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Abstract— In this letter, a solution to a general dis-
tributed identification problem on a directed circular com-
munication graph is proposed. The original use of a
new strict Lyapunov function within a persistently excited
framework is crucial to prove the consensus achievement
for an asymmetric neighbourhood-based decentralized par-
allel architecture, for which the communication burden is
reduced, when compared to the case of symmetrical com-
munication between the neighbours. Experimental results
regarding quadrotor unmanned aerial vehicles illustrate the
theoretical derivations.
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I. INTRODUCTION

RATHER strong attention has been recently paid to the
general applicative scenario given by a multisensor net-

work in which estimators have to be designed on the basis of
space-distributed sensing [1]–[7] to recover the same param-
eter vector, i.e., consensus [8]. A similar situation also arises
when mobile sensors measure the distribution of an unknown
quantity over a field and, depending on the size of the region,
visiting every point in the space to collect data [9]–[12] is
computationally inefficient or infeasible. The reader is partic-
ularly referred to [13] and [14]. The former addresses general
graph topologies while using contradiction arguments to prove
that the Cooperative Persistency of Excitation (PE) Condition,
namely, the weakest parameter identifiability condition in such
a scenario, guarantees exponential consensus [8], [15]. The
latter, instead, derives convergence-rate estimates for networks
of systems that are interconnected through Persistently Excited
(PEd) graphs while recasting the classical consensus paradigm
into a problem of stability analysis for systems with PE.
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In this letter, starting from (and thus expanding) the strict
quadratic Lyapunov proposed in [16, Eq. (7)], we do aim
at covering the estimation problem on a general directed
circular communication graph [17], i.e., a graph consisting
of a single cycle with vertices connected in a closed chain
and with all the edges being oriented in the same direction –
for which an asymmetric neighbourhood-based decentralized
parallel architecture has to be designed.

Illustrative application: As an applicative scenario, we shall
experimentally explore in Section V, the specific illustrative
problem in which a set of p Unmanned Aerial Vehicles
(UAVs) moving in the space with (not all zero) positions
(Xi(t),Yi(t),Zi(t)) ∈ R3 at time t, i = 1, . . . , p, face a local
identification problem: they have to consistently estimate the
space-position (Xo,Yo,Zo) of a stationary target object only by
engaging communication with the neighbours, circularly and
asymetrically, under the condition that each UAV knows its
own position in the space, along with its Euclidean distance

Di(t) =
√

(Xi(t)−Xo)2 +(Yi(t)−Yo)2 +(Zi(t)−Zo)2,

from the target object. Now, if the locally measured output1

hi(t) = D2
i (t)−X2

i (t)−Y 2
i (t)−Z2

i (t) is put in the form

hi(t) =

φT
i (t)︷ ︸︸ ︷

[−2Xi(t),−2Yi(t),−2Zi(t),1]

Θ︷ ︸︸ ︷
Xo
Yo
Zo

X2
o +Y 2

o +Z2
o

 (1)

then such an application problem can be framed into a more
general consensus framework.

General problem: Define the problem P as: Determine p
parallel Θ-estimates Θ̂[i](t), i = 1, . . . , p at the nodes vi of a
directed circular communication graph, which all converge
exponentially to the unknown constant parameter vector Θ ∈
Rm appearing within the set of equations (1), namely

hi(t) = φ
T
i (t)Θ, (2)

1It is the difference between the distance of the ith UAV from the target
UAV and the distance of the ith UAV from the origin.



where: hi are the outputs locally measured at each node vi;
φi(·) : R+

0 → Rm are the local regressor vectors, i = 1, . . . , p,
available at each node vi. According to the above topological
structure, each estimation scheme at the node can communi-
cate its own Θ-estimate Θ̂[i](t) just with the neighbours over
the circular communication graph: agent i sends information
to agent i+1, and the last agent p communicates with agent 1.
Here, measurable and available are meant at any time t ≥ 0.

State of the art and original contributions: The prob-
lem above is partial-knowledge-based (just neighbours are
asymmetrically involved) to reduce the burden of informa-
tion that has to be communicated to the various measure-
ment/estimation nodes of the graph. However, differently from
the typical scenario in which the nodes are undirectedly
connected in series2, no symmetrical communication between
the neighbours is required. In this respect, it is worth recalling
that wireless channels performing communication between
nodes might be unreliable, often suffering from impairments
such as signal fading and additive noise. This leads to degraded
tracking accuracy and compromised swarm coordination, so
that a reduction in communication channels is desirable [8],
[15], especially when the number of agents increases. On the
other hand, in contrast to [14], the set of tailored differential
equations for the time-dependent vectors Θ̂[i](t), i = 1, . . . , p,
has to be here designed at each node in order to guarantee
(and not assume) PE for the error system under the weakest
Θ-identifiability condition of [13]. Notice that PE is strictly
related to uniform observability properties (the reader is re-
ferred to the [16], [18] and references therein). It thus allows
for the definition of strong Lyapunov functions with intrinsic
robustness properties that come not only from the exponential
stability nature of the equilibrium point but also (and mainly)
from its uniform-in-time properties. Indeed, the interval ex-
citation condition (see for instance [19] and [18], as well as
Remark 2 of [16]) assumes that parameter identification can
be performed on the basis of past information, by assuming
that the system structure (including the constant uncertain pa-
rameters) is somehow represented by a time portion, whereas
it is well known that constant parameters in the theoretical
framework reproduce slowly-varying or abruptly-changing pa-
rameters in practice, with robustness issues playing a crucial
role there. Finally, in contrast to [13] and [20], here an original
proof of convergence provides an explicit characterization in
terms of a new strict Lyapunov function. Indeed, no weaker
contradiction arguments [13] or more involved LMIs [20] are
used to prove the exponential consensus, while an original
constructive proof of convergence is able to provide an explicit
characterization of the exponentially achieved consensus in
terms of PE. An important application of the proposed method
relies in the coordination of UAVs, in tasks such as target point
localization, cooperative tracking, and state estimation under
GPS denial [21]. In such tasks, reliable information sharing
among UAVs is crucial, however, communication constraints
often make fully connected or symmetric networks impractical
[22]. The circular communication topology, coupled with

2In such a scenario, each estimation scheme at the node can symmetrically
share its own Θ-estimate with the neighbours, one for the first and last nodes
1 and p, two for the remaining internal nodes.

the strict-Lyapunov-function-based design, provides a feasible
framework that enables each UAV to achieve consensus with
reduced communication load. This is more significant when a
large number of UAVs operate in environments with limited
bandwidth, energy, or when mission constraints impose asym-
metric communication links [23]. Furthermore, the approach
can be applied to formation control of UAV swarms, and
collaborative search-and-rescue missions, such that agents
must detect and localize survivors, distributed surveillance
tasks requiring persistent coverage of an area, and cooperative
target interception or escort missions in defense applications
[22]. By ensuring stable distributed estimation over a circular
communication graph, the proposed approach supports robust
cooperative sensing, enhancing the resilience of UAV teams
under limited or adversarial conditions [21].

Notation: In the remainder of this letter, R+, R+
0 denote

the sets of positive and non-negative real numbers, whereas
Rn×m denotes the set of real matrices with n rows and m
columns. Moreover, I and O represent the identity and the
zero matrices of suitable dimensions, respectively, whereas,
for symmetric matrices A,B ∈ Rn×n, A ≻ B means that A−B
is positive definite and A⪰B means that A−B is positive semi-
definite. sgn(φ) is the signum function satisfying sgn(φ) = 0
for φ ≤ 0, sgn(φ) = 1 for φ > 0. Finally, ⟨x,y⟩ denotes the
inner product of vectors x and y.

II. PRELIMINARIES

To guarantee that a solution to the problem P exists, we
introduce two standard assumptions as follows.

A1. The components of the regressor vectors φi(·) are
assumed to be continuous and uniformly bounded over [0,+∞)
as functions of time.

A2. (Cooperative PE Condition [13]) The corresponding
regressor matrix Φ(·) ∈ Rm×p

Φ(·) = [φ1(·),φ2(·), · · · ,φp(·)] , (3)

is assumed to be PEd, i.e., there exist known cp ∈ R+ and
Tp ∈ R+ such that the following condition holds:∫ t+Tp

t
Φ(τ)ΦT(τ)dτ ⪰ cpI, ∀ t ≥ 0. (4)

Assumptions A1-A2 ensure that the unknown parameter
vector Θ is identifiable from the entire set of available mea-
surements, i.e., from all the outputs and all the regressor vector
components. Indeed, under Assumptions A1-A2, a solution to
the estimation problem exists, at least when all the amount of
information coming from the nodes of the considered graph is
available for every node of the graph. Apparently, it is provided
by the set of differential equations3

˙̂
Θ(t) = Φ(t)

(
h(t)−Φ

T(t)Θ̂(t)
)
, (5)

starting from the initial condition Θ̂0 = Θ̂(0), where h(t) =
[h1(t), . . . , hp(t)]T. By defining the Θ-estimation error Θ̃ =
Θ− Θ̂, it satisfies, on the basis of (2), (3) and (5),

˙̃
Θ(t) = −Φ(t)ΦT(t)Θ̃(t), (6)

3For the sake of simplicity, no gain matrix multiplies Φ(t).



with initial condition Θ̃(0)=Θ(0)−Θ̂0. Equation (6) complies
with the structure required by Theorem 1 of [16], which states
that the solution of a system in the form (6) tends to zero
exponentially for any initial condition Θ̃(0) under the related
strict quadratic Lyapunov function4.

W (Θ̃) =
1
2

Θ̃
T [2Q∗(·)+(1+ sgn(m−1)γL)]Θ̃.

Within the previous W (Θ̃)-definition: Q∗(t) is the solution to
the matrix-differential equation:

Q̇∗(t) = −θcQ∗(t)+νΦ(t)ΦT(t), (7)

for ν = 1, starting from the symmetric matrix Q∗(0)≻ 0 (with
sufficiently large minimum eigenvalue) as initial condition and
involving θc ∈R+; γL ∈R+ is sufficiently large. The reader is
referred to the Appendix of [16] for related technical details.

III. DISTRIBUTED ESTIMATION ON CIRCULAR
COMMUNICATION GRAPHS

We start by designing the differential equation to be satisfied
by the Θ-estimate at node vi, i = 1, . . . , p, denoted by Θ̂[i], as

˙̂
Θ

[i](t) = φi(t)
(

hi(t)−φ
T
i (t)Θ̂

[i](t)
)
−ηi(t), (8)

starting from Θ̂[i](0)= Θ̂0i. Indeed, the Θ-estimator is designed
in accordance with the same full-information design process
recalled within the previous section but restricted to the node
vi. Now, the main issue regards how the correction terms ηi(t)
are to be designed to guarantee that all the redundant estimate
vectors converge to the (same) unknown parameter vector Θ.
In particular, such a consensus has to be achieved through
penalization of the mismatch between the parameter estimates
[24]. In place of the typical block matrices that come from
a topological structure with nodes undirectedly connected in
series, we cover the circular communication structure, namely,

ηi = Θ̂
[i]− Θ̂

[i+1], i = 1, . . . , p−1 (9)
ηp = Θ̂

[p]− Θ̂
[1],

which can be equivalently rewritten in terms of the Θ-
estimation errors Θ̃[i] (just add and subtract Θ within any pair
of brackets) as follows

ηi = −
(

Θ̃
[i]− Θ̃

[i+1]
)
, i = 1, . . . , p−1 (10)

ηp = −
(

Θ̃
[p]− Θ̃

[1]
)
.

By substituting (10) in (8), the estimation error system can be
obtained as

˙̃
Θ[1](t)

...
˙̃
Θ[p](t)

 = −(Λ(t)+T )

 Θ̃[1](t)
...

Θ̃[p](t)

 , (11)

where

Λ(t) = diag[φ1(t)φ T
1 (t), . . . ,φp(t)φ T

p (t)] (12)

4The explicit time dependence is omitted in the remainder of this letter
when no clarity issues arise.

and (blocks are compatible in dimension with
[Θ̃[1](t), . . . ,Θ̃[p](t)]T)

T =



I −I O . . . . . . . . . O
O I −I O . . . . . . O
O O I −I O . . . O
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . I −I
−I O O O . . . O I


. (13)

IV. NEW STRICT LYAPUNOV FUNCTION-BASED PROOF

In this section, we present the new Theorem 1, whose
proof uses stability arguments that move along the direction
of finding out a new composite strict Lyapunov function for
(11) under PE (4), under the key idea of changing coordinates
and resorting to Theorem 1 of [16] (recalled in Section II)
once restricted to a suitable m-dimensional subsystem of the
tansformed (11) that is strictly compatible with PE (4).

Theorem 1: Consider the estimation error dynamics (11)
under Assumptions A1 and A2. Then the n-dimensional ex-
tended error vector Θ̃[e](t) = [Θ̃[1]T(t), . . . ,Θ̃[p]T(t)]T (n = pm)
globally exponentially converges to zero.

Proof: Consider the new variable

α0 =
p

∑
i=1

Θ̃
[i], (14)

whose dynamics, owing to the zero column-sum T -structure
in (13), read

α̇0 = −
p

∑
i=1

φiφ
T
i Θ̃

[i]. (15)

Then define the new error variables

αi = Θ̃
[i]− Θ̃

[i+1], i = 1, . . . , p−1. (16)

The matrix C characterizing the change of coordinates α0
...

αp−1

 = C

 Θ̃[1]

...
Θ̃[p]

 , (17)

is invertible with the first row of its inverse reading

tT
C,1 = [1,0, . . . ,0]C−1

= [1/p,1−1/p,1−2/p, . . . ,1/p], (18)

and the other rows being denoted by tT
C,2, . . . , t

T
C,p, respectively.

On the other hand, take the Lyapunov function

W
(

Θ̃
[1], . . . ,Θ̃[p]

)
=

1
2

p

∑
i=1

Θ̃
[i]T

Θ̃
[i], (19)

whose time derivative along the directions of the error system
(11) satisfies

d
dt

W
(

Θ̃
[1], . . . ,Θ̃[p]

)
≤ −1

2

p−1

∑
i=1

∥αi∥2. (20)

Now recognize that, by definition in (16),

Θ̃
[i] = Θ̃

[1]−
i−1

∑
k=1

αk, i,2 . . . , p (21)



so that (15) becomes

α̇0 = −
p

∑
i=1

φiφ
T
i Θ̃

[1]+
p

∑
i=2

φiφ
T
i

i−1

∑
k=1

αk, (22)

while, by (18), it reads

α̇0 = − 1
p

p

∑
i=1

φiφ
T
i α0 +

p

∑
i=2

φiφ
T
i

i−1

∑
k=1

αk −
p

∑
i=1

φiφ
T
i π

.
= −Φ̄Φ̄

T
α0 +ϒ(α1, . . . ,αp−1), (23)

in which π = ⟨[1−1/p,1−2/p, . . . ,1/p]T, [α1,α2, . . . ,αp−1]
T⟩

and Φ̄ is given by Φ̄ = Φ/
√

p. At this stage, system (23)
complies with the structure required by Theorem 1 of [16]. In
particular, α0 plays the role of x, Φ̄ plays the role of Φ, and
ϒ(α1, . . . ,αp−1) play the role of R(t,w(t)) therein. With (19),
(20) in mind, consider the composite strict Lyapunov function

L
(

Θ̃
[1], . . . ,Θ̃[p],α0

)
=W

(
Θ̃

[1], . . . ,Θ̃[p]
)
+µW (α0), (24)

where

W (α0) =
µ

2
α

T
0 [2Q∗(·)+(1+ sgn(m−1)γL)]α0, (25)

in which Q∗(t) is given by (7) with ν = 1/p. According
to the proof of Theorem 1 of [16], the time derivative of
L

(
Θ̃[1], . . . ,Θ̃[p],α0

)
, call such derivative LD, satisfies along

the trajectories of the closed loop system the following

LD ≤ −µ
θc

2
α

T
0 Q∗(·)α0 −

1
2

p−1

∑
i=1

∥αi∥2 (26)

−µα
T
0 [(1+ γL)+2Q∗]ϒ(α1, . . . ,αp−1)

for γL ≥ 2β 2 supt∈[0,+∞)∥Φ̄(t)∥2
(
θccpe−θcTp

)−1 and
cpe−θcTpI ≦ Q∗(t) ≦ β I. Therefore, a sufficiently small
µ in (26) leads to (cW is a suitable positive number)

LD ≤ −cW∥[α0,α1,α2, . . . ,αp−1]∥2

≤ −cW λm(CTC)∥[Θ̃[1],Θ̃[2], . . . ,Θ̃[p]]∥2, (27)

where λm(CTC) denotes the minimum positive eigenvalue of
the symmetric positive-definite CTC. The thesis of the theorem
follows by finally recognizing that ∥α0∥2≤ n∑

p
i=1∥Θ̃[i]∥2 in

(25). ■
Remark: The previous analysis also applies, with slight

modifications, to the case of different graph configurations,
provided that, in order to get (20), a path connecting all the
nodes of the graph is preserved and the zero column- (zero
row-) sum structure for T is kept. As an example, if the
last node views the second one as a neighbour, it suffices to
modify the second and last row in the matrix T in (13) by
[−I,2I,−I,O, . . . , . . . ,O] and [O,−I,O,O, . . . ,O,I].

V. EXPERIMENTAL RESULTS

The indoor experimental setup, including the UAV, onboard
components, positioning system, and network architecture, is
shown in Figure 1. The UAV is a custom QAV250 quadrotor,
equipped with a Pixhwak autopilot running PX4 firmware and
a Raspberry Pi serving as the onboard computer. For indoor
localization of the UAV, an Optitrack system with Motive

MATLAB running STC

Raspberry Pi running mavros

External UAV positioning

Infrared cameras

UAV with Pixhawk 
autopilot

Serial 
communication 

with Pixhawk

Fig. 1: Illustration of UAV experimental setup.

software is used. Infrared cameras track reflective markers
on the UAV and send images to Motive software, which
estimates its position and orientation in a predefined Front-
Left-Up frame at 120 Hz. The onboard computer runs a Robot
Operating System, rosmaster and mavros. It i) acts as a
point of interface between all the components in the network,
ii) receives the UAV’s estimated position and orientation from
the Motive software over WiFi, and iii) relays them to the
autopilot via mavros. The autopilot fuses them with its
acceleration and gyroscope measurements to estimate the full
state of the UAV, including position, velocity, and orientation
and relays it back to the onboard computer. The Super-
Twisting Controller (STC) in [25] (see Appendix I) running at
a frequency of 250 Hz in Matlab on a ground computer is used
to control the UAV. It has real-time access to the full state of
the UAV and communicates with autopilot via mavros and
onboard computer. Viewing UAVs 1,2,3 as sentinel units and
UAVT as target object, the control algorithm controls such
four UAVs, with desired positions set to (in SI units): Xd1 =
−1.5, Yd1 = 1.5, Zd1 = 0.75; Xd2(t) = sin(2π/10t), Yd2 = 0,
Zd2 = 1; Xd3(t) = cos(2π/10t), Yd3 = 0, Zd3 = −1, XdT = 0,
YdT = 0, ZdT = 1 (so that (4) is satisfied by direct computation).
The reader is referred to Figure 2 for the (x,y,z)-coordinates
of the three sentinel UAVs 1, 2, 3. The computed control
inputs (normalized thrust and angular rates) are sent to the
onboard computer, which forwards them to the autopilot via
mavros. The autopilot’s low-level controller then computes
and sends the PWM motor commands. The performance of
the original estimator presented in this paper, based on the real
experimental data, is obtained by simulating its learning-like
(see technical remark 3 of [26]), non-implicit node-based form
(just use the explicit expression for ηi and rearrange terms to
resemble the Jacobi method for positive definite matrices)

(2I+Kφiφ
T
i )Θ̂

[i](t) = Θ̂
[i](t,α)+Kφiyi(t)− [ηi − Θ̂

[i]](t)

Θ̂
[i](t,α) = [θ̂

[i]
1 (t −α), . . . ., θ̂

[i]
m (t −α)], (28)

where i = 1,2,3 and K = diag[1.1,1.1,25,50] is the matrix
of gains, used to shape the promptness of response and the
robustness of the scheme, while α = 0.1 s. Indeed, system
(28) is solved in discrete-time with a 0.01(s) step. The results
are shown in Figures 3 and 4. Satisfactory estimation and con-



sensus are definitely achieved. In particular, the 3 Θ-estimates
Θ̂[i](t), i = 1,2,3 at the nodes (UAVs 1, 2, 3) in Figure 3
all converge exponentially to the unknown constant parameter
vector Θ ∈ R4, in spite of no symmetrical communication
between the UAVs occurring. Accordingly, the corresponding
estimation errors in Figure 4 tend exponentially to zero.
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Fig. 2: (x,y,z)-coordinates of the three sentinel UAVs charac-
terizing the three regressor components φ T

i , i = 1,2,3, in (1)
for UAVs 1, 2, 3.

VI. CONCLUSIONS

An innovative solution to a distributed identification prob-
lem on a circular communication graph was presented. A
strict Lyapunov function within a PE framework was originally
used to prove the consensus achievement for an asymmetric
neighbourhood-based decentralized parallel architecture. Ex-
perimental results involving quadrotor UAVs finally illustrated
all the theoretical derivations. Different asymmetrical graph
structures can be covered by the proposed approach, provided
that the main features of the proof are kept.

APPENDIX I
SUPER-TWISTING CONTROLLER FOR UAV

The super-twisting controller for UAV is recalled here for
the sake of exhaustiveness. Let Φ(t) = [φ(t),θ(t),ψ(t)]T ∈
R3 denote the Euler angle vector, with φ(t), θ(t), and ψ(t)
being roll, pitch, and yaw angles. Let g denote the gravity
acceleration. Let the transformation matrix Rq(t) be given as:

Rq(t) =

1 0 −Sθ

0 Cφ Cθ Sφ

0 −Sφ CθCφ

 , (29a)

where, Cα and Sα denote cos(α(t)) and sin(α(t)), respec-
tively, for an angle α(t). Let the sliding functions for tracking
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Fig. 3: Four Θ̂-components in (1) (UAVT) and corresponding
distributed estimates from UAVs 1, 2, 3.
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Fig. 4: Four Θ̃-components in (1) (UAVT) and corresponding
distributed estimates from UAVs 1, 2, 3.



a three-dimensional trajectory be defined as

σx(t) = (Ẋ(t)− Ẋd(t))+λx(X(t)−Xd(t)), (30a)
σy(t) = (Ẏ (t)− Ẏd(t))+λy(Y (t)−Yd(t)), (30b)
σz(t) = (Ż(t)− Żd(t))+λz(Z(t)−Zd(t)), (30c)

where [X(t),Y (t),Z(t)]T ∈ R3 is the position vector of center
of gravity of the UAV in the inertial frame of reference;
[Xd(t),Yd(t),Zd(t)]T ∈ R3 is the desired position and vector
in the inertial frame of reference, respectively; λx, λy, and
λz are positive design parameters. The control laws for the
acceleration inputs, aXd (t), aYd (t), and aZd (t), in the inertial
frame are given by

aXd (t) = Ẍd(t)−λx(Ẋ(t)− Ẋd(t))

−αx sign(σx(t))
√
|σx(t)|−

∫ t

0
βx sign(σx(t)),

(31a)

aYd (t) = Ÿd(t)−λy(Ẏ (t)− Ẏd(t))

−αy sign(σy(t))
√
|σy(t)|−

∫ t

0
βy sign(σy(t)),

(31b)

aZd (t) = Z̈d(t)−λz(Ż(t)− Żd(t))+g

−αz sign(σz(t))
√
|σz(t)|−

∫ t

0
βz sign(σz(t)),

(31c)

where αx, αy, αz, βx, βy, and βz are positive design
parameters. The total thrust acceleration input Td(t), dis-
tributed across all UAV motors, is computed as Td(t) =√

aXd (t)
2 +aYd (t)

2 +aZd (t)
2, whereas the desired roll φd(t)

and pitch θd(t) for chosen yaw ψd(t) are determined from the
acceleration inputs as

φd(t) = arcsin
(
−aXd (t)Sψd +aYd (t)Cψd

Td(t)

)
, (32a)

θd(t) = arcsin
(

aXd (t)Cψd +aYd (t)Sψd

Td(t)Cψd

)
. (32b)

The commanding angular velocity vector ωc(t) ∈ R3 is
determined as ωc(t) =−λω Rq(t)eΦ(t), where eΦ(t) = [φ(t)−
φd(t),θ(t)− θd(t),ψ(t)−ψd(t)]T ∈ R3 and λω is a positive
design parameter [27]. Finally, the commanding normalized
thrust, Tc(t), is determined as Tc(t) = Td(t)Tre f /g, where Tre f
is the experimentally determined hover thrust.

REFERENCES

[1] P. Bobade, D. Panagou, and A. Kurdila, “Multi-agent adaptive estima-
tion with consensus in reproducing kernel hilbert spaces,” 2019 18th
European Control Conference (ECC), 2019.

[2] M. Fanti, A. M. Mangini, F. Mazzia, and W. Ukovich, “A new class of
consensus protocols for agent networks with discrete time dynamics,”
Automatica, vol. 54, pp. 1–7, 2015.

[3] E. Estrada, “Path laplacian matrices: Introduction and application to the
analysis of consensus in networks,” Linear Algebra and its Applications,
vol. 436, no. 9, pp. 3373–3391, 2012.

[4] I. Matei, J. Baras, and C. Somarakis, “Convergence results for the linear
consensus problem under markovian random graphs,” SIAM Journal on
Control and Optimization, vol. 51, no. 2, pp. 1574–1591, 2013.

[5] P.-Y. Chevalier, J. Hendrickx, and R. Jungers, “Efficient algorithms
for the consensus decision problem,” SIAM Journal on Control and
Optimization, vol. 53, no. 5, pp. 3104–3119, 2015.

[6] A. Sarlette and R. Sepulchre, “Consensus optimization on manifolds,”
SIAM Journal on Control and Optimization, vol. 48, no. 1, pp. 56–76,
2009.
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