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Abstract—High peak-to-average power ratio (PAPR) in orthog-
onal frequency division multiplexing (OFDM) signals presents
a persistent challenge in satellite communications (SatCom),
impacting signal quality and causing adjacent channel interfer-
ence. This paper introduces a novel framework that combines
the elastic net-based machine learning (ML) model with the
partial transmit sequence (PTS) technique to effectively reduce
PAPR. Additionally, the potential of artificial intelligence (AI)
approaches are investigated, specifically swarm intelligence and
ML methods, for high-performance, low-complexity solutions.
In this regard, ML models are applied to mitigate PAPR in
SatCom networks under the presence of a traveling wave tube
amplifier (TWTA) model and a land mobile satellite (LMS)
channel, employing 16-quadrature amplitude modulation (16-
QAM). Compared with the baseline schemes, simulation results
demonstrate that the proposed ML framework, integrating prin-
cipal component analysis (PCA) with the elastic net learning
model, achieves comparable PAPR performance and minimal
computational complexity.

Index Terms—Satellite communication system (SatCom), land
mobile satellite (LMS), peak-to-average power ratio (PAPR),
machine learning (ML), swarm intelligence, partial transmit
sequence (PTS).

I. INTRODUCTION

Satellite communication (SatCom) systems encounters sig-
nificant challenges at the physical layer due to impairments
like non-linearity and out-of-band emissions (OBEs), es-
pecially when integrating satellite systems with terrestrial
networks (TNs). As part of ongoing 3GPP standardization
efforts, Orthogonal Frequency Division Multiplexing (OFDM)
waveforms, which were originally developed for TNs, are con-
sidered for satellite integration. However, OFDM encounters
limitations in satellite systems, notably peak-to-average power
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ratio (PAPR) and adjacent channel interference (ACI) issues,
largely stemming from the non-linear behavior of high-power
amplifiers (HPAs) [1]. To address these limitations, the partial
transmit sequence (PTS) technique has emerged as a promising
solution for mitigating high PAPR in SatCom by efficiently
combining signal subblocks [1], [2]. One main advantage of
PTS is that it is a distortionless approach, utilizing signal
scrambling to reduce PAPR without altering signal integrity.
As a probabilistic method, PTS also outperforms other prob-
abilistic approaches, such as selected mapping (SLM) and
interleaving techniques, in PAPR reduction effectiveness [2].

Among artificial intelligence (AI) architectures, researchers
have investigated both swarm intelligence algorithms (SIA)
and machine learning (ML) models to deal with PAPR reduc-
tion and manage computational complexity (CC). For instance,
in [3], the authors applied a particle swarm optimization
(PSO)-assisted PTS scheme to lower PAPR, demonstrating that
increasing the number of particles enhances the complemen-
tary cumulative distribution function (CCDF) performance.
Similarly, in [4], the authors compared various swarm intel-
ligence methods, including artificial bee colony (ABC), ant
colony optimization (ACO), gray wolf optimization (GWO),
genetic algorithm (GA), and PSO, to identify the optimal
algorithm for PAPR reduction. Their results indicated that
ACO acchieved a superior CCDF performance. On the other
hand, regarding ML-based approaches, [5] and [6] proposed a
deep learning-based framework for PAPR reduction in OFDM
systems, achieving comparable CCDF performance with lower
complexity. In [5], the authors integrated the conventional PTS
technique with a forward neural network (FNN)-based ML
model to reduce PAPR. The authors highlighted that the PTS-
FNN method achieved a 32.4% reduction in CC compared to
the conventional PTS approach, while also providing signifi-
cant PAPR reduction.

Accordingly, motivated by the flexible learning ability of the
SIA and the ML-based scheme, we investigate three SIA and
four ML schemes aided PTS technique to reduce the PAPR
in the subsequent subsection. Overall, SIAs rely on particles



that iteratively update to converge toward an optimal solution.
Meanwhile, the ML techniques employ training models on
datasets to identify patterns within data, enabling predictive
insights. In this paper, we use the following SIAs: PSO, ACO,
and the quantum particle swarm optimization (QPSO) [7]. On
the other hand, the ML schemes are the extra randomized tree
regressor (ERTR), the random forest (RF), the support vector
regressor (SVR), and the elastic net (EN) algorithms [8], [9].
To the best of our knowledge, none of the aforementioned
works have considered the implementation of a SAI-aided
PTS-based scheme neither ML-based framework in an end-
to-end SatCom system for the PAPR analysis. In addition,
we performed a comparison between the SIA and the ML-
base schemes in terms of PAPR reduction, computational time
(CT), and CC. The case of the optimal exhaustive search (ES)
method is also considered as a bound on PAPR reduction
with the highest CT and CC. Here, ES refers to the standard
PTS scheme without the application of any AI algorithm, i.e.,
the search for the optimal phase factor is performed in an
exhaustive search manner.

II. SYSTEM MODEL

In this section, we describe the proposed end-to-end Sat-
Com system, which utilizes OFDM waveforms transmitted
through a nonlinear channel that considers the impact of
a non-ideal high power amplifier (HPA) and a multi-path
land mobile satellite (LMS) channel. The proposed system
incorporates an ML-aided PTS framework to address the high
PAPR in OFDM, as illustrated in Fig. 1. Additionally, we
implemented swarm intelligence-based algorithms, instead of
the ML framework, as a baseline for comparison. At the
transmitter, the bit stream is encoded using a Low-Density
Parity-Check (LDPC) encoder based on the belief propagation
technique. The encoded bits are then mapped to constellation
points using 16-quadrature amplitude modulation (QAM) with
a code rate equal to Rt = 616/1024, which is specified in the
3GPP 5G standard. Then, the resulting 16-QAM symbols are
organized into a resource grid, denoted as XRG ∈ CM×S ,
where M represents the number of subcarriers and S indi-
cates the number of symbols. This resource grid provides a
structured layout for arranging symbols prior to transmission.
Additionally, reference signals known as pilot symbols are
inserted at strategic positions within the grid. These pilot
symbols are for enabling accurate channel estimation at the
receiver.

The conventional PTS method functions by dividing the
input data block into equal-sized subblocks [2]. In this context,
each column of the resource grid (RG) XRG is treated as an
input data block, denoted as X , which is segmented into non-
overlapping subblocks Xv for v = {1, 2, . . . , V }, where V
represents the number of subblocks. Each subblock is then
transformed from the frequency domain to the time domain
using the inverse Discrete Fourier Transform (IDFT).

xv[m] =

M−1∑
k=0

Xv[k]e
j2πmk/M , (1)

Fig. 1. Diagram block of an OFDM system with the swarm intelligence aided
the PTS technique.

where 0 ≤ m ≤ M − 1 and Xv[k] denotes the symbol on
the k-th subcarrier. Te reduce the PAPR of the combined
time-domain signal, each subblock xv[m] is multiplied by a
corresponding phase weighting factor vector Wv . The resulting
signal, denoted as x[m], is defined as the sum of these modified
subblocks,

x[m] =

V∑
v=1

Wvxv[m]. (2)

The PAPR of the combined signal x[m] is then defined as

PAPR(x[m]) =

max
0≤m≤M−1

|x[m]|2

E{|x[m]|2} , (3)

where the denominator is the average power of x[m]. The
modified sub-blocks together create a set of candidate signals,
from which the signal with the lowest PAPR value is selected
for transmission. Moreover, to facilitate accurate data recovery
at the receiver, the index of the optimal phase factor that
minimizes the PAPR must be sent as side information. This
index acts as a reference, enabling the receiver to reconstruct
the transmitted signal with the appropriate phase adjustment.

According to the block diagram shown in Fig. 1, be-
fore transmitting the signal with the lowest PAPR, it first
passes through a HPA. The input signal to the HPA is
represented as r(t) = |r(t)|ejϕ(t), where |r(t)| and ϕ(t)
denotes the amplitude and phase of the input signal, respec-
tively. Then, the output of the HPA can be expressed as
y(t) = G[|r(t)|]ej{ϕ(t)+Φ[|r(t)|]}, where G[·] and Φ[·] repre-
sent the amplitude/amplitude (AM/AM) and amplitude/phase
(AM/PM) conversions, respectively. These conversions char-
acterize the nonlinear effects on the amplitude |r(t)| and phase
ϕ[·] of the input signal. We employ the traveling wave tube
Aamplifier (TWTA) model to represent the behavior of the
HPA [10], which is characterized by the following expressions:

G[|r(t)|] = αa|r(t)|
(1 + βa)|r(t)|2

, (4)

and

Φ[|r(t)|] = αϕ|r(t)|2

(1 + βϕ)|r(t)|2
, (5)



where αa, βa, αϕ, and βϕ are parameters that control the char-
acteristics of AM/AM and AM/PM conversions. We utilize the
parameters established in [10], which are based on empirical
measurements and characterize the performance of the TWTA
under specific operational conditions.

The amplified signal is sent through the LMS channel,
where it experiences distortion and attenuation. Upon reaching
the receiver, the received OFDM signal is demodulated using
the Fast Fourier Transform (FFT), aided by pilot symbols for
channel estimation. The data symbols are equalized according
to the estimated channel response and then demapped into bits.
Finally, low-density parity-check (LDPC) decoding is applied
to correct any errors, resulting in the final received bit stream.

III. ML-BASED FRAMEWORK FOR PAPR REDUCTION

The proposed ML framework integrates principal compo-
nent analysis (PCA) with an EN algorithm, referred to in
short as EN-PCA. The PCA module serves as the feature
extraction method, while the EN algorithm serves as the ML-
based scheme for computing the estimated ỹ, targeting PAPR
reduction within the SatCom system.

First, let us start with the RG which is a matrix composed
of M ×NOF complex elements, where M is the total number
of sub-carriers and NOF is the number of the OFDM symbols.
Recall that the RG is structured as a matrix of resource
elements, with each physical resource block (PRB) occupying
a portion within this grid. Each PRB is a resource block that
is composed by a subset of 12 subcarries in the frequency
domain and one slot in the time domain. The duration of
a slot varies depending on the numerology that defines the
subcarrier spacing. In this paper, we utilize 51 PRBs, with a
subcarrier spacing equal to 15 kHz, where each slot spans 1
ms and contains 14 OFDM symbols. Then, to manage the high
dimension of the RG, especially when it is used as input for
the ML model, we apply the PCA as a feature compression
technique. Following the PTS method detailed in Section II,
we have V subblocks for each column of the RG, leading to a
total of NOF ×V columns. For each of the NOF ×V columns,
the absolute value of its M elements corresponds to the input
of the PCA module for dimension reduction. This process
yields a new set of uncorrelated features, NPC (the principal
components), allowing the PCA technique to capture the most
important patterns in the data. After the feature compression
procedure, we obtain the selected features that will serve as the
input to the ML model. Consequently, the input dimension of
each sample for the ML scheme is given by NPC×NOF ×V .

Meanwhile, the weighting factors are denoted as W =
[W1, ...,WV ], where Wv = ejyv ∈ C, v = 1, ..., V . In the
case of continuous rotation factors, yv is constrained within
the range [0, 2π). Conversely, for discrete phase weighting
factors, the set of possible values for yv is limited by the set
ϕ with yv ∈ ϕ, where ϕ =

{
0, 2π

Pf
, ..., 2π

Pf
pf , ...,

2π
Pf

Pf − 1
}

,
pf = 0, ..., Pf − 1 with Pf as the number of possible phase
rotation factors. Therefore, true labels of the ML algorithm are
given by y = [y1, ..., yV ]. These values are obtained by apply-
ing the PTS technique in an exhaustive search (ES) manner as

it is described in Section II. Finally, the dataset to train the ML
model can be denoted as DH = {z1, ..., zn, ..., zN}, where N
is the total number of training samples and zn = {fn,yn} in
which fn is the set of features after the PCA module, and yn

is the set rotation factors obtained by the ES method.
Then, the EN algorithm is implemented as the ML-based

technique used to compute the estimated ỹn aimed to PAPR
reduction in the proposed SatCom system. In this sense, the
EN algorithm is a regularization technique to reduce the risk
of over-fitting in learning models. Thus, the EN algorithm
seeks to minimize the sum of squared errors between observed
and predicted values, while simultaneously incorporating both
the absolute and squared values of the coefficients into the
penalty term. In particular, the EN model combines both
L1 and L2 regularization in its objective function, with the
balance between them being regulated by a parameter, δ,
which controls their convex combination [9], as follows:

min
w

(
1/2N

)
× ||fnw− yn||22 +αδ ∗ ||w||1 +(α(1− δ)/2)× ||w||22.

(6)
where N is the sample size, α > 0 applies the L1 regular-

ization to the weights, and w is the vector of coefficients.
For the model evaluation, the 5-fold cross-validation is used

to assess the performance of the machine learning model. In
this regard, the dataset was split into 80% for training and 20%
for testing. To evaluate the model’s accuracy, the predicted
values were compared with the actual values from the test
set, to compute the mean squared error (MSE), mean absolute
error (MAE), and root mean square error (RMSE), as shown
in Section V.

IV. PSO AIDED PTS-BASED SCHEME FOR PAPR
REDUCTION

In this section, we describe the PSO technique as a baseline
approach for determining the phase weighting factor vector,
Wv , within the PTS framework. This method effectively
achieves near-optimal results while maintaining low CC [7].
In this context, PSO contains a population of RPSO particles,
where each r-th particle has an associated position xr, velocity
vr and fitness value f (xr). At each t-th iteration, the position
of the particle with the lowest fitness value is designated as
the global best position gt. Meanwhile, each particle retains
a local best position xt

LB,r which represents the highest-
performing position reached by that particle up to the t-th
iteration.

The position of the particle defines its phase rotation factors.
Specifically, the position of the r-th particle is represented
by xr = [x1,r, ..., xV,r], where V indicates the number
of disjoint subblocks. The phase rotation factor for the v-
th subblock, determined by the r-th particle, is denoted as
Wv,r = ejxv,r ∈ C. For the phase rotation factors, the values
of xv,r are restricted to the set ϕ with xv,r ∈ ϕ, where
ϕ =

{
0, 2π

Pf
, ..., 2π

Pf
pf , ...,

2π
Pf

Pf − 1
}

, pf = 0, ..., Pf − 1 and
Pf is the number of possible phase rotation factors.



Algorithm 1 PSO aided PTS-based framework.
1: inputs: Number of particles, RPSO, maximum number of

iterations, Tmax
PSO, number of sub-blocks, V , define the set

ϕ and number of possible phase rotation factors, Pf .
2: Initialize the iteration counter, t = 1.
3: Initialize each particle’s initial position and velocity, r-th

particle, and xt
r,v

t
r, respectively.

4: Evaluate the initial PAPR value for each particle position,
f (xt

r).
5: Determine the local and global best positions, xt

LB,r,g
t.

6: While t ≤ Tmax
PSO do

7: for r = 1 to RPSO do
8: Calculate the new velocity, vt+1

r , and position,
xt+1
r , for each particle, by using equations (7),

and (8), respectively.
9: Restrict each element of xt+1

r to
the closest value in ϕ for the phase factors.

10: Evaluate the PAPR value f
(
xt+1
r

)
.

11: Update the local best position:
if f

(
xt+1
r

)
< f (xt

r) then xt+1
LB,r = xt+1

r

else xt+1
LB,r = xt

r

12: end for
13: Update the global best position:

gt+1 = argmin
1≤r≤RPSO

f
(
xt+1
LB,r

)
.

14: Increase the iteration counter: t = t+ 1.
15: end while
16: output: the best particle position, gt = [gt1, ..., g

t
V ], and

assign W =
[
ejg1 , ..., ejgV

]
as the phase rotation factors

for all subblocks.

The fitness value f (xr) for the r-th particle is determined
by the PAPR resulting from the phase rotation factors Wr =
[W1,r, ...,WV,r], with f (xr) defined as per equation (3).

The PSO-based algorithm begins with initializing the po-
sition of each particle, x1

r , where each position element is
randomly chosen from the set ϕ. Following this, the initial
velocity of each particle is set to zero, and its subsequent
updates are governed by the following equation:

vt+1
r = Iwv

t
r + c1λ1

(
xt
LB,r − xt

r

)
+ c2λ2

(
gt − xt

r

)
, (7)

where Iw denotes the inertia weight, λ1 and λ2 represent the
acceleration parameters, and c1, c2 are random numbers within
the interval [0, 1]. The updated position of each particle is then
calculated as follows:

xt+1
n = xt

r + vt+1
r . (8)

This process is repeated until the maximum iteration limit,
Tmax
PSO, is reached. Additionally, after step (8), each element of

the updated position xt+1
r is mapped to its nearest value within

the set ϕ to determine the rotation factors. The procedure for
the proposed PSO-based scheme is outlined in Algorithm 1.

V. SIMULATION RESULTS

In this section, we provide the simulation results pro-
grammed into MATLAB and Python software of the swarm
intelligence and ML algorithms-aided PTS-based schemes for
PAPR reduction. Regarding the swarm intelligence techniques,
we present the performance comparison in terms of CCDF,
CC, and CT, of the PSO-PTS, ACO-PTS, and QPSO-PTS. In
this context, the CCDF metric is defined as the probability
of the PAPR exceeding a certain threshold. Furthermore,
for the ML models, we present simulation results for the
proposed EN-based scheme. and for the RF, ET, and SVR
benchmark models. The simulation results are averaged over
several frames of 10ms, and 16-QAM modulation is employed
following the scheme described in Fig. 1 with the LMS
channel model. Moreover, the oversampling factor is equal
to L=4. Table I summarizes the main simulation parameters
of the proposed network.

TABLE I
NETWORK PARAMETERS FOR THE ML-AIDED PTS SCHEME

Parameter Value Description
Nslotsymb 14 Number of OFDM symbols per slot
NFFT 128 FFT size
fcs(GHz) 3.8 Frequency of the carrier signal
∆f (kHz) 15 Subcarrier spacing in Hz
M 16 Modulation order
CP 10 Cyclic prefix length
Channel model LMS Channel model type
Speed (m/s) 2 Speed of movement of ground terminal
Delay Spread (ns) 300 Channel delay spread
Rt 616/1024 Code rate
δ 5 IBO (dB)

A. Swarm intelligence-based schemes for PAPR reduction

The simulation parameters of each swarm intelligence
scheme in Table II are set based on the best performance
achieved through several experiments. The variables Tmax

PSO,
Tmax
QPSO, and Tmax

ACO denote the number of iterations for PSO,
QPSO, and ACO, respectively. In addition, to validate the op-
timality of the swarm intelligence-based schemes, we consider
the ES method for searching the optimal phase factors in the
PTS technique.

Fig. 2 shows the convergence behavior of the swarm
intelligence-based schemes versus the number of iterations
for PAPR reduction with different number of phase rotation

TABLE II
SIMULATION PARAMETERS OF SWARM INTELLIGENT ALGORITHMS

Algorithm Simulation parameters

PSO

Number of iterations, Tmax
PSO = 80

Number of particles, RPSO = 30
Inertia weight, Ine = 0.7
Scalar factors, c1, c2 = 1.494

QPSO
Number of iterations, Tmax

QPSO = 100

Number of particles, RQPSO = 30

ACO
Number of iterations, Tmax

ACO = 100
Number of particles, RACO = 30
Sample size, SACO = 30



Fig. 2. Convergence behavior of the swarm intelligence-based algorithms

Fig. 3. CCDF Vs. PAPR between the swarm intelligence algorithms-aided
the PTS technique and the ES method.

factors, Pt. From Fig. 2, it can be observed that as the
number of iteration increases, the PAPR performance of the
SIA decreases. Moreover, Fig. 2 shows that the QPSO method
achieves a slightly better PAPR reduction compared to the PSO
and ACO algorithms. However, when the number of phase
rotation factors, Pt, increases, the PSO-based scheme achieves
faster convergence than that obtained by both the QPSO and
ACO methods.

Fig. 3. shows the CCDF performance between the swarm
intelligence-aided PTS-based schemes, random scheme (RS)
and the ES method when the phase rotation factors are equal
to Pf = 4, Pf = 8 and Pf = 16. In this regard, Fig. 3
validates the results shown in Fig. 2, which demonstrates that
as the number of the phase rotation factors, Pf , increases, the
CCDF performance improves. Moreover, from Fig. 3, it can
be observed that the PSO, ACO, and QPSO methods achieve
CCDF values comparable to those of the optimal ES method,
while reducing CC.

1) Complexity Analysis: In this subsection, Table III sum-
marizes the CC of the PSO, QPSO, ACO, and the ES meth-
ods, where Tmax

PSO, Tmax
QPSO, and Tmax

ACO denote the maximum
iteration counts for the PSO, QPSO, and ACO algorithms,
respectively. The CT per iteration for PSO, QPSO, and ACO

TABLE III
COMPUTATIONAL COMPLEXITY

Algorithm Computational Complexity
PSO O

(
Tmax
PSO ×RPSO

)
QPSO O

(
Tmax
QPSO ×RQPSO

)
ACO O

(
Tmax
ACO × SACO

)
ES O

(
PV −1
f

)

is recorded as 0.8558s, 1.1407s, and 1.2098s, respectively.
Furthermore, the CT required by the ES method—used in PTS
without SIA for identifying optimal phase rotation factors is
2.45s. The simulations were performed on a computer with 16
GB RAM and an Intel Core i7-10610U CPU.

B. ML-aided PTS for PAPR reduction

In this subsection, we present the simulation results for
the ML-based schemes aimed at reducing the PAPR in the
proposed SatCom system. In this sense, Table IV provides the
simulation parameters of the investigated ML models.

TABLE IV
SIMULATION PARAMETERS OF THE ML-BASED SCHEMES

ML model Simulation parameters

EN
ElasticNet mixing, l1ratio = 0.5
Maximum iterations, Maxite = 50
Selection, s = random

RF Number of estimators, NRF = 200
Max depth, Maxd = 10

ERTR Number of estimators, NET = 200
Max depth, MaxdET = 10

SVR Number of support vectors, NRF = 200
Kernel, ker = rbf

1) Evaluation with 5-fold cross validation: In this sub-
section, we assess the performance of the ML regression
schemes by applying 5-fold cross-validation [8] to obtain
RMSE, MAE, and MSE. Specifically, RMSE is the square
root of the average of the squares of the differences between
the actual value and the estimated value, MAE is the average
relative error [8], which considers the absolute error between
predicted value ŷv and the real measure, yv , divided by the
real measure. The MSE metric is the simple form of RMSE,
which calculate the squares of the differences between the
actual value and the estimated value. In this sense, Table V
compares the performance in terms of the MSE, MAE, and
RMSE error metrics for the EN, RF, ET, SGD, and DNN.
From Table V, we can observe that the proposed EN-based
model overcomes the other ML baseline schemes. Moreover,
we evaluate the CC [9], [8] and CT in Table VI . From Table
VI, it can be observed that the EN-based approach outperforms
the baseline schemes. Specifically, it is validate that the EN
scheme offers significantly lower CT complexity compared to
the PSO method.

Fig. 4 shows the CCDF versus the PAPR performance
between the PSO technique and the proposed ML framework
based on the EN model, when the number of sublock and PCA
components are equal to V = 4, and NPC = 10, respectively.



TABLE V
PERFORMANCE COMPARISON BETWEEN THE PROPOSED EN-BASED

APPROACH AND BASELINE SCHEMES

SNR (dB) EN RF ERTR SVR
MSE 2.7 2.95 2.9 3.1
MAE 0.00215 0.00315 0.00255 0.00319

RMSE 1.643 1.645 1.644 1.683

Fig. 4. CCDF Vs. PAPR between the PSO and the EN model.

From Fig. 4, it can be observed that when the IBO is higher,
the CCDF performance decrease. This is because, a high IBO
delivers a distortion-free output signal, but reduces energy
efficiency. Conversely, a low IBO enhances energy efficiency
but introduces distortion and interference into the signal [11].
Moreover, from Fig. 4, we can observe that the EN and
the PSO technique achieve a comparable CCDF performance
obtained by the optimal ES method. However, the CT required
by the proposed EN model outperforms both the PSO and ES
methods. As shown in Table VI, the EN model achieves a CT
of 0.01212s, significantly faster than the 0.8558s required by
PSO and the 2.45s by the ES method.

2) Complexity Analysis: Table VI shows the CC of the
ML-based schemes. Applying the PCA technique reduces the
dimensionality of the feature set used for predicting phase
rotation factors, ỹ. This reduction in feature dimensionality
leads to lower CC and processing time, particularly benefiting
the EN method, whose complexity relies on the number of
features.

TABLE VI
COMPUTATIONAL COMPLEXITY

Algorithm Computational complexity Computational time [s]
EN O(f) 0.001212
RF O(NRFMaxd) 0.090999

ERTR O(NETMaxdET ) 0.080999
SVR O(NRF f) 0.0999
PSO O

(
Tmax
PSO ×NPSO

)
0.8558

VI. CONCLUSION

In this paper, we exploit the benefits of low complexity
provided by the AI algorithms to reduce the PAPR in SatCom

systems where the SIA and the ML techniques are investigated.
In particular, we designed a novel ML model-aided PTS
framework based on the implementation of the PCA and the
EN algorithm. Regarding the SIA, we applied the PSO, the
ACO, and the QPSO-based schemes. On the other hand, in
the ML domain, we employed the EN, the ERTR, the RF, and
the SVR models aided by the PCA technique. These swarm in-
telligence and ML algorithms were designed to optimize phase
rotation factors within the PTS framework, thus reducing CC.
Satisfactorily, the proposed ML model based on the PCA and
the EN algorithm achieved a near-optimal solution comparable
to the ES method but with significantly reduced computational
demands. In contrast, the ES method systematically examines
all potential solutions within the search space, leading to high
complexity as the number of subblocks and phase rotation
options increase. Furthermore, while the SIA methods demon-
strated performance close to that of ES, the PSO outperformed
other swarm intelligence baselines. Nevertheless, the proposed
EN-based framework achieved similar performance with even
lower computational requirements than the SIA methods. This
work demonstrates that AI-driven approaches can offer an
efficient, low-complexity solution for PAPR reduction in Sat-
Com, based on ML models, particularly the EN with the PCA
technique, standing out for their balance between accuracy and
computational efficiency.
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