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Abstract
Artificial intelligence (AI) has been influencing healthcare and medical
research for several years and will likely become indispensable in the near
future. AI is intended to support healthcare professionals to make the
healthcare system more efficient and ultimately improve patient outcomes.
Despite the numerous benefits of AI systems, significant concerns remain.
Errors in AI systems can pose serious risks to human health, underscoring
the critical need for safety, as well as adherence to ethical and moral
standards, before these technologies can be integrated into clinical practice.
To address these challenges, the development, certification, and deploy-
ment of medical AI systems must adhere to strict and transparent regula-
tions. The European Commission has already established a regulatory
framework for AI systems by enacting the European Union Artificial Intelli-
gence Act. This review article, part of an AI learning series, discusses key
considerations for medical AI systems such as reliability, accuracy, trust-
worthiness, lawfulness and legal compliance, ethical and moral alignment,
sustainability, and regulatory oversight.
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INTRODUCTION

Artificial intelligence (AI) systems have become an
integral part of everyday life in making predictions (e.g.,
risk of disease and weather forecast), performing ac-
tions (e.g., autonomous navigation) and generating
synthetic data (e.g., creation of texts or images ac-
cording to the user's requests) [2, 12, 46, 47]. In addi-
tion, AI is now impacting the medical world and is
contributing to reshaping the current and future
healthcare landscape [13, 46]. Since the introduction of
AI systems in the 1950s, there has been a tremendous
technological progress that is gradually approaching
high‐level machine intelligence [10, 40]. High‐level
machine intelligence, also referred to as general intel-
ligence or human‐level intelligence, is defined as
machines that are able to perform tasks at the same
level or better than humans without any assistance. An
expert survey on the progress in AI conducted in 2022
indicates a 50% chance to reach high‐level machine
intelligence in the year 2059, but progress has been
accelerating and a recent update to the survey has
revised this prediction forward to 2047 [10, 11].

The basic idea of an AI system is that a statistical
model generates output data based on input data. In
addition, there is a learning algorithm that allows the
system to adjust to become more accurate. AI systems
can support clinicians by optimising healthcare pro-
cesses. Moreover, scientific progress through the use
of AI systems can expand knowledge and ultimately
help patients [31]. For example, machine learning (ML)
models have been suggested as suitable for injury
prediction [24]. Pattern recognition models have been
implemented to evaluate common medical imaging
modalities such as radiographs, magnetic resonance
imaging (MRI) and computed tomography (CT) scans
[39]. For example, pattern recognition models have
already been introduced into clinical practice to detect
anterior cruciate ligament (ACL) injuries based on MRI
scans [3, 18, 26]. A number of other healthcare topics,
such as the prediction of clinical outcomes, skin cancer
screening or the evaluation of value‐based metrics to
optimise health economic processes (i.e., length of
stay, inpatient costs etc.), are already supported by AI
systems [17, 20, 28]. Recent generative AI models
have also been evaluated for answering medical
questions and for automated diagnosis with perform-
ance sometimes on par with clinicians [9, 19]. A recent
systematic review of AI techniques in orthopaedic dis-
ease detection found that most work has focused on
fractures, tumours, and deformities while less studies
have addressed arthritis and osteoporosis [27].

A thorough understanding of how AI systems
function is essential for their safe, effective, and
reproducible application in clinical practice. Equally
critical are robust regulatory measures to ensure the
safety of this rapidly evolving technology. In a survey of

nearly 560 AI experts, 5% estimated a significant risk
that the long‐term impact of high‐level machine intelli-
gence on humanity could be 'extremely bad' (e.g.,
human extinction), highlighting the potential dangers
posed by AI [10]. Furthermore, 69% of respondents
emphasised the need to prioritise AI safety research,
calling for 'more' or 'much more' attention to this
pressing issue [10]. Safety measures for medical AI
systems have remained limited, despite their critical
role in ensuring reliable and reproducible use in ev-
eryday clinical practice.

This narrative review aimed to address the risks,
limitations, and safety measures associated with
medical AI systems. It also examined the processes of
verification and validation, along with the regulatory
frameworks governing the clinical application of AI. Key
terms and definitions relevant to this discussion are
provided in Tables 1 and 2.

KEY RISKS AND LIMITATIONS OF
AI SYSTEMS

Artificial intelligence has influenced both daily life and
clinical practice for several years. However, its use
comes with limitations and risks that must be carefully
considered. This section explores key challenges in
medical AI systems, including ‘distributional shift’,
‘black box decision‐making’ as well as pitfalls of
reward‐based AI systems (e.g., reinforcement learning)
that are illustrated in detail in this section using fictitious
examples. A more complete overview of short‐,
medium‐, and long‐term challenges and risks can be
found in Challen et al [2].

Distributional shift

Distributional shift, also known as data‐drift, refers to
erroneous predictions of ML models caused by a mis-
match between training data and operational data
(Table 2) [2, 46]. Such a data mismatch can be trig-
gered by insufficient or biased training data or by the
inappropriate use of a trained AI system in an
unfamiliar context [2, 44]. Suppose an AI system is
developed to predict the risk of periprosthetic joint
infections (PJI) in patients undergoing total knee ar-
throplasty (TKA) and to provide a treatment recom-
mendation (i.e., take an action or take no action) based
on the predicted risk (i.e., decision support system).
Retrospectively collected healthcare data from a single
institution is used to train the AI system. Assume that
the selected institution is a private non‐public facility
that mainly treats healthy and rather young patients.
Once a highly accurate system has been successfully
developed, it will be offered to other institutions, maybe
also in other countries. Considering that the system is
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later implemented in a public hospital that treats a high
proportion of patients with clinically relevant pre‐
existing conditions, the system is likely exposed to a
high level of unfamiliar data. This mismatch in training
data and operational data may cause erroneous pre-
dictions resulting in misleading treatment recommen-
dations. Consequently, actions (e.g., antimicrobial
treatment) may be recommended that adversely affect
both the individual patient (e.g., allergic reaction) and
the healthcare system (e.g., antimicrobial resistance).
The above example was fictitious. However, it is worth
noting that several ML models for the prevention of PJI
after TKA have already been developed [4].
Unfortunately, the majority of these prediction models
lack external validation, making them vulnerable to the
distributional shift problem and are only valid in the
context they were created [4].

Black box decision‐making

Another major issue of AI systems is called ‘black box
decision‐making’ (Table 2). Black box decision‐making
means that AI algorithms use methods to produce
outputs based on inputs that are not understandable or
transparent to humans [46]. In the example of a med-
ical AI system to predict the risk of PJI in patients un-
dergoing TKA, retrospectively collected healthcare
data are used as input data. The output from the AI
system is the risk of PJI and a treatment recommen-
dation (i.e., take an action or not). However, in most
cases it cannot be explained how and why the system
got to the specific result, making it difficult to explain or
even check for errors. This lack of transparency is a
major criticism, raising doubts among users. However,
it should be mentioned that human behaviour and
decision‐making may also lack transparency. The
transparency of AI systems and in particular of decision
support systems is essential in order to be trustworthy
for users and patients. The importance of trustworthi-
ness of AI systems was emphasised in a statement by
the European Commission in 2018. Based on the
Ethics Guidelines for Trustworthy AI, a trustworthy AI
system should be lawful, ethical, and robust [14]. These
three key elements should coexist and orchestrate in a
trustworthy AI system to avoid unintended harmful
behaviour. Extensive research and development efforts
are also focused on advancing eXplainable and inter-
pretable AI (XAI) systems, in order to mitigate the
black‐box nature of AI systems [23]. Interpretable AI
aims to create models that are inherently transparent
and understandable, such as methods that identify the
provably optimal scoring system [41]. Explainable AI,
on the other hand, involves techniques that illuminate
the factors influencing a model's specific recommen-
dations, providing clearer insights into its decision‐
making processes.

Reinforcement learning

Reinforcement learning is a promising key concept
in ML. In reinforcement learning, the AI system aims to
perform actions in order to maximise its reward (to be
defined in the given context) in a dynamic environ-
ment. Based on the actions performed, the system
obtains positive (i.e., reward) or negative (i.e., penalty)
feedback. Positive feedback will reinforce the system
to perform similar actions to gain more reward [45].
AlphaFold is a popular example of an AI system de-
veloped by Google DeepMind (London, England)
using reinforcement learning. AlphaFold is intended to
predict the three‐dimensional protein shape based on
the amino acid sequence and helps to solve the
protein‐folding problem. Back to the above example:
assume that an improved version of the AI system for
predicting PJI in TKA is now able to provide a detailed
antimicrobial treatment regime for patients at high risk
of PJI. A reward is given to the system when a treat-
ment recommendation is made that covers the corre-
sponding antimicrobial profile. To avoid negative
feedback (i.e., penalties), the AI system may recom-
mend comprehensive antimicrobial coverage for every
patient in order to cover most pathogens (i.e., over-
treatment), even if antimicrobial treatment is not
necessary for some patients. Consequently, a differ-
entiated treatment recommendation will be lost,
increasing the risk developing antimicrobial resistance
in the long‐term.

While AI systems can be designed to achieve
greater accuracy, precision, explainability, or interpret-
ability, it is crucial to recognise that their output quality
is directly dependent on the quality of the input data
and the environment in which they operate. False
predictions often stem from insufficient, unaligned, or
poor‐quality training data, a challenge commonly re-
ferred to as the 'garbage‐in‐garbage‐out' principle [44].
This issue is particularly relevant for AI systems relying
on retrospective data and must be carefully addressed
in their development and application.

SAFETY MEASURES

In view of the aforementioned risks and limitations of AI
systems, safety measures for medical AI systems are
becoming increasingly important. Reliability, accuracy,
validity, trustworthiness, lawfulness, ethical and moral
conformity, sustainability, as well as regulatory over-
sight are emerging topics in medical AI systems
(Table 2). Insufficient safety measures and regulatory
actions can lead to systemic errors arising from AI
systems. Such systemic errors are difficult to identify
owing to circumstances like the black‐box phenome-
non or the distributional shift problem and can ulti-
mately cause harm to the patients [5].
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AI safety measures are intended to accurately
detect unintended behaviour of AI systems and take
appropriate measures to avoid adverse effects. Key
concepts for safe and reliable operation of AI systems
cover the domains specification, robustness, and
assurance (Table 1) [30, 32].

Specification

An important task when developing an AI system is to
precisely define what the AI system is intended to do.
The precise definition of how the AI system should
operate is called specification and is a key element
for the designer of an AI system. In particular,
reward‐driven AI systems are prone to unintended
behaviour in case of insufficient specification [35].
Three levels of specification are typically identified:
ideal specification, design specification and revealed
specification. While the ideal specification represents
the function of the system desired by the designer,
the design specification represents the function that
has been implemented in the AI system. Lastly, the
revealed specification represents how the AI system
ultimately operates. Challenging tasks, complex
operating environments, or unpredictable actions of
the AI system may cause a mismatch between the
revealed specification and the ideal specification,
eventually leading to unintended and potentially
harmful events [35].

Robustness

Once the AI system has been trained properly, it can
work as intended. Unfortunately, attacks such as data
poisoning or adversarial examples (Table 2) may lead
to misleading prediction of trained AI systems. To avoid
system failures caused by adversarial attacks, an AI
system must be resistant to perturbations and irregu-
larities, which is referred to as robustness. Predictive
uncertainty estimates have been introduced to indicate
the level of uncertainty of the AI system concerning the
correctness of its prediction [34]. Such estimates can
help users to assess the reliability of an AI system's
prediction.

Assurance

Expected and unexpected behaviour of AI systems
should be understandable and interpretable for human
operators. Given that actions of medical AI systems
may have a serious impact on human lives, it is crucial
that the system's behaviour is understood by users and
therefore trustworthy. The interpretability of modern AI
systems can be seen as a means of assurance that has
become increasingly important in recent years. Deep
neural networks, for example, are highly developed ML
models that use a large number of hierarchically or-
ganised layers and a complex connection of a variety of
parameters to generate output data from the input data.
Such networks contain so‐called hidden layers that
create complex and deep connections. Consequently, it
is often difficult to explain how the output data comes
about. This is why it is often referred to as a black box
phenomenon [13, 33].

The following example is intended to demonstrate
the importance of the key concepts in AI safety (i.e.,
specification, robustness and assurance) in a clinical
scenario. Recently, a number of studies have been
published in which AI‐based models for the detection of
ACL injuries have been developed based on MRI scans
[3, 18, 26, 39]. A diagnostic sensitivity and specificity of
87%–97% and 86%–100% have been described [3, 26,
39]. The goal of the AI system (i.e., detection of an ACL
injury) must be precisely and clearly defined (i.e.,
specification). For example, if the AI system is
rewarded by detecting increased signal intensity
caused by a ligament injury, it may incorrectly classify a
posterior cruciate ligament (PCL) injury as an ACL
injury. Furthermore, an AI system must be resistant to
unintended perturbations (i.e., robustness). For ex-
ample, when detecting ACL injuries, metallic artifacts
from implants from previous surgical procedures may
cause an unfamiliar appearance of the ACL (Figure 1).
In such cases, the AI system should recognise the
abnormal situation and resort to a safe fallback strategy
such as alerting human review. Note that triggering
human review too frequently can lead to a well‐known
phenomenon called alarm fatigue [44]. Physicians aim
not only for the correct diagnosis, but also for the
diagnostic pathway. Therefore, assurance of an AI
system is important to trust the algorithm. Accordingly,

TABLE 1 Key concepts in AI safety.

Term Definition Aim

Specification Purpose of the system Ensure that the AI system operates as intended by the developer.

Robustness Resistance to perturbation Ensure that the AI system continues to operate within predefined safety limits, even in
unfamiliar system conditions.

Assurance Monitoring and controlling Ensure that the AI system is interpretable and understandable for users.

Abbreviation: AI, artificial intelligence.
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it would be of major interest that an AI‐based ACL
injury detection tool also indicates the diagnostic
criteria monitored to diagnose an ACL injury.

The potential risks and safety measures for the use
of AI systems mentioned in this article cover relevant
parts to orthopaedic surgeons and scientists. More
detailed information can be found at specialised insti-
tutions such as the Center for Security and Emerging
Technology (CSET; https://cset.georgetown.edu) or the
Center for AI Safety (https://www.safe.ai).

REGULATION OF AI SYSTEMS

The use of AI systems raises critical issues, including
ethical considerations, socio‐economic impacts, data
security and data protection, all of which require reg-
ulatory oversight to uphold ethical standards and
safeguard sensitive information. While regulatory
oversight of AI was once a relatively minor concern, it
has gained significant importance in recent years,
driven by heightened political activity and a growing
recognition of its necessity. In October 2023, the
president of the United States signed the first AI ex-
ecutive order to control the use of AI systems [38].
This executive order was issued to set standards for
AI safety and security, enhance the transparency of AI
systems, and protect the privacy and civil rights of the
American population [38]. In addition, an AI safety
summit was hosted in the UK with representatives
from around the world and leading technology com-
panies [16]. The European Union (EU) Artificial Intel-
ligence Act was first presented in April 2021 by the
European Commission, agreed by the European
Parliament in December 2023, and recently, in August
2024, went into force (https://commission.europa.eu/

TABLE 2 Terms and definitions.

Term Definition

Accuracy The degree of correctness that an AI system generates correct outputs or predictions based on the given
inputs.

Adversarial example Adversarial examples are inputs for AI systems that intentionally contain minor errors. This leads to
misinterpretations and ultimately to unintended behaviour of the AI system. In this way, the robustness of AI
systems should be improved.

Black box decision‐making Output/decision of an AI system based on patterns and correlations of big sets of training data. However, the
underlying rationale for the output/decision is unknown.

Data poisoning Poisoning/contaminating the training data to increase errors in the output of AI systems.

Distributional shift Erroneous predictions of AI systems caused by a mismatch between training data and operational data.

Lawfulness AI systems must comply with national and international legislation.

Reliability Consistency and stability of an AI system over time and in different environments.

Trustworthiness An AI system that operates lawful (respects laws and regulations), ethical (respects ethical principles and
values), and robust.

Abbreviation: AI, artificial intelligence.

F IGURE 1 Unintended perturbations in image recognition.
Anteroposterior and lateral radiographs (a) and proton density
weighted coronal and sagittal magnetic resonance imaging (MRI)
scans (b) of a right knee with failed transtibial anterior cruciate
ligament reconstruction. Note the tibial and femoral implants for graft
fixation and the corresponding metallic MRI artifacts (arrows).
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news/ai-act-enters-force-2024-08-01_en). The EU AI
Act represents a safety framework with requirements
and obligations for the development and use of AI
systems within the EU [21].

The safety policy introduced by the EU AI Act
sets requirements for market entrance and certifi-
cation of AI systems. This includes, for example, a
mandatory CE marking process for high‐risk AI
systems, which guarantees health, safety, and en-
vironmental standards determined by the EU. The
EU AI Act follows the Ethics Guidelines for Trust-
worthy AI proclaimed by the European Commission,
requiring AI systems to be lawful, ethical and robust
while ensuring democratic values, human rights,
and the rule of law [14].

In addition, a key interest for the EU is that AI
systems are continuously monitored by humans and
not by 'automated machines'. A risk‐based approach
for regulatory oversight of well‐defined AI systems has
been announced by the European Commission.
Accordingly, the EU AI Act defines four risk categories,
each with specific requirements, to guarantee safety
and avoid adverse events of all types of AI systems
(Figure 2) [8, 21]. A similar risk‐based approach has
also been employed by the US Food and Drug
Administration (FDA) to classify and regulate AI sys-
tems. Based on the risk profile, the FDA classifies
medical devices into three different risk categories.
Most AI systems such as image recognition systems
etc. belong to Class II (moderate risk). However, AI
systems used for critical medical decisions belong to
Class III (high risk) [25].

The agreement reached in December 2023 on
the world's first comprehensive AI law has been

officially adopted to by the Parliament and Council
and is expected to ultimately become EU law during
2026 (https://commission.europa.eu/news/ai-act-
enters-force-2024-08-01_en) [8]. This is a major
step forward in the regulatory oversight of AI sys-
tems within the EU, but it will likely take time before
a practice for how to interpret the law develops.

VERIFICATION AND VALIDATION
OF AI SYSTEMS

Given the significant impact of diagnostic and thera-
peutic actions on human health, the accuracy, validity,
reliability and trustworthiness of medical AI systems is
often critically questioned. Reasons for this uncertainty
have already been explained in detail and include
insufficient data quality, misspecification, lack of trans-
parency and many more. Therefore, the correctness
and dependability of medical AI systems is essential to
avoid harm to patients. Verification and validation of AI
systems, also known as verified AI, is a process that
uses formal verification techniques to ensure the cor-
rectness and reliability of AI systems [1, 36]. A verified
AI system requires strict goals to be specified in the
design phase. The actual behaviour of the system is
then verified and validated using mathematical models.
In this way, erroneous actions and system bugs can be
detected and eliminated [1]. However, as the com-
plexity of the data and the considerations that an AI
system needs to take increases, it may not be practical
or cost‐efficient to use formal verification techniques
and more statistical approaches may be war-
ranted [15].

F IGURE 2 Risk categories proposed by the European Union Artificial Intelligence Act.

6 of 9 |

https://commission.europa.eu/news/ai-act-enters-force-2024-08-01_en
https://commission.europa.eu/news/ai-act-enters-force-2024-08-01_en
https://commission.europa.eu/news/ai-act-enters-force-2024-08-01_en


Validation

In general, internal validation has to be distin-
guished from external validation. Internal validation
is performed with unknown data originating from the
same dataset that was used to train the AI system's
algorithm. Note that basic characteristics (e.g.,
ethnicity, time period, hospital etc.) are identical
between the training dataset and the internal vali-
dation data set. In contrast, external validation is
performed using external data that are new to the
system [7, 37]. Despite the tremendous increase of
medical AI systems over the past years, recent
studies show that only a minority of AI systems un-
dergo external validation [4, 22, 29]. However, the
importance of external validation has been empha-
sised in a recent study, showing that the perform-
ance of AI systems strongly depends on the dataset
(internal validation data set versus external valida-
tion data set) [29]. One recent systematic review
investigating deep learning studies that performed
external validation found that most models demon-
strated worse performance on the external dataset,
with almost 25% of studies reporting a substantial
performance decrease defined as greater than 0.10
on the unit scale [43].

Process of verification and validation

Verification and validation of AI systems comprises
several steps. First, the intended purpose of the AI
system must be clearly specified so that the goal of
the verification and validation process is also
unambiguous. Next, a data set for internal and ex-
ternal validation must be defined. Preferably, the
validation data set consists of unbiased “real word”
data. This key step should be done diligently, as the
quality of the data affects the generalisability of the
AI system. The verification and validation process
should be performed in a controlled and transparent
fashion and the results need to be reported in detail.
Strengths and weaknesses of the system should be
recognised and causes of errors identified. This
allows the system to be optimised, reducing opera-
tional risks. Finally, the performance of the verifi-
cation and validation process should be reviewed by
experts and the reliability and quality of the
verification and validation process should be
reported. Standards for how to evaluate and report
on the performance of clinical prediction models can
also be useful and help ensure proper verification
and validation practices [6]. Given that a very
large number of performance measures for AI clas-
sification models have been proposed, recent guid-
ance can be used to select an essential and safe set
to use [42].

CONCLUSION

Artificial intelligence is rapidly evolving and gradually
finding its way into daily clinical practice. Scientists and
orthopaedic surgeons should be acquainted with the
basic principles of AI and most common risks and
limitations (e.g. ‘distributional shift’, ‘black box decision‐
making’, and reinforcement learning) to ensure a safe
and reproducible application in daily clinical practice. AI
systems should complement and support clinicians and
scientists but not replace them. Individualised and
value‐based treatment supported by AI systems helps
orthopedic surgeons to focus on patients and ultimately
improve patient outcomes. However, medical AI sys-
tems must comply with regulatory requirements and
operate in a reliable, lawful, and trustworthy manner.
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