Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media

Andrej Orsula! Matthieu Geist?

Abstract— Reliable autonomous navigation across the un-
structured terrains of distant planetary surfaces is a critical
enabler for future space exploration. However, the deployment
of learning-based controllers is hindered by the inherent sim-to-
real gap, particularly for the complex dynamics of wheel inter-
actions with granular media. This work presents a complete
sim-to-real framework for developing and validating robust
control policies for dynamic waypoint tracking on such chal-
lenging surfaces. We leverage massively parallel simulation to
train reinforcement learning agents across a vast distribution of
procedurally generated environments with randomized physics.
These policies are then transferred zero-shot to a physical
wheeled rover operating in a lunar-analogue facility. Our exper-
iments systematically compare multiple reinforcement learning
algorithms and action smoothing filters to identify the most
effective combinations for real-world deployment. Crucially,
we provide strong empirical evidence that agents trained with
procedural diversity achieve superior zero-shot performance
compared to those trained on static scenarios. We also analyze
the trade-offs of fine-tuning with high-fidelity particle physics,
which offers minor gains in low-speed precision at a significant
computational cost. Together, these contributions establish a
validated workflow for creating reliable learning-based navi-
gation systems, marking a substantial step towards deploying
autonomous robots in the final frontier. The source code is avail-
able at https://github.com/AndrejOrsula/space_robotics_bench.

I. INTRODUCTION

The next era of space exploration aims to establish a sus-
tained human presence beyond Earth through ambitious pro-
grams like Artemis [1]. This vision requires a new generation
of highly autonomous robotic systems to perform essential
tasks in remote and hazardous locations. Within these fleets,
wheeled rovers will serve as key enablers for these future
off-world outposts. They will traverse uncharted landscapes
to conduct geological surveys, transport resources, and aid in
constructing infrastructure [2], [3]. The success of these long-
duration missions is therefore directly linked to the ability of
rovers to navigate reliably with minimal human supervision.

A fundamental obstacle to this autonomy is the nature
of extraterrestrial terrain. Planetary surfaces are profoundly
unstructured and often covered by a layer of fine-grained
granular material called regolith. The interaction dynamics
between a rover’s wheels and this deformable medium are
difficult to model. Phenomena such as wheel slippage and
sinkage introduce significant uncertainty that limits the effi-
cacy of traditional control methods. Data-driven approaches
like reinforcement learning (RL) offer a compelling alterna-
tive. An RL agent can learn a complex control policy through

ISpace Robotics Research Group (SpaceR), Interdisciplinary Centre
for Security, Reliability and Trust (SnT), University of Luxembourg
andrej.orsula@uni.lu

2Earth Species Project

Miguel Olivares-Mendez'

Carol Martinez'

Fig. 1:
in procedurally generated scenarios of the Space Robotics
Bench. The generalization learned from diverse experience
enables the acquired policies to be transferred zero-shot to a
physical rover on granular media in a lunar-analogue facility.

Agents are trained to track dynamic waypoints

trial and error, while implicitly capturing the physics of its
environment without an explicit analytical model [4].

However, the primary barrier to applying RL in this
domain is the infeasibility of training directly on a celestial
body. The risk, cost, and limited bandwidth associated with
space missions make real-world data collection impractical.
Simulation is therefore the only viable training ground. This
reliance introduces the critical sim-to-real gap. A policy
trained in a virtual environment often fails when transferred
to the physical world due to subtle discrepancies between
the systems. This gap is especially pronounced for tasks
dominated by complex contact dynamics, such as traversal
on granular surfaces.

This work confronts the sim-to-real challenge for rover
navigation. We argue that creating a singular perfect digital
twin is often impractical or even impossible due to the
limited knowledge of extraterrestrial environments. Instead,
our approach leverages procedural generation to fabricate
a vast distribution of diverse simulated scenarios. Training
agents across this wide range of conditions forces them to
learn generalizable strategies that are robust to real-world
variations. This learned robustness enables successful sim-
to-real transfer to physical rovers, as illustrated in Fig. 1.

We present a complete sim-to-real framework for dy-
namic waypoint tracking on granular media using the Space
Robotics Bench [5]. We systematically compare several RL
algorithms and action smoothing filters to find the most effec-
tive strategies for hardware deployment. We provide strong
empirical evidence that training with procedural diversity is
critical for successful zero-shot transfer. We further show
that fine-tuning with high-fidelity particle physics can harden
a policy against unmodeled terramechanic effects. Together,

https://github.com/AndrejOrsula/space_robotics_bench

these contributions establish a validated workflow for de-
veloping reliable learning-based autonomy in the context of
space robotics.

II. RELATED WORK

This research integrates concepts from three distinct do-
mains. These are the study of vehicle motion on granular
media, the application of robot learning to navigation, and
the use of simulation for the development of space systems.

A. Traversal on Granular Media

Terramechanics, the scientific study of vehicle mobility on
deformable terrain, provides the physical basis for our work.
Foundational studies have established analytical models to
predict wheel slippage and steering forces [6]. These models
later informed path planners that could evaluate paths based
on vehicle stability and energy use [7], [8]. While insightful,
these classical models require extensive empirical data and
struggle with the high variability of natural terrain. Modern
physics engines like Chrono [9] enable high-fidelity simula-
tion of these interactions and have been used to train rovers
for difficult navigation tasks [10]. Such approaches advance
physical modeling but depend on an accurate representation
of the environment. Our work takes a complementary path.
We use learning to implicitly capture complex wheel-terrain
dynamics, aiming for a policy that is robust to the inaccura-
cies of any single model.

B. Learning-Based Robot Navigation

RL has emerged as a powerful tool for solving complex
robot navigation problems. For planetary rovers, learning
has been applied to diverse tasks like collaborative path
planning [11], navigation on extreme slopes [10], and de-
veloping fault-tolerant controllers [12]. A central theme in
this research is achieving robust generalization. Approaches
for this challenge include making policies resilient to sensor
noise through multi-stage training [13] and training agents
in procedurally generated environments [14]. The latter has
shown particular promise, though its exploration for rovers
has been limited to simplified 2D simulations [15]. While
these studies advance autonomous navigation, most focus on
traversal over rigid surfaces. Our work contributes to this
field by specifically tackling policy learning for dynamic
waypoint tracking directly on granular media. The interac-
tion physics of this domain are particularly challenging to
simulate, representing a critical step for creating truly robust
navigation systems.

C. Simulation-Centric Learning for Space Robotics

The extreme cost and logistical challenges of space mis-
sions make simulation an indispensable tool for verifying
spacecraft dynamics [16], [17]. The rise of RL has led to a
new generation of simulators for specific space applications,
including rover navigation [18], spacecraft rendezvous [19],
and in-orbit manipulation [20]. A key technique for policy
transfer is domain randomization, where simulation proper-
ties are varied during training [21]. This method forces the

policy to become more invariant to the sim-to-real gap, which
in turn improves the transfer success [22]. Our research
builds on these principles by using the Space Robotics
Bench (SRB) as our development platform [5]. While SRB is
a comprehensive framework for space robotics research and
supports several robot morphologies, this paper presents its
first application to a complete sim-to-real rover navigation
workflow. We use its capabilities for parallel simulation and
procedural diversity to systematically investigate the factors
that enable successful zero-shot transfer on granular media.

III. FRAMEWORK FOR SIM-TO-REAL ROVER AUTONOMY

Our methodology for creating and deploying robust rover
autonomy rests on an integrated framework. This system
combines a powerful simulation environment for training,
a realistic physical testbed for validation, and a mission-
relevant control task.

A. Simulation Framework: Space Robotics Bench

All policy development occurs within SRB [5], our open-
source framework built on NVIDIA Isaac Lab [23]. This
backend provides GPU-accelerated physics and rendering,
which enables the massive parallelization required for mod-
ern RL workflows to collect diverse experience efficiently.
Crucially for this work, the framework integrates procedu-
ral content generation (PCG) pipelines for creating varied
terrains and supports extensive domain randomization of
physical parameters to bridge the sim-to-real gap.

The framework supports high-fidelity physics, including
the simulation of millions of discrete particles to model
granular media, as shown in Fig. 2. However, such detailed
simulations are computationally expensive. This cost lim-
its their use for large-scale policy training. Therefore, our
primary training methodology leverages the massive paral-
lelization of SRB on rigid lunar surfaces. We run hundreds
of environments simultaneously to generate the vast amount
of experience required for RL. To ensure this experience
is sufficiently diverse, we rely on procedural generation to
create a near-infinite variety of terrains. As illustrated in
Fig. 3, we explore two distinct training regimes. In the

Fig. 2: Visualization of our high-fidelity simulation environ-
ment. A procedurally generated terrain mesh is populated
with millions of discrete particles that enable a more realistic
simulation of complex wheel-regolith interaction dynamics.

(a) Stacked regime.

(b) Procedural regime.

Fig. 3: SRB supports massively parallel simulation in two
primary regimes. In the stacked regime, all environment
instances are superimposed and share a single static terrain,
which risks policy overfitting. In contrast, the procedural
regime exposes each instance to a unique procedurally gen-
erated terrain to foster robustness and generalization. Blue
arrows indicate the dynamically evolving target waypoints.

stacked training regime (Fig. 3a), all agents are trained on
a single procedurally generated environment that is shared
among them. This setup risks policy overfitting to the specific
features of that one terrain. In contrast, the diverse procedural
regime (Fig. 3b) provides each agent with its own unique pro-
cedurally generated terrain, which is central to our hypothesis
that exposing agents to a wide distribution of environments
is crucial for learning generalization.

Our procedural terrains follow a sequential process to
create diverse landscapes. The PCG pipeline begins by
displacing a base mesh with low-frequency Perlin noise to
form the primary topography. Subsequent layers of higher-
frequency noise are applied to create more detailed features.
For example, Voronoi noise forms the rims of impact craters.
The parameters of each layer are then randomized to generate
a wide distribution of scenes. Lastly, procedural boulders
and rocks are scattered across the terrain using Poisson disk
sampling to ensure a natural and plausible distribution.

Beyond PCG, we employ extensive domain randomization
to enhance policy robustness. At the start of each training
episode, we vary key simulation parameters to prepare the
policy for real-world unpredictability. These include environ-
mental properties such as the gravity vector and platform-
specific adjustments like small offsets of the rover’s base
frame to account for manufacturing variations and calibration
errors. Furthermore, we inject randomized noise and variable
delays into both actions and observations. This process
builds resilience to the unpredictable latencies and sensor
inaccuracies inherent in a physical system. To complete the
framework, SRB packages the final trained policy into a
standard ROS 2 interface [24], providing a seamless pathway
for zero-shot deployment on the physical hardware.

B. Lunar Testbed: LunaLab

We conduct all real-world validation in Lunal.ab, a lunar-
analogue facility at the University of Luxembourg contain-
ing 20 tons of basalt gravel that represents the properties

of regolith [25]. Our robotic platform is Leo Rover, a
four-wheeled skid-steer mobile robot with a wheelbase of
29.5 cm, as depicted in Fig. 4. For ground-truth localization,
we use an OptiTrack motion capture system that provides
high-frequency pose data. This data serves a dual role, as it
supplies the real-time state for interpreting global waypoints
in the robot’s local frame and logs the complete trajectory for
analysis. This setup is critical because it allows us to evaluate
the policy’s performance independent of any potential state
estimation errors.

C. Task: Dynamic Waypoint Tracking

The objective of the agent is to master dynamic waypoint
tracking. We formulate this as a partially observable Markov
decision process compatible with the Gymnasium API [26].
The goal is to control the rover to continuously and accu-
rately follow a moving target pose within the environment.

The policy operates at a 25 Hz control frequency. At
each timestep, the agent receives a command vector con-
taining the relative 2D position to the target waypoint and
a 2D vector representing the sine and cosine of the relative
yaw orientation error. To better simulate real-world condi-
tions, we inject two forms of noise into the observations.
A per-episode noise, sampled from AN (0.0, (1.0 cm,2.5°]),
models persistent biases from mechanical misalignments
or calibration errors. A per-timestep noise, sampled from
N(0.0,[0.25 cm, 0.5°]), represents transient signal jitter.

The action space is a 2D continuous vector for the desired
linear and angular velocity commands. These actions are
normalized and mapped to the rover’s maximum linear
speed of 40 cm/s and angular speed of 60°/s. To account
for hardware and communication latencies, we introduce
randomized delays during training. We delay observations
by up to 40 ms (1 step) and actions by up to 120 ms
(3 steps). The specific delay for each environment instance
is randomized per episode and has a 1% chance of changing
every second to model the unpredictable latencies.

The reward function is carefully shaped to encourage
a specific sequence of behaviors for effective tracking. A
continuous penalty on the Euclidean distance and a reward

Fig. 4: Real-world validation is performed with a Leo Rover
inside the Lunalab facility [25], which serves as a lunar-
analogue testbed filled with basalt gravel. It is equipped with
a Sun emulator and a motion capture system for ground-truth
state estimation during policy execution and evaluation.

for pointing towards the target guide the general approach.
As the rover nears the target, additional rewards for precise
position and orientation alignment become dominant. Once
the rover is correctly aligned at the waypoint, a final reward
term encourages it to minimize its action rate in order to
promote a stable stop or smooth tracking behavior. A small,
persistent penalty on large action changes is also included
to discourage jerky movements throughout the episode. To
ensure the policy generalizes, the target waypoint itself
follows a unique, smoothly randomized trajectory in each
parallel environment instance with a 60 s truncation window.

IV. EXPERIMENTAL RESULTS

We conduct a series of systematic experiments to investi-
gate the factors that enable successful sim-to-real transfer for
rover navigation. We specifically evaluate the impact of the
learning algorithm, training diversity, high-fidelity physics,
and action smoothing on policy performance and robustness.

A. Experimental Protocol

Our core evaluation methodology is zero-shot transfer.
Policies are trained exclusively in simulation and deployed
directly to the physical Leo Rover. For each experimental
configuration, we train five independent seeds. To ensure a
representative comparison and mitigate the effects of outlier
training runs, we select the agent with the median final
episodic return (last 1M steps) for real-world deployment.

We assess real-world performance by commanding the
rover to follow a pre-configured looping capsule trajectory.
All reported data is recorded after an agent completes its first
lap to reduce the impact of initial conditions. Furthermore,
we evaluate policy robustness across a range of dynamic
conditions by setting the target waypoint to move at three
constant velocities: 5, 15, and 25 cm/s.

Average tracking error (ATE) is our primary metric to
quantify performance and the ability of agents to match their
target velocity. A lower ATE signifies a more precise and
stable policy. We compute the position error as the mean
Euclidean distance between the rover and the dynamic target.
The orientation error is the mean absolute difference between
the rover’s heading and the target’s heading. Additional
experiment-specific metrics are also reported.

B. Algorithmic Comparison

Our first experiment identifies the most suitable RL algo-
rithm for the dynamic waypoint tracking task. We evaluate
three algorithms that represent distinct learning paradigms.
Proximal Policy Optimization (PPO) [27] is a standard on-
policy algorithm, and we also test a variant with a Long
Short-Term Memory (LSTM) [28]. Twin Delayed Deep
Deterministic Policy Gradient (TD3) [29] represents modern
oft-policy methods. Finally, DreamerV3 [30] is selected as a
representative model-based algorithm due to its demonstrated
performance across diverse tasks. Each agent was trained
in 512 unique parallel environment instances as depicted in
Fig. 3b. The model-free agents were trained for 100M steps,
while the sample-efficient DreamerV3 was trained for 20M

3 X104
2
g 1
E ———
& 0
-1 PPO — TD3
—— PPO (LSTM) —— DreamerV3
-2
0 20M 40M 60M 8OM 100M

Environment Steps

Fig. 5: Learning curves of RL algorithms during the training
in SRB simulation, averaged over five random seeds, with
shaded regions representing the standard deviation.

steps. The learning curves in Fig. 5 show that DreamerV3
achieves a higher final episodic return in significantly fewer
steps, which indicates its superior performance and sample
efficiency. Hyperparameters are listed in the Appendix.

The quantitative sim-to-real transfer results are presented
in TABLE I. The DreamerV3 agent achieves a substantially
lower ATE across all tested velocities. This superior accuracy
is qualitatively confirmed in Fig. 6, which illustrates the real-
world trajectories of the different agents. The path traced by
the DreamerV3 policy is visibly smoother and more closely
aligned with the target trajectory, while other agents exhibit
larger deviations and more erratic behavior. The table also
highlights the computational trade-offs. While PPO has a
significantly lower inference latency, the sample efficiency of
DreamerV3 allows it to complete its training in a comparable
amount of time on a single NVIDIA RTX 4090 GPU.

TABLE I: SIM-TO-REAL PERFORMANCE, TRAINING DU-
RATION, AND INFERENCE LATENCY OF RL ALGORITHMS

PPO
13.2 cm | 7.8°
13.7 cm | 8.6°
14.8 cm | 8.7°
13h30 (100M)
0.4240.1 ms
0.24+0.1 ms

PPO (LSTM)
11.4 cm | 4.8°
11.2 cm| 8.1°
12.9 cm | 9.9°
25h00 (100M)
0.71£0.2 ms
0.714+0.2 ms

TD3
12.6 cm | 8.5°
11.6 cm | 6.2°
13.1 cm|9.1°
15h00 (100M)
0.434+0.1 ms
0.434+0.1 ms

DreamerV3
23 cm | 1.7°
33 cm | 1.9°
3.6 cm | 2.3°
17h30 (20M)
1.2740.1 ms
2.384+0.2 ms

5 cm/s

15 cm/s
25 cm/s
Training
InferlGPU
Inferl CPU

© crater
@ boulder

—— TD3
—— DreamerV3

—— PPO (LSTM)

Fig. 6: Real-world capsule trajectory for policies trained
with different RL algorithms. Major environmental obstacles
(craters and boulders) are graphically indicated for context.

1 - Y
>0 o
0
- a &2 O
N/ Y ~—"
-2 -1 0 1 2 S| 0 1 2

: © @

-1 0 1 2 m

Fig. 7: Additional real-world trajectories (rectangle, circle, Lissajous, and lemniscate) executed by the DreamerV3 agent.

We further showcase the robustness and generalization of
the DreamerV3 agent by deploying it on a series of more
complex, unseen paths at 15 cm/s. As shown in Fig. 7, the
agent successfully follows diverse trajectories using the same
zero-shot transfer workflow. The precision of the learned
controller is further underscored by the physical tracks it
leaves in the granular medium. Figure 8 shows the clean and
repeatable lemniscate path imprinted by the rover’s wheels
at 25 cm/s, which demonstrates the stability and reliability
of the policy. Given its clear advantages in both performance
and sample efficiency, we use DreamerV3 for the remainder
of our experiments.

C. Generalization through Simulation Diversity and Fidelity

This experiment systematically evaluates our core hypoth-
esis that policy robustness is a direct result of the diversity
and fidelity of the simulation environment. We analyze the
four distinct training regimes presented in TABLE II to
determine the most effective strategy for zero-shot sim-to-
real transfer.

The baseline agent is trained in a static environment
(Fig. 3a). It learns to solve the task efficiently in simulation
but fails to generalize to the real world. The introduction
of full domain randomization alone provides a substantial
improvement in real-world performance. While the position
error decreases moderately, the orientation error is reduced
by more than half across all speeds. This demonstrates that
randomizing physics, noise, and latency is a critical first step
for creating a more robust policy.

While domain randomization is effective, the best overall
generalization is yielded in combining it with PCG (Fig. 3b).
Training agents on a unique terrain in each parallel instance
achieves the lowest ATE at higher velocities. This result
provides strong evidence for our central hypothesis. By
preventing the agent from memorizing a single environment
layout, procedural training forces it to learn the fundamental
principles of dynamic navigation on varied terrain, leading
to the most broadly effective policy.

The final experiment investigates whether performance

TABLE II: SIM-TO-REAL PERFORMANCE AND TRAINING
DURATION OF DIFFERENT REGIMES

Static DR DR&PCG DR&PCG+PF
Scm/s | 34cm|[42° 25cm|1.6° 23cm|1.7° 2.2 cm | 1.5°
IScm/s | 42cm |6.8° 33 cm|23° 33 cm|1.9° 3.3 cm|2.0°
25cm/s | 44 cm|7.1° 41cm|29° 3.6 cm|2.3° 4.3 cm | 2.6°
Training | 17h00 (20M) 17h00 (20M) 17h30 (20M) +82h00 (+1M)

DR - domain randomization | PCG — procedural content generation | PF — particle fine-tuning

Fig. 8: The lemniscate path imprinted by the rover’s wheels
during a real-world deployment with the DreamerV3 agent.

can be enhanced by fine-tuning the policy with high-fidelity
particle physics (Fig. 2). We take the median agent from the
DR+PCG regime and continue its training for an additional
IM steps across eight parallel environments with particle
simulation enabled. The results indicate that this step pro-
vides a slight improvement in ATE at the lowest velocity, but
the benefit diminishes at higher speeds. This performance
degradation at higher velocities can likely be attributed to
a form of overfitting driven by reduced training diversity.
The fine-tuning phase exposes the agent to a significantly
narrower data distribution from only eight environments.
This may cause the policy to lose some of the generalizability
learned from the vast procedural diversity. Furthermore,
while particle-based simulation offers higher fidelity, it may
not perfectly capture all complex wheel-terrain interactions
at high speeds. While this suggests that high-fidelity particle
simulation can harden a policy against some unmodeled
terramechanic effects, the significant training cost indicates
that the broad generalization from PCG is a more critical
and cost-effective strategy for this task.

D. Stability through Action Smoothing

While RL can produce highly performant policies, the re-
sulting controllers often generate high-frequency, oscillating
actions. These jerky commands can be effective for optimiz-
ing reward in simulation, but may lead to unstable behavior
and cause excessive mechanical stress on physical hardware.
This experiment investigates how different low-pass action
filters can mitigate this issue. We compare the performance of
the unfiltered DreamerV3 policy against versions augmented
with a Moving Average filter (history of 5 steps), a third-
order Savitzky-Golay filter (history of 9 steps), and a fourth-
order Butterworth filter (cutoff frequency of 2.5 Hz). We

TABLE III: SIM-TO-REAL PERFORMANCE AND JERK OF
ACTION SMOOTHING FILTERS

Unfiltered Moving Average Savitzky-Golay Butterworth

Scm/s |23 cm | 1.7° 2.2 cm | 1.6° 26 cm|1.7° 28 cm|1.7°

15 cm/s | 3.3 cm | 1.9° 3.7 cm|2.4° 50cm|23° 43 cm|2.1°

25 cm/s | 3.6 cm | 2.3° 42 cm|2.1° 649 cm|164° 49 cm|24°
Jerk | 100+81% 33+22% 30+20% 39+24%

evaluate both the ATE and the relative motion jerk, calculated
as the time-averaged magnitude of the third derivative of the
rover’s position.

The results in TABLE III reveal a critical trade-off be-
tween tracking precision and motion stability. The unfiltered
policy achieves the best tracking accuracy at higher speeds.
However, this performance comes at the cost of a motion
jerk three times higher than the filtered alternatives, making
it unsuitable for long-term missions.

As expected, all smoothing filters dramatically reduce
jerk, leading to more predictable control. The Savitzky-
Golay filter provides the greatest jerk reduction but intro-
duces significant phase lag due to its wider history window,
which causes its performance to degrade at 15 cm/s before
failing catastrophically at 25 cm/s. With our setup, a simple
Moving Average filter provides a satisfactory compromise.
It improves tracking performance at low speed and accepts
only a minor accuracy penalty at high speed, all while
reducing mechanical jerk by 67%. This experiment highlights
that optimizing for raw performance alone is insufficient for
hardware deployment. While other methods might be more
effective, particularly those based on policy regularization, a
well-tuned action filter represents a practical and computa-
tionally efficient method for achieving the stability required
for safe and reliable long-term operation.

E. Vision-Based Control

Finally, we investigated the feasibility of end-to-end learn-
ing by training a policy with access to a 64x64 px depth map
observation that is acquired from a RealSense D455 camera
onboard the rover. While this policy could be transferred
to the physical rover, its tracking accuracy was significantly

(a) Simulated depth map. (b) Real-world depth map.

Fig. 9: Comparison of simulated and real-world depth views.
The simulated map is clean, while the real-world image
suffers from significant noise and signal dropout due to the
properties of the basalt gravel present in the LunaLab.

degraded, with an ATE of 9.2 cm and 6.5° at 15 cm/s. We
attribute this performance drop to a pronounced perceptual
sim-to-real gap, visualized in Fig. 9. Our standard simulation
provides a clean depth map, but the physical basalt in
Lunalab creates a noisy signal with substantial dropouts.
This result highlights that even with a robust control policy,
unmodeled sensor effects can be a primary failure point.
Closing this perceptual gap through higher-fidelity sensor
simulation is a critical challenge for future work.

V. CONCLUSION

This paper presented and validated a complete sim-to-
real framework for rover navigation on challenging granular
media. We demonstrated that a policy trained in procedurally
diverse simulations can be deployed zero-shot to a physical
rover, where it achieves precise and stable dynamic waypoint
tracking in a lunar-analogue facility. Mastering this general
capability is foundational for a wide range of applications,
from following pre-planned science routes to assisting astro-
nauts in the field. Our work provides a clear methodology for
developing robust, learning-based controllers for such tasks
in extraterrestrial traversal.

Our experiments yield several key findings for creating ro-
bust rover autonomy. We provided strong empirical evidence
that training with procedural diversity is a critical factor for
successful zero-shot transfer, as it forces the policy to gener-
alize rather than overfit to simulation artifacts. We also found
that model-based agents like DreamerV3 are particularly
well-suited for this task due to their sample efficiency and
learned world models. Furthermore, we demonstrated that
simple action smoothing is a practical necessity for stable
hardware deployment, and that a final fine-tuning with high-
fidelity particle physics can offer marginal gains in low-speed
precision at a significant training cost.

This work has two main limitations. First, our validation
is confined to a single terrestrial analogue under Earth’s
gravity. Future work should validate these policies in more
representative environments. Second, the framework relies on
an external motion capture system for localization. Achiev-
ing full autonomy will require replacing this with onboard
perception, a task whose difficulty was highlighted by the
pronounced sim-to-real gap in our vision-based experiments.

This paper establishes a complete and validated workflow
for creating robust learning-based navigation controllers. The
demonstrated success of zero-shot transfer on challenging
granular terrain marks a critical step towards creating au-
tonomous systems that can reliably operate on the dusty
surfaces of other worlds.

REFERENCES

[1] National Aeronautics and Space Administration, “Artemis Plan:
NASA’s Lunar Exploration Program Overview,” 2020.

[2] V. Verma et al., “Enabling Long & Precise Drives for The Perseverance
Mars Rover via Onboard Global Localization,” in IEEE Aerospace
Conference, 2024, pp. 1-18.

[3] T. Zhang et al., “The Progress of Extraterrestrial Regolith-Sampling
Robots,” Nature Astronomy, vol. 3, pp. 487-497, 2019.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. A Bradford Book, 2018.

[5]

[6]

[7]

[9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

A. Orsula, M. Geist, M. Olivares-Mendez, and C. Martinez, “Space
Robotics Bench: Robot Learning Beyond Earth,” arXiv:2509.23328,
2025.

G. Ishigami, A. Miwa, K. Nagatani, and K. Yoshida, “Terramechanics-
based model for steering maneuver of planetary exploration rovers on
loose soil,” Journal of Field Robotics, vol. 24, no. 3, pp. 233-250,
2007.

G. Ishigami, K. Nagatani, and K. Yoshida, “Path Planning for
Planetary Exploration Rovers and Its Evaluation based on Wheel
Slip Dynamics,” in IEEE International Conference on Robotics and
Automation, 2007, pp. 2361-2366.

G. Ishigami, K. Nagatani, and K. Yoshida, “Path Planning and Eval-
uation for Planetary Rovers Based on Dynamic Mobility Index,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2011, pp. 601-606.

A. Tasora et al., “Chrono: An open source multi-physics dynamics
engine,” in International Conference on High Performance Computing
in Science and Engineering, 2015, pp. 19-49.

T. Xu, C. Pan, and X. Xiao, “Reinforcement Learning for Wheeled
Mobility on Vertically Challenging Terrain,” in IEEE International
Symposium on Safety Security Rescue Robotics, 2024, pp. 125-130.
S. Lu, R. Xu, Z. Li, B. Wang, and Z. Zhao, “Lunar Rover Collaborated
Path Planning with Artificial Potential Field-Based Heuristic on Deep
Reinforcement Learning,” Aerospace, vol. 11, no. 4, 2024.

B.-J. Park and H.-J. Chung, “Deep Reinforcement Learning-Based
Failure-Safe Motion Planning for a 4-Wheeled 2-Steering Lunar
Rover,” Aerospace, vol. 10, no. 3, 2023.

A. B. Mortensen et al., “Two-Stage Reinforcement Learning for
Planetary Rover Navigation: Reducing the Reality Gap with Offline
Noisy Data,” in International Conference on Space Robotics, 2024,
pp. 266-272.

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedu-
ral generation to benchmark reinforcement learning,” in International
Conference on Machine Learning, 2020, pp. 2048-2056.

D. I. Koutras, A. C. Kapoutsis, A. A. Amanatiadis, and E. B.
Kosmatopoulos, “MarsExplorer: Exploration of Unknown Terrains via
Deep Reinforcement Learning and Procedurally Generated Environ-
ments,” Electronics, vol. 10, no. 22, 2021.

S. P. Hughes, R. H. Qureshi, S. D. Cooley, and J. J. Parker, “Verifica-
tion and Validation of the General Mission Analysis Tool (GMAT),”
in AIAA/AAS Astrodynamics Specialist Conference, 2014.

P. W. Kenneally, S. Piggott, and H. Schaub, “Basilisk: A flexible,
scalable and modular astrodynamics simulation framework,” Journal
of Aerospace Information Systems, vol. 17, no. 9, pp. 496-507, 2020.
A. B. Mortensen and S. Bggh, “RLRoverLAB: An Advanced Rein-
forcement Learning Suite for Planetary Rover Simulation and Train-
ing,” in International Conference on Space Robotics, 2024, pp. 273—
2717.

M. El-Hariry, A. Richard, V. Muralidharan, M. Geist, and M. Olivares-
Mendez, “DRIFT: Deep Reinforcement Learning for Intelligent Float-
ing Platforms Trajectories,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2024, pp. 14034-14041.

S. Wang, Y. Cao, X. Zheng, and T. Zhang, “Collision-Free Trajectory
Planning for a 6-DoF Free-Floating Space Robot via Hierarchical
Decoupling Optimization,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4953-4960, 2022.

J. Tobin et al., “Domain randomization for transferring deep neural
networks from simulation to the real world,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2017, pp. 23-30.

K. Bousmalis et al., “Using Simulation and Domain Adaptation to
Improve Efficiency of Deep Robotic Grasping,” in IEEE International
Conference on Robotics and Automation, 2018, pp. 4243-4250.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

M. Mittal et al., “Orbit: A Unified Simulation Framework for Interac-
tive Robot Learning Environments,” IEEE Robotics and Automation
Letters, vol. 8, no. 6, pp. 3740-3747, 2023.

S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot Operating System 2: Design, architecture, and uses in the
wild,” Science Robotics, vol. 7, no. 66, 2022.

P. Ludivig, A. Calzada-Diaz, M. Olivares-Mendez, H. Voos, and
J. Lamamy, “Building a Piece of the Moon: Construction of Two
Indoor Lunar Analogue Environments,” in International Astronautical
Congress, 2020.

M. Towers et al., “Gymnasium: A Standard Interface for Reinforce-

ment Learning Environments,” arXiv:2407.17032, 2024.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal Policy Optimization Algorithms,” arXiv:1707.06347, 2017.
S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neu-
ral Computation, vol. 9, no. 8, 1997.

S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning, 2018, pp. 1587-1596.

D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse
control tasks through world models,” Nature, vol. 640, pp. 647-665,

2025.

APPENDIX: HYPERPARAMETERS

PPO
Learning Rate (Actor & Ceritic)
Discount Factor ()

linear

0.0001 —— 0.0 (schedule)
0.997

Rollout Buffer Size (per env) 128
Minibatch Size 1024
PPO Epochs per Rollout 16
GAE Lambda () 0.95
PPO Clip Range (¢) 0.2
Entropy Coefficient 0.01
Gradient Clipping Norm 0.5
Actor/Critic Network Size (MLP Units) [384, 384]
PPO (LSTM)

LSTM Hidden Size 384
TD3

Learning Rate (Actor & Ceritic)
Discount Factor ()

linear

0.003 —— 0.0 (schedule)
0.997

Replay Buffer Size 2,000, 000
Minibatch Size 512
Updates per Environment Step 4
Exploration Noise N(0.0,0.1)
Target Network Update Rate (7) 0.005
Actor/Critic Network Size (MLP Units) [384, 384]
DreamerV3

Discount Factor () 0.997
Replay Buffer Size 2,000, 000
Batch Size 16
Sequence Length 64
Updates per Environment Step 32
Model Size:

RSSM Hidden Size 384

RSSM Deterministic Units 3072

Discrete Latents per State 24

MLP Units 384

CNN Depth 24

	Introduction
	Related Work
	Traversal on Granular Media
	Learning-Based Robot Navigation
	Simulation-Centric Learning for Space Robotics

	Framework for Sim-to-Real Rover Autonomy
	Simulation Framework: Space Robotics Bench
	Lunar Testbed: LunaLab
	Task: Dynamic Waypoint Tracking

	Experimental Results
	Experimental Protocol
	Algorithmic Comparison
	Generalization through Simulation Diversity and Fidelity
	Stability through Action Smoothing
	Vision-Based Control

	Conclusion
	References

