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Abstract
Artificial intelligence's (AI) accelerating progress demands rigorous evalua-
tion standards to ensure safe, effective integration into healthcare's high‐
stakes decisions. As AI increasingly enables prediction, analysis and
judgement capabilities relevant to medicine, proper evaluation and inter-
pretation are indispensable. Erroneous AI could endanger patients; thus,
developing, validating and deploying medical AI demands adhering to strict,
transparent standards centred on safety, ethics and responsible oversight.
Core considerations include assessing performance on diverse real‐world
data, collaborating with domain experts, confirming model reliability and
limitations, and advancing interpretability. Thoughtful selection of evaluation
metrics suited to the clinical context along with testing on diverse data sets
representing different populations improves generalisability. Partnering
software engineers, data scientists and medical practitioners ground
assessment in real needs. Journals must uphold reporting standards
matching AI's societal impacts. With rigorous, holistic evaluation frame-
works, AI can progress towards expanding healthcare access and quality.

Level of Evidence: Level V.
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INTRODUCTION

All models are wrong, but some are useful.
George Box [4]

The rapid development of artificial intelligence (AI) has
led to systems capable of predicting outcomes,
analysing and reporting on data produced by imaging
procedures, as well as generating creative works such
as generated music, graphics or even art. However, as
these powerful technologies advance, it is essential
that their outputs are properly interpreted and eval-
uated, in particular, for applications in medicine. While
high predictive capacity is desirable, values nearing or
reaching 100% should be examined closely to rule data
leakage or other methodological concerns. Very small
sample sizes can make models prone to overfitting.
Respective studies warrant careful scrutiny regarding
their evaluation methodology and the appropriateness
of any claims.

Machine learning (ML) models have shown promis-
ing predictive abilities for select tasks in medicine, such
as screening skin lesions for cancer risk or predicting
protein folding structures [16, 43]. However, ML
models' ability to make reliable clinical judgements
across all domains of medicine remains limited at this
time. While ML algorithms can find patterns and
correlations in data, correlations alone are not sufficient
to justify clinical actions for specific patient care. To
make credible clinical judgements, or even to support
the decisions of medical staff, AI needs access to
extensive medical data and an understanding of

diagnostic methods, treatment options and surgical
techniques grounded in clinical expertise. For example,
an ML algorithm may discover gene mutations associ-
ated with increased disease risk, but qualified medical
professionals must validate and interpret these findings
to determine appropriate next steps for each patient and
put these findings into context with what is already
known about the pathophysiology and nature of the
disease. More research is needed to develop AI
systems with the reasoning capabilities necessary for
sound clinical decision‐making [8, 20, 21, 25, 44,
51–53, 55, 56].

To enable proper evaluation, researchers should
report on the ML model's training process, data
sources, modelling capabilities and performance [9,
31]. Comparisons to ground truth benchmarks, mea-
sured error rates and comparisons with human experts
can contextualise the AI's performance. Additionally, AI
outputs should be critically examined through peer
review, replication studies and real‐world, clinical
testing before being integrated into standard practices.
This process is known as external validation, where
models are tested on data sets from different patient
populations, geographic locations or hospitals to
ensure that no bias was introduced during the internal
training process. With thoughtful evaluation methods,
AI can augment human performance and ameliorate
patient outcomes. Standards for reporting and interpre-
tation of AI and ML model performance can help in this,
but it is important to acknowledge that evaluations may
need to be reassessed if a model is used over time.
The underlying population of patients, and thus the
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data, might drift, potentially rendering the models
obsolete.

ML MODELS AND METRICS

While generative AI (ChatGPT [OpenAI Inc.] probably
being the most well‐known in 2024) is becoming
increasingly important in all fields of science, the three
main applications utilising AI in healthcare remain
classification, regression and clustering [11, 35, 47].
Other ML algorithms are often permutations and
combinations of these underlying models. Commonly
proposed algorithms in medicine that define them-
selves ‘Ranking’ or ‘Forecasting’ are permutations
and/or combinations of Classification, Regression and
Clustering models.

Classification

A common use of AI is to classify (e.g., X‐rays) into
discrete categories or labels [36]. For example, an
image classifier may categorise X‐rays as normal or
abnormal [34]. Classification models output a predicted
class, possibly along with a probability score reflecting
the model's confidence. Key evaluation metrics are
confusion matrices from which accuracy, precision,
recall, specificity and F1‐scores, as well as area under
the curve–receiver operator curve (AUC‐ROC) can be
calculated [36]. Arguments have been made that if only
a single metric is to be used, then the Matthews
Correlation Coefficient (MCC) has many benefits since
it summarises all the other basic rates (sensitivity,
specificity, precision and negative predictive value)
while AUC‐ROC does not [6]. However, high scores on
internal validation (commonly referred to as test set) do
not necessarily mean that AI will generalise to real‐
world use [15, 54]. When assessing classification
models, it is vital to critically evaluate how accurately
the distribution of ground truth labels represents the
true underlying prevalence across classes. Real‐world
data sets often exemplify class imbalance, where the
positive disease cases comprise a disproportionately
smaller fraction compared to the negative cohort. For
example, in a prediction model for deep venous
thrombosis (DVT) after surgery, only a fraction of the
patient population will present with DVT, this is called
an imbalanced data set.

Regression

Regression models predict continuous numeric values
instead of discrete classes, such as patient length
of stay based on clinical data [36]. Evaluation focuses
on deviation from true values, using metrics like

percentiles of errors, mean absolute error (MAE), mean
absolute percentage error (MAPE) and root‐mean‐
squared error (RMSE) [24, 36, 38]. However, solely
chasing better numeric scores can overlook whether
outputs are clinically meaningful [29].

Clustering

Evaluating the performance of unsupervised clustering
algorithms requires metrics that quantify how well the
clusters separate dissimilar observations and group
similar ones [36]. A cluster refers to a set of observa-
tions that is more related to each other than to data
points in other clusters. For example, a clustering
algorithm may separate patients into distinct clusters
based on symptoms and test results, with each cluster
representing a potential undiscovered disease subtype.
Two popular performance metrics are the Silhouette
Coefficient and Dunn's Index [14, 42]. The Silhouette
Coefficient measures how close each observation is to
others in its cluster versus the next nearest cluster. It
ranges from −1 (poor clustering) to +1 (dense, well‐
separated clusters) [42]. The Dunn's Index computes
the ratio of the minimal intercluster distance to the
maximal cluster diameter. Here, distance refers to the
chosen similarity metric used to compare data points
during clustering. For medical data, this could be the
Euclidean distance between feature vectors. Cluster
diameter measures dispersion within a cluster by the
greatest distance between any two members [14].

Larger intercluster separation gaps and more
compact cluster sizes (lower diameter) produce higher
Dunn's Index values, indicating better delineation of
distinct groups. However, an inherent assumption is
that the natural clusters in the data are dense and well‐
separated [14].

In some medical contexts, underlying conditions
may better manifest as overlapping, sparse or elon-
gated clusters. For example, co‐morbidities could link
symptoms of two diseases, preventing clean separa-
tion. In such cases, poor Dunn Index scores do not
necessarily indicate ineffective clustering, but a mis-
match between analysis assumptions and real‐world
ambiguity. The clustering itself may still provide clinical
utility. However, interpretation should account for
complexity in the disease patterns defying assump-
tions. In these situations, different similarity metrics or
clustering approaches optimised for interconnected
data may be warranted [28].

Recommendation and ranking

Recommendation and ranking systems suggest items
likely of interest to a certain user or patient, such as
research papers relevant to a surgeon's specialty, or a
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clinical study to a patient, based on their previous
behaviour and known metrics.

Recommendation systems can be classified into
two main categories: collaborative filtering and content‐
based filtering [41]. Collaborative filtering algorithms
recommend items based on the ratings or preferences
of other users. For example, if you have rated a
publication highly, a collaborative filtering algorithm
might recommend other publications that have been
rated highly by people who have similar interests
as you. Content‐based filtering algorithms recommend
items based on the features of the items themselves.
For example, if you have read mainly arthroscopic
literature, a content‐based filtering algorithm might
recommend other arthroscopy‐related papers. Both
approaches can be combined. In addition to collabora-
tive filtering and content‐based filtering, recommenda-
tion systems can also use classification and regression
algorithms. Classification algorithms are used to predict
a categorical value, such as whether a user will like or
dislike an item. Regression algorithms are used to
predict a continuous value, such as the number of
citations of an item.

In healthcare, such algorithms can be utilised to
recommend patients clinical trials that they are more
likely to participate in, online health resources that they
are more likely to adhere to, and personalised lifestyle
advice [46].

The performance of recommendation systems is
commonly evaluated using metrics, such as precision,
recall, mean average precision [3], normalised dis-
counted cumulative gain (NDCG) and AUC‐ROC. The
choice of performance metrics will depend on the specific
application and the goals of the system. A key determi-
nant is often how many recommended items are likely to
be manually checked before a final selection is done.

Forecasting and time series

AI forecasting leverages historical time series data to
predict future values through ML regression techniques
tailored to capture temporal patterns and trends [18,
27]. Common evaluation metrics for forecasting sys-
tems include MAE, RMSE and MAPE to quantify
deviation from ground truth over the prediction horizon.
While similar metrics are utilised for general regression
tasks, the distinction lies in the explicit modelling of
time‐based effects [45]. Judicious selection of appro-
priate skill metrics, testing on ample time series data
encompassing variability, and reporting detailed per-
formance across near‐term and longer‐range forecasts
facilitates rigorous assessment of model accuracy and
generalisability. Adoption of robust evaluation protocols
tailored to the nature of forecasting problems enables
standardised benchmarking and continued advance-
ment of predictive technologies.

Anomaly detection

Anomaly detection is an analytical task applied across
various domains, notably in healthcare, cybersecur-
ity and finance, to identify data instances that deviate
from established norms [13, 49]. While its evaluation
metrics exhibit some resemblances with classification,
subtle distinctions emerge due to the unique data
characteristics and primary objectives of anomaly
detection. In the realm of anomaly detection, the
foremost evaluation metrics include sensitivity, preci-
sion, recall, F1‐score and the AUC‐ROC. These
metrics offer essential insights into the performance
of anomaly detection algorithms. Anomaly detection
frequently contends with imbalanced data sets wherein
anomalies constitute a minority. Consequently, preci-
sion and recall assume heightened significance as
anomalies necessitate meticulous scrutiny to minimise
false alarms. This requires careful threshold definitions
as this choice exerts a profound influence on the
intricate precision‐recall trade‐offs inherent to anomaly
detection.

In summation, anomaly detection is a specialised
form of classification, notably within imbalanced data
contexts, which necessitates a deliberate contempla-
tion of precision and recall.

Text generation

With the rise of ChatGPT (OpenAI Inc.), Claude 2
(Anthropic), Bard (Google) and other generative AI, text
generation has already entered the healthcare system
(e.g., chat bots) [10].

These large language models generate coherent
text based on an initial text input that provides context
and guides the direction of the output, known as a
‘prompt’. Outputs should be evaluated both automati-
cally (grammar, coherence) and manually (factual
correctness, creativity). An example of the former is
the bilingual evaluation understudy (BLEU) which
quantifies the degree to which a generated answer
corresponds to a pre‐existing, expected one [37].
Kaarre et al. used expert orthopaedic surgeons as
expert evaluators to judge responses from the GPT‐4
generative model [26]. Due to the nature of their output,
these systems are notoriously hard to compare and
contrast objectively. However, automatically calculated
scores like BLEU have known limitations [5].

Image/video generation

Generative deep‐learning models can create realistic
images, audio and video (e.g., Dall‐E, Midjourney) [2].
The quality and fidelity of generated media can be
measured via human evaluation, and similarity metrics
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such as Fréchet Inception Distance which uses deep
neural network representations to quantify the statisti-
cal similarity of synthetically generated images com-
pared to real images [22]. However, manipulation risks
necessitate cautious deployment, and all output should
undergo human review before being deployed.

In summary, AI outputs take a variety of numeric,
textual and visual forms. Rigorously evaluating
results for a given application requires selecting
meaningful performance metrics, testing models on
appropriate real‐world data, and considering changes
in data over time. Interdisciplinary collaboration
between technical and subject matter experts can
help determine if AI outputs are reasonable, use-
ful and generalisable.

INTERPRETING AND EVALUATING
OUTPUTS

Properly interpreting and evaluating AI outputs is
crucial before applying models to real‐world tasks.
Here, we further discuss aforementioned metrics and
detail their interpretation.

Evaluation metrics

Classification models output predicted labels and
confidence scores. Metrics like accuracy, precision,
recall, F1 and AUC‐ROC provide quantification, but
have limitations, as no single metric fully captures
performance [23, 36]. Nevertheless, in order to
compare model performance, quantifiable performance
metrics serve as an important tool. All these values rely
on the underlying confusion matrix, summarising
prediction of the model versus real‐world data. Four
values are presented in a confusion matrix, similar in
concept to methodology for assessing a new clinical
diagnostic test:

Known positive Known negative

Predicted positive TP FN

Predicted negative FP TN

• True positive (TP): Positive outcome correctly classi-
fied as positive.

• True negative (TN): Negative outcome correctly
classified as negative.

• False positive (FP): Negative outcome incorrectly
classified as positive.

• False negative (FN): Positive outcome incorrectly
classified as negative.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
,

Precision =
TP

(TP + FP)
,

Recall =
TP

(TP + FN)
,

Sensitivity =
TP

TP + FN
,

F1 − score = 2 ×
precision × recall
precision + recall

.

Regression models' performance metrics derive
from the value between the forecasted and actual
variable of the test data [34]. Let At and Ft denote the
actual and forecasted values of the test data point t ,
respectively. Then the MAPE is given by:

∑
n

A F

A
MAPE =

1 −
,

t

n
t t

t=1

while the RMSE corresponds to:

∑ A F
RMSE =

( − )
2

.
t t t

2

The F1 − score, also known as the harmonic mean
of precision and recall, is most useful for problems with
imbalanced data set classes, as accuracy alone can be
misleading if there is a majority negative class that is
simple to predict [36, 39]. F1 handles class imbalance
better as it incorporates precision and recall, consider-
ing true positives, false positives and false negatives. It
ranges from 0 to 1, with 1 being a perfect prediction
[39]. A drawback of the F1‐score is that it does not
consider true negatives; however, it remains useful for
healthcare, where minimising false positives and false
negatives is critical [48].

The AUC‐ROC metric refers to the area under the
receiver operating characteristic curve, which plots
the true positive rate (recall) against the false positive
rate at different classification thresholds and measures
the entire area under this curve, from (0, 0) to (1, 1)
(Figure 1) and is sometimes referred to as a model's
predictive capacity [17, 36, 39, 48]. A higher AUC
indicates the model is better at distinguishing between
positive and negative classes across thresholds
and does not require setting a single classification
threshold‐like accuracy. Accuracy—amongst others—
relies on setting a specific classification threshold, such
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as 0.5, to map prediction scores to discrete classes.
Values above that set threshold are classified as
positive, while values below are negative. The AUC
value ranges from 0 to 1, with 1 being perfect
classification. A drawback is that a high AUC can
sometimes overstate model performance if there is a
large false positive rate [17, 39]. Still, AUC‐ROC is
commonly used in medicine, biometrics and other
applications where understanding the trade‐off between
true positives and false positives is important [48]. The
MCC is another evaluation metric that summarises the
confusion matrix into a value between −1 and +1, with
higher scores indicating better classification performance.
An MCC of +1 represents perfect prediction, 0 is
equivalent to random guessing and −1 indicates total
disagreement between predictions and true labels.

Compared to metrics like accuracy or AUC‐ROC,
MCC provides a more balanced assessment when
evaluating imbalanced data sets. Given the relative
benefits of the MCC metric, it is recommended to
complement the AUC‐ROC score with MCC calculation
since it can give a more balanced point of comparison
across different model types and data sets [6].

Human evaluation

Human evaluation is required for generative outputs
like text and images. Automatic metrics have limita-
tions, so expert judges should evaluate quality, coher-
ence and correctness, considering the limitations of
quantitative evaluation methods. However, human
evaluation can be subjective and inconsistent between
judges [30]. It is prudent to report interrater agreement
measures when using multiple human evaluators of
performance [19, 26].

Offline versus online performance

Offline ML, also called batch learning, describes
engineering a model trained on a fixed training set,
evaluated by a fixed test data set (internal valida-
tion), without changing them during the iteration
process. This is the most commonly used type in the
medical literature. Concept drift and covariate shifts
are not considered after deployment as the model is
based on an original data set. Online ML takes into
account evolving learning environments and
changes in real‐world performance are immediate
[36]. In the context of the healthcare sector, both
approaches can be utilised with offline learning, for
example, being suited for image recognition and
classification, while online learning is more suitable
for data sets with continuous data streams such as
prediction of hospital capacity utilisation. However,
even online ML has many risks and the model can
drift due to invalid or erroneous data, faulty
sensors and so on.

Uncertainty and interpretability

All models should provide uncertainty estimates like
confidence intervals, as point estimates are insufficient
in presenting the complete picture, especially in small
data sets [1]. Scoring models can also help in this
regard since they are both interpretable, for example, it
is clear from their construction why they predict a
certain outcome and directly predict patient risk via
their score [50].

In summary, while metrics provide quantification,
responsible evaluation goes deeper to test model
limitations and ensure outputs are sound. Evaluation
is an iterative process, not a one‐time event. Inter-
disciplinary collaboration between technical and sub-
ject matter experts grounds evaluation in real‐world
needs. With rigorous and thoughtful evaluation, we can
realise AI's benefits while building trust through
transparency. Guidelines and reporting standards have
already been proposed for the judicial use of AI and ML
models in medical applications and should be con-
sulted both in scientific reporting and in clinical
evaluation of AI‐based solutions such as transparent
reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD): the TRI-
POD Statement [9, 12].

CASE STUDIES

Case study 1: Image recognition

Cho et al. analysed 1394 arthroscopic rotator cuff
repair images from 580 patients. Images were

F IGURE 1 Area under the curve (AUC)–receiver operator curve
(ROC) graph, the orange line displays the models true positive rate
and false positive rate at various thresholds, the dashed blue line
represents an AUC of 0.5, no better than chance.
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categorised as 1138 nonretear and 256 retear based
on magnetic resonance imaging follow‐up within
2 years postoperatively [7]. The authors implemented
standard ML practices for model development and
validation. The image data set was split into training
(80%) and held‐out test (20%) sets. The training set
was further divided into three folds for stratified k‐fold
cross‐validation to fine‐tune model hyperparameters
and prevent overfitting. Performance metrics including
accuracy, AUC‐ROC, sensitivity, specificity and
F1 − score were reported for both cross‐validation and
final model evaluation on the unseen test set. Three
pretrained convolutional neural network architectures
(VGG16, DenseNet121, Xception) were initialised with
transferred weights and fine‐tuned on the training folds.
The models achieved cross‐validation accuracy of
80%–99% across folds. On final model testing,
DenseNet121 performed best with 91% accuracy,
0.92 AUC, 84% sensitivity and 93% specificity in
predicting retearing from the arthroscopic images [7].
Limitations also noted by the authors were the
imbalance of the retear to nonretear classes and lack
of external validation.

By implementing robust ML methodology including
cross‐validation and reporting performance on an
unseen hold‐out test set, the authors have demon-
strated that deep‐learning analysis of arthroscopic
rotator cuff repair images can accurately predict
postoperative integrity.

Case study 2: Database analysis and
prediction

Martin et al. analysed data from 62,955 patients in
the Norwegian and Danish ACL reconstruction
registries [33]. The aim was to develop an ML model
to predict risk of revision surgery at 1, 2 and 5 years
postoperatively. The data set was randomly split into
75% training and 25% test sets. Four algorithms were
tested: Cox lasso regression, random survival forest,
gradient boosting machines and super learner en-
semble [40]. Hyperparameters were optimised via
grid search with cross‐validation on the training set.
Performance was evaluated on the test set using
Harrell's concordance index (C‐index) for predictive
discrimination and Hosmer–Lemeshow calibration
plots. Multiple imputation was used to assess poten-
tial bias from missing data. The nonparametric ML
models (random survival forest, gradient boosting,
super learner) demonstrated moderate predictive
performance, with indices around 0.67. Despite the
large sample size, this was similar to prior models
developed using the Norwegian ACL registry alone
[32]. A key weakness noted by the authors was that,

despite using multiple ML methods, the prediction
accuracy for knee revision surgery outcomes showed
limited improvement compared to previous simpler
models, likely due to substantial missing pre-
operative data.

By splitting data into training and test sets, tuning
hyperparameters via cross‐validation and evaluating
discrimination and calibration, the authors implemented
rigorous ML methodology. However, model accuracy
reached a performance ceiling, indicating that enhan-
cing variable capture may be needed to improve
predictions.

CONCLUSION

In conclusion, as AI continues advancing at a rapid
pace, adopting rigorous evaluation, and reporting
standards is imperative. The methodologies outlined
here, including thoughtful selection of performance
metrics, testing on real‐world data distributions,
assessing model uncertainties and transparent re-
porting of details based on existing guidelines, serve
as a framework for critical model appraisal. There is
still significant work needed to realise AI's potential
benefits while mitigating risks. Model interpretability
and explainability techniques must continue advanc-
ing to enable practitioners to understand how
systems reach conclusions. Moving forward, a
cross‐disciplinary emphasis on rigorous analytical
evaluation, clinical collaboration and ethical deploy-
ment will help foster continued AI progress. This will
require commitment from researchers, clinicians,
journal editors and regulatory agencies alike, to
uphold AI evaluation and reporting standards that
match these powerful technologies' capabilities and
societal impacts.
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