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Abstract
We explore a novel transcription task in mobile text entry research,
presenting stimuli within LLM-generated conversational contexts
to improve participant engagement and phrase memorability. We
conducted two studies: an eye-tracking study examining partic-
ipants’ attention when presented with conversational contexts
alongside stimuli, and an experiment comparing LLM-generated
and human-generated prompt-response pairs in transcription tasks,
involving both high and low memorability stimuli. Key findings
reveal that presenting conversational contexts improves recall for
low memorability phrases and results in fewer uncorrected errors
during transcription. No significant effects were observed on other
basic text entry metrics, or participant subjective appraisals of en-
gagement with the novel task, suggesting it can be used safely
as an alternative to the traditional transcription task. We discuss
the potential of LLMs in improving text entry evaluation methods,
including generating diverse linguistic styles, emotionally loaded
contexts, and even simulating entire evaluation processes. Our
study highlights the need for systematic approaches to generate
and evaluate LLM outputs for research purposes, and for proposing
new metrics and evaluation methods.

CCS Concepts
• Human-centered computing → Laboratory experiments;
Ubiquitous and mobile computing design and evaluation
methods; Empirical studies in ubiquitous and mobile com-
puting.
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1 Introduction
Evaluation methods for mobile text entry research typiclly in-
volve transcription tasks, in which participants are presented with
phrases (stimuli), and are then asked to copy these using an input
method, as quickly and as accurately as possible. In some studies,
the stimuli remain visible to participants for the duration of the
task, while in others, the phrases disappear as soon as the partici-
pant begins writing, in order to generate a more ecologically valid
setup (since, in real life, text composition rarely involves copying a
reference text visible to the user). In both cases, it is desirable to use
stimuli that arememorable, in order to minimise the amount of time
looking at the stimulus while composing text (therefore avoiding
dilution of extracted metrics such as words-per-minute), and also
to avoid circumstances where the participant has forgotten what
they need to type (e.g. after committing and correcting an error),
and are unable to complete the task successfully [20, 22]. For this
purpose, the text entry community typically employs one of two
standard phrase sets (MacKenzie [22] or MobileEmail [36]), which
have been validated for memorability [19].

There are, however, several issues with the experimental setup
as described above. Firstly, the transcription task has been criticised
as having low external validity [37]. Secondly, there is doubt as
to whether the stimuli included in the MobileEmail set are rep-
resentative of general text entry contexts, since they are mostly
derived from a business setting, and use language that is related
to professional settings [13, 19]. Further, the task of copying data
presented to participants entirely out of context can be tedious and
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tiring, leading to increased fatigue and disengagement from the
task after a while, and subsequently, worse performance [21, 29].

To address these problems, we hypothesised that presenting
stimuli to participants as part of a messaging conversation, instead
of stand-alone decontextualised phrases, we might be able to im-
prove engagement with the task. Providing conversational contexts
to accompany the stimuli, might assist the participant to remember
the phrases to be transcribed, leading to fewer recall issues and
thus allowing the use of less memorable phrases in text entry ex-
periments. This would allow researchers to use phrase sets derived
from various sources that are more representative of today’s use
of language, and communication contexts (e.g. social networks,
websites, books etc.), without having to worry about validating
their memorability. Naturally, creating such conversations manu-
ally could be very inefficient. We thus wondered if could leverage
Large LanguageModels to automatically create these conversations,
therefore automating the process in a reliable and useful manner.

In this paper, we present two studies aimed at addressing the
previous questions. In the first study, we investigate participants’
attention when a conversational context (prompt) is presented to-
gether with a stimulus (response), through an eye-tracking study.
Next, we demonstrate a method to evaluate the quality of LLM-
generated conversation prompts. Finally, in the second study, we
perform a second experiment with 53 participants to compare the
effects of using LLM and human-generated prompt-response pairs
in transcription tasks, including both validated high and low mem-
orability stimuli as the response phrases.

2 Related Work
Text entry research has relied heavily on controlled laboratory stud-
ies for accurate quantification of speed and errors. These studies typ-
ically employed transcription tasks where users copied presented
text as quickly and accurately as possible, making this the de-facto
evaluation method [32]. Transcription protocols allow for error
correction through researcher-specified combinations of backspace,
cursor movement, or auto-correction features, and focus on the
computation of metrics such as words per minute and various error
rates. Some researchers also explored free text composition tasks
(e.g. based on a contextual prompt, such as an instruction, incoming
message, situation description or images [24, 37]). A challenge in
such task remains that because there is no reference text to compare
user entry against, it is impossible to calculate certain error rate
metrics, as it is not possible to determine user intent.

Lab studies with transcription tasks suffer from the main draw-
back of lacking external validity. As noted by Vertanen and Kristens-
son [37], users real behaviour is to imagine and compose text, rather
than memorise and copy text that is presented to them by some
unknown authority. In real life, the text entry process may also be
frequently interrupted due to external events and thus a lab study
does not capture behaviours and problems caused by attention
shifts and other cognitive processes involved in interruptions. To
observe text entry behaviours in more realistic settings, researchers
have experimented with in-the-wild studies that aim for data col-
lection outside the laboratory setting. Some of these studies merely
transfer the transcription task outside the lab (e.g. [28, 32]). Others
have experimented with embedding these tasks in mobile games,

to increase compliance [15] and avoid boredome or fatigue. Further
studies have employed passive sensing, i.e. using dedicated key-
boards and data collection frameworks to collect typing behaviour
data from users’ free text entry using their own applications for
every-day contexts [6, 12, 18, 25, 34]. An important consideration
in such efforts is to take privacy as a critical aspect of the software
development and data capture methodology, since participants’
text can include sensitive information such as passwords, credit
card numbers, and of course, private messages. To this end, some
researchers resort to recording only non-sensitive data, such as
inter-key intervals, non-character keys, word counts and other
privacy-preserving metrics [4, 6].

These studies demonstrated that lab behaviour during text entry,
may often be quite different from real-world settings. However, it is
unlikely that the traditional lab evaluation, using the transcription
task, will be entirely replaced by other laboratory methodologies or
in-the-wild studies, as the former allows the capture of more precise
and detailed metrics that help to understand user behaviour, and
further allow for data capture using additional sensing equipment
such as eye trackers or EEG headsets, which cannot be used in the
wild [16, 30]. It therefore remains important to consider whether
there might be improvements that we canmake on the transcription
task, in order to improve its external validity and reduce some of
its inherent shortcomings.

Increasing realism in the appearance and content of an interface
during an experimental task, may help to remove unwanted be-
haviours and their interactions with treatment conditions, thereby
improving the power of an experiment to discover effects [21]. Re-
searchers have also found that embedding contextual information
in a basic skills assessments may positively affect performance (e.g.
in applying numerical literacy [31]). Considering mobile text entry
as a basic digital literacy skill, our main research question is to ex-
amine if, and how presenting a transcription stimulus (phrase) from
the validated phrase set in [36], in an ecologically valid manner (i.e.
as a response to an incoming text message, see Fig. 1a), may affect
participants performance and engagement with the task.

3 Study 1 - Visual Attention during
Transcription

3.1 Objective
A significant concern at the start of our work, was to ensure that
participants would approach the task in an ecologically valid man-
ner, i.e. reading the incoming messages (prompt phrases) before
attempting to memorise the intended response phrases and then
transcribing them. We were mindful of the danger that participants,
knowing the focus of the experiment is the transcription, might not
pay any attention to the prompt phrases, and instead focus only
on the stimulus phrase, possibly foregoing any positive effects of
having this additional task context presented to them. Therefore in
our first study, our primary objective was to validate the UI design
of tasks and its ability to produce the ecologically valid experience
we desired. A second objective was to examine whether presenting
response phrases all at once, or using a gradual word-by-word pre-
sentation might also have any impact on participants - this would
a text equivalent to previous studies where stimulus phrases are
read out to participants, instead of presenting them in writing [1].
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(a) Prompt-response pairs presented to par-
ticipants prior to entry.

(b) Response phrase disappears when par-
ticipants begin entry.

Figure 1: Demonstration of the interface in the LLM-prompt condition. Participants need to transcribe the phrase in the purple
bubble, which disappears as soon as they start writing (replaced with “...”).

3.2 Methods
The study design is a 2x2 experiment with one factor being context
(baseline: only showing the phrase to be transcribed; LLM-prompts:
showing LLM-generated prompt-response pairs) and the second
factor being a phrase presentation effect (no effect and gradual ap-
pearance). Therefore, conditions are 1) baseline, with presentation
effect (B-E), 2) baseline, no presentation effect (B), 3) LLM-prompts,
with presentation effect(L-E), and; 4) LLM-prompts, no presentation
effect (L). We used highly memorable phrases from the MobileEmail
set (mem_count_cer0>7, words≥ 5, total 121 phrases) and their as-
sociated LLM-generated prompts (see next section for details).

3.2.1 Experiment environment. Participants took the study on a
desktop computer environment in a controlled laboratory setting,
using a browser simulating a mobile device with a custom HTML5
- JavaScript interface that presented the phrase pairs as a text con-
versation between two persons. Apart from keystroke events, we
captured participants’ gaze using a Tobii T120 Eye-tracker inte-
grated in a 17-inch TFT monitor. We opted to use a desktop setting
for this study, as our aim was mostly to examine how participants
behave when the prompt-response pairs are presented to them.
Using a desktop eye-tracker with a large monitor helps to circum-
vent calibration and accuracy problems that are inherent to using
wearable eye trackers to observe use on handheld devices.

Using the experiment application interface, initially, participants
entered their demographic details, and a random order for the ex-
periment conditions was computed for them. After entering their
details, participants could begin the first block of phrases. Complet-
ing a block returned them to the demographics screen, from where
they could begin the next block. Each condition was associated
with 10 phrases selected randomly without duplication from the
pool of available phrases.

In all conditions we simulate a messaging conversation where
the prompt (incoming message) appears in a blue bubble, while the
response to be transcribed appears in a purple bubble (Fig. 1a). The
baseline condition presents an empty prompt bubble, and in the
purple bubble, a response phrase from the MobileEmail set, asking
participants to transcribe it. The response phrase is presented either

in its entirety at once (no effect condition), or gradually on a word-
per-word basis to the participant (gradual condition). The input field
is locked until the prompt phrase has been fully displayed. The re-
sponse phrase disappears once the participant begins transcription
and appears again once the participant has submitted their input
(Fig. 1b). The LLM-generated condition presents prompt-response
phrase pairs using both bubbles. The prompt phrase appears first,
with a pop-out effect to draw participants’ attention to it. We then
apply a suitable delay based on the length of the prompt phrase, to
allow for adequate time to read the prompt. Past literature indicates
a mobile reading speed of 170-190WPM [5, 35], so we used a con-
servative estimate of 150WPM translated to 80ms/character (given
that some participants may not be proficient English speakers). We
also add a further 3000ms to the calculated delay, to allow partici-
pants time to begin reading the prompt, as some might not start
right away, and also to revisit it before the response phrase appears.
After this delay, the response phrase appears as per the baseline
condition. After completing a phrase block, the participants are
returned to the demographics page, where they can begin the next
block until they complete the study.

3.2.2 Prompt-response generation. We used the Llama3-8B Instruct
model (with 6-bit quantization to fit the memory of our available
GPU - RTX3070 with 8GB VRAM) as the LLM to generate the
prompts to accompany the response phrases selected from the
MobileEmail set. The quality of the output was not a priority for
this study, but after several iterations of refinement and following
guidance by White et al. [39], we concluded to use the prompt in
Listing 1 to instruct the LLM in terms of its output, using a few-shot
technique to prime the LLM to conform to providing JSON output
(in order to facilitate further processing):

3.2.3 Participants. Participants were selected via convenience sam-
pling from the student population of a local university and included
13 participants (1 female), mean age 25.07 years old (𝜎 = 4.83),
with a self-reported proficiency in English equivalent to CEFR C2-
Proficiency (n=8), C1-Advanced (n=3), B2-Upper Intermediate (n=1),
or non-native without English certification (n=1).
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Write a mobile messaging conversation between

two persons.

The first person opens the conversation with

either a question or a statement.

The second person responds with the phrase [

RESPONSE PHRASE ].

The first person 's phrase must have high

contextual relevance to the answer.

The dialogue must consist only of one opening

phrase and one response.

Your response must be a single JSON object

with two fields: 'opening ', 'response '.

You must not include any commentary in your

response , ONLY than the JSON object.

EXAMPLE PHRASE: "this is a classroom test"

EXAMPLE OUTPUT:

{

"opening ":" what is this document?",

"response ":" this is a classroom test",

}

Listing 1: Prompt used for Study 1 (P1).

3.3 Study 1 Results
3.3.1 Keyboard metrics. From the collected keystroke events we
computed the typing speed (WPM), minimum string distance (MSD)
between the response phrase and submitted text, and backspaces
per phrase during entry (BSP). In terms of performance, we did
not find any statistically significant differences in MSD (Friedman
𝜒2 = 2.592, 𝑝 = .459), BSP (Friedman 𝜒2 = 4.890, 𝑝 = .18) or WPM
(ANOVA 𝐹 = 0.019, 𝑝 = .996), see Table 1.

3.3.2 Eye-tracking metrics. We measured participants’ gaze be-
haviour on the blue bubble area containing the prompt phrase
(where appropriate) and the purple bubble area containing the re-
sponse phrase. Metrics include the total fixation duration, total
number of fixations, and fixation duration on prompts as a percent-
age of overall fixations in both the prompt and response areas.

The total number of fixations on the prompt bubble is statistically
significant across conditions (ANOVA 𝐹 = 26.3092, 𝑝 < .001). Pair-
wise t-tests with post-hoc Bonferroni correction demonstrate sta-
tistical significance between conditions (B-E, L-E): 𝑡 = −6.349, 𝑝 <

.001; (B-E, L): 𝑡 = −6.747, 𝑝 < .001; (B, L-E): 𝑡 = −6.3205, 𝑝 < .001,
and; (B, L): 𝑡 − 6.7138, 𝑝 < .001. For the response bubble, again
the difference is statistically significant (ANOVA 𝐹 = 6.5008, 𝑝 <

.001). Pairwise t-tests with post-hoc Bonferroni correction demon-
strate statistical significance between conditions (B-E, L-E): 𝑡 =

−5.1826, 𝑝 < .001; (B-E), L): 𝑡 = −6.6458, 𝑝 < .001, and; (B, L-E):
𝑡 = −4.5346, 𝑝 = .001.

Accordingly, total fixation duration difference on the prompt
bubble is statistically significant across conditions (ANOVA 𝐹 =

25.1127, 𝑝 < .001). Pairwise t-tests with post-hoc Bonferroni correc-
tion demonstrate statistical significance between conditions (B-E,
L-E): 𝑡 = −6.3141, 𝑝 < .001; (B-E, L): 𝑡 = −6.422, 𝑝 < .001; (B,
L-E): 𝑡 = −6.139, 𝑝 < .001 and; (B, L): 𝑡 = −6.2484, 𝑝 < .001.

For the response bubble, again the difference is statistically sig-
nificant (ANOVA 𝐹 = 25.1127, 𝑝 < .001). Pairwise t-tests with
post-hoc Bonferroni correction demonstrate statistical significance
between conditions (B-E, L-E): 𝑡 = −6.3141, 𝑝 < .001; (B-E, L):
𝑡 = −6.422, 𝑝 < .001; (B, L-E): 𝑡 = −6.139, 𝑝 < .001, and; (B, L):
𝑡 = −6.2484, 𝑝 < .001.

When considering the duration of fixations on the prompt area
as a percentage of the duration of fixations in both areas, we note
that, as expected, it makes for a marginal amount of attention in the
baseline conditions (with effect: 𝑥 = 2.946%, 𝜎 = 1.845%; no effect:
𝑥 = 3.388%, 𝜎 = 2.288%), whereas in the LLM prompt conditions,
the percentage is significantly higher (with effect: 𝑥 = 27.526%, 𝜎 =

10.885%; no effect: 𝑥 = 26.293%, 𝜎 = 10.715%).

3.4 Study 1 discussion
Our results show that participants are not paying attention to the
empty prompt bubble, as would be expected in the baseline condi-
tions, but they are spending some time to observe it in the LLM-
prompt conditions (Fig. 3a). This dismissed our worry that partici-
pants might ignore the prompt phrase altogether and simply wait to
read the response phrase that needs to be memorised. Nevertheless,
the attention spent on the prompt is considerably lower than the
time spent observing the response phrase. As for the response area,
the presentation effect does not seem to have an impact on the
duration of fixations on the response phrase within the same basic
condition (baseline, LLM prompts). Interestingly, participants spend
less time fixating on the response phrase when it is presented with-
out an accompanying prompt. Overall, we find supporting evidence
that presenting phrases to be transcribed together with a prompt
does attract participants’ attention to the prompt, and also increases
the time spent examining the response phrase, therefore potentially
improving their chances to memorise the phrase correctly.

4 Study 2 - Memorability and performance with
human vs. LLM-generated prompts

4.1 Objective
In this study, we sought to investigate how participants in a tran-
scription experiment might be affected by the presentation of high
and low memorability phrases, accompanied by conversation con-
text (prompt) phrases that are generated by LLMs. We contrast
this with prompt phrases hand-crafted by humans for the same re-
sponses, and against a baseline which presented only the response
phrase to participants. This study concerns a 2x3 experiment de-
sign with two main factors: Context (Baseline - no prompts [B],
LLM-generated prompts [L], Human-generated prompts [H]), and
Response Phrase Memorability (High [HM], Low [LM]). We thus
have six conditions labelled as: 1) B-HM; 2) B-LM; 3) L-HM; 4) L-
LM; 5) H-HM and; 6) H-LM. The aim was to be able to compare
LLM-generated prompts, which can be constructed massively and
with minimal effort, vs. prompts generated by humans, a time-
consuming manual effort.

4.2 Experiment environment
Wemodified the experiment application environment used in Study
1, with minor presentation and usability tweaks, in order to provide
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MSD BSP WPM
Mean SD Mean SD Mean SD

Baseline - w. effect (B-E) 0.962 0.984 14.231 8.477 45.091 14.414
Baseline (B) 1.531 1.424 18.154 10.754 46.432 14.754
LLM prompts - w. effect (L-E) 1.123 1.516 17.846 13.539 45.686 15.858
LLM prompts (L) 1.638 2.126 20.154 9.957 45.451 13.936

Table 1: Participant performance means and standard deviations.

(a) Prompt area (b) Response area

Figure 2: Total fixation counts on the prompt and response phrase areas. Conditions 1, 2: baseline; 1, 3: with presentation effect.

(a) Prompt area (b) Response area

Figure 3: Total fixation durations on the prompt and response phrase areas. Conditions 1, 2: baseline; 1, 3: with presentation
effect.

the following flow. First, participants enter their basic demographics.
A random order of the 6 experiment conditions is calculated for each
participant. When participants have entered their demographics,
they can begin transcribing phrase blocks. Each block corresponds
to one condition, and consists of 15 phrases (90 phrases in total
per participant). Before each block, participants are required to
confirm that they are willing to devote their full attention to the
experiment, and that they are in appropriate settings that allow
them to continue unobstructed. They are then presented with a
screen detailing the instructions they need to follow during the
task. During each block of transcription tasks, in all six conditions,
single response phrases or prompt-response phrase pairs are picked
randomly (without duplication) from a pool of candidates, once
the block is started. After each block, participants are asked to

provide answers to a 16-item questionnaire. Questions appear in
random order every time, in order to avoid participant familiarity
with the structure, and they include a trick question that we use to
filter out participants who respond carelessly to the questionnaires
(see later sections for questionnaire design). After submitting the
questionnaire, participants return to the main demographics screen,
and can proceed to the next block. The experiment application saves
participants’ progress so the experiment does not need to be carried
out in one session. Participants carried out the tasks online from a
location of their own choice, and using their own mobile devices.
Controls were implemented to prevent participants from taking
the test on anything other than a smartphone, with redirection to
an error page if an unsuitable device was detected. Readers are
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(a) Condition 1: Baseline,
with effect

(b) Condition 2: Baseline (c) Condition 3: LLM
prompt, with effect

(d) Condition 4: LLM prompt

Figure 4: Gaze heatmaps for the four conditions in the eye tracking study.

welcome to try the task at [Anonymised URL for review]. A video
of the task is also included as supplementary material.

4.3 Selecting memorable and non-memorable
responses

The MobileEmail phrase set is accompanied by a metadata file,
containing results on each individual phrase from the experiments
ran in the accompanying paper. We base our work on the fields
mem_count_cer0 and words. The former indicates the number of
Amazon Turk workers who transcribed the phrase without errors
(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 = 0) during the memorisation experiment
(𝑚𝑖𝑛 = 0,𝑚𝑎𝑥 = 10), and the latter contains the length of the
phrase as a number of words. In the design of the MobileEmail
phrase experiment, each phrase was presented to 10 workers and
the researchers assigned a classification of “high” memorability to
any phrase that had a mem_count_cer0 score ≥ 8. This threshold
was chosen as a reasonable value, but without further justifica-
tion. As a result, the categorisation is subject to effects from the
random allocation of phrases to participants, and therefore is not
entirely objective. To overcome this limitation, we first create a
new label of human memorability (H_mem) on the data based on
the mem_count_cer0 field, by binning the mem_count_cer0 score
into three categories of Memorability: High ([7 − 10]), Medium
([4 − 6]) and Low([0 − 3]). Further, we employed the memorabil-
ity metric proposed by Leiva and Sanchis-Trilles [20] to assign
an algorithmically derived memorability score to the phrases, and
then again created a new label of algorithmic memorability A_mem,
binning into the same three categories: High, Medium and Low.
Comparing the outcome of both labelling operations on the data,
we note that there is considerable discrepancy in the results, espe-
cially for the “Medium” category (Table 2), bringing about some

A_mem classification
High Medium Low

H_mem classification
High 230 161 92
Medium 147 203 209
Low 15 27 90

Table 2: Confusion matrix for the human and algorithmic
memorability classifications.

doubt on the generalisability of both the human and algorithmic
approaches. However, to proceed, we kept the phrases in the “High”
and “Low” categories where both classification methods yielded the
same result. The resulting set contains 230 phrases in the “High”
memorability category, and 90 phrases in the “Low” category.

Further, we noted that the distribution of phrases per length
(number of words) is significantly different between the two cate-
gories (𝑥ℎ𝑖𝑔ℎ = 5.702, 𝜎 = 0.846;𝑥𝑙𝑜𝑤 = 7.760, 𝜎 = 1.206). To ensure
a fair distribution of sentence lengths, we discarded any phrases
with a length ≤ 5 words, resulting in 91 “High” and 82 “Low” memo-
rability phrases.Wewill use this pool of phrases and their associated
prompts in the experiment application described previously, and
as detailed in Section 4.4.4. Next, we describe how the human and
LLM-generated accompanying prompts were generated.

4.4 Prompt-response pair generation
4.4.1 Human prompt generation. We assigned the task of generat-
ing suitable prompts for each phrase to two members of our team,
therefore generating two prompts (A & B), for each response phrase
in the pool described in Section 4.3. We left out a few phrases for
which the human generators had difficulty imagining a suitable
prompt, leaving 169/173 phrases with two prompts. A further two
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members inspected the generated prompts and noted their pref-
erence (A or B). For the cases where there was no consensus, a
fifth member of the team acted as a tie-breaker, indicating their
preference and also how strong it was (slight, strong, no prefer-
ence). Although we tried to adopt a consensus-based approach to
selecting the most appropriate human prompt for each response
phrase, this process is still subject to human bias.

To objectively assess the quality of generated prompts, we used
the Universal Sentence Encoder QA (USE-QA) model, which is
trained on 512-dimensional embeddings of questions and answers,
yielding the cosine similarity between the embedding vectors of
a question and its answer (thus, enabling an assessment of their
relative logical coherence) [7]. For example, the embedding vector
of the question “How old are you” would have a higher cosine
similarity to the vector of answer “I am 25 years old”, than that of
answer “Today is Friday”. Using the USE-QA scores, we can select
the human-generated prompt which algorithmically appears to
match the response phrase best. We then compared the agreement
between the prompts chosen by the human selection process, and
the prompts chosen by the USE-QA score, finding an agreement in
90 cases (53%). Bearing inmind that the tie-breaker’s responses were
often marked as “slight” or “no preference” (meaning that there the
difference between the two prompts was owed to slight nuances and
subjective preference), we checked the alignment again, ignoring
the choice difference, and the alignment was 67.5%.

A further observation was that, quite often, the difference in the
USE-QA scores was rather small. We converted the difference of the
USE-QA scores of the two prompts into degrees (angles) separating
the embedding vectors, to see how “far apart” the prompt vectors
are, and observed differences from nearly 0 to≈ 16.5 degrees. There-
fore we computed the 33𝑟𝑑 and 66𝑡ℎ percentile to create three labels
for the USE-QA choice, namely “no preference” (0%−33% = 0−1.998
degrees difference), “slight preference” (34% − 66% = 1.999 − 4.370
degrees difference) and “strong” (67%− 100% ≥ 4.370 degrees differ-
ence). Then, ignoring the choice difference for anything qualified
as having less than a strong difference (either via human judgement,
or USE-QA difference labelling), the alignment of choices improves
to 89.99%. Put more simply, we consider the human prompt choice
and USE-QA score-based prompt choice to be “aligned” (i.e. more
or less equal) if:

• Human and USE-QA-based prompt choice are identical, OR,
• Human and USE-QA-based prompt choice are not identical,
but the tiebreaker preference is “slight” or “no preference”,
OR,

• Human and USE-QA-based prompt choice are not identical,
but the USE-QA label is “slight preference” or “no preference
(vector degree ≤ 4.37 degrees)

With this in mind, we can demonstrate that using the USE-QA
scores can help us pick context phrases as well as human evaluators
would, for 90% of the time - we will exploit this result as described
in Section 4.4.4 in order to select the best LLM-generated prompts.

4.4.2 LLM prompt generation. To investigate our hypotheses fur-
ther, we needed to derive a process to generate plausible prompt-
response phrase pairs, improving those used in Study 1. Though
in Study 1 we used the prompts generated by Llama3-8B, there
are multiple LLM open-source models available, each with varying

performance in benchmarks. Therefore we extended the process
by employing an additional state-of-the-art (at the time of writing)
open source model, namely Mistral7B Instruct v0.2 with 6-bit quan-
tization, to generate prompts alongside Llama3-8B, for the same
MobileEmail phrases.We used the subset of theMobileEmail set that
contains phrase with no numeric characters (1347 phrases). From
these, the LLMswere able to generate prompts for 1188 phrases (fail-
ing to provide valid JSON outputs for the rest). Inspecting the results
of the generation process, we found instances where both LLMs
either provided non-sensical prompts unrelated to the response,
and instances where the generated prompt was mostly consistent
of words also present in the response phrase. For example:

• P: How much audio can be stored on this new 8Gb memory
card? - R: How much volume?

• P: Are you free on Friday? - R: See you on Friday.
To evaluate the quality of the generated prompts, we performed

an analysis using a twin approach: collaborative evaluation by
other LLM agents and human evaluation. Using LLMs as a judge is
a recently popular method for evaluating LLM outputs, aiming to
overcome the problem of human evaluation which is impractical at
large scales. LLMs-as-a-judge can be deployed in a single-agent, or
multi-agent manner (e.g. through agentic negotiation) [8, 11, 23].
For the agentic evaluation, we created three LLM agent instances
(Llama3-8B, Mistral-7B and using a third state-of-the-art model,
Gemma2-9b Instruct with 4-bit quantization) and sent the prompts
generated by Llama3-8B and Mistral7B to be evaluated for logical
coherence by the agent, with a rating of “High”, “Medium” or “Low”
coherence. In this way, each generator model evaluated the prompts
generated by itself and the other generator model, and Gemma2
acted as an “independent” evaluator, assessing the logical coherence
of the prompts generated by the other two generator models. The
prompt P2 used for this process is presented in Listing 2.

Provide a categorisation of "high", "medium" or "

low" to assess the logical coherence of the

following two conversations.

Your response must be a single JSON object with

two fields: 'conversation1 ' and 'conversation2

'.

You must not include any commentary in your

response , ONLY than the JSON object , as per

the example that follows.

Conversation 1:

Person 1: [PROMPT FROM MODEL A]

Person 2: [RESPONSE PHRASE]

Conversation 2:

Person 1: [PROMPT FROM MODEL B]

Person 2: [RESPONSE PHRASE]

EXAMPLE OUTPUT:

{" conversation1 ": "medium", "conversation2 ":" high

"}

Listing 2: Prompt used for logical coherence evaluation (P2).
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Mapping the generated classifications to scores between 1 (low)
and 3 (high), we calculated a final coherence score 𝑓 (𝑖,𝑚) of prompt
- response pair 𝑖 generated by LLM model𝑚 (Mistral-7b or Llama3-
8B), as the simple sum of weighted scores 𝑆of each evaluation
𝑓 (𝑖,𝑚) = 𝛼 × 𝑆𝑚 + 𝛽 × 𝑆𝑚′ + 𝛾 × 𝑆𝑔 , where𝑚′ is the evaluation
by the other model also used to generate prompts, and 𝑔 is the
Gemma2 model. We set the parameter values 𝛼 = 0.2 and 𝛽,𝛾 = 0.4,
therefore biasing the resulting score to the evaluation provided by
models other than the one that generated the phrase pair.

Further, we performed a short study presenting 120 prompt-
response pairs (60 Llama3-B generated, 60 Mistral7B generated) to
human participants, selected as stratified random sample from the
entire set, based on the calculated 𝑓 (𝑖,𝑚) score of pairs. We asked
participants to provide a logical coherence rating of the presented
pairs on a 5-point scale of 1 (low) to 3 (high). Participants were
selected via convenience sampling from the student population of
a local university and included 23 participants (8 female), mean
age 21.261 years old (𝜎 = 4.204), with a self-reported proficiency in
English equivalent to CEFR C2-Proficiency (n=20) and B2-Upper In-
termediate (n=3). Participants took the study online from a location
of their choice, using their own devices, with a custom interface
adapted from Study 1, that presented the phrase pairs as a text
conversation between two persons (Fig. 5).

As shown in Fig. 6, the results bear a statistically significant
correlation for the Llama3 generated prompts (Spearman 𝜌 =

0.479, 𝑝 < .01) but not for the Mistral7B generated prompts (Spear-
man 𝜌 = 0.041, 𝑝 > 0.05), indicating that the agentic evaluations
made by Mistral7B and Gemma2 on the prompts generated with
Llama-3, generally align better with human perception of logical
coherence. However, we note that the actual mean coherence in hu-
man evaluations is relatively low (𝑥𝐿𝑙𝑎𝑚𝑎3 = 1.669, 𝜎 = 0.498,𝑚𝑖𝑛 =

1.0,𝑚𝑎𝑥 = 2.786;𝑥𝑀𝑖𝑠𝑡𝑟𝑎𝑙7𝐵 = 1.714, 𝜎 = 0.471,𝑚𝑖𝑛 = 1.0,𝑚𝑎𝑥 =

2.760), and the same observation applies to agentic evaluations
(𝑥𝐿𝑙𝑎𝑚𝑎3 = 1.773, 𝜎 = 0.509,𝑚𝑖𝑛 = 1.0,𝑚𝑎𝑥 = 3.0;𝑥𝑀𝑖𝑠𝑡𝑟𝑎𝑙7𝐵 =

1.714, 𝜎 = 0.468,𝑚𝑖𝑛 = 1.0,𝑚𝑎𝑥 = 2.8). Taken together, these re-
sults mean that the prompt-response generation process shows
promise but with room for improvement. We note that delegating
the task of assessing the success of producing logically coherent
pairs to agentic models (so as to avoid the need for human appraisal)
depends on the LLMmodels used to drive the agents, thus we might
need a more robust approach (e.g. the USE-QA scores).

4.4.3 Improving the prompt generation process. Based on our ex-
perience of human prompt generation and in discussing the inter-
nal cognitive process employed by the team members to generate
these, we ideated some solutions to improve logical coherence in
the LLM generation process. We found that when humans created
the phrases, we often needed to imagine first some situational con-
text in which the phrase might be used, and then derive the prompt
from that context. As previous work demonstrates, LLMs are in-
herently capable of high quality narrative (story) generation when
given a limited prompt (e.g. a title, or short sentence) [2]. Therefore
we revised the generation prompt and included an instruction to
the LLM that it should first think of a short narrative about two
persons conversing based on the response phrase, and then based
on the narrative, produce an appropriate dialogue. Further, we used

Figure 5: Human evaluation study interface.

Figure 6: Comparative results of human and agentic logical
coherence scores.

few-shot examples in the prompt, in order to force the LLM to pro-
duce JSON output, to facilitate further processing of the generated
output. The resulting prompt is shown in Listing 3.

We generated 400 prompt-response pairs with Llama3-8B and
Mistral7B, using the prompt from Study 1 (P1) and the revised
prompt (P3), using high and low memorability phrases from the
MobileEmail set as the response phrases. We then scored all prompt-
response pairs using the USE-QA model. A feature of the USE-
QA model is that it allows passing a “context” parameter to the
response encoder, which usually consists of text that might precede
or follow the response. We passed the story generated by P3 into
this parameter. An example of generated prompt-response pairs
from the two LLM prompts is shown in Table 3.

To overcome the biasing of USE-QA scores in favouring prompts
which contain the same words as the response phrase, we calculate
an adjusted score𝑈 ′ as follows. Each candidate prompt that might
accompany a response phrase, goes through the same transforma-
tion process of 1) contraction expansion (e.g. “haven’t” to “have
not”, 2) stopword removal, 3) symbol and punctuation removal.
Then, we compute the percentage of common words between the
processed prompt and response phrases, after applying the same
transformation process to each response phrase. We then apply
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P1 generated prompt Where do you want to go for dinner?
P3 narrative for prompt generation After getting her test results, Emma was relieved to know she

did not have to take any further action. Her friend Alex was
waiting for her at the park, and then they could go to Zainy
Brainy.

P3 generated prompt Do you want to grab a coffee with me?
Response phrase (from MobileEmail set) Then we can go to Zainy Brainy.

Table 3: Example outputs from P1 and P3.

Write a short narrative of no more than 4

sentences , about two persons , based on the

phrase [RESPONSE PHRASE ]. Then , based on that

narrative , write a conversation between the

two persons in the narrative.

The first person opens the conversation with

either a question or a statement , based on the

narrative 's details.

The second person must respond with the phrase [

RESPONSE PHRASE ].

The opening phrase must be written so the response

phrase follows logically from it.

The opening phrase MUST NOT contain any of the

words in the response phrase.

The dialogue must consist only of one opening

phrase and one response.

Your response must be a single JSON object with

three fields: 'narrative ', 'opening ', '

response '.

You must not include any commentary in your

response , provide ONLY the JSON object. You

must follow the JSON structure in the example

precisely.

EXAMPLE RESPONSE PHRASE: "I am in a meeting just

now."

EXAMPLE GENERATED NARRATIVE: "Jane wanted to talk

to Mark about their daughter , Mary , who was

facing some trouble at school. However , Mark

was at work and engaged in a serious meeting ."

EXAMPLE OUTPUT JSON:

{

"narrative ": "Jane wanted to talk to Mark

about their daughter , Mary , who was facing

some trouble at school. However , Mark was

at work and engaged in a serious meeting

.",

"opening ":"Can I call you briefly to talk

about Mary?",

"response ":"I am in a meeting just now."

}

Listing 3: Prompt used for Study 2 (P3).

a decay function to compute the adjusted USE-QA score 𝑈 ′
𝑝,𝑚 of

prompt 𝑝 generated by LLM𝑚 as𝑈 ′
𝑝,𝑚 = 𝑈𝑝,𝑚 × 1/𝑒 (𝑙𝑝×𝑐𝑝 ) , where

𝑈𝑝,𝑚 is the USE-QA score of prompt 𝑝 , 𝑙𝑝 is the number of tokens
in 𝑝 , and 𝑐𝑝 is the percentage of common words between 𝑝 and its
associated response phrase.

Therefore, for each generated prompt-response pair, we also
computed the relevant USE-QA score𝑈 and adjusted USE-QA score
𝑈 ′ in order to examine the quality of the produced results. Using the
plain𝑈 scores, we find that prompts generated from the P1 prompt
consistently outperform those generated by the P3 prompt (Llama3-
8B: P1 𝑥 = 0.225, 𝜎 = 0.111; P3 𝑥 = 0.136, 𝜎 = 0.087; Mistral7B:
P1 𝑥 = 0.197, 𝜎 = 0.112; P3 𝑥 = 0.181, 𝜎 = 0.106). The differences
are statistically significant across all prompt-model combinations
(Friedman 𝜒2 = 188.680, 𝑝 < .001. Between the two prompts and
within each model, the differences are statistically significant in
post-hoc Bonferroni corrected pairwise tests only for the Llama3-8B
model (Wilcoxon (P1,P3): 𝑍 = −12.932, 𝑝 < .001).

This result might indicate that the revised prompt P3 yields sig-
nificantly worse quality prompts for the Llama3-8B model, however,
when using the𝑈 ′ score for comparisons, the results are different.
Prompts generated from the P1 prompt again outperform those
generated by the P3 prompt but the margin is much lower for
Llama3-8B and practically non-existant for Mistral7B (Llama3-8B:
P1 𝑥 = 0.148, 𝜎 = 0.085; P3 𝑥 = 0.123, 𝜎 = 0.087; Mistral7B: P1
𝑥 = 0.138, 𝜎 = 0.082; P3 𝑥 = 0.130, 𝜎 = 0.075). The differences
are statistically significant across all prompt-model combinations
(Friedman 𝜒2 = 22.733, 𝑝 < .001. Between the two prompts and
within each model, the differences are statistically significant in
post-hoc Bonferroni corrected pairwise tests only for the Llama3-
8B model (Wilcoxon (P1,P3): 𝑍 = −4.601, 𝑝 < .001). We conclude
thus that the revised prompt improved the generation process by
means of asking the models to imagine first an appropriate context
in which the conversation takes place.

4.4.4 Final prompt-phrase set selection. To proceed with the ex-
periment, we needed to derive pools of single response-phrase or
prompt-response phrase pairs with both high memorability and
low memorability, from which to select phrases to present to the
participants. For this, we used the pool of phrases in Section 4.3 as a
starting point. For the baseline condition, we simply selected 45+45
response phrases with the highest and lowest mem_count_cer0 val-
ues. For the human-generated prompt-response sets, we discarded
cases where there was no alignment of the human and USE-QA
choices as described above, and from these we selected the 45+45
response phrases with the highest and lowest mem_count_cer0
values.
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Figure 7: Example of the probability 𝑃 (𝐴,𝑚1) of a hypotheti-
cal prompt 𝑝𝐴 generated by model𝑚1 with 𝑈𝑝𝐴,𝑚1 = 0.229943
to be chosen against an “inferior” prompt 𝑝𝐵 with 𝑈𝑝𝐵 ,𝑚2 =

0.053884 generated by model𝑚2, after USE-QA score adjust-
ment, for various token counts of 𝑝𝐴 (𝑙𝑝 ∈ [5 − 9]), and com-
monality percentages 𝑐𝑝 of tokens between A and the re-
sponse phrase.

For the LLM-generated prompt-response sets, we used a slightly
more complicated process with a stochastic approach, as we wanted
to ensure that we select the best possible prompt. We sum the ad-
justed𝑈 ′ scores of both prompts, and assign a probability 𝑃 (𝑝,𝑚) =
𝑈 ′
𝑝,𝑚/∑𝑈 ′

𝑝,𝑥 , 𝑥 ∈ [𝐿𝑙𝑎𝑚𝑎3 − 8𝐵,𝑀𝑖𝑠𝑡𝑟𝑎𝑙7𝐵] to pick the prompt 𝑝
provided by LLM 𝑚. In this way, we penalise the probability of
selecting prompts that contain one or more common words with
the response phrase, as this artificially raises its USE-QA score, and
also offers contextual cues to assist participants’ memory. On the
other hand, limited token commonality still affords a prompt some
chance of being chosen, as sometimes this might be necessary to
provide a logically coherent prompt (see Fig. 7). After applying this
process to select the best LLM-generated prompt for each response
pair, we select the 45+45 response phrases with the highest and
lowest mem_count_cer0 values.

4.5 Questionnaire Design
We were unable to find a validated instrument to measure par-
ticipant experience during a transcription experiment in extant
literature. Therefore, we constructed a 15-item questionnaire with
5 questions on three constructs: Attention to the task, Task Realism
and Emotional Engagement. Attention to the task aims at measuring
participant commitment to each block of phrases and the individual
effort they self-report to having put into the task. Task realism
aims to assess subjective opinion on the realism of the task, and is
mostly aimed at comparing how participants feel completing the
baseline task versus the prompt tasks, where the interface resembles
more closely an actual conversation. Finally, Emotional Engage-
ment aimed to capture participant sentiment and attitude towards
completing each task. The items were adapted from questionnaire
items in extant literature or were formulated by ourselves, based
on theory. All items require participants to indicate agreement on a

5-point Likert scale. Questions and references are shown in Table 4.
Alongside the 15 items, we presented a trick question (“The task
involved deciphering messages from alien spaceships”) which was
answerable in a Yes/No manner. We included this question to allow
us to identify participants who were not reading the questionnaire
carefully and to discard them from the analysis.

4.6 Participants
We recruited participants by advertising at our local university CS
department, and also via the Prolific recruitment website. Out of 105
registered participants, we noticed that only 53 completed the study
successfully by examining the number of collected questionnaires
(6 per participant), however keystroke data was not successfully
transmitted to our database for a single random phrase set for
several of these (n=31). We will report in the next section how we
handled the missing data in the analysis. For these 53 participants,
mean age was ¯31.472 years old (𝜎 = 11.443). 13 were local students,
23 were female, and self-reported CEFR command of English was
Upper Intermediate (B2): 10, Advanced (C1): 9, Proficient (C2): 15,
Native Speaker: 18 and non-native without certifiction: 1.

4.7 Study 2 Results
Lack of complete submissions is common in empirical studies (e.g.
clinical trials) due to participant dropouts, sampling problems, data
corruption or other errors . Recommended approaches for analysing
(Completely) Missing at Random data vary depending on the type
of data, but in our case, due to the lack of complete submissions
for 31 participants, we perform the analysis in two stages: First,
analysing the complete cases across all six conditions, and secondly
analysing all cases in pairwise condition comparisons of variable
power, using data from those participants who have submitted
keystroke data in both conditions examined. Naturally, we perform
the former for all questionnaire data, while both former and latter
approaches apply to keystroke data. Statistical tests are chosen after
examination of relevant assumptions. Where pairwise statistically
significant results are shown, we report the p-value to be smaller
than the Bonferroni-adjusted threshold for statistical significance
(𝑡𝑎 = 0.0033).

4.7.1 Minimum String Distance. For complete cases (Fig. 8a) , we
note a statistically significant difference across conditions (Fried-
man 𝜒2 = 74.54, 𝑝 < .001). Post-hoc Bonferroni adjusted pair-
wise comparisons confirm statistically significant differences for
high and low memorability phrases within the baseline (Wilcoxon
(B-HM, B-LM): 𝑍 = −4.0148, 𝑝 < 𝑡𝑎), LLM-generated (Wilcoxon
(L-HM, L-LM): 𝑍 = −3.0355, 𝑝 < 𝑡𝑎) and Human-generated con-
ditions (Wilcoxon (H-HM, H-LM): 𝑍 = −4.108, 𝑝 < 𝑡𝑎). Across
conditions where high memorability phrases were used, there is
statistically significant difference between the baseline and LLM-
generated (Wilcoxon (B-HM, L-HM): 𝑍 = −3.0389, 𝑝 < 𝑡𝑎), and
LLM-generated and Human-generated (Wilcoxon (L-HM, H-HM):
𝑍 = −3.5519, 𝑝 < 𝑡𝑎). More importantly, we note that the MSD is
reduced where prompts are presented together with low memo-
rability phrases, with statistical significance (T-test (B-LM, L-LM):
𝑡 = 3.4885, 𝑝 < 𝑡𝑎 ; Wilcoxon (B-LM, H-LM): 𝑍 = −2.0291, 𝑝 < 𝑡𝑎).
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Construct Q# Question

Task Engagement

Q1 I worked as hard as I could to complete the phrase copy tasks in this set. [40]
Q2 I devoted my full attention during the phrase copy tasks in this set. [14]
Q3 The need to memorise the phrase to copy, would capture and hold my attention. [27]
Q4 The way that messages in all the text bubbles were presented in this set, helped keep my attention. [3]
Q5 As time passed, I found myself absorbed in the task of copying phrases. [14]

Task Realism

Q6 Copying phrases during this set, felt like a realistic task. [10]
Q7 The length, tone and language of the messages in all the text bubbles were consistent with typical text

conversations [33]
Q8 I can imagine myself sending messages like the ones I typed in this set. [9]
Q9 The tasks in this set contained messages that are similar to those I send or receive in my everyday

life. [38]
Q10 The messages in all the text bubbles in this set, made sense (either as a conversation, or as a message to

be sent).

Emotional Engagement

Q11 I enjoyed doing the phrase copying tasks in this set. [40]
Q12 I felt excited about getting to the next phrase copy task after completing one, during this set. [26]
Q13 Copying the phrases in this set was fun. [40]
Q14 Copying the phrases in this set aroused my curiosity. [40]
Q15 The emotional tone of the messages in all text bubbles in this set, affected my mood. [17]

Table 4: Questionnaire design

Similar effects are observed comparing all cases (Fig. 8b). Post-
hoc Bonferroni adjusted pairwise comparisons confirm statisti-
cally significant differences for high and low memorability phrases
within the baseline (Wilcoxon (B-HM, B-LM): 𝑍 = −4.9367, 𝑝 <

𝑡𝑎, 𝑛 = 34), LLM-generated (Wilcoxon (L-HM, L-LM):𝑍 = −4.8134, 𝑝 <

𝑡𝑎, 𝑛 = 53) and Human-generated prompts (Wilcoxon (H-HM, H-
LM): 𝑍 = −5.5115, 𝑝 < 𝑡𝑎, 𝑛 = 41). Across conditions where high
memorability phrases were used, there is statistically significant
difference between the baseline and LLM-generated (Wilcoxon (B-
HM, L-HM): 𝑍 = −3.9693, 𝑝 < 𝑡𝑎, 𝑛 = 34), and LLM-generated
and Human-generated prompts (Wilcoxon (L-HM, H-HM): 𝑍 =

−4.3788, 𝑝 < 𝑡𝑎, 𝑛 = 41). We also repeat the finding that the
MSD is reduced where prompts are presented together with low
memorability phrases, with statistical significance on;y between
baseline and LLM-generated prompts (Wilcoxon (B-LM, L-LM):
𝑍 = −3.7264, 𝑝 < 𝑡𝑎, 𝑛 = 53).

4.7.2 Use of backspaces. We report on the use of backspaces per
phrase as an indicator of fixed errors during typing next. For com-
plete cases, a Friedman test confirms statistically significant dif-
ferences across conditions (𝜒2 = 39.3158, 𝑝 < .001), see Fig. 9a).
Post-hoc Bonferroni adjusted pairwise comparisons confirm sta-
tistically significant differences for high and low memorability
phrases within the baseline (T-test (B-HM, B-LM): 𝑡 = −3.5641, 𝑝 <

𝑡𝑎), LLM-generated (Wilcoxon (L-HM, L-LM): 𝑍 = −3.0268, 𝑝 <

𝑡𝑎) and Human-generated conditions (Wilcoxon (H-HM, H-LM):
𝑍 = −3.0763, 𝑝 < 𝑡𝑎). Across conditions where high memorability
phrases are used, there are no statistically significant differences.
Across conditions where low memorability phrases are used, again
there are no statistically significant differences.

When comparing all cases (Fig. 9b), post-hoc Bonferroni ad-
justed pairwise comparisons confirm statistically significant dif-
ferences for high and low memorability phrases only within the
LLM-generated (Wilcoxon (L-HM, L-LM): 𝑍 = −4.3463, 𝑝 < 𝑡𝑎, 𝑛 =

53) and Human-generated conditions (Wilcoxon (H-HM, H-LM):
𝑍 == −4.4385, 𝑝 < 𝑡𝑎, 𝑛 = 40), echoing almost exactly the analysis
of complete cases.

4.7.3 Typing Speed (WPM). Finally we report on the typing speed
measured inwords-per-minute (WPM). For complete cases (Fig. 10a),
a Friedman test reveals statistically significant differences across all
conditions (𝜒2 = 378.5195, 𝑝 < .001). Post-hoc Bonferroni adjusted
pairwise comparisons confirm statistically significant differences
for high and low memorability phrases within the baseline (T-test
(B-HM, B-LM): 𝑡 = −12.000, 𝑝 < 𝑡𝑎), LLM-generated (t-test (L-HM,
L-LM): 𝑡 = 5.9168, 𝑝 < 𝑡𝑎) and Human-generated conditions (t-test
(H-HM, H-LM): 𝑡 = −11.3541, 𝑝 < 𝑡𝑎). Across conditions where
high memorability phrases are used, a statistically significant differ-
ence exists only between the LLM-generated and Human-generated
prompt conditions (t-test (L-HM, H-HM): 𝑡 = −3.4123, 𝑝 < 𝑡𝑎).
Across conditions where low memorability phrases are used, a sta-
tistically significant difference exists only between the baseline
and LLM-generated prompt conditions (Wilcoxon (B-LM, L-LM):
𝑍 = 39.0, 𝑝 < 𝑡𝑎).

When comparing all cases (Fig. 9b), post-hoc Bonferroni ad-
justed pairwise comparisons confirm statistically significant differ-
ences for high and low memorability phrases within the baseline
(Wilcoxon (B-HM, B-LM): 𝑍 = −4.6588, 𝑝 < 𝑡𝑎, 𝑛 = 34), LLM-
generated (Wilcoxon (L-HM, L-LM): 𝑍 = −5.502, 𝑝 < 𝑡𝑎, 𝑛 =

53) and Human-generated conditions (t-test (H-HM, H-LM): 𝑡 =
14.7635, 𝑝 < 𝑡𝑎, 𝑛 = 41). Across conditions where high memorabil-
ity phrases are used, a statistically significant difference exists only
between the LLM-generated and Human-generated prompt con-
ditions (t-test (L-HM, H-HM): 𝑡 = −3.5908, 𝑝 < 𝑡𝑎, 𝑛 = 41). Across
conditions where low memorability phrases are used, a statistically
significant difference exists only between the baseline and LLM-
generated prompt conditions (t-test (B-LM, L-LM): 𝑡 = −6.0605, 𝑝 <

𝑡𝑎, 𝑛 = 53) and the LLM-generated and Human-generated prompt
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(a) Complete cases (b) All cases

Figure 8: Minimum String Distance across conditions.

(a) Complete cases (b) All cases

Figure 9: Backspace usage per phrase across conditions.

conditions (t-test (L-LM, H-LM): 𝑡 = 4.7983, 𝑝 < 𝑡𝑎, 𝑛 = 53). The
results mirror those of the complete cases almost identically.

4.7.4 Summary of quantitative results. Taking the previous results
together, we can summarise by observing that participants exhibit,
when transcribing high memorability phrases, faster input speeds,
possibly attributable to the smaller frequency of backspace use. The
presence of prompts, whether human or LLM-generated, does not
appear to impact this trend. This is an expected finding - we can
plausibly argue that high memorability phrases are easier to remem-
ber and that this leads to faster input and fewer corrections during
it, which may relate also to the difficulty of language used in these
phrases. However, we are surprised to notice that the presence of
prompts seems to significantly reduce the number of uncorrected
errors (MSD) in the submitted phrase, compared to the baseline
condition where they were not available. This evidence suggests
that recall is improved by the presence of prompts, affording par-
ticipants better ability to remember what it is they need to type.

4.7.5 Qualitative results. We received 53 × 6 = 318 questionnaire
responses. The distribution of responses to individual questions
is shown in Fig. 11. To analyse our questionnaire, we perform a
factor analysis in order to a) ascertain the validity of our 3-construct
questionnaire design, and also b) to compare participant subjective
opinion after exposure to each condition in a coherent manner. The

Bartlett sphericity (𝜒2 = 3126.505, 𝑝 < .001) and high Kaiser-Meyer-
Olkin value (𝐾𝑀𝑂 = 0.896) show the data is suitable for factor
analysis. Observing the related scree plot (Fig. 12a) with promax
rotation, and applying the Kaiser criterion on factor eigenvalues, we
notice that factor analysis should proceed with three factors, as we
anticipated. A fourth factor has an eigenvalue close to 1 (0.94) but
was rejected as its loadings were lower than <0.3 in all questions.
We observe that factor loadings correspond quite well to the three
constructs in our questionnaire design, thus Factor 1 corresponds
to Emotional Engagement, Factor 2 to Task Realism and Factor 3 to
Task Engagement (Fig. 12b). Factors represent (cumulatively) 24.22%
(F1), 44.86% (F1+F2) and 62.04% (F1+F2+F3) of the total variance
in responses, representing adequate coverage. Similar results are
obtained with an orthogonal rotation (varimax) but we proceed
with the oblique rotation since it yields a slightly simpler factor
structure.

For Emotional Engagement (Factor 1), we observe statistically sig-
nificant differences across conditions (ANOVA 𝐹 = 5.035, 𝑝 < .001).
The participants’ emotional engagement score is highest for the B-
HM (𝑥 = 0.329, 𝜎 = 0.854) and H-HM condition (𝑥 = 0.333𝜎 = 0.86).
The difference between the two is not statistically significant. The
difference to the score of other conditions is statistically significant
for B-HM (T-test (B-HM, B-LM): 𝑡 = 5.691, 𝑝 < 𝑡𝑎 ; T-test (B-HM,
L-HM): 𝑡 = 4.361, 𝑝 < 𝑡𝑎 ; T-test (B-HM, L-LM): 𝑡 = 6.878, 𝑝 < 𝑡𝑎 ;
T-test (B-HM, H-LM): 𝑡 = 5.223, 𝑝 < 𝑡𝑎), and also for the H-HM
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(a) Complete cases (b) All cases

Figure 10: Typing speed (WPM) across conditions.

Figure 11: Responses to Questionnaire Items. Participants are asked to report agreement with the statements on a scale of 1
(Strongly disagree) to 5 (Strongly Agree).

condition (T-test (B-LM, H-HM): 𝑡 = −4.974, 𝑝 < 𝑡𝑎 ; T-test (L-HM,
H-HM): 𝑡 = −3.32, 𝑝 < 𝑡𝑎 ; T-test (L-LM, H-HM): 𝑡 = −5.563, 𝑝 < 𝑡𝑎 ;
T-test (H-HM, H-LM): 𝑡 = 5.781, 𝑝 < 𝑡𝑎).

For Task Realism (Factor 2) we observe statistically significant
differences across conditions (Friedman 𝜒2 = 87.15, 𝑝 < .001).
The participants’ appraisal of task realism is highest for the B-HM
(𝑥 = 0.488, 𝜎 = 0.734) and H-HM condition (𝑥 = 0.645𝜎 = 0.581).
The difference between the two is not statistically significant. The
difference to the score of other conditions is statistically significant

for B-HM (Wilcoxon (B-HM, B-LM): 𝑍 = −5.324, 𝑝 < 𝑡𝑎 ; Wilcoxon
(B-HM, L-HM): 𝑍 = −4.462, 𝑝 < 𝑡𝑎 ; Wilcoxon (B-HM, L-LM): 𝑍 =

−5.765, 𝑝 < 𝑡𝑎 ; Wilcoxon (B-HM, H-LM): 𝑍 = −4.981, 𝑝 < 𝑡𝑎), and
also for the H-HM condition (T-test (B-LM, H-HM): 𝑡 = −7.015, 𝑝 <

𝑡𝑎 ; T-test (L-HM, H-HM): 𝑡 = −6.079, 𝑝 < 𝑡𝑎 ; T-test (L-LM, H-HM):
𝑡 = −9.663, 𝑝 < 𝑡𝑎 ; T-test (H-HM, H-LM): 𝑡 = 7.716, 𝑝 < 𝑡𝑎).

Finally for Task Engagement (Factor 3), we observe again sta-
tistically significant differences across conditions (Friedman 𝜒2 =

87.15, 𝑝 < .001). The participants’ self-reported engagement with

276



MUM ’24, December 01–04, 2024, Stockholm, Sweden Komninos et al.

(a) Scree plot (b) Factor loadings

Figure 12: Results of factor analysis of the questionnaire.

Figure 13: Participant factor scores averaged per condition.

the task is highest for the B-HM (𝑥 = 0.176, 𝜎 = 0.822) and H-
HM condition (𝑥 = 0.152𝜎 = 0.867). The difference between the
two is not statistically significant. The difference to the score of
other conditions is statistically significant for B-HM (Wilcoxon
(B-HM, B-LM): 𝑍 = −3.253, 𝑝 < 𝑡𝑎 ; Wilcoxon (B-HM, L-HM):
𝑍 = −3.033, 𝑝 < 𝑡𝑎 ; Wilcoxon (B-HM, L-LM): 𝑍 = −3.187, 𝑝 < 𝑡𝑎 ;
Wilcoxon (B-HM, H-LM): 𝑍 = −3.752, 𝑝 < 𝑡𝑎). However, the score
for H-HM is statistically significantly different only compared H-
LM (Wilcoxon (H-HM, H-LM): 𝑍 = −3.218, 𝑝 < 𝑡𝑎).

4.7.6 Summary of qualitative results. Participants’ self-reported
appraisals of their experience demonstrated preference for the B-
HM or H-HM condition in terms of task engagement, task realism
and emotional engagement. Even with human-generated prompts,
they did not find the task to be more engaging or realistic compared
to simply presenting memorable phrases. On the other hand, the
presence of prompts, whether generated by LLMs or humans, did
not detract from the overall experience (taking phrase memorability
out of the equation). We conclude that the main differentiator of
experience in the transcription task, is the use of memorable phrases
and that this effect is not mediated, at least subjectively, by the
presence of accompanying prompts.

5 Discussion
We have explored the use of LLMs as a means to re-imagine the
traditional transcription task used in mobile text entry studies. The
results demonstrate interesting effects after modifying the task to
present not just phrases to copy, but conversational contexts that
pair well with the phrase. The most important finding was that
this modification improves stimulus phrase recall for low mem-
orability phrases, and results in fewer uncorrected errors during
transcription. We did not find any significant effects on participants
typing speeds or other associated metrics. We also did not find
any significant evidence to suggest that the modification to the
traditional transcription task has adverse effects on participants’
subjective appraisals of engaging with the task, thus conclude that
the modification is both safe to use, and shows potential in im-
proving participants’ performance, at least when phrases are less
memorable. Our findings confirm the importance of presenting
memorable stimuli to participants as a main factor affecting perfor-
mance and engagement with the transcription task.

Our work is limited to generating accompanying phrases to ex-
isting stimuli used widely by the community, but it is plausible
that the same LLM technology could be used to provide the full
conversation (prompts and responses) as well. Such prompts or
responses can be easily constructed with an aim to provide variable
experiences and expose participants to a range of appropriate text
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entry contexts. For example, using specific linguistic styles (e.g.
professional, informal, colloquial), representing ecologically valid
contexts of use (e.g. communicating for different purposes such
as sending updates, greetings, responding to request, requesting
information etc.), and even composing text in emotionally loaded
contexts (e.g. responding in anger or frustration, to a romantic
partner, with excitement etc.). Further, we might imagine LLMs
powering entirely novel evaluation tasks, such as utilising phrases
from automated image descriptions, or live conversations with in-
telligent agents. Even further, it is possible to foresee the integration
of LLM agents with simulations of text entry behaviour, therefore
entirely automating the evaluation process and bypassing the need
for human subjects altogether (e.g. LLM agents conversing with
each other via simulated virtual keyboards). Finally, we limited
ourselves to conversations in English, while LLMs could easily gen-
erate phrase sets and evaluation tasks in other languages, for which
there are no pertinent evaluation materials.

Despite the exciting possibilities, we must be careful as we move
to explore the opportunities afforded by LLM technology. As we
demonstrate in this paper, a systematic approach to generating
and evaluating LLM outputs, so that they can be used as part of
an evaluation methodology is required. Whilst we cannot rely on
human evaluation, due to the richness and volume of data that can
be so easily produced by LLMs, we show that extant algorithmic
approaches can be used for this purpose, but may require modifica-
tion and adaptation. Accordingly, we proposed a new metric and
a stochastic approach to selecting the best outputs from an LLM
based on this metric. Entirely new metrics may need to be devised
altogether, as we explore and adapt LLMs as part of evaluation
methodologies.

Our study also highlighted the lack of a validated instrument to
measure participants’ engagement in text entry evaluation tasks.
This will become important as we explore novel evaluation method-
ologies and move away from the tradition of the transcription task.
To this end, we proposed a new scale to measure participant engage-
ment with transcription-style tasks, which proved robust but of
course could be extended to capture further aspects of participant
subjective appraisals.

6 Limitations
The work presented here bears several limitations, as is natural in
exploratory research like this. We constrained ourselves to the use
of open-source LLMs such as Llama3-8B, Mistral7B, and Gemma2-
9B. We used quantised versions of these models to fit the hardware
limitations in our lab, but performance could be better with un-
quantised versions and even with the use of larger (commercial)
LLMs, such as those in the Claude, ChatGPT, or Gemini families.

In the LLM generation process, the agentic evalution uses an
empirically weighted linear scoring formula for coherence, which
could be replaced by amore sophisticatedmetric. Human evaluation
of prompt-response coherence possibly carries some bias based on
the background and age of our participants. The USE-QA model
was taken as-is, but it could be fine-tuned with more examples
of conversations mined from users’ devices. We examined two
prompts (P1, P3) for generation of the prompt-response pairs, but
of course there might be better approaches to guiding generation

for the final selection to be used in a study, for example rejecting
outputs below a certain USE-QA score and repeating the process
until a better pair is generated, or using multiple instances of a
model to negotiate iterative improvements to derive a final prompt-
response pair.

Our questionnaire design is limited to three constructs with 15
items total, which was intentional in order not to overburden par-
ticipants at the end of each block. The factor analysis shows some
overlap in the factor loadings and therefore the questions could
be revisited for wording or replaced with other items. Additional
constructs could be added. Validation of the questionnaire with a
larger sample would also be beneficial.

Finally, we only analysed basic text entry metrics in our study.
Other metrics such as inter-key intervals, total error rates, corrected
error rates etc. could be measured. We also captured rich data that
allows analysis of the frequency of use of text entry support tools
which were allowed in the experiment (e.g. autocompletion, word
suggestions, glide typing). Analysis based on linguistic proficiency,
country of residence, age and occupation could also be carried out,
as we captured this data. We leave these extended analysis to future
work or other researchers by releasing our data openly.

7 Conclusion
We see good potential in the use of LLMs as an important tool to
revise and update mobile text entry evaluations for the future. This
work barely scratches the surface of this potential, but its main
contributions are 1) to present a novel variation of the transcription
task for use in text entry lab studies using LLMs to generate an
ecologically valid setting, and, 2) to highlight the complexities and
challenges in the appropriate exploitation of developments in LLM
technology for text entry research. We invite the community to
take inspiration from this work and contribute to the exploration
of this exciting research direction.

8 Data and Code availability
Our generated phrase sets, all related data, software and anal-
ysis code are distributed with an open source license at https:
//github.com/komis1/llm-transcription-task. Interested readers can
experience the LLM-driven transcription task online at http://usidas.
ceid.upatras.gr/llm-corpus, using a mobile browser.
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