under the discounted total cost
criterion with discount factor α ∈ (0, 1)

vα(s, θ) =

min
{
ℓ(s) + αE[vα(s+X1,1, θ) | θ1 = θ], ℓ(s) + cp + αvα

}
, ∀s ≤ L, θ ∈ Θ

ℓ(s) + cp + cf + αvα, ∀s > L, θ ∈ Θ,
(5.42)

where
vα =

∫
Θ
E[vα(X1,1, θ1) | θ1 = y]dFθ(y)

}
Define mα := inf

(s,θ)∈[0,L]×Θ
vα(s, θ), and wα := vα(s, θ) − mα. We intend to use the results

of Schäl (1993) to show that

lim
α→1

(1 − α)mα = lim
α→1

(1 − α)vα(s, θ) = g∗, ∀(s, θ) ∈ [0, L] × Θ. (5.43)

In particular, our aim is to use Theorem 3.8 in Schäl (1993). We restate this Theorem as
the following lemma, in a form that is more convenient for our analysis.

Lemma 5.14. (adapted from Theorem 3.8. Schäl, 1993) For all states (s, θ) ∈ [0, L]×Θ,
assume that (A) sup

α<1
wα(s, θ) < ∞, and (B) the decision space is finite. Then there exists

a stationary policy π∗ that is average optimal in the sense that g(π∗) = g∗. Furthermore,
the convergence result (5.43) holds.

The critical step is to prove that condition (A) in Lemma 5.14 holds for our problem.
To do this, we use Lemma 4.1 in Schäl (1993) which is restated (a customized version)
as follows. For some η > 0, let AS,η ⊆ [0, L] and Aθ,η ⊆ Θ be such that v(s, θ) ≤ mα + η

for all s ∈ AS,η, and θ ∈ Aθ,η. Notice that v(s, θ) is non-decreasing in s and that AS,η

and Aθ,η cannot be empty as η is positive and mα is the infimum of v(s, θ) over the state
space. Define the stopping time nα := inf

i∈N
{i : STi+1 ∈ As,η, θTi+1 ∈ Aθ,η}.



139 Chapter 5. Risk or Replace: Efficient Asymptotics for Data-Driven Maintenance

Lemma 5.15. (adapted from Lemma 4.1. Schäl, 1993) For η ≥ 0, α < 1, (s, θ) ∈
[0, L] × Θ: wα(s, θ) ≤ η + infπ E[∑nα

i=1 C(STi(π)+1, θTi(π)+1)].

Observe that the sequences {STi+1}i∈N and {θN(Ti+1)}i∈N are i.i.d. Therefore, nα
is a geometric random variable and has a finite expectation. Define tα =

nα∑
i=1

Ti. By

Wald’s identity and Lemma 5.13, E[tα] = E[nα]E[Ti] < ∞. Now, By Lemma 5.15,
wα(s, θ) ≤ η+ (cp + cf + ℓ(L))E[tα] < ∞ which proves that condition (A) in Lemma 5.14
holds. Condition (B) in Lemma 5.14 obviously holds, since we have binary decisions for
each state. Thus, Part (a) of Theorem 5.1 follows from Lemma 5.14.

Finally, there exists a threshold policy that satisfies the optimality Equations (5.42)
that complete the proof for Part (b). □

5.C Proof of Lemma 5.2

Let π be a policy that determines the replacement actions based on the available in-
formation of the operating component. Under this structure, maintenance interventions
disregard any history of actions or observations associated with previously installed com-
ponents. Consequently, the sequences {Ci}i ∈ N and {Ti}i∈N are i.i.d., as each com-
ponent is drawn from the same population. The result then follows directly from the
renewal–reward theorem [cf. Theorem VI.3.1.][](Asmussen, 2003) combined with Lemma
5.13.
Remark 5.16. This argument is more general than the Lemma’s statement and remains
valid for any replacement policy that depends only on the information of the operating
component. In that case, g(ξ) can be expressed as

g(ξ) =

∫
Θ
E[E[C(ξ(y),y) | ξ(y)]]dFθ(y)∫

Θ
E[E[T (ξ(y),y) | ξ(y)]]dFθ(y)

, (5.44)

(cf. Equation 5.12). We will use this result later when we introduce our adaptive policies,
in which the replacement decisions are made based on the available degradation data of
the current component. □

5.D Proof of Lemma 5.3

The proof of Lemma 5.3 is adapted from the Appendix of Aven and Bergman (1986). We
present a tailored version for completeness.

Lemma 5.17. (a) For λ > g∗,
∫

Θ
h̃(λ, ξλ,y)dFθ(y) < 0, and equivalently, g(ξλ) < λ.
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(b)
∫

Θ
h̃(λ, ξλ,y)dFθ(y) is non-increasing and concave in λ.

(c) For λ1, λ2 ∈ R satisfying g∗ < λ1 < λ2, we have

(λ2 − λ1)
∫

Θ
E [T (ξλ1 ,y)] dFΘ(y) < −

∫
Θ
E
[
h̃ (λ2, ξλ2 ,y)

]
dFΘ(y) < 0.

By the arguments in Appendix 5.C and the cost structure, for all ξ ∈ Ξ

0 <
∫

Θ
E [C(ξ(y),y)dFΘ(y)] < ∞, and 1 ≤

∫
Θ
E [T (ξ(y),y)dFΘ(y)] < ∞.

Therefore, 0 < g(ξ) < ∞, and for all λ ∈ R we have
∣∣∣∣∣∣
∫

Θ
E
[
h̃ (λ, ξ,y)

]
dFΘ(y)

∣∣∣∣∣∣ < ∞.

Proof of Lemma 5.17.

(a) Let ξ ∈ Ξ satisfy g∗ ≤ g(ξ) < λ. Then,∫
Θ
h̃(λ, ξλ,y)dFθ(y) ≤

∫
Θ
h̃(λ, ξ,y)dFθ(y) <

∫
Θ
h̃(g(ξ), ξλ,y)dFθ(y) = 0.

By Equation (5.13), g(ξλ) < λ.

(b) We first prove the monotonicity. Let λ1 ≤ λ2, then∫
Θ
h̃(λ2, ξλ2 ,y)dFθ(y) ≤

∫
Θ
h̃(λ2, ξλ1 ,y)dFθ(y) ≤

∫
Θ
h̃(λ1, ξλ1 ,y)dFθ(y).

Next we show the concavity. Let for λ1, λ2 ∈ R and α ∈ [0, 1], λ = αλ1 + (1 −α)λ2,
then∫

Θ
h̃(λ, ξλ,y)dFθ(y) =α

∫
Θ
h̃(λ1, ξλ,y)dFθ(y) + (1 − α)

∫
Θ
h̃(λ2, ξλ,y)dFθ(y)

≥α
∫

Θ
h̃(λ1, ξλ1 ,y)dFθ(y) + (1 − α)

∫
Θ
h̃(λ2, ξλ2 ,y)dFθ(y).

(c) Let g∗ < λ1 < λ2, then∫
Θ
h̃(λ2, ξλ2 ,y)dFθ(y) ≤∫

Θ
h̃(λ2, ξλ1 ,y)dFθ(y) =

∫
Θ
E[C(λ1, ξλ1 ,y)] − λ2E[T (λ1, ξλ1 ,y)]dFθ(y)

=
∫

Θ
E[C(λ1, ξλ1 ,y)] − λ1E[T (λ1, ξλ1 ,y)] − (λ2 − λ1)E[T (λ1, ξλ1 ,y)]dFθ(y)

=
∫

Θ
h̃(λ1, ξλ1 ,y)dFθ(y) −

∫
Θ

(λ2 − λ1)E[T (λ1, ξλ1 ,y)]dFθ(y)

< −
∫

Θ
(λ2 − λ1)E[T (λ1, ξλ1 ,y)]dFθ(y)

Notice that by Part (a), both
∫

Θ
h̃(λ2, ξλ2 ,y)dFθ(y) and

∫
Θ
h̃(λ, ξλ,y)dFθ(y) are

strictly positive which completes the proof. □



141 Chapter 5. Risk or Replace: Efficient Asymptotics for Data-Driven Maintenance

Proof of Lemma 5.3. Let λ1 ∈ R, then λ2 = g(ξλ1) ≥ g∗. We can verify by induction and
using part (a) of Lemma 5.17 that for all j ≥ 2, g∗ ≤ λj+1 = g(ξλj

) < λj. If λj = g∗, then
λj+1 = λj = g∗. Therefore, there exists a λ∞ ≥ g∗ such that λ∞ ≤ λj for all j ∈ N and
lim
j→∞

λj −λ∞ = 0. Notice that by Equation (5.40),
∫

Θ
E
[
T (ξλj

,y)
]
dFΘ(y) is bounded for

all j ∈ N. Thus, by Parts (b) and (c) of Lemma 5.17,

lim
j→∞

∫
Θ
E
[
h̃
(
λj, ξλj

,y
)]
dFΘ(y) = 0,

which establishes λ∞ = g∗. □

5.E Proof of Lemma 5.8

We provide the proof for the continuous degradation process; the argument for the d-
lattice case is similar, with integration over the degradation level replaced by summation.

Proof of Part (a): For notational convenience, we omit the conditioning on θ1, θ, and the
index 1. We have,

E

T (ξ)∑
τ=1

ℓ(Sτ , k)
 =

∞∑
τ=1

E [ℓ(Sτ , k);T (ξ) ≥ τ ]

=
∫ ∞

0
ℓ(x, k)dFX(x) +

∞∑
τ=1

∫ ξ

0

∫ ∞

0
ℓ(s+ x, k)dFX(x)dF ∗τ

X (s)

=E[ℓ(X, k)] +
∫ ξ

0
E[ℓ(X + s, k)]dU(s) (5.45)

Define for k > 0
wk(s) := E

[
ℓ̃
(
X + s

k

)]
, (5.46)

and observe that wk(·) ≤ ℓ̃
(
L̃
)
. Then Equation (5.45) gives

E

T(ξ(k))∑
τ=1

ℓ(Sτ , k)

 = wk(0) +
∫ ξ(k)

0
wk(s)dU(s). (5.47)

Note that wk(·) is not directly Riemann integrable, since
∫ ∞

0
wk(s)ds diverges, for every

k > 0. Thus the key renewal theorem (cf. Theorem V.4.7. Asmussen, 2003) cannot
be applied immediately, on the RHS of Equation (5.47). We, therefore, adopt a more
elaborate approach to establish the result.

By renewal theory there exists a function Uc : R+ → R+ such that

U(s) = s

µ
+ E[Y ]

µ
+ Uc(s),
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with

|Uc(s)| ≤ E[Y ]
µ

, (5.48a)

lim
s→∞

Uc(s) = 0, (5.48b)

(cf. Propositions V.6.1 and V.6.2 Asmussen, 2003). Then we have
∫ ξ(k)

0
wk(s)dU(s) − 1

µ

∫ ξ(k)

0
wk(s)ds =

∫ ξ(k)

0
wk(s)dUc(s). (5.49)

We use integration by part to obtain
∫ ξ(k)

0
wk(s)dUc(s) = wk

(
ξ(k)

)
Uc
(
ξ(k)

)
− wk(0)Uc(0) −

∫ ξ(k)

0
Uc(s)dwk(s). (5.50)

By the lemma’s assumption as k → ∞, ξ(k) → ∞. Thus, by (5.48b), and boundedness
of wk(·)

lim
k→∞

wk
(
ξ(k)

)
Uc
(
ξ(k)

)
= 0 (5.51)

Next, observe that, ℓ̃
(
X

k

)
≤ ℓ̃(L̃), and

lim
k→∞

ℓ̃
(
X

k

)
Uc(0) = 0,

since Uc(0) is bounded by (5.48a). Therefore by Lebesgue’s dominated convergence the-
orem

lim
k→∞

wk(0)Uc(0) = lim
k→∞

E
[
ℓ̃
(
X

k

)]
Uc(0) = 0 (5.52)

(cf. Theorem 16.4 Billingsley, 1995).

The remainder of the proof is devoted to showing that the final term on the RHS of
(5.50) vanishes as k approaches infinity. We organize the remainder of the proof into two
steps.

Step I: We construct a sequence
{
sk ∈

[
0, L̃

]}
k≫0

such that as k → ∞, we have
sk → 0, and ksk → ∞:
By continuity of ℓ̃, for every ϵ0 > 0 there exists s0 ∈ (0, L̃] such that for all s ∈ [0, s0),
we have ℓ̃(s) < ϵ0. Additionally, by Assumption A.8, for every ϵr > 0 there exists
sr ∈ (0, L̃] such that for all s ∈ [0, sr), we have ℓ̃(s)/s < ϵr/2. Choose k > 0 such that

1/k < min{ϵ0, ϵr/2}. Then there exist sk ∈
(

0, min{s0, sr}
2

)
such that ℓ̃(2sk) = 1/k and

ksk = sk/ℓ̃(2sk) > 1/ϵr.

This construction implies, also, that ξ(k)/ksk → ∞ as k → ∞, because by the lemma’s
assumption limk→∞ ξ(k)/k > 0. Hence, we restrict attention to sufficiently large k with
ξ(k) ≥ ksk.
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Step II: We partition the integration domain of the RHS of (5.50) into [0, ksk] and
(ksk, ξ(k)]. First, for any s ∈ [0, ksk) we find an upper bound for wk(s) as follows

wk(s) =
∫ ∞

0
ℓ̃
(
x+ s

k

)
dFX(x) =

∫ ksk

0
ℓ̃
(
x+ s

k

)
dFX(x) +

∫ ∞

ksk

ℓ̃
(
x+ s

k

)
dFX(x)

≤ℓ̃(2sk)FX(ksk) + ℓ̃
(
L̃
)

(1 − FX(ksk)) ≤ 1
k

+ ℓ̃
(
L̃
)

(1 − FX (ksk)) .

This together with (5.48a) leads us to∣∣∣∣∣∣
∫ ksk

0
Uc(s)dwk(s)

∣∣∣∣∣∣ ≤ κ1(k), (5.53)

where
κ1(k) := E[Y ]

µ

(1
k

+ ℓ̃
(
L̃
)

(1 − FX (ksk))
)
. (5.54)

For the interval
(
ksk, ξ

(k)
]

we have
∣∣∣∣∣∣
∫ ξ(k)

ksk

Uc(s)dwk(s)
∣∣∣∣∣∣ ≤ κ2(k), (5.55)

where

κ2(k) :=
∣∣∣∣∣∣ max
s∈(ksk,ξ(k)]

Uc(s)
∣∣∣∣∣∣ℓ̃
(
L̃
)
. (5.56)

Now by (5.53) through (5.56)∣∣∣∣∣∣
∫ ξ(k)

0
Uc(s)dwk(s)

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∫ ksk

0
Uc(s)dwk(s)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫ ξ(k)

ksk

Uc(s)dwk(s)
∣∣∣∣∣∣ ≤ κ1(k) + κ2(k). (5.57)

By construction in Part I along with (5.48b),

lim
k→∞

κ1(k) = lim
k→∞

κ2(k) = 0. (5.58)

Equations (5.49), (5.51), (5.52), and (5.58) give

lim
k→∞

(∫ ξ(k)

0
wk(s)dU(s) − 1

µ

∫ ξ(k)

0
wk(s)ds

)
= 0,

which completes the proof for Part (a) of the lemma.

Proof of Part (b): By (5.47), (5.49), and (5.50) it is sufficient to show that the following
limit exists and equals zero:

lim
k→∞

∫
Θ

(∣∣∣∣wk,y (ξ(k)(y)
)
Uc
(
ξ(k)(y),y

) ∣∣∣∣+ ∣∣∣∣wk,y(0,y)Uc(0,y)
∣∣∣∣+ ∣∣∣∣κ1(k,y) + κ2(k,y)

∣∣∣∣) dFθ(y),
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where wk,θ(s), Uc(·, θ), κ1(k, θ), and κ2(k, θ), are defined as in the proof of Part (a), except
here they are parameterized by θ ∈ Θ. Define K : Θ → R+ by

K(θ) := E [Y (θ)]
µ(θ) = σ2(θ) + µ2(θ)

2µ2(θ) .

For k ≫ 0 and θ ∈ Θ: ∣∣∣∣wk,θ (0)Uc (0, θ)
∣∣∣∣ ≤ ℓ̃

(
L̃
)
K(θ), (5.59a)∣∣∣∣wk,θ (ξ(k)(θ)

)
Uc
(
ξ(k)(θ), θ

) ∣∣∣∣ ≤ ℓ̃
(
L̃
)
K(θ), (5.59b)∣∣∣∣κ1(k, θ) + κ(n, θ)

∣∣∣∣ ≤ 2ℓ̃
(
L̃
)
K(θ). (5.59c)

By Assumption A.7, K is integrable, i.e.
∫

Θ
K(y)dFθ(y) is finite. Hence, the right-

hand sides of (5.59a) through (5.59c) are integrable. Moreover, by the arguments in the
proof of Part (a), the left-hand sides of (5.59a) through (5.59c) converge to zero almost
everywhere as n grows to infinity. Thus by Lebesgue’s dominated convergence theorem
we have

lim
k→∞

∫
Θ

(∣∣∣∣wk,y (ξ(k)(y)
)
Uc
(
ξ(k)(y),y

) ∣∣∣∣+ ∣∣∣∣wk,y(0,y)Uc(0,y)
∣∣∣∣+ ∣∣∣∣κ1(k,y) + κ2(k,y)

∣∣∣∣) dFθ(y) =∫
Θ

lim
k→∞

(∣∣∣∣wk,y (ξ(k)(y)
)
Uc
(
ξ(k)(y),y

) ∣∣∣∣+ ∣∣∣∣wk,y(0,y)Uc(0,y)
∣∣∣∣+ ∣∣∣∣κ1(k,y) + κ2(k,y)

∣∣∣∣) dFθ(y) = 0.

The last equality follows from the arguments in the proof of Part (a).

Proof of Part (c): Since any probability distribution function is bounded, the result
follows directly from the bounded convergence theorem (cf. Theorem 16.5. Billingsley,
1995) and Lemma 5.7.

Proof of Part (d): Note that for any k > 0 and θ ∈ Θ, we have ξ(k) ∈ [0, kL̃]. Thus,
by Lorden’s inequality (Lorden, 1970) we have for k > 1 and θ ∈ Θ∣∣∣∣∣∣ 1

µ(θ)

ξ(k)(θ)
k

+
E
[
Ỹ1
(
ξ(k)(θ1)

) ∣∣∣∣θ1 = θ
]

k


∣∣∣∣∣∣ ≤ 1

µ(θ)
(
L̃+ 2E[Y (θ)]

)
. (5.60)

By Assumption A.7, the RHS of (5.60) is integrable. Therefore, applying Lebesgue’s
dominated convergence theorem together with Lemma 5.7 provides the result. □

5.F Proof of Lemma 5.9

Observe that for k > 0 and ξ(k) ∈ Ξ(k)

0 < c̃p

L̃
∫

Θ

1
µ(y)dFθ(y) + 2

∫
Θ

E
[
Ỹ (y)

]
µ(y) dFθ(y)

≤ gk
(
ξ(k)

)
≤ c̃p + c̃f + ℓ̃(L̃)

L̃
∫

Θ

1
µ(y)dFθ(y)

< ∞

(5.61)
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The lower bound on gk in (5.61) results from minimizing the numerators and maximizing
the denominators in (5.32) and applying Lorden’s inequality Lorden (1970). The upper
bound follows from the cost-rate of replacing at failure. The upper bound is finite and the
lower bound is strictly positive under Assumptions A.7 and A.5, respectively. It follows
from (5.61) that limk→∞ gk

(
ξ(k)

)
exists and is positive for any sequence

{
ξ(k)

}
k>0

. By
Equation (5.32) we have the following.

gk

(
ξ(k)

)
=

c̃p +
∫

Θ

c̃fP
{
Ỹ1

(
ξ(k)(θ1)

)
> ϕk

(
ξ(k)(θ1)

) ∣∣∣θ1 = y
}

+ 1
k
E

T(ξ(k)(θ1),θ1)∑
τ=1

ℓ(S1,τ , k)

∣∣∣∣∣θ1 = y


 dFθ(y)

∫
Θ

1
µ(y)

ξ(k)(y)
k

+
E
[
Ỹ1(ξ(k)(θ1))

∣∣∣θ1 = y
]

k

 dFθ(y)

(5.62)

The equality in (5.62) follows from dividing both the numerator and denominator by
k. By Lemma 5.8 and the growth rate of ξ(k) from Lemma’s conditions, the limit of the
numerator and denominator of are finite and positive as k approaches infinity. Therefore,
limk→∞ gk

(
ξ(k)

)
equals the ratio of the limits of the numerator and denominators in the

RHS of 5.62. Hence

lim
k→∞

gk
(
ξ(k)

)
=

limk→∞

(
c̃p +

∫
Θ

(
c̃fP

{
Y (y) > ϕk

(
ξ(k)(y)

)}
+ 1
k
rk
(
ξ(k),y

))
dFθ(y)

)
limk→∞

(∫
Θ

1
µ(y)

(
ξ(k)(y)
k

+ E [Y (y)]
k

)
dFθ(y)

)

= lim
k→∞

cp(k) +
∫

Θ

(
cf (k)P

{
Y (y) > ϕk

(
ξ(k)(y)

)}
+ rk

(
ξ(k),y

))
dFθ(y)∫

Θ

1
µ(y)

(
ξ(k)(y) + E [Y (y)]

)
dFθ(y)

= lim
k→∞

γk
(
ξ(k)

)
(5.63)

The first equality in (5.63) follows from Lemma 5.8. □

5.G Proof of Lemma 5.10

We present the proof for Part (a); the argument for Part (b) is analogous.

Observe that 0 ≤ lim infk→∞ ξO
k /k ≤ L̃. Therefore, it is sufficient to show that

lim infk→∞ ξO
k /k ̸= 0. In the remainder of the argument, we fix θ ∈ Θ, and suppress

notation involving θ or conditioning on it, as well as the index for the component number.
For k > 0 define

h̃k(λ, ξ) := c̃fP
{
Ỹ (ξ(k)) > ϕk

(
ξ(k)

)}
+ 1
k
E

T (ξ(k))∑
τ=1

ℓ̃
(
Sτ
k

)− λ

µ

ξ(k)

k
+

E
[
Ỹ (ξ(k))

]
k

 .
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By (5.45) we have

h̃k(λ, ξ) := c̃fP
{
Ỹ (ξ(k)) > kL̃− ξ(k)

}
+ 1
k
E
[
ℓ̃
(
X

k

)]
+ 1
k

∫ ξ(k)

0
E
[
ℓ̃
(
X + s

k

)]
dU(s) − λ

µ

ξ(k)

k
+

E
[
Ỹ (ξ(k))

]
k

 . (5.64)

By Lemma 5.3, ξO
n minimizes h̃k(g∗

k, ξ). In order to reach a contradiction, assume the
contrary of the lemma, i.e., lim infk→∞ ξO

n/k = 0. This implies limk→∞ h̃k(g∗
k, ξ

O
n ) = 0.

The convergence of 1
k

∫ ξ(k)

0
E
[
ℓ̃
(
X + s

k

)]
dU(s) → 1

kµ

∫ ξ(k)

0
E
[
ℓ̃
(
X + s

k

)]
ds follows

from the argument in the proof of Lemma 5.8(a). Now consider the threshold function
ξ(k,c) that satisfies

0 < lim
k→∞

E
[
ℓ̃

(
X + ξ(k,c)

k

)]
< lim

k→∞

g∗
k

µ
.

In this case 0 < limk→∞ ξ(k,c)/k ≤ L̃, as L̃(0) = 0. Then,

lim
k→∞

h̃k(g∗
k, ξ

(k,c)) = lim
k→∞

1
kµ

∫ ξ(k,c)

0
E
[
ℓ̃
(
X + s

k

)]
ds− lim

k→∞

g∗
k

µ
lim
k→∞

ξ(k,c)

k

≤ lim
k→∞

ξ(k,c)

kµ

(
lim
k→∞

E
[
ℓ̃

(
X + ξ(k,c)

k

)]
− lim

k→∞
g∗
k

)
< 0,

which contradicts the assumption and therefore completes the proof. □

5.H Proof of Theorem 5.4

The proofs of Parts (a) and (b) proceed analogously to the argument in Appendix 5.D,
with the functions g, h̃, and ξ̃λ replaced by γ, h, and ξλ, respectively.

The monotonicity of Dh in x follows from the monotonicity of FX(x | ·) and ℓ(x). If
FX is continuous, the last part of Theorem 5.4 follows from the first-order condition. In
case FX is d−lattice, note that

Dh(λ, x, θ) = h(λ, d
⌊
x

d

⌋
, θ) − h(λ, d

⌊
x

d
− 1

⌋
, θ).

Thus, the minimum of h can be achieved at the roots of Dh(λ, x, θ), or, when no root
exists, at one of the boundary points. □

5.I Proof of Theorem 5.11

By Lemma 5.9 and 5.10, for any sufficiently small ϵ > 0, there exists kl1 , kl2 > 0, such
that,

− ϵ

2 < gk (ξO
k ) − γk (ξO

k ) < ϵ

2 , with ∀k > kl1 ,
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and
− ϵ

2 < γk (ξA
k ) − gk (ξA

k ) < ϵ

2 , with ∀k > kl2 .

Letting kl = max(kl1 , kl2), it follows that,

gk (ξA
k ) − gk(ξ∗

k) − ϵ < γk (ξA
k ) − γk(ξ∗

k), k > kl.

We notice that gk (ξA
k ) − gk(ξ∗

k) ≥ 0 and γk (ξA
k ) − γk(ξ∗

k) ≤ 0, by optimality. This implies
that,

0 ≤ gk (ξA
k ) − gk(ξ∗

k) < ϵ, k > kl,

which gives us Theorem 5.11(a). Part (b) of Theorem 5.11 follows directly from Lemmas
5.9 and 5.10. □

5.J Proof of Lemma 5.12

Part (a). By the weak consistency of θ̂τ , we have for every ϵ, η > 0, there exists τ lϵ,η > 0
such that for all τ > τ lϵ,η

P
{∥∥∥∥θ̂(Iτ ) − θ

∥∥∥∥ > ϵ
}
< η. (5.65)

Moreover, by (5.37) we have for all T l > 0

P
{
∃kT l(ω) s.t. Tk(θ) > T l ∀k > kT l(ω)

}
= 1, (5.66)

where ω is a sample path. Note that kT l(ω) is a random variable. Now, choose T l > τ lϵ,η.
Then, combining (5.65) and (5.66), we obtain that for all k > kT l(ω)

P
{∥∥∥∥θ̂ (ITk(θ)

)
− θ

∥∥∥∥ > ϵ
∣∣∣∣Tk (θ)

}
< η, almost surely.

Using law of total probability (condition on Tk(θ)) completes the proof for Part (a).

Part (b). By Assumption A.4, we have that for all λ ∈ R, θ ∈ Θ, max Dλ,θ − min Dλ,θ ≤
xflat. Consequently, for all λ ∈ R, θ ∈ Θ,

lim sup
θ′→θ

ξλ(θ′) − lim inf
θ′→θ

ξλ(θ′) ≤ xflat. (5.67)

For ϵ > 0, define kϵ = 2xflat/ϵ. By (5.67), for all ϵ > 0, there exists a neighborhood of θ,
Θθ,ϵ := {θ′ ∈ Θ : ∥θ′ − θ∥ < ϵ/2} such that for all k > kϵ and θ′ ∈ Θθ,ϵ

1
k

∣∣∣∣ξA
k (θ′) − ξA

k (θ)
∣∣∣∣ ≤ xflat

k
+ ϵ

2k <
xflat

kϵ
+ ϵ

2 = ϵ.

Choose 0 < η < 1. Part (a) implies that there exists a kθ,η such that P
{
θ̂
(
ITk(θ)

)
∈ Θθ,ϵ

}
>

1 − η for each k > kθ,η. Therefore for all k > max{kϵ, kθ,η} we have

P
{1
k

∣∣∣∣ξP
k,last(θ) − ξA

k (θ)
∣∣∣∣ < ϵ

}
= P

{1
k

∣∣∣∣E [ξA
k

(
θ̂
(
ITk(θ)

))]
− ξA

k (θ)
∣∣∣∣ < ϵ

}
≥ P

{1
k

∣∣∣∣E [ξA
k

(
θ̂
(
ITk(θ)

))]
− ξA

k (θ)
∣∣∣∣ < ϵ

∣∣∣∣θ̂ (ITk(θ)
)

∈ Θθ,ϵ

}
P
{
θ̂
(
ITk(θ)

)
∈ Θθ,ϵ

}
= P

{
θ̂
(
ITk(θ)

)
∈ Θθ,ϵ

}
> 1 − η.
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which establishes Part (b).

Part (c). Observe that for any k > 0 and θ ∈ Θ, 1
k

∣∣∣∣ξP
k,last(θ) − ξA

k (θ)
∣∣∣∣ is upper bounded

by L̃, and consequently, uniformly integrable. Thus, by Part (b) it converges to zero in
expectation, i.e., for all θ ∈ Θ,

lim
k→∞

E
[

1
kµ(θ)

∣∣∣∣ξP
k,last(θ) − ξA

k (θ)
∣∣∣∣
]

= 0.

We can extend this relation to

lim
k→∞

E
[

1
kµ(θ)

∣∣∣∣ξP
k,last(θ) + E

[
Y
(
ξP
k,last(θ)

)]
− (ξA

k (θ) + E [Y (ξA(θ))])
∣∣∣∣
]

= 0.

since E[Y (·)] is bounded by Lorden’s inequality. This implies that,

lim
k→∞

E
[∫

Θ

1
kµ(y)

∣∣∣∣ξP
k,last(y) + E

[
Y
(
ξP
k,last(y)

)]
− (ξA

k (y) + E [Y (ξA(y))])
∣∣∣∣dFθ(y)

]
=

lim
k→∞

∫
Θ
E
[

1
kµ(y)

∣∣∣∣ξP
k,last(y) + E

[
Y
(
ξP
k,last(y)

)]
− (ξA

k (y) + E [Y (ξA(y))])
∣∣∣∣
]
dFθ(y) = 0.

(5.68)

The first equality in (5.68) follows from Fubini’s theorem, which allows exchanging the
order of integration and expectation. Next, for every ϵ > 0 we have

P


∣∣∣∣∣∣
∫

Θ

1
kµ(y)ξ

P
k,last(y) + E

[
Y
(
ξP
k,last(y)

)]
− (ξA

k (y) + E [Y (ξA(y))]) dFθ(y)
∣∣∣∣∣∣ > ϵ

 ≤

P
{∫

Θ

1
kµ(y)

∣∣∣∣ξP
k,last(y) + E

[
Y
(
ξP
k,last(y)

)]
− (ξA

k (y) + E [Y (ξA(y))])
∣∣∣∣dFθ(y) > ϵ

}
≤

E
[∫

Θ

1
kµ(y)

∣∣∣∣ξP
k,last(y) + E

[
Y
(
ξP
k,last(y)

)]
− (ξA

k (y) + E [Y (ξA(y))])
∣∣∣∣dFθ(y)

]
ϵ

.

The second inequality follows from Markov’s inequality. Combining this with (5.68)
completes the proof for Part (c).

Proof of Part (d). We prove the result for continuous FX . The proof for d−lattice FX is
analogous, with integration replaced by summation. By continuity of FX in θ ∈ Θ and
Part (a), for any ϵ , x > 0

lim
k→∞

P
{∣∣∣∣E [ℓ(X1,1 + x, k) | θ1 = θ̂

(
ITk(θ)

)]
− E [ℓ(X1,1 + x, k) | θ1 = θ]

∣∣∣∣ < ϵ
}

= 1 (5.69)
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Now by the definition of rk as in (5.34)
1
k

∣∣∣∣rk (ξP
k,last(θ), θ

)
− rk(ξA

k (θ), θ)
∣∣∣∣

≤ 1
kµ(θ)

∫ ξA
k (θ)

0

∣∣∣∣E [ℓ(X1,1 + x, k) | θ1 = θ̂
(
ITk(θ)

)]
− E [ℓ(X1,1 + x, k) | θ1 = θ]

∣∣∣∣dx+

1
kµ(θ)

∣∣∣∣∣∣
∫ ξP

k,last(θ)

ξA
k

(θ)
max

{
E
[
ℓ(X1,1 + x, k) | θ1 = θ̂

(
ITk(θ)

)]
,E [ℓ(X1,1 + x, k) | θ1 = θ]

}
dx

∣∣∣∣∣∣
≤ 1
kµ(θ)

∫ ξA
k (θ)

0

∣∣∣∣E [ℓ(X1,1 + x, k) | θ1 = θ̂
(
ITk(θ)

)]
− E [ℓ(X1,1 + x, k) | θ1 = θ]

∣∣∣∣dx+

1
kµ(θ)ℓ(L̃)

∣∣∣∣ξP
k,last (θ) − ξA

k (θ)
∣∣∣∣.

Combining this result with Part (b) and (5.69) give us, for every ϵ > 0

lim
k→∞

P
{1
k

∣∣∣∣rk (ξP
k,last(θ), θ

)
− rk (ξA

k (θ), θ)
∣∣∣∣ < ϵ

}
= 1. (5.70)

The rest of the proof follows from an analogous argument as Part (c) with the result in
Part (b) is replaced by (5.70), and by noticing that for all k > 0 and θ ∈ Θ

1
k
rk (ξA

k (θ), θ) ≤ ℓ(L̃)
(

1
k

+ L̃

µ(θ)

)
< ∞.

Proof of Part (e). Let ξA
k,0 denote the Oracle’s asymptotically optimal threshold function

when ℓ(x) = 0 for all x ∈ R+. Then for k > 0,

ξA
k,0(θ) ≥ ξA

k (θ), (5.71)

since by assumption ℓ(x) ≥ 0. Furthermore, let {ξL
k}k>0 be a sequence of threshold

functions that satisfy lim
k→∞

ξL
k(θ)
L(k) = 1 and lim

k→∞
ϕk (ξL

k(θ)) = ∞, for all θ ∈ Θ, when

ℓ(x) = 0. This also implies lim
k→∞

ϕk (ξL
k(θ))
k

= 0. Hence

lim
k→∞

γk (ξL
k) = c̃p

L̃
∫

Θ

dFθ(y)
µ(y)

. (5.72)

We notice, from (5.33), that for any function ξ(k) ∈ Ξk a natural lower bound for the
limit of γk(ξ(k)) as k → ∞ is as follows

lim
k→∞

γk
(
ξ(k)(θ)

)
≥ c̃p

L̃
∫

Θ

dFθ(y)
µ(y)

.

Combining this result with (5.71) and (5.72) gives limk→∞ (ξA
k (θ) − ξL

k(θ)) ≤ 0. Conse-
quently, for all θ ∈ Θ

lim
k→∞

ϕk (ξA
k (θ)) = ∞,

which immediately implies that both sides of Part (e) converge to zero as k → ∞, almost
surely. □
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5.K Proof of Theorem 5.6

We notice that Lemma 5.12(c) can be extended to

1
k

∫
Θ

1
µ(y)

(
ξP
k,last(y) + E

[
Ỹ1
(
ξP
k,last(y)

) ∣∣∣∣θ1 = y, ξP
k,last(y)

])
dFθ(y) p−→

1
k

∫
Θ

1
µ(y)

(
ξA
k (y) + E

[
Ỹ1 (ξA

k (θ1))
∣∣∣∣θ1 = y

])
dFθ(y). (5.73)

by applying Lemma 5.8(d) to both sides of Lemma 5.12(c). Similarly, we use Parts (b)
and (c) of Lemma 5.8 to extend Parts (c) and (e) of Lemma 5.12, respectively

1
k

∫
Θ
E

T(ξP
k,last(y),θ1)∑
τ=1

ℓ(S1,τ , k)
∣∣∣∣∣∣θ1 = y, ξP

k,last(y)

 dFθ(y) p−→

1
k
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Θ
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 dFθ(y), (5.74)

∫
Θ
P
{
Ỹ1(ξP

k,last(y)) > ϕk
(
ξP
k,last(y)

) ∣∣∣∣θ1 = y, ξP
k,last(y)

}
dFθ(y) p−→∫

Θ
P
{
Ỹ1(ξA(θ1)) > ϕk

(
ξ(k)(θ1)

) ∣∣∣∣θ1 = y
}
dFθ(y). (5.75)

Observe that the RHS of (5.73), (5.74), and (5.75) are uniformly integrable, which yields
the stronger mean convergence results. This observation together with Fubini’s theorem
give us

1
k

∫
Θ

1
µ(y)

(
ξP
k,last(y) + E

[
Ỹ1
(
ξP
k,last(y)
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])
dFθ(y) →

1
k

∫
Θ

1
µ(y)

(
ξA
k (y) + E

[
Ỹ1 (ξA

k (θ1))
∣∣∣∣θ1 = y

])
dFθ(y), (5.76)

1
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(5.77)
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Next, by (5.44) as k → ∞
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= gk(ξA) → gk(ξO). (5.79)

The first equality in (5.79) follows from Kolmogorov’s law of large numbers as per
(5.44) together with the expression of gk, i.e., Equation (5.32), the first convergence from
Equations (5.77) through (5.78) and the last convergence from Theorem 5.11. □
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C. Bérenguer, A. Grall, L. Dieulle, and M. Roussignol. Maintenance policy for a continuously
monitored deteriorating system. Probability in the Engineering and Informational Sciences,
17:235–250, 2003. ISSN 02699648. doi: 10.1017/S0269964803172063.

B. Chen, X. Chao, and C. Shi. Nonparametric learning algorithms for joint pricing and inventory
control with lost sales and censored demand. Mathematics of Operations Research, 46:726–
756, 5 2021.

N. Chen, Z.-S. Ye, Y. Xiang, and L. Zhang. Condition-based maintenance using the inverse
gaussian degradation model. European Journal of Operational Research, 243(1):190–199,
2015.

X. Chen and X. Wang. Effects of carbon emission reduction policies on transportation mode
selections with stochastic demand. Transportation Research Part E: Logistics and Trans-
portation Review, 90:196–205, 2016.

E. Commission. State of the union: Q & a on the 2030 climate target plan, 2020.

S. Dabia, E. Demir, and T. Van Woensel. An exact approach for a variant of the pollution-
routing problem. Transportation Science, 51:607–628, 2017.

G. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Research, 8
(1):101–111, 1960.

U. N. C. Database. https://comtrade.un.org, 2020.

B. de Jonge and P. A. Scarf. A review on maintenance optimization. European Journal of
Operational Research, 285(3):805–824, 2020.

R. Dekker, J. Bloemhof, and I. Mallidis. Operations research for green logistics – an overview
of aspects, issues, contributions and challenges. European Journal of Operational Research,
219(3):671–679, 2012.

https://comtrade.un.org


155 Chapter 5. Bibliography
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