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Figure 1: We develop a novel predictive model for scanpaths that represents the frst approach to account for individual-level 
diferences and diverse stimuli, from both natural scenes (e.g., landscapes and buildings) and artifcial ones (e.g., user interfaces 
and information graphics). The predictions address a scanpath’s spatial and temporal characteristics – that is, a sequence of 
fxation locations together with the duration of each. The model can generate an “average” scanpath to capture population-level 
tendencies but also scanpaths personalized for individual viewers from a few scanpath samples, thereby refecting each viewer’s 
unique preferences and viewing behaviors. These illustrative plots use a color gradient, from green to blue, to denote the 
temporal progression of each scanpath. Fixation points are denoted by circles, the radii of which represent fxation duration. 

ABSTRACT 
From a visual-perception perspective, modern graphical user inter-

faces (GUIs) comprise a complex graphics-rich two-dimensional 
visuospatial arrangement of text, images, and interactive objects 
such as buttons and menus. While existing models can accurately 
predict regions and objects that are likely to attract attention “on 
average”, no scanpath model has been capable of predicting scan-

paths for an individual. To close this gap, we introduce EyeFormer, 
which utilizes a Transformer architecture as a policy network to 
guide a deep reinforcement learning algorithm that predicts gaze 
locations. Our model ofers the unique capability of producing per-

sonalized predictions when given a few user scanpath samples. It 
can predict full scanpath information, including fxation positions 
and durations, across individuals and various stimulus types. Addi-

tionally, we demonstrate applications in GUI layout optimization 
driven by our model. 
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1 INTRODUCTION 
A fundamental goal in the design of graphical user interfaces (GUIs) 
is to guide users’ attention toward discovering relevant informa-

tion and possibilities for interaction [49]. However, modern GUIs’ 
graphics-rich visuospatial arrangement of text, images, animations, 
and numerous interactive objects (buttons, menus, etc.) makes it 
increasingly difcult to predict and direct visual attention for dis-
tinct individuals and groups [19, 26–28]. Furthermore, GUI design 
is not the only factor in eye movements – idiosyncratic features 
such as expectations and user-specifc attention strategies exert an 
infuence. Therefore, predicting how the attention of a given user is 
going to evolve over time is technically challenging. Breakthroughs 
in this space would aford the design of personalized visual fows, 
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reduce clutter, and render user interfaces more engaging, usable, 
and visually appealing overall [52]. 

Large individual diferences have been reported in viewing pat-
terns [24]. To avoid the fallacy of predicting an “average scanpath” 
with no correspondence to actual viewers’ behavior, models should 
capture individual-to-individual variability in viewing patterns. 
Such models would open routes to new applications: they could 
supply predictions for an audience segment of interest or even for 
individual viewers. Efective solutions to this challenge would ad-
vance applications of human-attention models in visual computing 
and related domains. 

Prior work has focused primarily on saliency maps, which rep-
resent eye-movement data via density maps for the images [20]. 
However, as static representations, these overlook temporal infor-

mation. In contrast, scanpaths contain a wealth of information on 
fxations, retaining details of the order in which objects and regions 
are attended to, accompanied by the respective duration [7, 24, 41]. 
Scanpaths are, therefore, frst-order models of human vision from 
which second-order measurements such as saliency maps can be de-
rived, while the converse is not true. In addition, prior research into 
scanpath modeling has centered predominantly on natural scenes. 
For making these models more generalizable, unifed models that 
can work with multiple classes of stimuli are crucial. The problem 
is that visual attention hinges on the stimulus type, so viewing 
patterns can difer greatly between, for instance, Web sites and 
mobile GUIs [35]. Any improvement in scanpath-based predictive 
modeling will immediately carry over to practical applications. For 
example, the models would help designers to understand visual 
fows and to adjust their designs such that users are encouraged to 
view the GUI elements in the desired order [44]. 

To address this gap, we present EyeFormer, a scanpath model for 
free-viewing tasks. It can accurately predict both population- and 
individual-level spatiotemporal characteristics of viewing behaviors 
across multiple stimulus types. We formulated fxations’ positioning 
as a reinforcement learning (RL) problem and used a Transformer 
architecture as a policy network guiding the selection of each se-
quence’s subsequent fxation. Transformers have proven efective in 
various tasks, in felds from language to vision [6, 17, 18, 63]. Their 
capability of modeling long sequences [36] makes them especially 
suitable for scanpath prediction. EyeFormer’s Transformer-guided 
deep RL approach was designed to address three critical shortcom-

ings of current approaches. Firstly, predicting the order of fxations 
from saliency maps via their probability distribution [10, 37] is 
inherently hard because such representations lack temporal infor-

mation. The second issue stems from post-processing steps im-

plemented to prevent the excessive clustering of fxations that is 
characteristic of density-based approaches [24] (for instance, in-

hibition of return [20] is applied to prevent repeated fxation at 
a previously identifed position in a saliency map). Because these 
steps are not learnable from data [13], one cannot formulate proper 
loss terms derived from them. Thirdly, though recent advances such 
as PathGAN [3] have brought progress toward handling fxation du-

ration, accuracy in predicting fxation points remains limited since 
these techniques often generate points outside the areas of interest. 

EyeFormer is the frst model to predict full scanpaths at both 
individual and population level, including fxations with coordi-
nates and duration both. It is unique in its ability to predict an 

individual’s viewing behaviors when given a few sample scanpaths 
from such a viewer. Moreover, we fnd that EyeFormer compares 
favorably to prior scanpath models by the vast majority of metrics 
for both GUIs and natural scenes in its population-level scanpath 
prediction. It accurately predicts both spatial order (“where”) and 
temporal (order and duration) characteristics of scanpaths with 
both of these scene types. Further, we develop an application of 
personalized scanpath prediction for creating personalized GUI 
layouts by considering the viewing order and fxation density of 
GUI elements. In addition, we can generate a single optimized GUI 
layout that shows minimal variability across individuals, to attract 
attention to desired elements. We have made our code available at 
https://github.com/YueJiang-nj/EyeFormer-UIST2024. 

In summary, this paper makes the following contributions: 

(1) We propose EyeFormer, a deep RL solution incorporating 
the Transformer architecture that predicts both spatial and 
temporal characteristics of scanpaths, thus yielding a com-

prehensive understanding of viewers’ viewing behaviors. 
(2) It shows how our model generates personalized scanpaths 

via only a few scanpath samples from the relevant viewer, 
whereby the model can capture and refect each user’s view-

ing behaviors and preferences. 
(3) We present quantitative and qualitative evaluations demon-

strating that the proposed model performs as well as or better 
than the state-of-the-art models at population-level scanpath 
prediction for GUIs and natural scenes. 

(4) We demonstrate an application of personalized GUI opti-
mization facilitated by personalized scanpath prediction. 

2 RELATED WORK 
Scanpath models predict sequences of fxations for a given im-

age. This task is more challenging than predicting (dense) saliency 
maps because the order of the (discrete) fxations must be predicted. 
All previous research has concentrated on modeling scanpath pat-
terns at population level (i.e., employing an “average-user” model), 
while none has focused on the prediction of personalized scan-

paths. Therefore, we conducted a comprehensive review of the 
approaches to population-level scanpath prediction as groundwork 
for extending these techniques to individuals’ level by using a 
novel Transformer-based architecture. Prior work can be classed 
into three main groups on the basis of how they have attempted to 
derive sequential information: 1) computing it post hoc from den-

sities captured in saliency maps, 2) directly predicting sequences, 
and 3) formulating this as a sequential control problem via RL. Our 
evaluation compares our EyeFormer model against several models 
mentioned next. 

2.1 Saliency-Map-Based Scanpath Prediction 
Saliency maps, although they do not explicitly contain temporal 
information, can be used to estimate scanpaths. Itti et al. [20] in-

troduced an Inhibition of Return (IOR) mechanism to this end. It 
samples a starting fxation and “discourages” future fxations from 
returning to it, thus producing a richer sequence. While several 
studies have refned the idea [2, 8, 33, 37, 48, 65, 68, 69], methods 
of this sort still face challenges in three respects: they (i) neglect 
some key temporal factors, specifcally fxation duration; (ii) lack a 
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coherent ranking order for the fxations; and (iii) cannot serve in 
loss terms, since they are non-diferentiable. 

2.2 Predicting Fixation Sequences 
Some attempts to resolve these challenges have entailed sequen-

tially sampling fxations from pre-generated Gaussian distributions 
and integrating well-designed supervised loss terms. This strate-
gic choice enforces a meaningful order among the fxation points. 
For instance, IOR-ROI [8, 54], ScanpathNet [10], and Visual Scan-

Path Transformer [45] predict fxation distributions through a pa-
rameterized Gaussian mixture for generating such distributions. 
GazeFormer [41] incorporates a Transformer-based architecture for 
goal-oriented viewing tasks, and ScanDMM [53] utilizes a Markov 
model to represent fxation distributions. These models sufer from 
accumulation of error [46], whereby errors in previously generated 
points afect the prediction of the following points. Other models 
directly predict fxation sequences. Verma and Sen [62] predicted 
fxations by means of a grid-based representation in which each 
fxation point is tied to a specifc region. PathGAN [3] and Scan-

GAN [38], in turn, apply a GAN-based architecture to generate 
fxation sequences; however, GAN-based scanpath models show 
such limitations as clustering of fxation points toward the image’s 
center and reduced accuracy in predicting fxation points (which 
sometimes get placed outside the areas of interest). Also notewor-

thy is NeVA [51], which addresses downstream visual tasks with 
unseen datasets by relying on existing pre-trained models for the 
task rather than simulating human scanpaths. 

2.3 Reinforcement Learning for Scanpath 
Prediction 

Studies have examined RL’s potential in formulating scanpaths 
as a sequential control problem [5, 42]. For example, Minut and 
Mahadevan [40] proposed an RL model for visual search tasks 
wherein an agent learns to focus on relevant areas to locate a target 
object in a cluttered environment. Ognibene et al. [43] employed 
RL using an eye-centered potential action map that accumulates 
possible target locations over fxations, and Yang et al. [72] used 
inverse RL for predicting the scanpaths involved in a visual search 
task. In other work, Xu et al. [71] applied deep RL specifcally to 
predict head-movement-related scanpaths for panoramic videos. 

Recent work by Chen et al. [7] discretized fxation positions by 
representing each image as a grid and predicting the cell in the grid 
corresponding to a particular fxation. Inspired by policy gradient 
methods applied in discrete token generation for visual caption-

ing [47], Chen et al. adopted their policy gradient to optimize for 
non-diferentiable metrics in their discrete tokenizing. The posi-

tion discretization ofers the advantage of optimizing a fnite set of 
discrete actions rather than a continuous and hence infnite space. 
However, the artifciality of discretization brings coarser fxation 
representation, which leads in turn to loss of precision/information. 
The challenge with continuous control is that a continuous range of 
control encompasses an infnitude of feasible actions [57]. Against 
this backdrop, we construct our fxation prediction as a continuous 
value generation task and turn to parametric functions for Gauss-

ian distributions over actions, optimized by means of our designed 
rewards. 

Figure 2: The mechanism of adapting a display’s inhibition-
of-return area to compute the salient-value reward involves 
modifying the radius of the inhibition area, which is deter-
mined by the disparity between the size of the saliency map 
and the size of the image as displayed. a) The diameter of 
the display’s inhibition areas �display is commensurate with 
a human’s visual angle. b) Hence, we compute �orig, the di-
ameter for the corresponding inhibition areas for the input 
image with size � I × ℎI . c) The image needs resizing to the 
dimensions �inp ×ℎinp, to correspond to the input image size 
required by the model. The inhibition areas are rendered, 
accordingly, as ellipses with radii �� and �ℎ . 

3 METHOD 
EyeFormer performs scanpath predictions as sequential generation 
of fxation points, taking preceding fxations and the scene into 
account together as its state. The main challenges we tackle are 
related to 1) generating both spatial and temporal information on 
fxation points with parametric distributions, 2) optimizing a scan-

path with non-diferentiable objectives, and 3) capturing individual-

specifc viewing diferences to predict personalized scanpaths. We 
propose a Transformer-guided RL approach (depicted in Figure 3) 
for three key reasons: 1) The Transformer architecture lets us cap-
ture long-range sequential dependencies from previous fxations 
with Gaussian distributions [61]. 2) We fnd RL preferable to directly 
optimizing the loss since some loss terms’ non-diferentiable nature 
precludes direct optimization. The RL framework enables optimiz-

ing scanpaths with non-diferentiable reward functions [56], such as 
terms for computing salient values with IOR. 3) Transformer-only 
models sufer from the above-mentioned error-accumulation issues: 
prediction errors from previously generated points propagate to 
subsequent predictions. During training, the model is fed the previ-
ous ground truth rather than its own predictions, so a mismatch 
arises during inference when it must rely on those potentially inac-

curate predictions. We deal with this issue by using RL to train the 
model to generate sequences as it will during inference, optimizing 
its policies through continuous feedback and adjustments in line 
with cumulative rewards over time. 

3.1 Problem Formulation 
Given an image I, our technique generates a scanpath of length � : 
a sequence of ordered fxation points �1:� = (�1, . . . , �� ) capturing 
the spatial and temporal information of the human gaze. Each fxa-

tion �� = (�� , �� , �� ) is a three-dimensional vector representing the 
normalized point coordinates �� ∈ [0, 1] and �� ∈ [0, 1] alongside 
the third dimension, fxation duration expressed as �� ∈ (0, +∞). 
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3.2 Environment, State, and Action 
Our predictive model acts as an agent that interacts with the envi-
ronment, where the latter produces the state of both input image 
I and previous fxation points. The � parameters dictate the policy, 
�� , whereby the model generates an action as a prediction for the 
next fxation point �̂� , sampled from the distribution produced by 
the policy model. This process is formulated as �� (�̂� |�̂1:� −1, I). 

3.3 Reward Function 
After each action, the agent receives a salient-value reward �

sal 
that expresses that action’s contribution to the full scanpath. Once 
the entire scanpath is generated, the agent is exposed to a reward 
�
dtwd

, calculated by means of the Dynamic Time Warping with 
duration (DTWD) metric discussed below. The training’s objective 
is to minimize the negative expected reward, which is equivalent 
to maximizing a positive reward: 

L(� ) = −Eˆ � (p̂), (1)p∼�� 

where p̂ = (�̂1, ..., �̂� ) and where �̂� represents the �th fxation 
sampled from the model-generated distribution. The reward func-

tion combines the DTWD metric �
dtwd

, assessing the similarity 
between the predicted and the ground truth (GT) scanpath, with 
the summed salient-value reward for each fxation point along the 
scanpath generated �

sal
, thus: 

�∑ 
� (p̂) = −�

dtwd (p̂) + �
sal (�̂� ). (2) 

�=1 

3.3.1 Dynamic Time Warping with duration. Dynamic Time Warp-

ing (DTW) is widely used for comparing two sequences that may 
difer in length [4, 50]. It is useful for scanpaths because it fnds 
an optimal alignment between the two scanpaths (ground truth 
and predicted ones) and computes the distance without missing 
any critical features. We implement DTW extended for duration 
to consider both spatial and temporal characteristics of scanpaths. 
Specifcally, EyeFormer spatially aligns scanpaths by using fxation 
positions, then computes DTWD values as 3D vectors (�,�, �) for 
fxations’ position and duration. By incorporating DTWD compu-

tations over the full scanpath into the reward function, we sought 
to generate scanpaths closer to the ground truth trajectories and 
duration. 

3.3.2 Salient values. EyeFormer applies rewards for salient values 
to encourage fxations in salient areas. To avoid repeatedly fxating 
on the same location in the image, we implement an IOR mecha-

nism to model the relevant tendency of the human visual system. 
We establish inhibition areas (as regions of the saliency map) for all 
the previously predicted fxation points. If the new predicted point 
falls within these areas, it does not elicit any additional reward; 
the reward corresponds to the salient value on the saliency map 
in all other cases. Importantly, predicted scanpaths can still return 
to an already-visited element, just as real-world ones may, since 
DTWD encourages fxations to revisit the most salient areas and 
our chosen IOR radius (explained next) is not so large as to preclude 
revisiting an element. We denote the display’s dimensions as� ×� . 
It sets the diameter of that display’s inhibition areas �

display to be 
consistent with a human’s visual angle, the angle an object sub-

tends at the eye (see Figure 2a). Our choices were informed by the 

diameter-setting suggested by Klein et al. [32] and further analyzed 
by Emami et al. [13]. Finally, we compute �orig, the diameter for 
the corresponding inhibition areas for the input image with size 
� I × ℎI (see Figure 2b): 

�
display

�orig = � � (3)

min � /� I , �/ℎI 

. Note that preparing the image for processing necessitates resizing 
it to �inp ×ℎinp, which corresponds to the size that the policy model 
requires for splitting the input image into patches. Using a square 
input image simplifes computations of this type [12]; accordingly, 
we resize the inhibition areas from circles to ellipses, while account-

ing for potential distortions (see Figure 2c). Any point (�,�) in the 
image that satisfes the following condition gets inhibited (resulting 
in a salient-value reward of 0) and is omitted from the saliency map: 

(� − �� )2 (� − �� )2 �inp ℎinp+ ≤ 1, where �w= �orig, �h = �orig, 
�2 �2

h 
� I ℎIw 

(4) 

where (�� , �� ) is the coordinates for the �th predicted fxation point. 
Hence, salient-value reward �

sal at step � is defned as the salient 
value of predicted fxation �̂� on the saliency map with IOR applied. 

3.4 Policy Network 
A two-stage approach characterizes the policy network for scan-

path prediction. The visual representation of any image I is learned 
through the image encoder (E), after which a scanpath gets gen-

erated by means of the fxation decoder (D). For population-level 
scanpath prediction, the visual embedding E(I) is taken as input 
to the decoder. For individual-level prediction, feeding the decoder 
this input along with a viewer embedding, �� , allows the model to 
generate personalized scanpaths for separate viewers. 

3.4.1 Vision encoder. We use a Vision Transformer (ViT) [6] net-

work as the vision encoder. Specifcally, the image is resized to a 
resolution of �inp × ℎinp and split into �I non-overlapping patches 
for the vision encoder. Splitting functions mainly to speed up the 
model’s inference, capture local information, and obtain global 
information from relationships between patches. Next, a linear pro-
jection, a convolution layer, is applied to convert these patches into 

∈ R�Isingle-dimension embeddings �� 
thus:I 

� 
˜ = [���� , �1 

I , . . . , �
�I ] + ���� , (5)I I I 

���� 
where is a learnable vector for the image context, I 
[���� , �1 

I , . . . , �
�I ] is a matrix from concatenating the vectors I I 

���� , �1 
I , . . . , �

�I 
, and ���� ∈ R�I×(�I+1) is the positional matrix I I

refecting the position context of the image patches. Finally, we 
apply a vision encoder E(·) based on a 12-layer version of the 
ViT model [12]. By employing per-patch convolution and using 
a Transformer to combine patch embeddings, the ViT model ex-
presses the relationship for each patch and lets us derive the fnal 
image embedding, denoted as E(� 

˜ ). We consider an alternative I
vision encoder, using a residual neural network (ResNet), also; the 
supplementary materials include comparison between it and the 
mechanism ultimately chosen. 
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Figure 3: The overview of our Transformer-guided RL framework for scanpath prediction, comprising several components: 
the environment, which produces the state of the input image and previous fxation points; the Transformer model, which 
furnishes the policy; the policy-generated action, predicting the next point in the scanpath; and the reward function (obtained 
from evaluating the action against ground truth), through which the policy gets updated. Within the Transformer policy model, 
the image patches, resized and split from the input image, are fed to the vision encoder for generation of the image embedding; 
the viewer encoder generates the viewer embedding, only used in individual-level prediction to distinguish between viewers; 
and the fxation decoder takes the image and viewer embeddings along with previously generated fxations to generate the next 
points along the scanpath in sequence. During training, the model begins by sampling the next point from the distribution 
generated by the policy in light of the current state. This sampled point is used to update the state of the environment, and 
incorporating the reward indicated via ground truth serves to update the Transformer policy model. During testing, we use the 
policy model to generate the scanpaths directly. 

3.4.2 Fixation decoder. To generate fxation points, �̂� , we use a 
multi-layer Transformer decoder, D. It takes the image embedding 
E(� 

˜ ) alongside the previously generated points denoted by �̂1:� −1I 
as input to generate D(E(� 

˜ ), �̂1:� −1). This allows previous fxation I
points to infuence points further along the scanpath. We set the 
frst fxation to be at the center of the screen since the conditions 
behind most eye-tracking datasets involve asking participants to 
look at the center of the display before images get presented [24, 70]. 
For the given state (the previously predicted fxation points and the 
input image), the action (the next prediction for a fxation point) is 

�Ö 
�� (�̂1:� |I) = �� (�̂1 |I) �� (�̂� |�̂1:� −1, I). (6) 

�=2 

The policy �� is represented as a Gaussian distribution N(�� , �� ). 
Alternatively, it could be represented as a mixed Gaussian distri-

bution 
Í� 
��� N(��� , Σ�� ) with a total of � Gaussian components, 

�=1 
where ��� denotes the weight of the �th Gaussian component, and 
Σ�� denotes the covariance matrix specifc to the component at step 
� . These variables for determining the distribution are sequentially 
generated by the decoder. We present more implementation details 
and a comparison between using a Gaussian and a mixed Gaussian 
distribution in supplementary materials. 

3.5 Predicting Personalized Scanpaths 
To distinguish between individual viewers, we select a two-layer 
Transformer architecture as the viewer encoder E� . This facilitates 
prediction of individual-level scanpaths considerably. The training 
process trains the model from the training users in the dataset. The 
viewer encoder is taught to allow each viewer’s distinct viewing 
behaviors to be encoded in a separate embedding space. In the test 
process, when given a new viewer, the model updates the viewer 
encoder with a few scanpaths from that viewer by backpropagating 
from the scanpath samples. Once the model has updated the viewer 
encoder, it can predict scanpaths specifc to this unique viewer, 
thereby customizing its predictions for this individual’s viewing 
behaviors (note that this encoder is not applied for population-level 
predictions). 

Specifcally, the image representation, E(� 
˜ ), serves as the input I 

query, while viewer embedding �� serves as the key and value 
in the cross-attention mechanism within the viewer encoder. The 
viewer embedding is a learnable matrix. For generation of fxations, 
the output of this encoder, E� (� ˜ , �� ), is directed to the fxation I
decoder. 

3.6 Policy Gradient 
To compute the gradient of the objective function ∇� L(� ), our 
method employs the REINFORCE algorithm [47, 67], which ofers 
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a Monte Carlo variant of a policy-optimization technique com-

monly used in RL settings [56]. Under this algorithm, the agent 
accumulates samples from episodes by executing its current policy 
and utilizes those samples to update the policy’s parameters itera-
tively. The REINFORCE algorithm aims to maximize the cumulative 
expected reward across sequential actions by approximating the 
gradient of the expected reward for the current policy parameters. 
By adjusting these parameters iteratively in accordance with the 
gradient estimate, the algorithm attempts to enhance the policy’s 
performance over time. This algorithm is rooted in the insight that 
one can obtain the expected gradient of a non-diferentiable reward 
function as follows: 

∇� L(� ) = −Eˆ [� (p̂)∇� log �� (p̂ |I)] . (7)p∼�� 

To approximate the expected gradient, we use a single Monte-

Carlo sample p̂ = (�̂1, ..., �̂� ) from the policy �� for each training 
example in the minibatch: 

∇� L(� ) ≈ −� (p̂)∇� log �� (p̂ |I) . (8) 

REINFORCE with a baseline. Our technique uses a baseline � 
to assess the environment’s expected reward without any actions, 
thus generalizing the policy gradient obtained from REINFORCE. 
Applying this algorithm with a baseline allows us to estimate the 
advantage yielded by an action – i.e., the diference between the 
actual reward obtained and that expected from the baseline envi-

ronment. By subtracting the baseline value, we reduce the variance 
of the gradient estimation, thereby arriving at a stabler optimiza-

tion process. The gradient of the loss with respect to the � policy 
parameters is then obtained as 

∇� L(� ) = −Eˆ [(� (p̂) − �)∇� log �� (p̂ |I)] . (9)p∼�� 

For each step in the training, our technique approximates the 
expected gradient with a single sample p̂ ∼ �� : 

∇� L(� ) ≈ −(� (p̂) − �)∇� log �� (p̂ |I) . (10) 

In the discrete space, Rennie et al.’s conceptualization [47] serves 
as a foundational framework, wherein � is estimated by means of the 
reward obtained from the policy’s greedy search. For operating in 
a continuous space, however, our approach diverges from theirs: at 
each step, the operation of our policy necessitates computation of �, 
defned as the reward associated with the mean of multiple samples 
drawn from the policy – in essence, the mean of the distribution 
generated by the policy. Consequently, the expected gradient is 
calculated as 

∇� L(� ) ≈ −(� (p̂) − � (��[�]))∇� log �� (p̂ |I), (11) 

where � = (�1, . . . , �� ) and ��[·] constitute a stop-gradient opera-

tor having partial derivatives of 0. 

4 EXPERIMENTS 
Our experiments attest to the new model’s unique capability of 
producing personalized predictions when given a few user scanpath 
samples. Below, we present the experiments in connection with a 
comprehensive evaluation of EyeFormer against multiple recently 
developed models and across two very diferent classes of stimuli: 
GUIs and natural scenes. Our examination covered a large number 
of baselines and of evaluation metrics suited to scanpath models. 

4.1 Datasets 
Both datasets in our experiments – the GUI-oriented UEyes [24, 25] 
and OSIE [70], from natural scenes – feature multiple scanpaths 
for each image, from numerous viewers. The two datasets were 
collected by eye trackers that output fxation points and their dura-

tions, rather than saccades. 

4.1.1 GUIs and information graphics. The UEyes dataset provided 
us with eye-tracking data (up to 7 s) from 62 participants who 
viewed 1,980 images drawn from four common types of GUI and 
information graphics (posters, desktop GUIs, mobile GUIs, and 
webpages). Collecting the data with an eye tracker in a laboratory 
setting guaranteed precise fxation coordinates in the X–Y plane, 
and the coordinate values were subject to participant-specifc cali-
bration accounting for relevant human factors such as eye–display 
distance [35]. We used the same training/test image split as Jiang 
et al. [24]: 1,872 images in the training set and 108 in the test 
set, with the four GUI types distributed evenly within each set. In 
addition, we established a training/test split for individual-level 
prediction, randomly assigning 53 viewers to the training set (85%) 
and the remaining nine to the test set (15%). Our model was trained 
on the data collected from when the training viewers looked at the 
GUIs shown in the training images. Most scanpaths in UEyes have 
roughly 15 fxations (the average number of fxations per image 
is 15.3). Further details of the dataset and implementation can be 
found in the supplementary materials. 

4.1.2 Natural scenes. The OSIE dataset, from free viewing of nat-

ural scenes, comprises 700 images with associated eye-movement 
data from three seconds of viewing by 15 participants. With OSIE, 
which has been widely used in previous research [7, 54], we applied 
the same split used in prior work (80% training, 10% validation, and 
10% testing data). We did not use datasets such as SALICON’s [21], 
since they take mouse movements as a proxy for eye movements, 
whereas EyeFormer is designed for replicating actual scanpaths 
recorded by eye trackers. 

4.2 Metrics 
We assessed performance via metrics commonly employed for scan-

path evaluation [1, 15]. All experiments used coordinates � ∈ [0, 1]
and � ∈ [0, 1], normalized for image size (px/px, dimensionless), 
and fxation duration � ∈ [0, +∞) in milliseconds. 

4.2.1 Dynamic Time Warping (DTW). DTW serves as a standard 
metric for similarity between two temporal sequences even when 
they difer in length [4, 50]. It identifes the optimal match and 
calculates the distance between two scanpaths in a manner that 
preserves essential features. 

4.2.2 Time Delay Embedding (TDE). By focusing on assessment 
of similarities at sub-scanpath level [59, 64], TDE ofers evaluation 
more nuanced than DTW’s, which attends only to overall compari-

son of entire scanpaths. 

4.2.3 Eyenalysis. Finding the closest mapping between fxation 
points on the two scanpaths, Eyenalysis takes each fxation point 
along the frst scanpath and identifes the spatially closest fxation 
point on the second, and vice versa [39]. It then measures the average 
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MultiMatch ↑Model DTW ↓ TDE ↓ Eyenalysis ↓ DTWD ↓ Shape Direction Length Position Duration Mean 
Personalized to Other Viewers 4.152 ± 1.161 0.123 ± 0.030 0.036 ± 0.017 5.070 ± 1.088 0.943 0.733 0.935 0.821 0.731 0.833 
Personalized to Target Viewer 4.058 ± 1.135 0.121 ± 0.029 0.036 ± 0.017 4.996 ± 1.078 0.943 0.737 0.936 0.824 0.731 0.834 

Table 1: We compare the model personalized to the target test viewer against the model personalized to other test viewers to 
quantify the efectiveness in capturing the characteristics of individual viewers on the UEyes dataset. 
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Figure 4: Scanpaths personalized for two viewers, illustrating our model’s ability to generate these by means of only a few 
scanpath samples from each viewer (note that “Viewer 1” and “Viewer 2” are generic terms; the viewers are not the same across 
all examples). More examples are presented in the supplementary materials. 

distances for all the closest fxation pairs, thereby emphasizing 
evaluation of individual fxations instead of the sequences. 

4.2.4 Dynamic Time Warping with duration (DTWD). Our exten-

sion of DTW to capture duration empowered considering fxations’ 
position and duration both. We align two scanpaths on the basis 
of their optimal match of (�,�) coordinates and calculate the cu-

mulative distance by computing, for each pair of aligned points, 
the distance between the two three-dimensional vectors (�,�, �)
representing the spatiotemporal information. 

4.2.5 MultiMatch. With MultiMatch metric [11], fve variants fa-
cilitate assessing important aspects of fxations along scanpaths: 
shape, direction, length, position, and duration. While DTWD eval-
uates spatial and temporal characteristics, MultiMatch excels at 
capturing additional features such as shape, direction, and length 
and gives an overall evaluation based on all these features. 

5 RESULTS 
The results demonstrate that our model 1) predicts individual-level 
scanpaths when given a few viewing samples from the user; 2) com-

pares favorably with other models for population-level scanpath 
prediction; and 3) predicts both spatial and temporal characteristics 
of scanpaths with stimuli that include GUI images, information 
graphics, and natural scenes. 

5.1 Individual-Level Scanpath Prediction 
Prior research has not addressed the challenge of predicting per-

sonalized individual-level scanpaths, partly because full re-training 
for each new viewer, with more data, is impractical. Our model 
achieves a workable balance by generating scanpaths tailored to 
each person’s viewing behaviors and idiosyncrasies while still per-

mitting a single model’s application for all viewers, without the 
burden of re-training. We verifed our model’s ability to generate 
personalized scanpaths by proceeding from a few scanpath samples 
from the individual, thus confrming that the model can efectively 
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Figure 5: Our population-level scanpath prediction proves to be close to the ground truth with regard to fxation positions, 
ordering, and duration. The supplementary materials present further examples. 

capture each viewer’s viewing preferences/behaviors and refect 
them in its output. 

When encountering a new viewer with a few samples avail-
able, the model updates the viewer embedding with �

path scan-

paths obtained from that viewer (in our experiments, �
path = 50). 

Fine-tuning the model involves backpropagating from the scanpath 
samples so that it can predict scanpaths specifc to this unique 
individual’s viewing behaviors. 

Since no established baseline method at present can function as a 
point of comparison for this personalization approach, we compared 
the model’s tailoring for the target test viewer with its tailoring 
for other test viewers to quantify its efectiveness in capturing 
the characteristics of individual viewers. The results (shown in 
Table 1) show that the errors in the former setting are smaller than 
those of personalization for other test viewers. We conclude, then, 
that the personalized model can better address individual-specifc 
characteristics. Illustrative examples presented in Figure 4 capture 
the nature of the individual-level scanpath prediction qualitatively; 
in addition, the supplementary materials provide more results and 
explain the relationship between sample quantity and performance. 

5.2 Population-Level Scanpath Prediction 
To assess how well our model predicts the spatiotemporal infor-

mation of scanpaths, we compared its performance with preex-
isting scanpath models’. We evaluated the model with both GUIs 
and natural scenes to check whether it can be generalized to dif-
ferent types of images. For GUIs, we compared to Itti–Koch [20], 
DeepGaze III [33], DeepGaze++ [24], SaltiNet [2], UMSS [65], Path-

GAN [3], PathGAN++ [24], ScanGAN [38], ScanDMM [53], and the 
model of Chen et al. [7]. Comparisons for natural scenes judged 
EyeFormer against models focused on such scenes: Itti–Koch [20], 
SGC [55], the model by Wang et al. [64], Le Meur et al.’s model [34], 
STAR-FC [68], SaltiNet [2], PathGAN [3], IOR-ROI [54], Gaze-

Former [41], and Chen et al. [7]. While one of the baseline models, 
GazeFormer, is a Transformer-based method designed for visual 
search, directly comparing it with other methods is not possible 
because GazeFormer requires a pre-specifed target, which free-
viewing tasks do not provide. Therefore, we adapted GazeFormer 
to free-viewing tasks by providing a blank target as input. For a 
fair comparison, we trained all these models with the same dataset 
split. We fed the models every individual scanpath from all the 
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Figure 6: Annotated comparison between diferent models. The illustration alongside our model’s result, presenting the baseline 
performance, is marked up to highlight particular limitations. 

Model DTW ↓ TDE ↓ Eyenalysis ↓ DTWD ↓ Shape Direction 
MultiMatch ↑ 

Length Position Duration Mean 
GUIs and Information Graphics (UEyes dataset) 

Itti–Koch 6.249 ± 0.986 0.150 ± 0.025 0.047 ± 0.028 – 0.861 0.721 0.819 0.746 – – 
DeepGaze III Pretrained 7.906 ± 2.466 0.274 ± 0.061 0.124 ± 0.076 – 0.937 0.567 0.886 0.746 – – 
DeepGaze++ 5.454 ± 1.078 0.149 ± 0.032 0.047 ± 0.026 – 0.907 0.708 0.906 0.773 – – 
PathGAN Pretrained 4.719 ± 1.387 0.192 ± 0.049 0.072 ± 0.037 – 0.940 0.579 0.892 0.800 – – 
PathGAN 4.754 ± 1.185 0.147 ± 0.048 0.048 ± 0.025 – 0.943 0.716 0.935 0.797 – – 
PathGAN++ 4.559 ± 1.182 0.146 ± 0.037 0.044 ± 0.022 – 0.943 0.706 0.933 0.807 – – 
PathGAN w/ D 5.192 ± 1.422 0.204 ± 0.045 0.092 ± 0.038 6.431 ± 1.644 0.939 0.556 0.891 0.779 0.667 0.766 
PathGAN++ w/ D 5.443 ± 1.466 0.202 ± 0.044 0.096 ± 0.043 6.667 ± 1.659 0.939 0.560 0.896 0.765 0.657 0.763 
SaltiNet 7.042 ± 1.622 0.187 ± 0.057 0.063 ± 0.054 8.241 ± 1.487 0.907 0.715 0.897 0.691 0.579 0.758 
UMSS 5.051 ± 1.592 0.155 ± 0.048 0.050 ± 0.026 6.495 ± 1.468 0.934 0.713 0.921 0.779 0.579 0.785 
ScanGAN 4.815 ± 1.238 0.136 ± 0.034 0.040 ± 0.022 – 0.931 0.734 0.929 0.796 – – 
ScanDMM 5.085 ± 1.317 0.138 ± 0.037 0.043 ± 0.027 – 0.931 0.729 0.928 0.784 – – 
Chen et al. 4.335 ± 1.299 0.118 ± 0.034 0.037 ± 0.019 5.533 ± 1.250 0.939 0.725 0.926 0.823 0.720 0.827 
GazeFormer 4.189 ± 1.204 0.141 ± 0.038 0.046 ± 0.023 5.262 ± 1.041 0.947 0.734 0.931 0.825 0.730 0.833 
EyeFormer 4.069 ± 1.089 0.122 ± 0.029 0.036 ± 0.018 5.043 ± 1.052 0.942 0.748 0.940 0.825 0.750 0.841 

Natural Scenes (OSIE dataset) 
Itti–Koch 3.180 ± 0.756 0.176 ± 0.039 0.061 ± 0.027 – 0.859 0.653 0.811 0.748 – – 
SGC 2.992 ± 1.067 0.194 ± 0.071 0.073 ± 0.046 – 0.922 0.652 0.890 0.768 – – 
Wang et al. 3.798 ± 1.128 0.227 ± 0.073 0.096 ± 0.060 – 0.886 0.641 0.841 0.700 – – 
Le Meur et al. 3.027 ± 0.797 0.160 ± 0.476 0.057 ± 0.028 – 0.892 0.653 0.865 0.770 – – 
STAR-FC 3.375 ± 1.300 0.228 ± 0.091 0.090 ± 0.067 – 0.936 0.662 0.920 0.734 – – 
SaltiNet 3.439 ± 0.861 0.191 ± 0.052 0.065 ± 0.032 3.860 ± 0.814 0.895 0.641 0.872 0.719 0.573 0.740 
PathGAN 5.300 ± 1.197 0.323 ± 0.073 0.142 ± 0.085 5.454 ± 1.167 0.935 0.577 0.924 0.608 0.679 0.745 
IOR-ROI 2.495 ± 0.809 0.160 ± 0.055 0.060 ± 0.039 2.955 ± 0.768 0.914 0.704 0.889 0.812 0.629 0.790 
Chen et al. 2.183 ± 0.949 0.125 ± 0.056 0.045 ± 0.028 2.636 ± 0.865 0.944 0.653 0.924 0.847 0.689 0.811 
EyeFormer 2.193 ± 0.831 0.115 ± 0.042 0.044 ± 0.026 2.562 ± 0.756 0.944 0.679 0.932 0.850 0.706 0.822 

Table 2: Quantitative scanpath evaluation, with the Mean ± SD reported for each metric, attesting that our model outperforms 
the baseline models by most metrics with both GUIs and natural scenes (“Pretrained” denotes testing via the pre-trained model, 
while other models were trained with the same dataset; boldface highlights the best result column-wise; arrows indicate the 
importance relation’s direction (e.g., ↑ means “higher is better”); and dashes (“–”) indicate methods unable to predict duration). 
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Figure 7: Qualitative comparison. The best baseline methods, from Chen et al. [7] and GazeFormer [41], are shown here. 
Comparison to other scanpath models is provided in the supplementary materials. 

viewers for each training image, helping the models learn the un-

derlying scanpath distribution. Note that we did not combine the 
two datasets: all methods were trained on each dataset separately. 
Training and analysis too remained separate. 

5.2.1 Qantitative evaluation. To account for variations in image 
sizes and minimize discrepancy-related errors, we normalized the 
fxation points’ coordinates to the [0, 1] range. Specifcally for train-

ing on natural scenes, we used the ResNet instead of the ViT mech-

anism as the vision encoder, for better comparison to other baseline 
models since prior work with training on the OSIE data [70] used 
a ResNet model as the encoder. Table 2 presents a comprehensive 
comparison covering all the metrics. Our model proved at least as 
good as the baseline models by most metrics, for GUIs and nat-

ural scenes both. The results indicate that it simulates scanpath 
trajectories more realistically. Of the models tested, only PathGAN, 
PathGAN++, SaltiNet, UMSS, IOR-ROI, GazeFormer, and Chen et 

al.’s technique can predict temporal information. Chen et al., which 
is one of the best baseline models, predicts positions and duration 
separately; however, fxation positions and duration are highly cor-
related. GazeFormer, by relying on a Transformer model to generate 
an entire scanpath in a single step, overlooks the local dependencies 
and correlations between adjacent points. The fact that our model 
excels by the DTWD and MultiMatch Duration metrics attests to 
its capacity to yield more accurate results and also handle prediction 
of temporal information. 

5.2.2 Qalitative evaluation. Qualitative comparisons revealed that 
the predictions made by our model lie closer to the ground truth 
than those of the other models. Figure 5 presents population-level 
prediction results showcasing the performance of EyeFormer. Fig-
ure 6 and Figure 7 provide comparison between our model and 
the baseline ones (more results are available in the supplementary 
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materials). While PathGAN++ and ScanGAN generate realistic tra-
jectories very well (thanks to their discriminative component), the 
points they predict often fall outside the salient areas and tend 
to lie in clusters. In contrast, DeepGaze++ performs well in locat-
ing fxation points, by applying post-processing to density maps. 
Nevertheless, it generates fxations in incorrect order; on account 
of the non-diferentiable nature of the post-processing, the order 
is not optimized. The Itti–Koch, SaltiNet, and UMSS techniques 
generate scanpaths from saliency maps, encouraging fxations in 
salient areas, but they too fail to optimize for correct fxation order. 
Chen et al.’s technique tends to generate several clusters of closely 
grouped points since they improved the prediction of fxations 
without addressing the need to spread consecutive points out more. 
In additional analysis, we computed the clustering-tendency error 
via the Laminarity metric [1]. The Laminarity value of our model is 
73.137, and that of Chen et al.’s is 178.072 (lower values are better). 
. Its higher score indicates that the model of Chen et al. produces 
fxation-clustering in locations where ground-truth fxations do 
not cluster. Finally, ScanDMM focuses relatively strongly on text 
elements. Our model assigns fxations to salient areas and attends 
to the points’ order with greater precision. It accomplishes this 
by using the salient-value reward (�

sal
) to emphasize points that 

lie within areas of interest and by employing the DTWD reward 
(�

dtwd
) to encourage more accurate trajectories. 

5.3 Ablation Study 
Table 3 presents the results from an ablation study we performed 
on utilizing RL to produce both population- and individual-level 
scanpaths. The results reveal that a Transformer-only model does 
not yield satisfactory results and that incorporating RL greatly 
enhances the prediction of fxations and their duration. With its 
population-level prediction, our RL model brings an improvement 
of 14.7% and 26.5%, respectively, by the TDE and the Eyenalysis 
metric. This too is evidence that using RL increases the model’s 
capacity to generate realistic fxations for scanpaths. As for fxation 
duration, applying RL has a positive infuence on prediction accu-

racy, demonstrated by the 4.8% improvement shown by the DTWD 
metric. Similar efects are visible with the individual-specifc pre-
dictions connected with training users (i.e., the trained model’s 
prediction of scanpaths for GUI images when given the IDs of par-
ticular training users). Additionally, the results highlight that the 
absence of either each type of reward or of inhibition of return 
leads to a decline in overall accuracy. Results from further ablation 
studies are included in the supplementary materials. 

6 APPLICATION FOR PERSONALIZED VISUAL 
FLOWS 

EyeFormer enables handy prediction of individual-level scanpaths. 
Demonstrating this capability in practice, we applied it to the prob-
lem of personalizing visual fows. In model-assisted fow design, 
the designer identifes GUI elements intended to receive more atten-

tion than others [16]. Our goal was to support this by controlling 
the fow of attention to selected elements. While prior work has 
demonstrated model-assisted personalization of graphical layouts 
[60], its focus has been solely on visual-search time, not visual fow. 
In our scenario, the designer supplies a GUI layout and specifes 

the desired visiting order for three or more elements that should be 
fxated upon frst (the most important ones). After this, our system 
outputs both population- and individual-optimized layouts. Gener-

ation of the individual-specifc layouts is based on the personalized 
scanpath prediction results. Specifcally, given a viewer with �

path

scanpath samples (in our experiments, �
path = 50), EyeFormer 

generates corresponding layouts by proceeding from the predicted 
scanpaths at individual level for this particular viewer. 

6.1 Formulation of Optimization Problem 
We expressed this application as a constraint optimization prob-
lem [22, 23, 29–31] that requires ascertaining positions and sizes of 
elements for a GUI based on the predicted personalized scanpaths. 
To address this problem, we built on an integer-programming-based 
layout optimizer [9] that optimizes GUI layouts by considering 
their elements’ packing, alignment, and preferred positioning. Ad-

ditionally, we introduced a constraint requiring adherence to the 
designer-specifed fxation order, along with an objective score 
derived from EyeFormer’s predictions. 

6.1.1 Fixation order constraint. We denote the order of the three 
most important elements, elem1, elem2, and elem3, which should 
be fxated upon earliest, as [elem1, elem2, elem3]. Extending the 
list permits handling more elements, in a similar manner. Firstly, 
for the predicted scanpath [�̂1, �̂2, ..., �̂� ], the procedure identifes 
the GUI element receiving fxations, per fxation point, denoted 
as [elem�̂1 

, elem�̂2 
, ..., elem ̂  ]. Secondly, [elem1, elem2, elem3] is�� 

restricted to being a subset from the beginning of the dedupli-

cated sequence [elem�̂1 
, elem�̂2 

, ..., elem ̂  ]; that is, the sequence �� 

[elem�̂1 
, elem�̂2 

, ..., elem ̂  ] begins with repeated occurrences of�� 

elem1, followed by elem2 and subsequently elem3. This constraint 
guarantees that the required fxation order specifed by the designer 
is honored. 

6.1.2 Objective term for fixation duration. To defne optimality fur-

ther, we applied a fxation-duration objective term for GUI layouts 
that satisfy the required-order constraint. Where the fxations cor-
responding to the sub-sequence of repeated occurrences of elem1 
followed by elem2 and then by elem3, described above, are denoted 
as [�̂1, �̂2, ..., �̂� ] (with �̂� being the fnal fxation before attention 
moves to other elements), the objective is to select the layout whose 
fxation durations for these elements sum to the maximal value:Í� 
�=1 ��̂� 

. 

6.2 Results 
Figure 8 shows two resulting designs (more examples are provided 
in the supplementary materials). Given an original GUI design and 
an annotated sequence of the (three) most important GUI elements, 
we generate both 1) the population-optimized layout and 2) a layout 
personalized for each viewer. The population-optimized layout 
relies on the population-level scanpath prediction, which serves 
as the best compromise across viewers, while the viewer-specifc 
layouts are based on personalized scanpath prediction such that 
each viewer follows the desired order and devotes maximal time to 
the elements deemed important. Testing for 62 individual viewers 
yielded the following results for the designs shown in the fgure: 
For “Design 1”, 56 viewers would follow the desired viewing order 
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MultiMatch ↑Model DTW ↓ TDE ↓ Eyenalysis ↓ DTWD ↓ Shape Direction Length Position Duration Mean 
Population-Level Scanpath Prediction 

Ours w/o RL 4.304 ± 1.309 0.143 ± 0.041 0.049 ± 0.024 5.299 ± 1.235 0.946 0.709 0.925 0.820 0.736 0.827 
Ours w/o �

sal 4.099 ± 1.192 0.137 ± 0.036 0.045 ± 0.023 4.981 ± 1.131 0.946 0.713 0.928 0.825 0.752 0.833 
Ours w/o �

dtwd 5.277 ± 1.009 0.139 ± 0.025 0.036 ± 0.018 6.733 ± 1.038 0.913 0.736 0.907 0.789 0.673 0.804 
Ours w/o IOR 4.485 ± 1.353 0.177 ± 0.047 0.074 ± 0.034 5.327 ± 1.261 0.945 0.697 0.909 0.816 0.738 0.821 
Ours 4.069 ± 1.089 0.122 ± 0.029 0.036 ± 0.018 5.043 ± 1.052 0.942 0.748 0.940 0.825 0.750 0.841 

Individual-Level Scanpath Prediction for Training Viewers 
Ours w/o RL 4.362 ± 1.294 0.137 ± 0.039 0.046 ± 0.027 5.517 ± 1.200 0.945 0.722 0.932 0.815 0.719 0.827 
Ours 4.164 ± 1.039 0.120 ± 0.027 0.035 ± 0.016 5.166 ± 0.998 0.937 0.755 0.936 0.824 0.738 0.838 

Table 3: Results from an ablation study examining RL’s impact on population-level and also individual-specifc predictions 
for training of viewers on the UEyes dataset (the results highlight the importance of DTWD and salient-value reward terms, 
alongside the use of inhibition of return). 

Input Design Population-Optimized Layout Personalized Layout (Viewer 1) Personalized Layout (Viewer 2) 
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 1
 

Average Proportion: 18.43% Proportion: 38.29% Proportion: 21.00% 

D
e
s
i
g
n

 2
 

Average Proportion: 39.29% Proportion: 58.00% Proportion: 41.57% 

Figure 8: Given the input GUI design with the order of the three most important elements as identifed by the designer, we 
generate both the population-optimized layout and the personalized layout for each individual viewer. The fgure shows the 
average percentage of the total fxation duration for those elements over a seven-second viewing period for the population-
optimized layout across all test viewers and the corresponding proportion for each personalized layout shown, also with seven 
seconds of viewing. Personalized layouts can attract more of the respective viewer’s attention to the target elements than the 
population-optimized layout does. 

for the designer-selected elements with the population-optimized 
layout, devoting 1.29 seconds of the seven-second viewing period 
to them, on average. Shown the corresponding personalized layout, 
all viewers would follow the desired order, with an average total 
duration of 1.86 seconds (44.19% more than with population-level 
optimizing). Given “Design 2”, 46 viewers shown the population-

optimized layout would follow the fxation order desired, with an 
average duration sum of 2.75 s. With the personalized layout for 
Design 2, 61 viewers would do so, and the average total duration is 
3.19 seconds, a sum 16% greater than that from the population-level 
layout. The results attest that personalized layouts can draw more 
of the viewer’s attention to the target elements than a population-

optimized layout does. 

7 DISCUSSION AND FUTURE WORK 
EyeFormer is able to cover both spatial and temporal characteristics 
of scanpaths across various stimulus types and factor in individual-

specifc viewing behaviors, which are vital for understanding visual 
attention. It opens the door to automated personalization of visual 
fows, which enables GUI software to respond better to each user’s 
behaviors and expectations. Personalized prediction is critical for 
practical developments. There is rather extensive variability in 
scanpaths across individuals; in fact, averaged scanpath prediction 
may not be very meaningful – after all, it might be unlikely to match 
any actual user. From inputting example scanpaths of a single user, 
we have demonstrated that personalized layouts can be generated 
for that user. Greater accessibility, through GUIs optimized for 
people with viewing difculties, is one of many possible application 
domains. Further research could also use subjective comparison 
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studies to see whether users prefer GUIs personalized in accordance 
with scanpath predictions over the original interface. 

7.1 Understanding Viewers 
Future work could use viewer clustering to enhance the inter-

pretability of extensive sets of scanpaths for designers. Clustering 
enabled by applying, for example, �-means to the viewer embed-

dings in our model could help reveal how viewers of various kinds 
interact with visual content, thereby aiding designers in cultivat-

ing aggregate-level insight beyond individual paths, for a broader 
perspective. Further research could also yield better tools for visu-

alizing and comprehending diverse viewer behaviors. 

7.2 Practical Applications of Personalization 
By controlling the visual fow over GUIs, designers can encour-

age users to focus on the most important parts of the interface. 
This improves usability and aids in reaching specifc design goals, 
such as efective market funneling. Personalized visual fows can 
support optimal ad placement and related design such that key 
messages catch the attention of users and drive them toward such 
desired actions as clicking or buying. Prior work on visual-saliency 
analysis has highlighted that better visual fow can enhance users’ 
engagement and guide behaviors [14, 58, 66]. 

The ability to predict individuals’ gaze patterns could also sup-

port creating adaptive GUIs that respond dynamically to user inter-

actions and preferences. Moreover, associated research addressing 
the correlation between design trends and user-interaction behav-

iors could prove fruitful; for instance, being able to fne-tune scan-

path prediction in light of current user data could address the fact 
that individuals’ interactions with GUIs evolve over time. 

The potential advantages extend beyond GUIs. Education tools 
could beneft from adjusting visual content in line with the gaze 
patterns of each user, thus facilitating students’ improved compre-

hension of complex concepts. Similarly, training modules that adapt 
to users’ learning progress “on the fy” and focus on areas ripe for 
improvement might promote more efcient learning. Also, predict-
ing users’ likely points of focus in augmented- and virtual-reality 
settings could encourage more immersive experiences through dy-
namic adjustment of visual content that helps users locate objects 
easily. 

7.3 Ethics Concerns 
A practical and ethics-related challenge remains, however, in how 
to collect eye-tracking data from individuals. We foresee two main 
options: 1) using Web cameras or other commodity devices, with the 
user’s permission, and 2) inferring patterns via proxy signals such 
as mouse movements. Since people with privacy concerns may be 
reluctant to share their gaze data, the applications developed – such 
as GUI layouts personalized on the basis of the user’s scanpaths 
– should be able to run locally; in the ideal case, sensitive gaze 
information should not be transmitted over the Internet. Another 
possibility is to compute “sufcient statistic” measurements

1 
and 

send these to a server that generates personalized GUI layouts. 
These approaches would help maintain user privacy while still 
ofering the benefts of personalized scanpaths. 

1
See https://en.wikipedia.org/wiki/Sufcient_statistic. 

7.4 Limitations 
At present, the model is limited to fxed-length scanpaths, since we 
considered a limited time window of free-viewing behaviors (based 
on the seven-second maximum span in the UEyes dataset [24], 
which permitted better comparison with earlier work). However, 
it should be possible to output variable-length scanpaths by pre-
dicting the fnal state. In addition, our discussion concentrated 
on predicting fxation sequences. We acknowledge that viewing 
behaviors are far more complex, encompassing many other eye 
dynamics (blinks, vestibulo-ocular refexes, post-saccadic oscilla-
tions, etc.), which future studies could explore. Follow-up research 
could also investigate ways of reducing the number of scanpaths 
needed per viewer (from the current 50). Finally, the state-of-the-art 
scanpath-related metrics are designed primarily for natural scenes, 
so they may not fully capture the characteristics of scanpaths in GUI 
settings. Refning the metrics employed should aford deeper un-

derstanding of how models such as ours perform and thus enhance 
the development of more efective methods. 

8 OUR CONCLUSION 
EyeFormer is a Transformer-guided RL model, which predicts 
both population-level and individuals’ scanpaths well, using the 
Transformer architecture as the policy model ofers a novel repre-
sentation for accurately capturing variability in scanning patterns 
across stimuli and individuals. While the Transformer-guided de-
sign efectively captures long-range sequential dependencies on 
the basis of previous fxations, combining it with RL enhances the 
generation of fxation sequences through optimization that em-

ploys non-diferentiable objectives, such as maximizing the salient 
values of fxations. In addition to performing better than (or at least 
on par with) state-of-the-art models in the realm of population-

level prediction, EyeFormer ofers the frst accurate modeling of 
individual-to-individual variability in scanpaths, from only a few 
user samples. Its application for GUIs optimized in keeping with 
the personalized scanpath-prediction results marks another contri-

bution ofering a way forward. 
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