ON CANDIDATES TO BE PRIMITIVE ROOTS

ANTONELLA PERUCCA AND CARLO SANNA

ABSTRACT. The design of efficient algorithms to find a primitive root modulo
a prime number p is a classic important topic in computational number theory.
Many algorithms proceed by repeatedly selecting a “candidate” integer g and
checking whether g is a primitive root modulo p or not, until a primitive root
is found. This essay provides some results and considerations on how to select
candidates g that have a high probability of being primitive roots modulo p,
under the assumption that p is a random prime number. These methods can
easily improve the performance of current software implementations.

1. INTRODUCTION

The design of efficient algorithms to find a primitive root modulo a given prime
number is a classic topic in computational number theory. It goes back at least

to Gauss and is still an active area of research [3, 7]. A basic result says that an
integer ¢ is a primitive root modulo a prime number p if and only if
(1) g? /T £ 1 (mod p)

for every prime factor ¢ of p — 1. The core idea of many algorithms is selecting
(randomly or deterministically) a “candidate” g and using (1) to check whether g
is a primitive root modulo p or not. In case of a negative answer, a new candidate
is selected and the procedure is repeated, until a primitive root is found. Depend-
ing on the specific design of the algorithm, a theoretical argument guarantees the
success after a certain number of attempts, thus providing an estimate of the com-
plexity of the algorithm. For instance, under the Generalized Riemann Hypothesis
(GRH), Shoup [12, Theorem 3] proved that the least primitive root modulo p is
O((logp)ﬁ). Hence, simply trying g = 2,3,4,... guarantees termination after at
most O((log p)ﬁ) attempts. This (plus some optimizations) is the approach taken
by the software libraries PARI/GP [9] and SymPy [15].

This essay concerns the choice of candidate integers g that have a high probability
of being primitive roots modulo p, under the assumption that p is a random prime
number: Section 2 provides the basic notation and conventions; Section 3 recalls
the Artin conjecture and provides the best candidate g without assumptions on p;
Section 4 concerns a strategy that chooses g depending on the residue class of p
modulo a fixed integer f; Section 5 focuses on the sign of g and on the primitive
root modulo p having the least absolute value; Section 6 explores alternative choices
for primitive roots; finally, Section 7 collects the proofs of all the results.
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2. NOTATION AND CONVENTIONS

For integers a and b, let “a | b” mean “a divides b”, and let (a,b) denote the
greatest common divisor of a and b. The letters p and ¢ are reserved for prime
numbers. Given a finite set S, let |S| denote the cardinality of S. The density of a
set of prime numbers P is the limit

i {p<z:pePl
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whenever this exists. Hereafter, with a slight abuse of language, a property P holds
for a “random prime number p with probability 6” if the set of prime numbers
satisfying P has density 6. (Note that this is not truly a probability, since the
density does not satisfy countable additivity.) Other notation is introduced when
first needed.

3. ARTIN’S CONJECTURE AND THE BEST CANDIDATE

Let g be an integer that is neither 0, —1, or a square. In fact, considering that
number smaller in absolute value are preferred, and that a power of g is a primitive
root only if g is a primitive root, assume that g is not a perfect power.

The probability that g is a primitive root modulo a random prime number p is
given by the Artin conjecture on primitive roots, which Hooley [1] proved under the
GRH. Hereafter, all results are implicitly assuming the GRH. The Artin constant

1S
1
A=]](1- =) =0.37395581...
1;[ ( q(q — 1))

The result of Hooley is the following.

Theorem 1. Let g be an integer that is neither 0, —1, nor a perfect power; and
let A be the discriminant of Q(\/g) Then, for a random prime number p, the
probability that g is a primitive root modulo p is equal to

1 if A # 1 mod 4,

1
1= p(ADTI A P —

otherwise ,
1

where v denotes the Mobius function.

By inspecting the formula of Theorem 1, the integer g that maximizes the proba-
bility is —3, and for ¢ = —3 the probability is gA ~ 45%. However, if the condition
of being a non-quadratic residue is ignored (that is, test (1) ignores ¢ = 2) then
the differences between the candidates for being primitive roots disappear and the
probability is always 24 & 75% (see Theorem 15 by taking F' = Q and letting S
be the set of the odd primes, and see also Theorem 5).

4. SELECTING A CANDIDATE BY THE RESIDUE CLASS OF p MODULO f

Let f be a positive integer. In general, prime numbers p such that g is a prim-
itive root modulo p are not uniformly distributed modulo f. For instance, by the
quadratic reciprocity law, if p = +1 (mod 8) then 2 is a square modulo p; and
consequently 2 cannot be a primitive root modulo p. For every integer a such that
1 <a< fand (a,f) =1, let Py yq be the set of prime numbers p such that
p=a (mod f) and g is a primitive root modulo g. Under GRH, Moree [8] proved
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TABLE 1. Probability Py that the candidate g selected by the mod-
ulo 2p; - - - pg is a primitive root.

k P/A P |k P,/A Py

1 1 0.373955.. | 4 1522/779 0.730629...
2 9/5 0.673120..|5  167878/84911  0.739350...
3 181/95 0.712484.. | 6 26172722/13161205 0.743658...

TABLE 2. Choice of g depending on p mod 22-3-5-7.

pmod4 pmod3 pmod5 pmod?7 g
1 1 lord 1,2,0r4 2
1 1 lor4 3,5 0r6 7
1 1 2or3 any )
1 2 any any 3
3 1 any any 3
3 2 any any -3

an explicit formula for the density of P, 74 (see Theorem 13 below). The formula
shows that, for fixed a and f, the density Pg s, can be higher or lower depending
on the choice of g. An extreme example is the following: if p = 2 mod 3, then the
conditional probability of —3 being a primitive root is %A ~ 90%.

This suggests the following procedure for selecting a good candidate g to be
tested as a primitive root modulo p. As a precomputation phase, fix a modulo f
and for each integer a such that 1 < a < f and (a, f) = 1, compute an integer
g = g(a, f) that is neither 0,41 nor a perfect power and for which the density
of Pt g is maximal. Then, when given a random prime number p, select as a
candidate g(a, f), where a is determined by p = a (mod f). The following result
provides an upper bound for the probability of success of this procedure.

Theorem 2. For a random prime number p, the probability that the candidate
g selected by the above procedure is a primitive Toot modulo p is at most 2A =
0.747911...

It seems likely that for the modulo fr = 2p1ps - - - px, Where py,...,pg are the
first prime numbers, the probability of Theorem 2 approaches 24 as k — 400, see
the values in Table 1. However, employing a large modulo is clearly impractical.
The next result provides a practical instantiation of the modulo, which gives a
probability close to the upper bound of Theorem 2.

Proposition 3. For a random prime number p, select g = g(p) according to Table 2
(which corresponds to the choice of the modulo f = 22-3-5-7). Then the probability

that g is a primitive root modulo p is %A = 0.730629... (c¢f. Table 1).

The following proposition focuses on the case of prime numbers p = 3 (mod 4)
and shows that the candidates g maximizing the probability of being primitive roots
modulo p have an easy characterization.

Proposition 4. For a random prime number p = 3 mod 4, the numbers g maxi-
mizing the probability of being a primitive root are those of the form g = —t2 where
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t is a positive integer that is not a q-th power for any odd prime q. For them, the
conditional probability is 2A.

The last theorem of this section shows that, for a fixed modulo f, the differences
for the probabilities that the various candidates g are primitive roots modulo p = a
(mod f) are only due to the probability of being a non-quadratic residue and they
would disappear if restricting to candidates that are non-quadratic residues modulo

p.

Theorem 5. Let a, f be integers such that 1 < a < f, f > 2, and (a, f) = 1. Let
g be and integer that is neither 0, —1, nor a perfect power. For a random prime
number p = a mod f, the conditional probability that the index of g mod p is a
power of 2 (including 2°) is independent of g and equal to

2A'II(1_?R§%75>_1' I1 (1—5).

qlf q|(a—1,f)
q>2

5. THE LEAST PRIMITIVE ROOT IN ABSOLUTE VALUE

5.1. Theoretical results. For a prime number p = 1 mod 4, it is easy to show
that an integer g is a primitive root modulo p if and only if the same holds for
its absolute value |g|, so there is no need of considering negative numbers. This
section focuses on prime numbers p = 3 mod 4 and describes the advantage of
considering also negative numbers that are small in absolute value as candidates
for being primitive roots modulo p. Perucca and Tholl [10] already studied this
idea of considering negative candidates.

Note that —1 is a non-quadratic residue modulo p. Let g # 0,41 be a rational
number that is not a perfect power. Then g is a quadratic residue modulo p if and
only if —g is a non-quadratic residue modulo p. Thus, up to taking the correct sign,
to ensure that g is a primitive root modulo p it suffices to ensure that its index
modulo p has no odd prime factors. Observe that the condition that either g or
—g is a primitive root modulo p is equivalent to —g? being a primitive root (this
number is surely a non-quadratic residue modulo p).

Proposition 6. Let g be an integer that is neither 0, —1, nor a perfect power.
For a random prime number p = 3 (mod 4), the conditional probability that g is a
primitive root modulo p up to a sign is 2A =~ 75%.

Non-zero rational numbers g1, ..., g, are strongly multiplicatively independent if,
for i = 1,...,r, each representant of g; modulo the subgroup of Q* generated by
the g;’s for j # 4 is not a perfect power.

Theorem 7. Suppose that g1, . .., gr are non-zero rational numbers that are strongly
multiplicative independent. Then, for a random prime number p = 3 mod 4, the
numbers g1, ..., gr are all primitive roots up to a sign with conditional probability

1—(1—3)
C’r::ql;g(l—q_l>.

Corollary 8. Let (gn)n>1 be a sequence of distinct non-zero rational numbers such
that any finite subset of its elements consists is strongly multiplicative independent.
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Then, for a random prime number p = 3 mod 4, the expected value of the least
index © such that g; is a primitive root up to a sign is

oo k k
e (Hen

k=1r=0
5.2. Experimental data on the least primitive root up to a sign. The fol-
lowing experimental data concerns the prime numbers p = 3 mod 4 up to 10° and
suggests that there is a considerable advantage in allowing negative primitive roots.
The probabilities to have found a primitive root, respectively a primitive root up
to a sign by testing all candidates with absolute value up to a given bound are
collected in Table 3

TABLE 3. Probabilities of finding a primitive root vs a primitive
root up to sign.

Bound primitive root primitive root up to a sign

2 37.396% 74.790%
3 58.241% 90.639%
5 74.616% 96.210%
6 80.209% 97.161%
7 87.813% 98.818%
10 89.274% 99.064%
11 93.382% 99.605%
12 93.953% 99.619%
13 96.257% 99.835%
14 96.826% 99.867%
15 97.216% 99.879%

Out of the 25 million primes tested, only for 31 thousands of them the least
primitive root up to a sign is larger than 15, compared to the 708 thousands for
which the least primitive root is larger than 15 (these figures are rounded).

5.3. Experimental data on the sign of the least primitive root. For each
prime number p = 3 (mod 4), define

Ipr*(p) := min{g > 1: g is a primitive root modulo p},
Ipr~ (p) := —max{g < 1: ¢ is a primitive root modulo p}.

Note that Iprt(p) # lpr~ (p). From a computation involving prime numbers p =
3mod 4 up to 107, it seems likely that lpr™(p) < lpr~(p) holds for about 53.4%
of the primes, see Figure 1. Thus the least primitive root in absolute value seems
to be more often positive than negative. This fact may seem counter-intuitive
because there is a bias for positive residues being quadratic residues ||, Theorem 4
p.346], the bias being the class number h of the field Q(y/—p) (respectively, 3h) for
p = 7 mod 8 (respectively, p = 3 mod 8). This class number h grows asymptotically
like /p, as proven in [14]. However, as it is very seldom that the least primitive
root in absolute value is large, it may be that by considering only the first, say, 20
candidates it is possible to establish that lpr™(p) < Ipr~(p) more often then not.
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FIGURE 1. The proportion of the prime numbers p < x, p = 3
(mod 4) such that Ipr*(p) < Ipr~ (p).

For p = 3 mod 4, the conditional probability that —3 (respectively, 3) is a prim-
itive root is gA ~ 45% (respectively, % . gA = %A ~ 30%) by Theorem 15. The
next proposition explains the following apparently counter-intuitive fact: it is more
likely for 3 than for —3 to be the least primitive root in absolute value (for primes
p =3 mod 4 up to 10%, the probabilities are respectively 11.8% and 4.1%).

Proposition 9. The ratio between the probability for —3 to be a primitive root or
a primitive root up to a Sign s

sA— 350 1
24-Cy T 47
A reasoning similarly to the proof of Proposition 9 could give in general a bias
towards +q being the least primitive root in absolute value, where ¢ is an odd prime
and the sign is chosen so that v/£¢ ¢ Q(¢,) (hereafter, ¢,, denotes a primitive n-th
root of unity). Indeed, such a bias can be observed for 3, —5,7,11, —13 considering
the primes p up to 10°.

6. BEYOND TESTING CANDIDATES FOR PRIMITIVE ROOTS

This section concerns some alternative candidates for being primitive roots with
respect to the least primitive root (or the least primitive root in absolute value).

6.1. Safe primes and generalizations thereof. Safe primes and their natural
generalization are a specific class of prime numbers for which the probabilities
coming from Artin’s conjecture would be misleading.

Let p be a prime number, and suppose that p — 1 = 2%q, where t is a small
positive integer and ¢ is a prime number. If £ = 1 then p is called a safe prime.
Then an integer a # 0,41 is a primitive root modulo p if and only if it is a non-
quadratic residue modulo p and it is not a g-th power modulo p. Suppose that the
former condition is satisfied. Then the latter condition is satisfied if and only if
a2" # 1 mod p (this holds in particular if a < +logp/log 2).

If t =1 then —1 is not a quadratic residue modulo p, hence either a or —a is a
non-quadratic residue. Thus, for p > 5 a safe prime, either 2 or —2 is a primitive
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root, and in any case —4 is a primitive root. If ¢ > 1 then p = 1 mod 4. If t = 2 then
p % 1 mod 8 hence 2 is a non-quadratic residue modulo p. In fact 2 is a primitive
root because p 1 (2% — 1) (see [2, Corollary 3.1]).

Now suppose that ¢ > 3. Then 2 is a quadratic residue because p = 1 mod 8.
If ¢ # 3 then 3 is a non-quadratic residue modulo p (see [2, Lemma 3]). Hence
it is most likely that 3 is a primitive root modulo p (and this is surely the case if
p> 321'). If t =3 and r # 5, or t = 4, then 3 is a primitive root (see [2, Corollary
4.1 and 4.2]).

6.2. A suitable modification of 2. There is a primitive root for which exponen-
tiation basically amounts to the exponentiation of 2.

Consider a prime number p such that p — 1 = sQ, where @ is a power of a
prime number ¢ that is large compared to s. It is possible to determine the smallest
positive integer m that is not a g-th power modulo p, and to construct the primitive
root 7 := mmn, where n mod p is a root of unity of order dividing s.

If ¢ is a prime divisor of s, the order of said root of unity can be taken coprime
to ¢ if m is not a ¢-th power and must be taken divisible by ¢¥*(*) otherwise. For
practical purposes, it may also be possible not to compute the needed root of unity,
but just work with m that is not a ¢-th power. Indeed, by the Chinese remainder
theorem, the multiplicative group modulo p is the direct product of a group of order
q, for which a generator is known, and a small group of order s which could be easy
to handle even without an explicit generator.

The probability that a random prime number congruent to 1 mod ¢ splits in the
field Q(¢,, ¥/2) is 1/q, hence probability that m = 2 can be estimated as 1 — 1/q.
Moreover, if p > 2° then surely m = 2.

Example 10. If s = 6 then for 0 < g < ¢p it is only needed to ensure that g is
neither a quadratic residue nor a cubic residue to make sure that g is a primitive
root modulo p. If g is a cube modulo p, then g can be multiplied by a root of unity
of order 3 (and, if it is a square, by —1) to obtain a primitive root modulo p. So for
any p > 64 of the above form, a primitive root is given by an element of the form
+2n, where n mod p has order dividing 3.

6.3. Primitive roots with small prime divisors. Another possibility is finding
a, possibly rational, primitive root that is the product of small prime numbers (with
integer exponents).

Different candidates for being primitive roots can be tested in parallel: beyond
increasing the speed of finding a primitive root (respectively, the least positive
primitive root) this feature could be exploited to construct a primitive root that
consists of a product of powers of small prime numbers.

Consider the prime factors g¢i,...,q of p — 1. For each tested candidate a;,
record the primes ¢; for which a; is not a g;-th power. Then, by comparing these
information, build a primitive root a that is of the form a = []; a;j where the
exponents e; are, if possible, 0, and otherwise small (or small in absolute value,
if rational numbers as primitive roots are allowed). If p — 1 = s@Q, where Q is a
power of a large prime ¢ not dividing s, then most likely it suffices to take e; # 0
to ensure that a is not a ¢;-th power for the prime divisors of s because a will most
likely be not a g-th power.

Testing n pairwise coprime candidates a1, ..., a, that are no perfect powers, the
probability that all of them are g;-th powers for one fixed i (without additional
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information which could create a bias) is merely q% So it is expected that with
very few candidates a;’s one may produce a primiltive root as described. Notice
that this procedure is not determining roots of unity modulo p whose orders are
the largest possible power of the primes ¢;’s, as done for example in the efficient
probabilistic algorithm in the book by Shoup [13, Section 11.1].

Remark 11. Restricting to the primes p = 1 mod 4 up to 10°, considering the
products (possibly with repeated factors) of previously tested prime candidates is
more promasing than testing the next prime because of the following conditional
probabilities for being a primitive root:

20r3orb 78.8%
a product of 2,3,5 85.9%
20r3orbor7 81.2%

a product of 2,3,5,7 93.2%
2o0r3o0rborTorll | 86.6%
a product of 2,3,5,7,11 | 96.7% .

Remark 12. Restrict to the primes p = 3 mod 4: by possibly changing the sign, the
candidates can be assumed to be non-quadratic residues. For the primes up to 109,
considering the products (possibly with repeated factors) of previously tested prime
candidates is less promising than testing the next prime because of the following
conditional probabilities for being a primitive Toot:

+2 or £3 or £5 96.2%

+ a product of 2,3,5 97.9%

+2 or 43 or £5 or +7 98.4%

=+ a product of 2,3,5,7 99.3%

+2 or +£3 or +£5 or £7 or £11 | 99.3%
=+ a product of 2,3,5,7,11 99.8%.

7. PROOFS

The proofs require some preliminary results. The first is the aforementioned
formula for the density of P, 4 ; due to Moree [3, Theorem 1.2 with h = 1].

Theorem 13. Let g be an integer that is neither equal to 0, —1, nor a perfect
power, and let A denote the discriminant of the quadratic field Q(\/g) Let a and
f be relatively prime integers such that 1 < a < f. Set b:= A/(f,A),

. {(1><“>/2<f,A) if b is odd:

1 otherwise;

and

sen= I (=9 (-75) +

al(a=1,f) qlf
Then the density of Pq, 5,4 is equal to

Aa, f) gl 1 (2(b])
o(f) (1 i <a> [lg(@® —a— 1)) ’

where @ is the Euler totient function and (—) denotes the Kronecker symbol.
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The next result is due to Kesava Menon [6, Theorem 1] (cf. the survey by
T6th [16, Theorem 4]).

Theorem 14. Let ¥ be a multiplicative arithmetic function and define the arith-

metic function 9* by
9 (n) = Z I((a—1,n))

1<a<n
(a,n)=1

for every positive integer n. Then 9" is a multiplicative arithmetic function satis-
Jying

9 (") = —p T+ )" )I()
=0

for every prime p and positive integer v.

7.1. Proof of Theorem 2. From Theorem 13, the probability is asymptotically
at most

)
* X S -I0) (o) 20 ()

1<a<f p|(a—1,f)
(a,f)=1 (a,f)=1

24 1 1\ ! 1
SFHe--) o0 ()
(15;)@‘1 pl(a—1,f)

Let ¢ be the arithmetic function defined by ¥(n) := ¢(n)/n for every positive
integer n. Then

" Y e TIW) = ="+ e(") +9(Y) + D eI
5=0

v—1 2
. 1
= —p" +o(p) + (") + Y " (1 - )

for every positive integer v. Hence, Theorem 14 implies that

PR N ()

1<a<f p|(a—1,f) plf b

(a,f)=1
for every positive integer f. Combining (2) and (3) yields that the probability is at
most 2A, as claimed. O

7.2. Proof of Proposition 3. The claim follows by applying Theorem 13 to com-
pute the sum of the densities of the sets P, y 4, where f = 22.3.5-7,1<a<f
with (a, f) = 1, and g is selected according to Table 2. Note that these sets Py, 7,4
are pairwise disjoint because of the condition p = a (mod f). Hence the density of
their union is the sum of their densities. (]
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7.3. Interlude. The next proofs require a result that is a consequence of the Mas-
ter theorem on Artin type problems [5, Theorem 4.1], proven by Jarviniemi and
Perucca assuming GRH. Observe that the fields Q((q, ¢/g) are linearly disjoint over
Q for ¢ # 2 by Schinzel’s Theorem on abelian radical extensions [11, Theorem 2]
(and they have degree g(q¢ — 1) because g is not a perfect power).

Theorem 15. Let F'/Q be a finite Galois extension, let C be a non-empty conjugacy
stable subset of Gal(F/Q), and consider a set S of odd primes such that F' is linearly
disjoint from the compositum of the fields Q((q, /g) for ¢ € S. Then the density
of the primes p such that the index of (g mod p) is coprime to the primes in S
and whose Frobenius conjugacy class in F/Q is contained in C is well-defined and

equals
NG » PR B
4 G 1;15(1 )

Remark 16. In Theorem 15, if F' contains Q((q, /g) for some odd prime q ¢ S,
then it is possible to tmpose that the index of g mod p is coprime to q by requiring
that C consists of automorphisms that are not the identity on that subfield. For
q = 2, it is also needed the condition that the primes q ¢ S include the prime
divisors of A, to ensure the independence with the coprimality conditions for q € S.

7.4. Proof of Proposition 4. The field Q(({y) is linearly disjoint from the com-
positum of the fields Q(¢,, ¥/z) for ¢ odd, for any rational number z. Supposing
that z £ 0,41 is not a perfect power, the probability that z mod p has an index
without odd prime factors is 24 by Theorem 15. Considering that —1 is not a
square modulo p = 3 mod 4, the numbers —t? are non-quadratic residues, but that
cannot be said with certainty for the other numbers.

7.5. Proof of Theorem 5. The claim follows from an application of Theorem 15,
considering that the arithmetic progression condition concerns the Frobenius in the
field F := Q({y) and letting S be the set of the odd primes that do not divide f. O

7.6. Proof of Proposition 6. Apply Theorem 15, taking F' = Q({4) to account
for the condition p = 3 mod 4 and letting S be the set of all odd prime numbers.
O

7.7. Proof of Theorem 7. Assume GRH and apply [5, Theorem 4.1] with the
Frobenius condition at Q({4) to account for p = 3 mod 4. For ¢ odd, the extensions
Ly == Q(¢q, ¢/91,-- -, ¢/9r) are linearly disjoint over Q (among themselves and
from Q({4)). Thus the requested probability is the product of the probabilities
requiring the coprimality of the index with one fixed odd prime g. The coprimality
condition of the index with an odd prime q is the proportion of the automorphisms
in Gal(L4/Q) that are not the identity on any of the subfields Q({,, ¢/g:)’s. Observe
that
[Lq:Ql=4q"(¢—1).
The suitable automorphisms are those ¢" (¢ — 2) that are not the identity on Q(¢,)
and those (¢ — 1) that are the identity on Q(¢,) but do not fix any of the /g;’s.
The requested conditional probability is then
(q—®~¢+%q—DT_1_1‘Wl_$V

(g —1)q" g—1 7
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as desired. 0

7.8. Proof of Corollary 8. It suffices to apply the following basic probability
lemma by setting P. = C,..

Lemma 17. Let E1,FEs,... be some events and let t be the minimum positive
integer such that Ey occurs (t := 400 if none of the events occurs). The expected
value of t is equal to

k
N E:

=1

E[t] =1+ ip
k=1

Furthermore, if for every set S of r positive integers the probability P, := P[/\ies El]
depends only on r, then

Proof. Put Fy, := /\f:1 E;, with the convention that P[Fy] := 1. By the definitions
of expected value and t,

E[ﬂ = ikP[kal AN Ek]
1

B
I

k (P[Fy_1] — P[F])

M

>
Il

1
e}

=14+ ((k+1)—k)P[F]

k=1
=1+ PR,
k=1

as claimed. Under the second hypothesis, the inclusion-exclusion principle implies
that

PlR]= S <1>8P[/\Ei]

SC{1,....k} €S

Il
Il =
=}
T
—_
SN—
3
7N
=
"
=

and so

as claimed. O

7.9. Proof of Proposition 9. By Theorem 7, the probability that 3 or —3 is a
primitive root is 24, and the probability that additionally +2 are not primitive
roots is 2A — Cy ~ 16%. Now suppose that —3 is a non-quadratic residue (which
happens with probability %) In this case, the only difference is made by the prime
factors ¢ > 3 for the index of (—3 mod p) and of (£2 mod p). By a straightforward
modification of Theorem 7 (namely, removing the factor at ¢ = 3), the conditional
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probability that —3 is a primitive root is 1—52A, and the conditional probability that
additionally +2 are not primitive roots is %A — %CQ ~ 8%. O

10.

11.

12.

13.

14.

15.
16.
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