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Abstract. Scaling up distributed systems increases also the chance that
some node ceases to operate correctly, which turns fault tolerance into
an essential trait. To achieve fault tolerance, numerous distributed algo-
rithms, including reliable broadcast and consensus, depend on threshold
guards. A threshold guard can, for example, ensure that a process waits
for a majority of its peers to acknowledge that they reached a certain
state in the distributed algorithm, before the process makes any progress.
Threshold automata are computational models that allow fully auto-
mated parameterized verification of single- and multi-round threshold-
based distributed algorithms (FTDA), where often the number of pro-
cesses and the proportion of faulty processes are parameters. However,
due to the fact that such algorithms have to cope with faulty processes
not answering or, more generally, behaving in an arbitrary potentially
malicious manner, liveness must only depend on a subset of processes,
while ideally all correct processes should be considered in the termination
properties of such algorithm. In this paper, we present a novel reasoning
technique for proving almost-sure termination in extended probablistic
threshold automata, by detecting strongly connected components (SCCs)
in extended probabilistic and in ordinary threshold automata to reduce
almost-sure termination to reachability in a finite abstract system.

A personal note by Marcus

Dear Christel,

remember when we first met. Me coming from operating systems, it took us a
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SCCs to prove almost-sure termination in extended probablistic threshold au-
tomata. Thanks for leading the paths of so many researchers, including myself,
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to not shy away from formal verification and model checking in particular.

I wish you all the best,
Marcus

1 Introduction

In large scale distributed systems, faults are inevitable and may lead to arbitrary
and possibly intentionally malicious, that is, Byzantine behavior of nodes and
the processes they execute. Consequently, the distributed algorithms that govern
these systems must tolerate faults, whether they are accidental or caused by
cyberattacks. Prominent examples of such fault-tolerant distributed algorithms
(FTDASs) are reliable broadcast [9], Byzantine fault tolerant agreement [l9],
and the various variants of the two that currently form the dissemination and
consensus layers of modern permissioned and permissionless blockchains [22,23].
Unfortunately, FTDAs are hard to get correct, so we need formal verification
and tools to assist developers constructing them.

Threshold automata (TAs) are formal models of FTDAs that avoid the need
to enumerate faulty behavior and that are able to characterize systems in a
parametric manner. While the parameterized verification problem is generally
undecidable [21], it is decidable for certain classes of systems [10, 11], including
threshold automata [2,12].

FTDAs, like the ones above, must on the one side be able to detect and
recover from or, better, mask any behavior of faulty processes, including no
response to requests at all, but also possibly long correct behavior patterns.
Consequently, given a fault tolerance threshold ¢, where the actual number of
faulty processes satisfies f < t, the algorithm must ensure progress with only
n — t processes, as it cannot depend on responses from potentially faulty ones.
In addition, FTDAs must also ensure that no conflicting decisions are taken, be
that binary consensus (e.g., whether to deliver a message) by following a simple
majority (e.g., more than n/2), or agreement on a value by requiring a correct
process in the intersection of any two quorums [18] that can take such a decision
(e.g., 2Q —n < t+ 1 where @ denotes the quorum size). Threshold automata
characterize such algorithms, by demanding that a threshold of processes are in
a given state (e.g., of agreement), before progress can be made.

In this work, we deal with randomized systems, so we use probabilistic thresh-
old automata (PTAs). One randomized binary consensus algorithm is Ben-Or’s
algorithm [4], see Algorithm 1 and its corresponding TA in Figure 1. It proceeds
in rounds, where n — t processes execute rounds in lock-step in an asynchronous
manner. Each round is comprised of two phases. In the first, each process tries
to identify a value v € {0,1} that is supported by a majority. In the second,
decision or ratification phase, processes finalize their decision if the value is pro-
posed by at least t + 1 processes among the n = 2t + 1 processes. In case no
such simple majority can be found, Ben-Or’s algorithm causes some nodes to
change their votes for the next round, repeating the agreement until eventually
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probabilistically the system converges to a consensus value in one of the future
rounds.

In this work, we lift two restrictions that were imposed on threshold automata
during their verification, namely that cycles are not allowed and that coin tosses
may only appear at the end of the automaton. With these restrictions in place,
algorithms like Ben-Or’s could only be verified under round-rigid adversarial
schedules [6], which require all processes to complete the previous round r before
any process can start round r+ 1. The algorithm as verified, would have to either
wait for faulty processes to acknowledge this fact, or would have to prevent them
from behaving correctly and push other correct processes beyond this boundary.

We do so by introducing a novel algorithm for detecting strongly connected
components and apply it to prove termination in a system model for a network of
an arbitrary number of deterministic threshold automata. The algorithm further
detects strongly connected components and almost-sure termination (i.e., termi-
nation with probability one) in a system model for a network of an arbitrary
number of probabilistic threshold automata.

We start by introducing our system model and the extension of probabilistic
threshold automata (PTAs) that allows cycles in Section 2. In Section 3, we
introduce a finite abstract domain for the shared variables of TAs and an ab-
straction based on parametric interval abstraction. Section 4 demonstrates how
this new abstraction allows dropping the resilience condition, the function N
that determines the number of processes to be modeled, and the exact number
of processes in a configuration. Section 5 introduces our algorithm for detecting
almost-sure termination and strongly connected components. Section 6 relates
our work to the works of others, before we draw conclusions and highlight future
work in Section 7.

2 System Model

In this section, we build upon the existing concept of probabilistic threshold
automata (PTA) [0], extending the definition to allow shared variables to be re-
set, similar to [3]. We then show how to transform a PTA into a non-deterministic
threshold automaton (TA), where non-determinism arises from multiple rules (tran-
sitions) being enabled simultaneously. We also define the semantics of an un-
bounded number of non-deterministic TAs running in parallel.

Definition 1. A probabilistic threshold automaton (PTA) is a tuple PA =
(L,Z,I,II,R, RC) where:

L is a finite set of locations.

T C L is the set of initial locations.

— I'={xo,...,Tm} is a finite set of shared variables over Ny.

— II is a finite set of parameter variables over No. Usually, II = {n,t, f},
where n is the total number of processes, t is a bound on the number of
tolerated faulty processes, and f is the actual number of faulty processes.
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Algorithm 1 Ben-Or’s Algorithm for Byzantine Faults

1: bool v + input_value({0, 1})
2:int r« 1
3: while true do

4: send (R,7,v) to all

5: wait for n — ¢t messages (R, 7, *)

6: if received at least (n + t)/2 messages (R, 7, w) then
7: send (P,r,w, D) to all

8: else

9: send (P,r,7) to all

10: wait for n — ¢t messages (P, r, )

11: if received at least t + 1 messages (P, 7, w, D) then
12: V4= w

13: if received at least (n + t)/2 messages (P,r,w, D) then
14: decide w

15: else

16: v + random ({0, 1})

17: r—r+1

— RC, the resilience condition, s a linear integer arithmetic formula over pa-
rameter variables. E.g.: for Ben-Or, RC =n>2t Nt > f.
For a vector p € N(‘)Hl, we write p = RC if RC holds after substituting
parameter variables with values according to p. Then the set of admissible
parameters is Prc = {p € NLHl :p E RC}.
— R is a set of rules where a rule is a tuple r = (from, 10, p,uv, ) such that:
e from € L is a location.
® 0, is a probability distribution over the target locations.
e v is a conjunction of lower guards and upper guards. A lower guard
has the form: ag + ZLZ‘I a; - p; < x; An upper guard has the form:
ag +ZLZ‘1a¢ “pi > x, withx € T', ag,...,az € Q, p1,...,pym € II.
We denote these inequalities as a lower guard on x and an upper guard
on x respectively.
The left-hand side of a lower or upper guard is called a threshold.
e uv € |No|l”'l is an update vector for shared variables.
o 7 C I' is the set of shared variables to be reset to 0.

Remark 1. For any tuple-based structure X = (A, B,C,...) with named com-
ponents, we use dot notation to refer to individual components. For instance,
PA = (L,Z,I,II,R,RC) we use PA.L, PAZ,PA.I', PA.II, PAR, PA.RC to
refer to the components L, Z, I', II, R, and RC' respectively.

From a Probabilistic Threshold Automaton (PTA), one can derive a non-
probabilistic threshold automaton simply by replacing all probabilities with non-
determinism. That is, every probabilistic rule r = (from, ;,, @, uv, 7) is replaced
by non-deterministic rules of the form ¢, = (from, to, p, uv, 1) for every location
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Fig. 1: Ben-Or’s algorithm as a probabilistic threshold automaton with resilience
condition n > 2t At > f > 0 At > 0. Check Table 1 for the rules’ notations.

to with d;, > 0. While we can specify shared variables in 7 to be reset, our
algorithm cannot handle resets, yet.

Definition 2. Given a PTA, PA= (L,Z,I,II, R, RC), its corresponding non-
probabilistic threshold automaton is Ay, = (L, Z,I,II, Ry, RC) where the set
of rules Ry, is defined as follows: {(from, to,p,uv,7) | (from, ds, 0, uv,T) €
R Atoe LAb, >0}

FEzample 1. Figure 2 illustrates a sec-
ond, more simpler threshold au-
tomaton with the following com-
ponents: Z = {V,Vi}, L =
{Vo, V1, Wait, Do, D1}, I' = {xo, 21},
and IT = {n,t, f}. In this model,
n > 3t and t < f holds. A process
in Vy has a vote of 0, while a process
in V7 has a vote of 1. The decision will

be 0 (or 1) if more than ™% processes . _
vote 0 (or 1, respectively). This out-  Fig.2: A threshold automaton for sim-

come is modeled by all processes tran- ple voting.
sitioning to state Dy (if the decision
is 0) or Dy (if the decision is 1).

2.1 Semantics of a Threshold Automaton

Given a TA A= (L,Z,I,1I, R, RC), let the function N : Prc — Ny determine
the number of processes to be modelled, typically defined as N(n,t, f) = n —
f, where n represents the total number of processes and f denotes the actual
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Rule Guard Update
r1 true o ++
ro  true r1 4+ +
rs To+xi>n—t—f A xo>(n+t)/2—f Yo + +
ra wot+zi2n—t—f Axzi1>(n+t)/2-f Y1 ++
rs zo+xi>n—t—f ANzo>n—=3)/2—f ANz1>n-3)/2—f y? ++

e Yo+ryi+y?>n—t—f Ay?>Mn—-3t)/2—f ANyo>t+1—f -
T Yoty +y?2n—t—f Ayo>(n+t)/2—f -
rs Yoty ty?>n—t—fFf Ay?>n-3t)/2—f ANy?>n—-2t—f—1 -
o Yoty +y?Zn—t—f Ay >(n+t)/2—f -
o Yoty +y?>n—t—f Ay?>n-3)/2-f ANy >t+1-f -
ri1 true -

rio  true —

Table 1: Rules of the probabilistic threshold automaton for Ben-Or’s algorithm
in Figure 1.

number of faulty processes. The concrete semantics of a system consisting of
N(p) threshold automata running in parallel are captured by a counter system.

Formally, a counter system is an abstraction of N(p) instances of a given TA
running in parallel, as it only keeps track of how many TA are in which location,
but not exactly which of the processes. However, this abstraction is well-known
to be sound and complete for distributed systems with identical/anonymous
processes.

Definition 3. A counter system (CS) of a non-probabilistic threshold automa-
ton A= (L,Z,I,II,R, RC) is a transition system CS(A) = (X, Xy, T) where

— X is the set of all configurations. A configuration is a tuple o = (k,g,p)
where:
e k ¢ N‘OL‘ is a vector representing the counter values at each location.
Specifically, k[i] indicates the number of processes present in location i.
We refer to locations by their indices in L.
e gc N(‘JF| is a vector of values for the shared variables, where gli] is the
value of variable x; € I.
e p € Pro is an admissible vector of parameter values.
— The set Xy consists of all initial configurations, which satisfy the following
conditions:
o Vx;€I': ogli]=0.
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— T C X xR x X is the set of transitions, where (o,7,0") € T if and only if
the following conditions hold:
e The parameter values are unchanged: o’.p = o.p.
e The counter value at the target location of the rule is incremented:
o’ k[r.to] = o.k[r.to] + 1 (one process moves to r.to).
e The counter value at the source location of the rule is decremented:
o' X[r.from] = o X[r.from] — 1 (one process moves out of r.from).
e The guard condition r.© holds in the current configuration: o.g = r.¢
(i.e., v holds after replacing shared variables with values 0.g).
e The shared variable values are updated according to the rule: o'.g =
o.g+r.uv.
o Shared variables in T are reset to 0: Va; € T o’ .g[i] = 0.
Instead of (o,r,0") € T we also write o0 = o'. If (o,7,0") € T, we say that
r is enabled in configuration o; otherwise, r is disabled.

Paths of CS. A sequence og,79,01,...,0,k_1,Tk—1, 0k Of alternating configura-
tions and rules, is called a path of a counter system CS(A) = (X, Xy, T) if and
only if the following conditions hold:

— 0y is an initial configuration, i.e., g € Xj.
— For each 0 < i < k, the transition (0y,7;,0,41) € T holds.

In this case, we also write 09 —* 0% to denote the existence of this path. The
set of all such paths in CS(A) is denoted by Paths(CS(A)).

Ezample 2. Let N(n,t,f) =n—f and RC =n > 3t At > f. For the case where
n=2>5,t=1,and f = 1, the following sequence represents a valid path in the
counter system of the threshold automaton shown in Figure 2:

[(4,0,0,0,0)(0, 0)],ro,[(3,0,1,0,0)(1, 0)],ro, [(2,0,2,0,0)(2, 0)], ro,

[(la 07 37 07 O)(‘?a 0)]a ro, [(Ov Oa 47 07 0)(47 0)]7 ra, [(07 Oa 3a 17 0)(47 0)]

3 Abstract Threshold Automata

A TA is an infinite state automaton due to the infinite domains of its shared vari-
ables and parameters. Therefore, to enable the use of parameterized verification
techniques for finite-state processes, we introduce a finite abstract domain for
the shared variables and we introduce an abstraction of TAs based on parametric
interval abstraction [3].

Abstract Domain for Shared Variables. The key idea is that along a run
of an automaton, we are not interested in the exact values of shared variables.
Instead, we only care whether they satisfy a guard condition. Given a threshold
automaton A, we define the set of thresholds as

TH = {do,ds,. .., dy}

where dy = 0, dy = 1, and for all i > 1, d; is a threshold in A. We assume that
for all 4,7, if i < j, then d; < d;. This ordering is always feasible for a fixed
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p € Pgre. If different values of p € Pgre result in different orderings of the d;,
we consider each of the finitely many such orderings separately. Based on this,
we define the finite set of intervals

D={l,L1,..., It}

where I; = [di,di+1[ for i < k, and I = [dk, OO[

Definition 4. Abstract Threshold Automata [3]. Given a threshold au-
tomaton A = (L,Z,I',II,'R, RC), we define the abstract threshold automaton
(or TA) as A= (L, Z,I',II,R), where:

— A and A share the components L, T, II.

— Let I' = {xg,...,%m}, then I = {Tg, ..., T}, where each T; takes values in
the domain D = {Iy, I1,...,Ij}.

— TR is the set of abstract rules. An abstract rule is a tuple ¥ = (from, to, ,uv, 1),
where from, to,uv,T remain unchanged from A, and the abstract guard @
18 a Boolean expression over equalities between shared variables and abstract
values.
Formally, let ¢ = po A ... Npr. Then, @ =Py A ... NP, where:

o If ;= (dj <), then

k—1
;= \/ (f: [dcdeJrlD v (f: [dk’oo[)'

c=j
o If p; = (d; > x), then

j—1

Y= \/(f = [de, de1)-

c=0

Ezample 3. Revisit the simple threshold automaton in Figure 2 with N (n,t, f) =
n—fand RC =n > 3tAt > f > 1. We define TH = {0,1,¢, "Q_t} and
D = {[0,1[, [1,¢[, [t, 5[, [%5*, oo[}, where the order is induced by the condition
RC'. The thresholds 0 and 1 are always included to allow detection of whether
a shared variable is equal to 0.

Moreover, we have the following abstract rules:

— To =19, T1 = r1 (due to the absence of a guard),
— T2 = (Tp = [25%, 00[) since the concrete guard is zg > 252,
— T3.0 = (T1 = [%5%, o0) since the concrete guard is x> 2.

3.1 (0,1)-Abstraction

Semantics of TA. In this section the semantics of a system composed of an
arbitrary number of TAs is over-approximated by a (0, 1)-counter system (or
ZCS). The main component in a ZCS is the (0, 1)-configuration. The key idea is
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that, for the specifications of interest here (reachability and termination), know-
ing the exact number of processes at a location is unnecessary; it is sufficient to
determine whether a location contains any processes. Such an abstraction trans-
forms our system into a finite-state one, enabling the use of symbolic techniques
to implement our algorithm.

A (0, 1)-configuration is a tuple @ = (k,g), where k € BI*l and g € DI’
Here, k[i] indicates the presence (1) or absence (0) of at least one process at
location 4, and g is a vector of shared variable values, where g[i] is the parametric
interval currently assigned to ;. In a (0, 1)-configuration & = (k, &), we denote
k as the Ol-counter-valuation and g as the Ol-var-valuation. If k[i] = 1, we say
that location 7 is covered in @.

Definition 5. A (0, 1)-counter system (or ZCS) [J] of an abstract threshold
automaton A = (L,Z,I',1I,R) is a transition system ZCS(A) = (X, X, T),
where:

— ¥ = BIH x DI s the set of (0,1)-configurations. Each configuration & =
(k,g) consists of:
o k € BIXl, where k[i] = 1 indicates that location i contains at least one
process, and k[i] = 0 otherwise.
o g c DIl where gli] represents the parametric interval assigned to T;.
— Yo C X is the set of initial (0,1)-configurations satisfying:
o Vie I':5.gli] = I.
eVicL:oklij=1icT.
— The transition relation T consists of transitions (o,7,’), where:
o 7 = {from,to,p,uv} € R.
The condition 7.8 = 7. holds.
The source location is occupied: &.k[F.from] = 1.
The transition updates k: either & k[F.from] = 0 or it remains 1.
The target location is covered after the transition: & K[F.to] = 1.
Shared variables are updated: 7'.§ = 7.g+uv, defined as follows:
1. 7' .gli] =7.g[i], if Fuv[i) =0
2. (o'.gli] = o.g[¢) v (¢'.gli] = 7.g[i].next), if Tuv[i| = 1. The first
disjunct is omitted if 7.g[i| = Io.
Reset variables are reinitialized: Vx; € 77,5 gli] = I.

Paths. A path of ZCS(A) is a sequence of alternating (0, 1)-configurations and
abstract rules, given by 79,79,01,...,0k_1,Tk—_1,0%, such that for all i < k, the
transition (7;,7;,5;41) belongs to 7. The set of all paths of ZCS(A) is denoted
by Paths(ZCS(A)).

Ezample 4. Consider again the TA from Figure 2, and Iy = [0, 1[, I; = [1, %‘t[, I, =
[25%, oo[. The following is a valid path of its (0, 1)-counter system:
[(1 07 07 0)(IOu IO)]a fﬂu [(17 07 17 07 O)(I17 IO)]7 f07 [(17 03 17 07 0) (—[27 IO)]7 f27

707
[(0,0,1,1,0)(I2, Io)).
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Specifications. We say that a 0l-configuration o satisfies a reachability spec-
ification Lgpec = (L=0, L>0), denoted & [= Lipee, if for all i € Lo, 7.kl[i] = 0,
and for all i € Lvg, 7.k[i] > 0.

Monotonicity. Since global variables in a ZCS (or a CS) are initialized to 0 and
never decrease, the following property holds:

Property 1 (Monotonicity). Given a TA A, the monotonicity property states
that in any execution of ZCS(A) (CS(A)):

— Once a lower guard becomes enabled, it remains enabled forever.
— Once an upper guard becomes disabled, it remains disabled forever.

4 CS vs ZCS

In comparison to CS, in ZCS we drop the resilience condition, the function N that
determines the number of processes to be modeled, as well as the exact number of
processes in a global configuration. Moreover, a transition in ZCS may jump from
one interval to the next too early and may stay in the same interval although it
had to move. In our previous work [3], we showed that the abstraction from CS
to ZCS is complete with respect to reachability specifications.

In the following, we show how to detect whether a behavior of the (0,1)-
counter system corresponds to a concrete behavior of a counter system.

A path T = 50,70, -, Fm_1,0m in ZCS(A) = (X, X, T) corresponds to the

Cm—1

paths 7 = 09,73, ..., "1, 0m (where r;* simulates applying 7; ¢; times) of

CS(A) = (X, X, T) that satisty the following conditions:

— RCA (ZjeI oo.k[j] = N(n,t, f))

— Vi <m oy K[r;.from] = ¢; + o541 K[ri.from] A o1 K[ri.to] = ¢; + 0;.K][r;.to]
—Vi<mVz; €I z; ¢ ri.7T = 0i41.8[] = 04.8[j] + ¢ - riuv[j]

- Vi<m VI'j € r;.T O'Z'+1.g[j] =0

—Vi<m Vl‘j el O'lg[]] S Elg[]] N Ui+1~g[j] S Ei—i-l-g[j]

—Vi<me;>1 = ((0441.8 —ri.uv) Eri.p)!

Let Concretize(T) denote the conjunction of the constraints above, where
quantified formulas are instantiated as a finite conjunction of quantifier-free for-
mulas. Since Concretize(T) is a quantifier-free formula in linear integer arith-
metic, a satisfying assignment (which can be computed by an SMT solver) rep-
resents a path of CS(A) corresponding to . A path @ € Paths(ZCS(A)) is said
to be spurious if Concretize(7) is unsatisfiable.

5 Almost-Sure Termination and SCC Detection

In our previous work [3], we introduced a reachability algorithm for ZCS. The
algorithm begins with the set of target states and performs a backward traversal

! This is needed only in cases where an update affects any of the guards of 7;.¢
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of the state space until it reaches a fixed point. Within this fixed point, all paths
originating from the initial state are examined to determine whether they are
spurious, as described in Section 4. If at least one such path is not spurious,
the algorithm concludes that the target states are reachable. This reachability
algorithm serves as two subprocedures, IsReachable and ComputeFizedPoint, in
Algorithm 2.

In this section, we present our algorithm (Algorithm 2) for proving almost-
sure termination and for detecting strongly connected components (SCCs) in
probabilistic threshold automata, as well as for proving termination and detect-
ing SCCs in ordinary threshold automata. Then we prove that our algorithm
is sound. We assume that the input probabilistic automaton is deterministic,
reset-free, and that its corresponding (0, 1)-counter system is free of both local
and global deadlocks.

Remark 2. A fault-tolerant system terminates if and only if all correct processes
(modeled by a TA) reach a final state.

Before presenting the algorithm, we first provide the following definitions of
the key terms and concepts used throughout the algorithm.

— For a given set S, let Py(S) denote the powerset of S excluding the empty
set.

— A set X C V is strongly connected if, for every two elements v,u € X, there
is a path from v to u. A strongly connected component (SCC) is a maximal
strongly connected set S C V. We denote a strongly connected component
over L by local SCC, and a strongly connected component over X by simply
SCC.

— A strongly connected component (SCC) of a directed graph is a maximal
subgraph where for any two vertices v and v, there exists a path from u to v
and vice versa. We refer to an SCC within a TA as a local SCC and an SCC
within ZCS as an 01-SCC. Given a local SCC C, we denote by C.Locations
the set of locations in C, and by C.Rules the set of rules in C. We use the
same notations for a 01-SCC.

— A local SCC C is valid if there exists at least one (0,1)-configuration & =
(k,g) where V7; € C.Rules : g |=7;.%. Otherwise, C is called invalid.

— A local SCC C is finite-traverse if there exist indices 7,j and a variable k
such that 7;,7; € C.Rules where 7;.uv[k] > 0 and 7,;.% includes an upper
guard on k. Otherwise, C is infinite-traverse. A local SCC C is valid-infinite
if C is valid and infinite-traverse.

— We extend the latter definition to subsets of local SCCs as follows: A finite-
traverse subset is a subset of local SCCs S¢ = {Cy,...,C.} for which there
exist indices 1, j, rules 7;,7;, and a variable k such that C;,C; € S¢ where
7; € C;.Rules AT;.uv[k] > 0, and 7; € C;.Rules with 7;.% includes an upper
guard on k. Otherwise, SC is called an infinite-traverse subset.
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Algorithm 2 Termination and SCC detection. If the given automaton is prob-
abilistic, it is converted first to its non-deterministic version (see Definition 2).

1: Input: Abstract TA (TA), final locations, and a probabilistic flag
2: Output: termination flag.
3: procedure TERMINATIONCHECK (AT A, final_locs, is Probabilistic)

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:

30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

41:

localSCC's + ExtractAlISCCs(ata) // Extract all local SCCs from the ata.
// keep only infinite-traverse local SCCs.
localSCC's <+ {C € local SCC's | C.IsInfiniteTraverse}
sceValidIntrols < (
// keep only valid local SCCs.
for all C € localSCC's do
// varGuards maps a variable to its guards on the local SCC.
varGuards + GetVarGuards(C)
for all (var, guards) € varGuards do
// varValidIntrvls maps a var to intervals satisfying guards.
varValidIntrvls < GetVar EnablingIntrvls(var, guards)
if Jvar € varValidIntrvls.Keys : varValidIntrvlsvar] == () then
local SCC's + local SCCs \ {C} // remove invalid local SCCs
else
sccValidIntrvls[C] - ®VEvarValidIntrvls.Values 14
// sccValidIntrols|C] = {g | VT € C.Rules : g =T.%}
subsets < Py(local SCC's) // generate all subsets.
// keep only infinite-traverse subsets.
subsets < {subset € subsets | subset.isInfiniteTraverse}
if isProbabilistic then
// 0l-configurations in which only final locations are covered.
final01Con figs < ConvertTo01Con figs(Py(final_locs))
scc01Con figs < 0
for all subset € subsets do
// subsetValidIntruvls[subset] = {g | VT € subset : g = 7.}
subsetValidIntrvls[subset] < [  sccValidIntrols|C]
Cesubset
if subsetValidIntrvls[subset] == () then continue
locsSubsets < Py(subset. Locations)
// convert 01-counter-valuations and 01-var-valuations into 01-configuration
01Configs < locsSubsets @ subsetV alidIntrvls[subset]
// check if traversing subset infinitly has probability 0.
if isProbabilistic then
nonDetImage <— ComputeNonDetImage(01Configs)
fizedPoint < ComputeFizedPoint(final01Con figs)
if fizedPoint NnonDetImage # ) then 01Configs < 0
// collcet all configurations that are on an SCC
scc01Configs < scc01Con figs U 01Con figs
Return IsReachable(scc01Configs)
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5.1 Detailed Description for Algorithm 2

Algorithm 2 starts in Line 4 by extracting all local SCCs (localSCC's) in TA.
This can be computed efficiently using either Tarjan’s algorithm, which runs
in linear time, or the symbolic CHAIN algorithm [I15], which is also linear.
Line 6 removes all finite-traverse local SCCs from local SC'C's. Lines 9 to 19
filter out invalid local SCCs and compute, for each wvalid infinite-traverse local
SCC, the set of 0l-var-valuations that enable all its rules. The cross-product
operation in Line 18 can be efficiently implemented using a BDD manager
by computing the conjunction of disjunctions over the intervals of each set in
varValidIntrvls. Values. At this stage all local SCCs in localSCC's are guaran-
teed to be valid-infinite due to Monotonicity property (see Property 1). Lines
20 to 22 compute all subsets of infinite-traverse local SCCs. Line 25 com-
putes all (0, 1)-configurations in which only final locations (final-locs) are cov-
ered. Line 29 computes the set of 01-var-valuations that enable all rules in ev-
ery cycle of a given subset. If and only if subset is valid (Line 30), its corre-
sponding 01-counter-valuations and 0l-var-valuations are converted into (0, 1)-
configurations (Lines 31-33). Lines 35 to 38 check whether traversing the lo-
cal SCC set (subset) infinitely has probability 0. The key idea is that if in-
finite travese local SCC C € subset contains a non-deterministic transition,
one remaining within C and another leading outside and reaches a final loca-
tion, then the probability of infinitely choosing the intra-SCC transition is 0.
ComputeNonDetImage(01Configs) in Line 36 is a procedure that computes
the image of 01Con figs as follows:

— Select all (0, 1)-configurations o from 01Con figs that satisfy the following
condition: If a location [ belongs to locsSubsets and is covered in o, then
! has a non-deterministic transition to a location outside locsSubsets. We
refer to this set as NDT.

— For each (0, 1)-configuration o € NDT, compute a new (0, 1)-configuration
o'. The configuration ¢’ is obtained by executing all non-deterministic tran-
sitions that originate from locations in locsSubsets (covered in o) and lead
to locations outside locsSubsets.

Line 40, collects all (0, 1)-configurations that belong to a 01-SCC, and checks
if any configuration in scc01Con figs is reachable. The procedures in Lines 37
and 41 follow the approach we presented in [3] which also takes care of spurious
paths.

Remark 3. To simplify the presentation of the algorithm, we assumed that a
local SCC is either valid-infinite or not. However, in general, a local SCC that
is not walid-infinite can be decomposed into multiple valid-infinite local SCCs.

5.2 Correctness

Algorithm 2 is sound. Soundness follows directly from the fact that scc01Con figs
contains all (0, 1)-configurations that may traverse a 01-SCC inifintely often. Also



14 M. Sakr, and M. Vilp

since, for probabilistic systems, SCCs with a probability of 0 of being traversed
infinitely often are excluded (see Lines 35 - 38),

Theorem 1 (Soundness SCC Detection). Algorithm 2 is sound for SCC
detection. That is, if the algorithm computes a non-empty scc01Con figs, then
every (0,1) — con figuration in scc01Con figs belongs to a 01-SCC.

The below corollary is obtained since SCC detection is sound and since the
reachability algorithm in [3] is proven to be correct.

Theorem 2 (Soundness (A.S.) Termination). Algorithm 2 is sound for ter-
mination and almost-sure termination. Specifically, if the algorithm returns true,
it ensures that a system consisting of a network of TAs does not terminate, re-
gardless of its size.

We will leave completness and the handling of resets for future work.

6 Related Work

Recently, there have been many works [2, 3, 12—14] that target the parameteried
verification of non-probabilistic threshold automata. In [12, 13], Konnov et al.
proposed an approach for detecting TA traces that violate reachability specifica-
tions, as well as lasso-shaped TA traces that violate a given liveness property [13].
These methods have been implemented in the ByMC tool [14]. The decidability
and complexity of verification and synthesis for threshold automata were also
addressed in [2]. Their decision procedure relies on an SMT encoding of potential
error paths, where, in general, the size of the SMT formula increases exponen-
tially with the length of the paths. In [3], the authors extended the threshold
automaton with resets and variable decrements, and introduced a new algorithm
to check reachability and coverability. Additionally, their approach removed the
cycle absence restriction that was required in previous works.

In [6], the authors introduced the probabilistic threshold automaton, a thresh-
old automaton extended with coin tosses, and proposed a new approach for ver-
ifying them and checking almost-sure termination. This approach works under
two key restrictions, which we lift in this paper: 1) it does not allow cycles in-
side the automaton, and 2) coin tosses may only appear at the end of a round.
An extension of the PTA was presented in [8], where the authors incorporated
common coins into PTAs. They reduced the formal verification of the extended
PTA to single-round queries on non-probabilistic threshold automata, which are
then verified using ByMC [12].

Unfortunately, there are few works [5,7, 16, 17,20, 24] that address the au-
tomatic verification of probabilistic parameterized systems. Unlike this work
(and [6,8]), these approaches rely on process templates with a finite state space
and use a single parameter, the number of process template instances. In [7],
the authors use a probabilistic single-clock timed automaton with a broadcast-
ing communication primitive. They verify whether a configuration in which one
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process reaches a target state almost surely. Their approach is based on well-
structured transition systems. In [17], a method was introduced to prove liveness
for randomized parameterized systems under arbitrary schedulers, while [16] pre-
sented a fully automatic verification method for proving almost-sure termination
of probabilistic parameterized concurrent systems. Both approaches [5,16,17] are
based on regular model checking and do not support arithmetic resilience condi-
tions or shared variables over infinite domains. The seminal work by Pnueli and
Zuck [20] requires shared variables to be over finite domains and restricts the
use of thresholds to only 1 and n. In [24], authors presented a novel approach
for checking liveness in probabilistic parameterized protocols, by abstracting a
parameterized Markov Decision Process (MDP) to a finite MDP.

7 Conclusion

In this paper, we introduced an extension of probabilistic threshold automata
to support modelling resets of shared variables. We further presented a sound
algorithm for detecting almost-sure termination in randomized fault-tolerant
algorithms, modelled with the help of probabilistic threshold automata, and for
verifying termination in ordinary fault-tolerant algorithms, albeit so far only for
reset-free automata. Our approach enables the detection of strongly connected
components and termination in system models consisting of an arbitrary number
of threshold automata. Additionally, it identifies strongly connected components
and verifies almost-sure termination in system models with an arbitrary number
of probabilistic threshold automata. Furthermore, we lifted two key restrictions
previously imposed on threshold automata: (1) cycles were not allowed, and (2)
coin tosses could only appear at the end of the automaton. For future work, we
plan to investigate the completeness of our approach, handle resets of shared
variables, relax the deadlock restriction by incorporating a fairness notion, and
develop an implementation of the proposed algorithm.
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