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Abstract— As humanity ventures deeper into space, the
demand for autonomous robotic systems capable of performing
complex manipulation tasks is becoming increasingly critical.
In this work, we investigate the integration of Operational
Space Control with model-based Reinforcement Learning to
achieve adaptive compliant manipulation in challenging space
environments. Our experimental results across two demanding
simulated space scenarios demonstrate that learning to modu-
late compliance significantly improves convergence and move-
ment smoothness compared to standard differential Inverse
Kinematics control. These findings underscore the potential of
learned software-defined compliance for robust manipulation
under the unpredictable conditions of space. A critical next
step involves validating these strategies via sim-to-real transfer
on physical robotic platforms to establish practical viability.

I. INTRODUCTION

Robotic manipulation is a key enabler for the success
of future space missions by supporting critical operations
such as orbital structure assembly and planetary habitat con-
struction. However, the extreme conditions of space coupled
with the limited human oversight require robust and adaptive
control strategies. This presents a fundamental challenge for
developing systems that are resilient enough to withstand
harsh conditions while maintaining the flexibility needed to
adapt to unpredictable and dynamic environments. Although
traditional approaches are effective in structured settings,
they often fail in unstructured environments that are inherent
to space exploration. To address these challenges, learning-
based approaches have gained traction in recent years due
to their data-driven nature that enables robots to learn from
experience and adapt to new situations. Yet, their application
for complex manipulation tasks in space remains limited.

At the same time, rigid robotic systems are often ill-suited
for the unpredictable dynamics of space environments, where
unmodeled forces and contact interactions can lead to loss
of control or damage to both the robot and its environment.
This is particularly relevant in scenarios such as on-orbit
servicing, where robots must interact with free-floating tools
or debris, and planetary exploration, where regolith or dust
can result in unmodeled contacts. The need for compliant
manipulation strategies is further exacerbated by the limited
ability for human intervention in space, as astronauts may
not be able to provide real-time feedback or assistance during
complex tasks. This highlights the importance of developing
robots that can autonomously adapt to their environment and
handle unexpected situations.
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Our model-based compliant manipulation is trained and evaluated
in diverse procedural scenarios with hundreds of parallel environments.

Learning-based approaches such as Reinforcement Learn-
ing (RL) are general in nature, which makes them suitable
for a variety of tasks in dynamic environments. While it is
possible to learn compliant manipulation strategies through
direct control of joint commands, this approach is often
impractical in real-world applications due to the complexity
of the involved dynamics. Leveraging the knowledge of
kinematics through high-level task space commands can sig-
nificantly simplify the learning process for complex tasks and
result in a robot-agnostic policy. However, methods based on
Inverse Kinematics (IK) are often brittle and limit the ability
of the robot to control its compliance; this is particularly
relevant in space environments where the resulting lack of
compliance makes the system susceptible to instability or
damage from unmodeled forces and contact interactions.

To address these challenges, Operational Space Con-
trol (OSC) [1] provides a principled framework for im-
plementing controlled compliance that enables direct end-
effector control with adjustable stiffness and damping. In
addition to manually tuning the compliance gains, OSC can
be extended with learning-based approaches that dynamically
adjust the stiffness and/or damping based on the sensory
feedback and requirements of the task [2], with the goal
of enhancing the adaptability of autonomous systems. While
prior research has combined OSC with model-free RL for
terrestrial tasks [3], its application to space robotics remains
unexplored. Similarly, the integration of OSC with model-
based RL has not been studied. To this end, we propose an
approach that integrates the principles of OSC with model-
based RL to learn compliant manipulation in space environ-
ments. By leveraging the strengths of both OSC and RL, we
aim to develop a control strategy that can effectively adapt
to the challenges of space manipulation while maintaining
the required precision and robustness.



II. LEARNING COMPLIANT MANIPULATION

We explore the integration of OSC with model-based
RL to learn compliant manipulation strategies suitable for
space robotics. The core concept involves using OSC to
provide software-defined compliance via adjustable stiffness
and damping parameters. These parameters are dynamically
modulated by an RL agent based on task requirements
and sensory feedback. For the learning agent, we utilize
DreamerV3 [4] that has demonstrated strong performance on
complex tasks across diverse domains.

We investigate four distinct control strategies, primarily
differing in how compliance is handled and learned:

o IK [dim(.A) = 6]: Non-compliant baseline using stan-
dard differential IK.

o OSC-CONST [dim(A) = 6]: OSC with fixed compli-
ance gains that provide constant passive compliance.

o OSC-STIFF [dim(A) = 12]: OSC where the agent
learns to modulate stiffness (K,,) gains.

e OSC-VAR [dim(A) = 18]: OSC where the agent learns
to modulate stiffness (K) and damping (K,) gains.

In all strategies, a core component of the action space A
includes the desired end-effector translational and rotational
displacements (Ax € RS). For the adaptive strategies,
the action space is augmented with OSC-STIFF adding 6
dimensions for the stiffness gains K, while OSC-VAR adds
another 6 dimensions for the damping gains K 4. This allows
the agent to actively control the robot’s impedance based on
the learned policy and the perceived state.

III. RESULTS

We evaluate the performance of the four control strategies
on two tasks from the Space Robotics Bench [5] shown in
Fig. 1, namely the debris_capture task, which involves
capturing and de-tumbling a free-floating object in orbit,
and the peg_in_hole_assembly task, which requires
grasping and inserting a peg into a hole on a static surface.

Learning Performance: Fig. 2 presents the learning
curves for both tasks. The results consistently show that
all OSC-based approaches outperform the non-compliant IK
baseline. Notably, the adaptive strategies OSC-STIFF and
OSC-VAR demonstrate a more stable convergence in the
contact-intensive peg_in_hole_assembly task, which
highlights the benefit of learned compliance.

Motion Smoothness: Beyond task success, we analyzed
motion smoothness by evaluating the average joint-space
jerkiness during execution. Fig. 3 compares the jerkiness of
different strategies on the peg_in_hole_assembly task.
The results indicate that OSC-VAR achieves significantly
smoother motion by exhibiting the lowest jerkiness among
all tested methods. This reduction in jerkiness suggests
more controlled and predictable movements, which is highly
desirable for minimizing vibrations and potential instability
during delicate manipulation tasks in space environments.
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Fig. 2. Learning curves for the four strategies averaged over three seeds.
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Fig. 3. Comparison of average joint-space jerkiness for the four strategies.

IV. CONCLUSION AND FUTURE DIRECTIONS

This work demonstrates that integrating learned Op-
erational Space Control with model-based Reinforcement
Learning significantly enhances compliant manipulation for
space robotics tasks. Our findings show that dynamically
modulating compliance gains results in better convergence,
training stability, and motion smoothness when compared to
standard differential Inverse Kinematics or fixed compliance
strategies. While these simulation results are promising,
future work must focus on bridging the sim-to-real gap.
Validating these learned compliance strategies on physical
hardware is the critical next step toward establishing their
practical viability for enabling more autonomous and robust
robotic operations in future space missions.
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