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Abstract. In white-box cryptography, the DCA attack broke early encoding-based
countermeasures, leading to the utilization of masking schemes against a surge of
automated attacks. The recent filtering attack from CHES 2024 broke the last viable
masking scheme from CHES 2021, which resisted both computational and algebraic
attacks, raising the need for new countermeasures.

In this work, we propose two countermeasures in the white-box setting by performing
the first formal study of the combinations of existing countermeasures and demon-
strating that applying Dummy Shuffling (EUROCRYPT 2021) then ISW masking
(CRYPTO 2003) to a circuit carries algebraic, correlation, and filtering security -
necessary conditions to withstand state-of-the-art automated attacks. We also show
that applying these two countermeasures in the opposite order leads to a rather
strong higher-order filtering (HOF) attack, highlighting the importance of the order
of application of the combined countermeasures.

We also propose a new masking scheme called S5, standing for Semi-Shuffled Se-
cret Sharing Scheme, a scheme merging Dummy Shuffling and ISW in a single
countermeasure more efficiently than a direct composition.

Keywords: White-box Cryptography - S5 - ISW : Dummy Shuffling - HDDA -
FLDA - HODCA

1 Introduction

In 1999, Kocher, Jaffe, and Jun [KJJ99] showed that an implementation can be vulnerable
if there is a leak of its side-channel information, such as electrical power consumption
or timing of the execution, which startled the development of the side-channel field.
Later, in 2002, Chow, Eisen, Johnson, and van Oorshot [CEJv02, CEJv03] broadened the
question by supposing that an attacker could fully access the implementation during the
computation, which they called white-box. For example, a white-box attacker observing
the intermediate values can find the state before and after adding the key and easily recover
it. Therefore, the authors proposed to encode the intermediate values of the ciphers and
perform computations through a set of lookup tables. These tables typically represent
three consecutive operations composed in one unit: decode the encoded input, perform
operations, and re-encode the output. While the attacker knows the lookup tables in
the white-box context, the idea of [CEJv02] was that decomposing the tables would be
difficult. Different encoding designs were proposed [XL09, Karll], but all were broken
with a variety of attacks [BGEC04, DRP13, LRD " 14].

In 2016, Bos, Hubain, Michiels, and Teuwen [BHMT16] showed that a white-box
adaptation of the differential power analysis from [KJJ99], which they called differential
computational analysis (DCA), can be applied to breaking encoding-based white-box
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implementations (studied consequently in more detail in [ABMT18, RW19al), without any
adaptation to the encoding design. Traditional side-channel masking schemes such as ISW
[ISW03] thwart this attack. Consequently, [BU18, GPRW20] presented a new automated
attack, linear decoding analysis (LDA), that can efficiently break linear masking schemes
in the white-box context. In particular, it has been used during the WhibOx 2017 contest
to break the winning white-box implementation of the AES [GPRW17].

To prevent the LDA attack, Biryukov and Udovenko proposed the first nonlinear
masking scheme [BU18]|, and another countermeasure called Dummy Shuffling [BU21].
Although these countermeasures alone are susceptible to the DCA attack, it was suggested
that they can be combined with a correlation-resistant scheme like ISW. The combination
would resist in theory both DCA and LDA by forcing the two attacks to use higher-
order/degree variants (HODCA [BRVW19], HDDA [GPRW20]) which have an exponential
cost on their order/degree. However, they did not provide details on how such a combination
should be performed or provide a security analysis of the result.

Seker, Eisenbarth, and Liskiewicz [SEL21] proposed a masking scheme (SEL) of degree
up to three, generalizing the quadratic scheme from [BU18] and making it much lighter.
Optimizations of higher-order/degree attacks were found [GRW20, TGCX23|, while re-
maining slow for high-degree instances of the SEL masking scheme. However, recently,
Charles and Udovenko showed that all instances of this scheme are weak to LPN-based
attacks [CU23| and filtered linear decoding analysis (FLDA) [CU24], making this scheme
insecure on its own.

Our contribution The break of the SEL masking scheme by filtering attacks left
no viable countermeasure. Therefore, in this study, we extend the work of [BU21]| from
EUROCRYPT 2021, by proposing a first formal study of the combinations of the two main
countermeasures - ISW masking scheme and dummy shuffling - and a new, more efficient
scheme called S5, resisting the main automated white-box attacks in the literature.

1. (ISW and Dummy Shuffling Combination) ISW and Dummy shuffling achieve cor-
relation and algebraic resistances respectively, and we demonstrate that applying
both countermeasures sequentially to a circuit carries both resistances and withstand
state-of-the-art attacks. Furthermore, we point out the importance of the order of
application of countermeasures, as applying ISW then Dummy Shuffling results in a
different circuit structure from the reverse order, with different implementation sizes
and security levels.

2. (Higher-Order filtering) We show that performing ISW then Dummy Shuffling is
susceptible to a Higher-Order Filtering attack of complexity lower than expected,
while the other order of application is more resistant. This contradicts the earlier
belief that the combination order is not important.

3. (Semi-Shuffled Secret-Sharing Scheme) To lower the implementation cost of Dummy
shuffling composed with ISW while having equivalent security properties, we pro-
pose S5, a new countermeasure extending the AND gadget of ISW by splitting the
information of only one of its shares among different slots, using a structure similar
to Dummy Shuffling.

4. (Benchmarks) We provide theoretical estimations and experimental benchmarks
for the gate costs of all three combined countermeasures. The supporting code
implementing S5 and benchmarks is available at:

github.com/S5white-box /code

5. (Security proofs) Finally, we extend the algebraic proof from [BU21] to S5 and the two
combinations of countermeasures, prove Strong Non-Interference (SNI) [BBD'16] of
the S5 gadget, and verify it up to 14 shares using the MaskVerif tool [BBC*19).
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2 Notations and definitions

e The binary field is denoted by Fy and the vector space of dimension n over Fs is
denoted by 5.

« For a vector v € F} (resp. a list L of n elements), we denote its i*" element, 1 < i < n,
by v; (resp. L;), such that v = (v, - ,v,) (vesp. L = (L1, -+, Ly,)).

¢ We denote the addition in this binary field by “®”, also called XOR, and we keep
these notations when adding two vectors of F3.

W

e Similarly, we denote the multiplication in Fy by “-”, also called AND, and we extend
these notations to multiply two vectors from F3 coordinate-wise.

o m vectors from nFy (resp. lists of n elements) can be arranged in a n x m matrix
(resp. two-dimensional list) M. The element of M of the it" i € (1,--- ,n), row and
the j** j € (1,--- ,m), column is denoted by M; ;.

o We denote the number of elements in a given list, vector, or set X by |X]|.

o For a Boolean function f, we denote its weight (the number of preimages of 1) by

[f1-

e We denote the matrix multiplication exponent by w, which depends on the algorithm
employed: w = 2.8 for the Strassen algorithm [Str69].

o A fresh randomness is denoted by $, and is computed by a pseudo-random number
generator in the white-box setting, which is outside of the scope of this paper. A
variable v receiving a fresh random value is denoted by v « $.

3 The framework

White-box model includes all the attacks from side-channel cryptography, which we can
divide into non-invasive and invasive. The first group, introduced in [Koc96], consists
of observing the side-channel information, such as the electromagnetic field or power
consumption of a hardware component, without interfering with its process. The second
group consists of actively injecting errors with, for instance, a laser beam or a voltage
glitch in the computation to observe its impact [BS97, BBB'22].

In the white-box cryptography setting, the side-channel attacks become easier to mount,
as an attacker has direct access to the software. So, instead of measurements that vary in
values and time, the value of each variable is available without any measurement noise.
Similarly, for invasive attacks, injecting a fault can be done with bit precision and without
failed attempts [SMdH15, AT20]. Furthermore, an attacker can perform deeper software
analysis to optimize the previously exposed attacks [GRW20, TGCX23].

Designing a white-box implementation would require preventing all of these attacks,
while thwarting even one is already an open question. For this reason, we will only
consider non-invasive attacks that are not based on software analysis, since the only viable
protection against these presented in [SEL21] was recently broken by a polynomial time
attack [CU24].

3.1 Preliminaries

Circuits and masking schemes Any stateless implementation can be represented as a
Boolean circuit, a representation using only bit variables that are related to each other
with bitwise gates (AND, XOR and NOT), that a masking scheme can transform. A masking



scheme encodes each bit variable v into n > 1 shares using an encoding function, such that
the corresponding decoding function applied to these n bit variables retrieves the original
bit variable v. Each of these n shares carries partial information of v, forcing an attacker
to analyze multiple shares to retrieve full information of v.

To perform a bitwise gate without having to decode the n input shares (of each input)
and thus leaking information on v, the gates are replaced by gadgets, performing operations
without leaking information and outputting the shares of the resulting variable. For

instance, instead of having XOR(z,y) = z =  ® y, we would have the shares (z1,--- ,z,)
and (y1, -+ ,Yn) as input such that Decode(zq, - ,x,) = « and Decode(y1,- - ,yn) = v,
and we would replace the XOR by its gadget GadgetXOR((z1, - ,&n), (Y1, ,Yn)) =

(21, , zn) satisfying Decode((z1, -+ ,2n)) =2 =2z D y.

In the next subsections, we show that the decoding function often XORs shares together
to resist correlation attacks, and can perform other methods to resist algebraic attacks,
which leads to the following definition:

Definition 1. Let D : F3 — Fy be a decoding function of a masking scheme M and v
a bit variable represented by n shares. D can be expressed as D(v) = L(vy, -+ ,v,) ®
N(vgt1,--+ ,vn), with linear L : F§ — Fa, a < n, and nonlinear N : F§ ™% — Fy. We call
L the linear part of M and N the nonlinear part of M.

Example 1. The BU masking scheme (c.f. Subsection 3.3) has decoding function
D(x1,x9,23) = ©1 @ x2 - 3. The linear part of BU is x1, and its nonlinear part is zs - x3.

Example 2. The ISW, masking scheme (c.f. Subsection 3.3) has decoding function
D(xq, -+ ,x¢) =21 ®---@Dxyp. The linear part of ISW, is D entirely and it has no nonlinear
part.

Definition 2. Let D : F§ — Fy be the decoding function of a masking scheme with n
shares, and let £ be the set of linear functions mapping F5 to Fy. The noise rate of the
masking scheme is given by:

-~ min (Zwepg [D(z) © f(@])

fecL 2n
where the sum in the numerator is over the integers.

Example 3. The BU masking scheme (c.f. Subsection 3.3) has decoding function
D(x1,x9,x3) = 1 D x2 - x3. Choosing the linear function f(z1,x2,23) = x1 shows that its

noise rate is 7 = %.

Traces Our study focuses on masking schemes mainly designed to resist (extended)
grey-box attacks in the white-box model. These attacks are fully automated and only
require as input the computational traces of the implementation. In the side-channel
model also called the grey-box model, a trace is the side-channel information leaked during
the ciphering of a plaintext. In the white-box setting, since we have full access to the
implementation, we have direct access to the bit values used to perform the encryption,
without any measurement noise.

We can record every bit value computed by every bitwise gate to generate traces over
different inputs. These bitwise gates are called nodes. Over T plaintexts, a node will take
T different values in (0, 1), which gives a vector of dimension T" over Fa, called the node
vector. We can arrange all of the N node vectors V; € F1, i € (1,--- ,N)ina T x N



matrix over [y as follows:

nodel node2 --- node N
trace 1 Vi Vig - Vin
trace 2 Vai Vao XX Vo.n
trace T\ Vr; Vio - VpnN

)

Selection function In combination with the traces, a selection function is needed to
perform a grey-box attack. In the case of the AES, an attack often recovers the key byte
by byte. Since the input and the AES Sbox are known, it is possible to brute-force the
256 key byte possibilities and deduce for each of them (say) the first bit of the output of
the AES Sbox of the first round. For another input, we can compute 256 new values for
each possibility of the key bytes. Over T traces, we obtain 256 vectors in F2 per key byte,
denoted by node vectors. The set of selection vectors is denoted by K. For the AES, we
have || = 40961.

Consider an unprotected circuit of an AES implementation. One of its nodes will
correspond to the first bit of the output of the first Sbox of the first round. With
enough traces and a selection function, it is possible to distinguish one of the node vectors
corresponding exactly to one of the selection vectors. With enough traces, we can be sure
that the suggested key byte is the correct guess. This simple attack, called exact matching,
explains the base principle of the grey-box attacks, but is not enough to break protected
circuits.

3.2 Grey-box attacks in the white-box context

Differential Computational Analysis (DCA) The first white-box implementations
[CEJv02, CEJv03] used nibble (4-bit) encodings as a countermeasure, making the involved
node vectors different from the selection vectors. However, [BHMT16] showed in their
Differential Computational Analysis attack (DCA) that some of the node vectors correlate
with the correct selection vectors despite the encodings [SMG16, RW19b, CH24]. By
computing the correlation of each of the node vectors with the selection vectors, Bos et al.
showed that the highest absolute correlation score achieved by the selection vector among
the 256 guesses of a key byte correspond to the correct guess, with enough traces.

To prevent a correlation attack, a countermeasure should have a non-empty linear part.

Linear Decoding Analysis (LDA) To thwart correlation attacks, linear masking
schemes have been employed, which force an attacker to find a subset of node vectors that
XORs to one of the selection vectors to retrieve the corresponding key byte. In [GPRW18],
the authors pointed out that we can perform linear algebra in the white-box context since
we have information on the traces without any noise. Therefore, an attacker can try to
observe if one of the selection vectors is a solution of a linear equation from all the node
vectors. However, solving a linear equation over all the node vectors would often require
impractical amounts of time and memory, so we need to attack subsets of nodes.

A simple method to attack relevant subsets is a sliding window, which consists of taking
the W consecutive node vectors (W is called the window size), performing the attack,
and sliding forward by & < W nodes, to take the S+ 1,--- ,5 + W next nodes, and so
on. In this work, all the attack complexities will be given in function of the subset size,
denoted by W for this reason. Other techniques to choose more efficient subsets also exist
[GRW20, TGCX23], but are considered software analysis and are out of the scope of this

11t is often beneficial to consider more selection functions, such as other outputs of the S-box or their
linear combinations. For illustration purposes, we only consider the minimal such set.



paper.
To prevent an algebraic attack, a countermeasure should have a non-empty nonlinear part.

Higher Order attacks (HDDA, HODCA) Some nonlinear masking schemes were
employed to prevent such algebraic attacks. Still, it is possible to perform a Higher-Order
version of the DCA attack (HODCA) [BRVW19] against correlation-resistant schemes, and
a Higher-Degree version of the LDA attack (HDDA) [GPRW20] against masking schemes
algebraic-resistant schemes. Both these techniques use the same idea of extending the
window by appending all the combinations of XOR (resp. AND) of node vectors before
performing DCA (resp. LDA). This extension of the window adds 259:2 (VZV) new vectors,
with O the order or the degree, which is equivalent to an exponential in O increase.
Therefore, these attacks are exponential in their order or degree.

To prevent higher-order attacks, a countermeasure should have tunable parameters.

White-Box Learning Parity With Noise (WBLPN) This attack presented
in [CU23] showed that performing a grey-box attack in the white-box setting could be
considered as solving a Learning Parity with Noise (LPN) problem. The LPN problem
consists of solving linear equations in the presence of noise. In the white-box setting, we
can consider that the nonlinear part of a masking scheme is a noise occurring following
the noise rate 7 probability. This attack is exponential in W, but the lower 7 is, the more
efficient the attack becomes and can compete with the higher-order ones.

To prevent WBLPN attacks, the noise rate of a countermeasure should not be low.

Filtering attacks (FLDA, HOF) In [CU24], a new class of attacks called filtering
was proposed, which nullifies one share by choosing the subset of traces where the node
corresponding to the share is equal to zero. This methodology is very efficient against
masking schemes that have a nonlinear part consisting of a few monomials of high degrees,
as nullifying one of the shares of a monomial nullifies the whole nonlinear monomial
(z1 - @2 - 3 becomes equal to zero if we force one of the three variables to be equal to
zero). The authors also proposed Higher-Order Filtering (HOF) for future countermeasure
designs, which nullifies multiple shares simultaneously. This will inspire as a useful attack
in the following sections.

To prevent Filtering attacks, the countermeasure security should not be tampered with a
low order of filtering.

To summarize, Table 1 shows all the available attacks and their best time and space
complexities in the literature.

Table 1: Time and space complexities of grey-box attacks in the white-box context onto a
subset of nodes of size W. w is the matrix multiplication exponent, |K| is the number of
selection vectors (4096 for the AES), 7 is the noise rate of the countermeasure, k, (resp.

To,r) is a constant that depends on 7 (resp. O and 7), ¢; = ﬁ, c = %ﬁ:)
Attack Reference Time, O() Traces, O(+)
DCA, [BHMT16] Wk, |K| ey
LDA [GPRW1S, CU24] W + KW W
HODCAo,  [BRVW19)] WO|K|To. To.,
HDDA,4 [GPRW20, CU24] W% 4 |[K|WH we
WBLPN,  [CU23| WKl e? we,
FLDA [CU24] w4 Kw? 2W
HOFo-LDA  [CU24 WeFO 4 KWwoeHt 20w



3.3 Masking schemes

ISW masking scheme A well-known solution against correlation attacks has been
proposed in [ISWO03] for the grey-box context: replacing every bit variable v by ¢ random
shares (z1,- - ,x¢), such that v = @f:l xz;. That way, each node vector corresponding to
the shares does not correlate with any selection vectors.

While the XOR gadget consists of XORing the shares coordinate-wise (z; = x; ® y;
for i € (1,---,¢)), the AND gadget is more complex: an SNI version of it is given in
Algorithm 1, taken from [BBDT16].

Algorithm 1 SecMult

Inputs:
o (21, - ,2¢) 8.t @le T =T
. (yl, ce ,yg) s.t. @le Yi =Y
o (57271)@ fresh random bits

Output: (z1, -, 2¢) s.t. @le Z=x-y

1: forie (1,---,¢) do

2: Zi < Tt Y

3: end for

4: forie (1,---,¢) do

5. forje((i+1),---,¢)do
6: r<$

7 Zi < zZ; BT

8: zj < 2, ® ((r @ (@i - y;)) @ (w5 - vi))
9: end for

10: end for

11: return z

This AND gadget, SecMult, can be represented by a matrix storing intermediate
computations in its cells, and yielding XOR of each of its rows as a share of the result.

Example 4. Let ¢ = 3. We receive (x1,x2,x3) and (y1, y2, y3) such that 1 P xo a3z =z
and y1 @ y2 ® ys = y, and we want to compute (21, 22, z3) such that z; & 20 23 =z - y.
We have:

Ty = (11 DT Dw3) (Y1 Y2 Dys3) =
x1 Y1 (1)
G r2-y1DT2- Y2 T1 Y2 (2)
Pr3- Y1 DT3- Y2 D23 -Ys D2 Y3 D T2 Y3 Dx1-Y3 (3)
Here, the first line of the equation will correspond to the first line of the matrix, the
second to the second, and the third to the third. To ensure SNI security of the gadget

(c.f. Section 6, [BBD'16]), (K_Tl)e = 3 fresh random bits (r1,2,71,3,72,3) are involved, as
explained in Algorithm 1, which gives the following matrix:

21 x1 Y1 1,2 71,3
224 | T2-Yy1 Or12D T Y2 T2 - Y2 72,3
234 \ 21 YsPrigsbr3-y1 T2 -yYs®rozDBr3-y2 T3-Y3

Now, each z;,i € (1,2,3), gets the XOR of the elements of the i line of the matrix. We
can observe that z; @ zo @ 23 contains every element of the previous equation, and two
occurrences of each fresh randomness which cancels out and is, therefore, equal to = - y.



BU masking scheme To thwart the Linear Decoding Analysis (LDA) attack that
breaks ISW, a nonlinear masking scheme was proposed in [BU18], achieving algebraic
security. This masking scheme shares every bit variable v by three shares xz1,xs, x3 such
that v = 21 ® x5 - 3. However, contrarily to ISW, this scheme would not resist correlation
attacks as x; correlates with v. Although the authors hypothesized that, once combined
with a correlation-resistant scheme such as the ISW masking scheme, the resulting circuit
would resist both correlation and algebraic attacks, no formal claim or study was done
since then.

SEL masking scheme A first masking scheme resisting both algebraic and correlation
attacks was proposed in [SEL21], which has decoding function: v = @521 x; P H?Zl Z;.
The z; are the linear shares and bring correlation resistance as for the ISW masking scheme,
forcing HODCA to order ¢, while the &; bring algebraic resistance as for BU masking
scheme, forcing HDDA to be of degree d. Since these two attacks are exponential in their
order/degree, this masking scheme was enough to thwart them if £ and d were chosen
big enough. However, it was later shown that filtering attacks [CU24] could break it in
polynomial time.

3.4 The dummy shuffling countermeasure

In [BU21], the authors showed that the shuffling methodology used to increase measurement
noise in the grey-box model (c.f. [HOMO06, VMKS12]) could be adapted in the white-box
model to prevent algebraic attacks, by creating s exact copies of the implementation to
protect, called slots. At each execution, one of the slots is chosen at random to perform
the real computation (the main slot) and is given the real input, while the s — 1 others are
given random inputs (the dummy slots). The shuffling flags are derived pseudorandomly
from the input to choose which slot will be the main. For s slots, every bit input is passed
through the input-shuffling function with s — 1 random bits of the dummy slots, which
permutes them given the flags. Each slot then computes the function on its input, resulting
in s outputs. Finally, the s output bits are passed through the output-selection function
to recover the main slot output, which unshuffles them given the shuffling flags.

Definition 3. Let f be the flags of a Dummy Shuffling implementation, and L a list of
n > 1 elements:

o We define a function that shuffles a list L of n > 1 elements by Shuffles(L).

e Similarly, we define a function that unshuffles a list L of n > 1 elements by
Unshufflef(L).

o We have Shuffle; o Unshuffle;(L) = Unshuffle; o Shuffle;(L) = L.

o We denote the function that returns the element of the main slot of a shuffled list L
by DecodeDS¢(L).

Applying the Shuffle function with the flags f to a list containing zero followed
by random values creates pre-shuffled randomness. For each AND gate, a pre-shuffled
randomness is created and XORed to refresh them to ensure algebraic security. The Dummy
Shuffling Refresh function is depicted in Algorithm 2, given the flags f.

Definition 4. A dummy shuffling implementation is performed over three main phases:

1. Input-encoding: This first phase of the implementation chooses the flags f randomly
from the input, uses it to generate every pre-shuffled randomness that will be needed
during the second phase and encodes every input of the algorithm, which creates
s inputs over the s slots, with one of them being the main one and is unmodified,
while the others are randomly generated.



Algorithm 2 Dummy Shuffling Refresh gadget

Inputs:
e (x1,-+,x¢) s.t. Decodey(xq, -+ ,x¢) =T
e s — 1 fresh randomness
o the flags f
Output: (xl, ,&¢) s.t. Decodef(Z1, - , &) =
1. S« (0,8,---,8),st. |S]|=s
2 G« Shuffle (S)
3: (1‘1,---, ) (33‘1@51,-'-,.%'[@54)
4: return (&1, -+ ,Tp)

2. Evaluation: The second phase evaluates every copy of the algorithm for its input.
Only the algorithm located in the main slot performs the real computations. The
refresh gadget after every AND gate takes its pre-shuffled randomness from the first
phase and adds it to the gate’s output.

3. Output-selection: This last phase concludes the implementation by getting every
output of the s slots and applying the Unshuffle function with the flags to recover
the output of the main slot. The other random outputs of the dummy slots are
dismissed.

The authors prove that Dummy Shuffling with refreshes achieves algebraic security for
the evaluation phase. Currently, Dummy Shuffling is the only solution proven algebraically
resistant to any degree, simply by increasing the number of slots (s slots requires performing
HDDA of degree d = s to break it), as the SEL masking scheme only has an algebraic
proof up to the third degree.

Unlike the ISW masking scheme, instead of having ¢ node vectors XORing to one of
the selection vectors, in that case, s vectors equal to one of the selection vectors for an
unknown subset of traces. However, this scheme alone is weak to correlation attacks, so the
authors suggested that it should be combined with the ISW masking scheme, yet did not
provide any details on how exactly it should be done and what security it would achieve.

Conclusion To summarize, Table 2 shows all the available countermeasures and best
known attacks against them.

Table 2: Different available white-box countermeasures with their gate overhead for XORr
and AND operations, given with the lowest time complexity white-box attack known to
thwart it. w is the matrix multiplication exponent, |K| is the number of selection vectors
(4096 for the AES), and &, is a small constant determined in function of the noise rate 7.

Scheme Reference XOR cost AND cost Best attack ~ Time O(+)
ISW, [ISW03] 14 302 — 20 LDA W + WIK|
BU [BU1S] 29 39 DCA, 4 W 4|K|

DS, [BU21] s+1 6s + 2 DCA(S,l)/QS Wk(s,l)/gqu
SEL;» [SEL21]  {+4 202 +5¢(—-1 FLDA we Tt | KIw?
SEL,3 [SEL21]  ¢+9 20% +15¢ -2 FLDA Wt 4 KIw?

Since [CU24], at best, a countermeasure such as SEL3z > can force an attack to be
in quartic complexity, which, in practice, results in very efficient attacks taking little
time to recover the full key. To tackle this issue, we need a countermeasure with tunable
parameters that can only be attacked in a time complexity exponential in these parameters.



4 Combining countermeasures

The idea suggested in [BU18, BU21, CU24] was to combine two countermeasures to prevent
algebraic and correlation attacks. While it is clear that ISW is a good candidate for avoiding
correlation attacks, there are two solutions to prevent algebraic attacks. The first is to
use a nonlinear masking scheme based on high-degree monomials like BU or SEL; 4, the
second is Dummy Shuffling.

Combining ISW with BU or SEL We decided to not focus on the high-degree
monomial-based masking schemes as none of them can achieve algebraic security of arbitrary
order, as in [SEL21], the authors brought algebraic security up to degree three which is
weak to HDDA of degree three (in time complexity O(W3*~! + |K[W?)). Furthermore,
the noise rate of such schemes is lowering as the degree increases, which is a vulnerability
that [CU23] highlighted. Therefore, we focused on combinations of ISW with Dummy
Shuffling.

4.1 ISW then Dummy Shuffling

A first method to combine these two countermeasures would be to apply one on a circuit
C' «+ ISW(C), then the second one C” +— DS(C"). We will denote the transformation
that applies ISW and then Dummy Shuffling to a circuit by DS o ISW. Analogously, we
denote the transformation that applies Dummy Shuffling and then ISW to a circuit by
ISW o DS. Interestingly, the order of application of the two countermeasures matters.

Applying the ISW masking scheme with ¢ linear shares replaces in the original circuit
C every bitwise gate by gadgets and every bit variable by ¢ shares. Applying Dummy
Shuffling with s slots to this modified circuit ISW(C') duplicates it s times, then generates
the input-shuffling phase, the output-selection phase, and XORs pre-shuffled randomness
to every AND gates constituting the ISW AND gadgets. The construction is illustrated in
Figure 1.

$
112

ﬁ = f =
sl?

l

Figure 1: Applying ISW and then Dummy Shuffling.
For such a scheme and given the flags f, a bit variable v will be shared of sf shares
xi i€ (1,---,0),5€(1,---,s), such that:

v = Unshuffley ((z1,1 @ - - D ag1), -, (21, D D xps))
= Unshufflef(z1,1, - ,21,5) @ --- ® Unshufflef(zs1,- -+ ,205)

Correlation analysis In this case, determining the noise rate of the implementation
would not give us information on how to perform the most efficient HODCA attack, as the
noise rate would be computed using an algebraic function involving the sf shares, making
the corresponding HODCA of order s/.
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Instead, we propose an order-f HODCA attack that consists of XORing the shares
(11 @ -+ @ xp1). This XOR result matches the decoding function when the main slot
corresponds to the XORed shares which happens with probability %, but also when the
main slot does not correspond but the random value that the XORing function takes is
correct, which happens with probability % - 1 Therefore, the two function mismatches

2
with probability p = % L resulting to an HODCA attack of order ¢ and noise p.

Algebraic analysis In [BU21], the authors showed that Dummy Shuffling resists
HDDA of degree matching the number of dummy slots, here s — 1. Since ISW does not
bring any algebraic resistance, HDDA of degree d = s can break DS o ISW, which has a
time complexity of W + [K|[W<.

Filtering analysis It is possible to find a better complexity that solely depends
on s, by performing a Higher-Order Filtering attack. Indeed, [CU24] proposed such an
algorithm to filter multiple nodes simultaneously, allowing fixing any node vector to a
desired value.

With DS o ISW, every XOR gates are refreshed using Algorithm 2, which will XORr
random values to the dummy slots, and a zero to the main slot. Even if the main slot is
unknown, we know it is not located where these random values from refresh are equal to
one. So, using Higher-Order filtering of order s — 1, we can choose the subset of traces
where the node vectors corresponding to these shuffled random values equal one.

For this filtered subset of traces where this condition holds we can ensure that the
last random value left free of constraints will always be equal to zero, hence fixing the
main slot to a single slot. Now that the main slot is always the same, we removed the
Dummy Shuffling algebraic security, making DS o ISW weak to an LDA attack. Performing
HOF,_1-LDA attack has a time complexity in W31+« 4 |KC|W*~1  which is better than
HDDA of degree d = s.

4.2 Dummy Shuffling then ISW

By applying Dummy Shuffling first, we duplicate the whole circuit C' onto s slots, add the
input-shuffling and the output-selection phases, and add pre-shuffled randomness to all
the AND gates. Now, we apply ISW to this modified circuit D.S(C) and replace every XOR
and AND gates by XOR and AND gadgets, and every variable by ¢ shares. Contrarily to
DS o ISW, we can observe that the input-shuffling and output-selection phases are here
protected by ISW, adding a new layer of obfuscation. The construction is illustrated in
Figure 2.

Ise=

Figure 2: Applying Dummy Shuffling and then ISW.

Security analysis Since ISW o DS has the same decoding function as DS o ISW, we
can also perform the same HODCA, , and HDDA, attacks. However, here the pre-shuffled

11



randomness of Dummy Shuffling is shared, forcing the previous Higher Order Filtering LDA
attack presented against DS o ISW to be of order £s — 1, and therefore to be impractical.
Without this weakness, ISW, o DS, needs fewer slots s than DS, o ISW, to resist attack
with time complexity as a function of s.

Implementation size Surprisingly, for the same parameters ¢ and s, ISW o DS
has a different implementation size than ISW o DS, as shown experimentally in Table 3.
Indeed, ISW and Dummy Shuffling have different costs of transforming an AND and a XOR
gate. Since transforming an AND gate creates new XOR and AND gates, applying them in
different order changes the overall size of the implementation.

Table 3: Comparison of the implementation size (in million of gates) between ISW,0DS,
and DS;0ISW, applied to a 10-round AES (31k gates), using the implementation given in
the wboxkit tool®.

ISW¢oDS, DSsoISW,
2 3 4 5 6 7 2 3 4 5 6 7

o~
o~

02 10 1.2 16 21 25
0.7 1.7 21 28 35 4.2
1.1 2.7 32 42 53 6.3
1.6 3.7 45 60 75 89
2.1 5.0 6.0 80 10.0 12.0
2.7 6.5 7.8 104 129 155

04 10 1.3 1.8 22 27
09 1.7 21 29 3.7 45
1.3 24 31 43 56 6.8
19 33 42 6.0 7.7 95
25 43 55 79 103 127
3.2 54 7.0 10.1 13.2 16.3

N O U W N
N OO W N

Theorem 1. Let C be a circuit constituted of ng XOR gates and nn AND gates.

o DSs 0 ISW,(C) has an overhead of (6s — 4)(¢* — {)n, AND gates,
and (202 — 20)n + £sng XOR gates.
)

o ISWy0 DS,(C) has an overhead of (6s — 4)(¢2 — £)nn AND gates,
and (6s — 4)(20? — 20)nx + €sng XOR gates.

Proof. ISW, transforms one AND gate into /2 — ¢ AND gates and 2(? — 2¢ XOR gates, and
transforms one XOR gate into ¢ XOR gates. For the whole implementation (input-encoding,
evaluation, and output-selection phases) Dummy Shuffling transforms one AND gate into
6s — 4 AND gates, and transforms one XOR gates into s XOR gates [BU21].

Let us begin by DS 0 ISW,(C): given a circuit C' made of n, AND gates and ng XOR
gates, ISW,(C) will have (¢2 — £)n, AND gates and (202 — 20)n, + ¢ng XOR gates. Finally,
DS, 0ISW,(C) will have a total of (65 —4)(¢? —¢)n, AND gates, and s ((20% — 20)nx + ng)
XOR gates.

Likewise, for ISW,; 0 DS4(C') and for the same circuit C with n, AND gates and ng XOR
gates, DS, (C) will have (6s —4)n, AND gates and sng XOR gates. Finally, ISW, 0 DS, (C)
will have (6s — 4)(¢2 — f)n, AND gates and Isng + (65 — 4)(2¢? — 20)n, XOR gates. [

In theory, both DS, 0ISW,(C') and ISW,0DS,(C') have the same number of AND gates,
but they have different numbers of XOR gates. More precisely, ISW o DS has (6 — %) time
more XOR gates. However, in practice, ISW o DS has less than DS o ISW. This can be
explained by the pseudorandom generator used in wboxkit not being considered in the
theoretical estimate.

Conclusion In general, ISW o DS has an equivalent implementation size as DS o ISW
given the same parameter ¢ and s, has the advantage of having obfuscated input-shuffling

3See https://github.com/hellman/wboxkit.
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and output-selection phases, resists the same correlation and algebraic attacks, and has
better resistance against filtering attacks. Therefore, ISW o DS should be preferred in any
circumstances over DS o ISW.

5 Semi-Shuffled Secret Sharing Scheme: S5

Even if ISW o DS has tunable parameters on which its best-known attacks have exponential
time complexity, its implementation size is heavy due to the successive application of
countermeasures that have not been studied to be combined.

We propose S5, which, similarly to the SEL masking scheme [SEL21], proposes to
replace a share of ISW with a nonlinear component, but here with Dummy Shuffling
instead of a high-degree monomial. The design is unique as it merges a masking scheme
that focuses on the gates with a countermeasure that acts on the whole implementation.

5.1 Definition of S5

Decoding function Instead of having copies of a whole implementation distributed over
different slots like ISW o DS, we would like to have ¢ shares as ISW,, with the real value
of the last share taken by one of the s slotted shares chosen randomly for each different
input. We denote the S5 masking schemes for ¢ linear shares with one of them shuffled
amongst s slots by S5, ;.

Given the ¢+ s — 1 shares (x1---@p—1,2¢1 - Tes) of a bit variable z, the decoding
function DecodeDS¢ of Dummy Shuffling, and the flags f, S5 s has the following decoding
function:

Decodef((z1 - @p—1,Ze1 - Zp,s)) =21 B -+ S xp—1 ® DecodeDSs((xe1, -+, Z0,s))

Encoding function As for ISWy, ¢ — 1 random values are required to encode a bit
variable and fix the last share x; being equal to the sum of these random values plus the
original value. Then, s — 1 supplementary random values are required for the dummy slots
as in Dummy shuffling. The procedure is depicted in Algorithm 3.

Algorithm 3 S5’s Encoding function

Input:
e A bit variable z to share
e / + s — 2 fresh random values

(2;5’1 cee Zé,s) — Shufflef((zm cee Zg’s))
: return (21 -+ 2p—1, 201 - Z0,5)

e The flags f
Output: The shares (z1,--- ,2¢, 201, -, 22,5), such that
Decodes((z1,- -+ , 20,2015+ s 20,5)) = 2
1: forie(1---£—1) do
2: 2+ $
3: end for
4 2g1 @f;ll Zi
5. forie (2---s) do
6: Zpi $
7: end for
8:
9

Xor gadget Now that we can encode and decode our bit variables, we need to replace
the bit gates with gadgets, such that they do not leak information while computing the
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correct output. The XOR gadget is simple to perform, as for both the ISW masking scheme
and Dummy Shuffling, this gadget only consists of XORing the shares individually.

Let (x1---@o—1,2e1 - Tos) and (Y1 -+ Ye—1,Ye1 - Ye,s) be the shares of two bit vari-
ables z and y of an S5, s such that

Decodef((z1 - Tp—1,2e1 - Tys)) =,

Decodey((y1 - Ye—1,Ye,1" " Ye,s)) = Y-

We have:

GadgetXOR((w1 - - -Te—1,%e1 - Tays), (Y1 Ye—1,Ye1 -~ Yeo,s)) =
(Tr®y1) - (@—1 PYe—1), (o1 D Y1) (Tes DYrs))

And gadget We presented SecMult, the ISW, AND gadget in Algorithm 1, and
explained its matrix representation. S5, ; AND gadget for one slot (s = 1) is exactly this
same algorithm. For s > 1, to compute the values of all the slots, we will duplicate s time
in the last row of the representation matrix.

Let (x1---@o—1,Ze1 - Tps) and (Y1 -+ Ye—1,Ye1 - - - Ye,s) be the shares of two bit vari-
ables = and y of an S5, s such that

Decodef((x1 -~ Tp—1,%¢1 - Tps)) = 1,

Decodes((y1 - Ye—1,Ye,1" " Ye,s)) = Y-

S5¢,s AND gadget has four steps:

> Step 1: As a regular ISW,_; masking scheme, process the £ — 1 first shares with the
ISW AND gadget by applying SecMult((z1 - x¢—1), (Y1 -+ ye—1))-

> Step 2: To compute the necessary values to determine the last £*"* share of an ISW,
masking scheme, for each shuffled share ¢ € (1,--- ,s), perform the last part of
SecMult((z1 -+ - x¢—1,%¢,), (Y1 - - - Ye—1,Ye,i)) that corresponds to the last row
of the matrix.

> Step 3: Recover the first (¢ — 1) shares by XORing every elements of the first (¢ — 1)
line of the matrix.

> Step 4: Recover the last s shares by XORing every elements of the last s line of the
matrix.

The AND gadget is depicted in Algorithm 4, and also includes refresh functions to
achieve security properties discussed in Section 6.

Example 5. Consider the S5,—3 ;—3 AND gadget, without the refresh functions: we receive
(x1,2, 23,1, 23,2, 3,3) and (Y1, Y2,Y3,1,Y3,2, Y3,3), the shares of two bit variables z and y
such that Decodes((z1,z2, 3,1, %3,2,23,3)) = = and Decodes((y1,Y2,¥3,1,¥3,2:Y3.3)) = Y-
We want to compute (21, 22, 23,1, 23,2, 23,3) such that Decodef((21, 22, 23,1, 23,2, 23.3)) = 2 =
T y.

Then, we can create a (£ + s — 1) x £ matrix, here a 5 x 3 matrix M filled with zeroes to
represent the computations. Step 1 begins by computing the elements of the first { —1 = 2
columns and rows, that only depend on the linear part of the shares, namely z1, x2, y1,
and yo. Then, Step 2 computes the rest of the operations that depend on the non-linear
part: 31, 3.2, £33, ¥3,1, ¥3,3, and y3 3. Step 3 consists of XORing every element of the
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Algorithm 4 S5’s AND gadget

Inputs:

o (1 - @p_1,xp1 - T4s) s.t. Decodep((x1 - Tp—1,T1 - Tps)) =
o (Y1 Yr—1,Ye,1 - Yeo,5) 8.t Decodes((y1 -+ Ye—1,Ye,1 Ye,5)) =Y
e One shared pre-shuffled randomness (for SPSRy)

e Two pre-shuffled randomness (for Refreshy)
0(e—1)
M)

fresh randomness

Output:

o (21 241,201 25) s.t. Decodey((21 -~ 20—1,201 - 20,5)) =T Y

L (21 xe—1,%01 - Xp,s) < Refresh((x1 - zp—1, 21 - Tes))

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:

37:

(Y1 Ye—1,Ye,1 - Ye,s) < Refresh((y1 -+ yo—1,9e,1 -+ Ye,s5))
M + (04 s—1) x £ zero matrix
forie(1---4—1)do > Step 1: Handling linear shares
forje(i+1---£—1)do
M@j +—$
M (M;; @ @i -y;) ®xj-y;
end for
end for
forie(1---4—1) do
Zi & X Yi
end for
forie(1---¢4—1)do > Step 2: Handling shuffled shares
Mi,@ ~— 3
end for

for ke (1---s) do

forie(1---£—1) do
Myyo—1,i+ (Mig © i - Yo ) © Tog - Yi
end for
end for

for ke (1---5) do

2ok < Tok Yok
end for
forie (1---¢£—1)do > Step 3: Computing the linear part of the result
for je(1---¢) do
if i # j then
Zi < 2; D MiJ
end if
end for
end for
R < SPSRy > Step 4: Computing the shuffled part of the result

forie (1---s) do

forje(1---£—1)do
78 (20, @ Ri,j) O Mitro—1,
end for
end for

return (z1--- 21,201 - 20,5)
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first £ — 1 = 2 lines to compute the linear part of z: z; and z5. Finally, the last Step 4
does the same for the last s = 3 lines and computes z3 1, 232, and 23 3.

21 Z1 Y1 1,2 1,3

Zo < T2 Y1 Bri2®x1- Y2 T2 - Y2 2.3
2314 | T1-Y31DPTr13DT31-Y1 T2-Y31 Dro3Dx31-Y2 T31-Ys
2324 | T1-Y32@BT13DT32-Y1 T2 Y3 2Dra3sDx32-Y2 T32-Ys2
233 \T1-Y33Pr13PT33 Y1 T2 Y3,3PreosDr33-Y2 T33-Y33

One can observe that the different slots do not interact with each other, mean-
ing that, given i,j € (1,2,3),1 # j, 34, y3,; and z3; does not interact with z3 j,
ys,; and z3 ;. Therefore, given flags f and a corresponding main slot m € (1,2,3),
DecodeDS (23,1, 23,2, 23,3) = 23,m only depends on x3,, and ys3 ,,. Therefore:

2 =21 Dz D DecodeDSf(z;:,J, 23,25 2’373)

z1 © 22 D z3,m

SecMult((x1, 2, Z3,m)), (Y1, Y2, Y3,m))

=(@x1Bz2PT3m) - (Y1 B Y2 D Y3,m)

x1 @ x2 § DecodeDS (31,232, 23,3)) - (y1 D y2 ® DecodeDSs(y3.1,¥3.2,¥3,3))

:_fL‘~y

Randomness As explained in the following Section 6, to achieve SNI and algebraic
security, S5 need to be refreshed. A refresh function takes for input the shares of a variable
and adds randomness to every share without modifying its decoding value. S5 uses three
type of randomness:

e Fresh randomness: The usual randomness produced by a pseudo-random number
generator in the white-box setting. Used to generate the two other types of random-
ness, to encode the input values of a circuit, and in the AND gadget. A bit variable v
receiving fresh randomness is denoted by v + $.

o Pre-shuffied randomness: This randomness is constituted of s bit values, that, once
XORed to a bit variable over s slots, ensures that the main slot remains unmodified.

e Shared pre-shuffled randomness: Lastly, it is possible to share pre-shuffled randomness
over £ — 1 shares. We end up with a s X (£ — 1) matrix R, such that the XOR of each
of its lines is equal to one of the s bits of the pre-shuffled randomness.

Pre-shuffled randomness In Section 6, we show that the shuffled part of the two
inputs of S5 AND gadget should be refreshed to achieve algebraic security, which can be
done using the dummy shuflling refresh function. Generating a pre-shuffled randomness
over s slots requires s — 1 fresh randomness, without counting the number of randomness
involved in the Decode and Shuffle function of Dummy Shuffling. Applying the shuffle
function with the flags f onto a zero followed by the random values creates pre-shuffled
randomness, which, once XORed with a bit variable over multiple slots, ensures that the
main slot is not modified. Refreshing the shuffled part of S5 is depicted in Algorithm 5:

Shared pre-shuffled randomness In the S5, ; AND gadget, we create a ({+s—1) x £
matrix M, which has its last s rows filled with computations necessary to create the s
shuffled shares of the output. Let us denote the s x (¢ — 1) matrix containing these last
rows by S. In Section 6, we show that to achieve SNI security of the XOR gadget, we need
to refresh every value of the S matrix. Let us denote the refreshed matrix by S.
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Algorithm 5 S5’s shuffled refresh gadget

Inputs:
o (X1, ,Te—1,%p1, - ,%p,5) S.t. Decodes((x1, -+, Te—1,Te1, " ,Tp,s)) =
e s — 1 fresh randomness
o the flags f
Output: (z1, - ,2¢—1,%¢1, - ,T¢s) s.t. Decodes((z1, - X1, &p1, - ,Tps)) =

LS (0,8, ,8), st || = s
2: 8« Shufflef(S)

30 (w1 wp1, Tpn - Tesy —{xr 21,2010 DS, Tes B Ss)
4: return (z1, - ,Te—1, %01, ,T0,s)
The first constraint to such refresh function is that given the main slot m € (1,--- | s),

we need to ensure that @f:& Sm,i = @f;é S'm,i, but we don’t know the main slot without
the shuffle or unshuffle functions, which we cannot use in the gadget as it would leak
information on the flag. The second constraint is that the shuffled shares should not
interact with each other.

A first idea would be to apply the refresh function of Algorithm 2 to each column of S.
This would ensure SNI property and the previously exposed constraints, but performing
¢ — 1 Shuffle call would be too heavy. Instead, shuffle one randomness gives a s-length
vector r such that r,, = 0, which we can transform in a (¢ + s — 1) x ¢ matrix R by
sharing each of its s values over ¢ — 1 shares. XORing S and R gives a refreshed matrix
that respects the two constraints, and, as detailed in Section 6, ensures SNI security. The
creation of this matrix denoted by Shared pre-shuffied randomness is given in Algorithm 6

Algorithm 6 S5’s Shared pre-shuffled randomness (SPSR)
Inputs:

es—1+ @ fresh randomness
o the flags f
Output: A two dimensional array R containing s vectors of = elements such that
Decodef(R11® - @ Riz),- -, (Rs1® - @ Rsz)) =0
: S+ (0,%,---,9),st. |S|=s
O Shufflef(S)
:forke(1,---,£—1)do
R; (51,07 ,0), s.t. |R7,‘ =/-1
forie(1,---,s) do > SNI refresh gadget 4b of [BBD T 16]
forje(i+1,---,s) do
r+$
Rip;+ S;®r
Rk,j — Sj Dr
10: end for
11: end for
12: end for
13: return R

© % N> g kW

Phases On the whole, S5 uses shuffle functions from Dummy Shuffling and therefore
needs the three-phased structure depicted in Definition 4. The only difference is the
addition of the shared pre-shuffled randomness, which needs to be pre-computed and
shared in the first input-encoding phase.
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5.2 S5 analysis

Higher-order attack analysis Firstly, we show in Section 6 that S5, has the same
algebraic resistance against algebraic attacks as dummy shuffling with s slots, and therefore
is only broken by HDDA of degree d > s. By design, Sby s, ¢ > 1 resists the DCA attack,
as the linear shares do not carry full information on the variable being shared. However,
given 7, the noise rate of S5¢,s, HODCAp ; of order O = ¢ can break it.

s—1
2s °

Proposition 1. The noise rate of S5y is T =

Proof. Let a variable = being encoded to the shares (x1,- - ,Z¢—1,%e1, " ,%e,s) by Sbrs
with the flags f. By definition, we have:

x =Decodes((x1 - Tp—1,Te1" " Te,s))
=21® - ®ap—1 ®DecodeDSy(z¢ 1, - ,2e5))

Choosing the linear function f(x1, -+ ,2¢—1,2¢1) =21 @ - B xp_1 B x¢,1 will match the
decoding function’s output depending on z,;: when z,; represents the main slot, the
linear function is perfectly matching the decoding function, when z,; is a dummy slot,
the linear function will match the decoding function with one-half probability. Therefore,
since x¢,; is a dummy slot with probability Sgl, the linear and decoding functions will
have different outputs with probability 2

o L — 7. O

Filtering analysis Let a variable x being encoded by S5, ; with the flags f to the
shares (z1,--- ,%p—1,%¢1, - ,%e,s). Using a higher-order filtering attack, one can fix the
s shuffled shares (x¢1,--- , %) to zero (or one) to ensure that, no matter where the main
slot is located, its corresponding shuffled share would remain constant for all the subset of
traces for whose this condition holds, making the scheme vulnerable to an LDA attack.
So, HOF4-LDA breaks S5, 5 and has a time complexity in O(OW“** + [K|W**1)| which is
better than HDDA,.

Implementation cost Let C' be a circuit to protect with S5, ,, and let ng and
na be its number of XOrR and AND gates, respectively. As for Dummy Shuffling, the
implementation is constituted of three phases. To estimate the implementation cost, we
need to estimate the cost of each phase. For the first phase, we need to estimate the cost
of the two pre-shuffled randomness and the shared pre-shuffled randomness used at each
AND gate of C'. However, since the number of inputs is negligible compared to n, we do
not need to estimate the cost of encoding the input.

We need to generate three pre-shuffled randomness with one used to generate a shared
pre-shuffled randomness per AND gate in the original circuit C. In [BU21], the authors
estimated the cost of performing an input shuffling to 4s - nx. Since we need three per
AND gate, we end up with a cost of 12s - n, to generate the pre-shuffled randomness.

One of these three pre-shuffled randomness needs to be shared, which is equivalent to
estimate the cost of Algorithm 6, which performs ¢ —1 times two XOR over Zf;ll 7= @
combinations, for a total of (¢ — 1)s(s — 1) operations. In total, the number of gates Gg
of the first input-encoding phase is Gyg = (£ — 1)s(s + 11).

For the second phase, we need to estimate the cost of the gadgets. The XOR gadget
performs a XOR per couple of input shares, so costs (£ + s — 1)ng operations. The four
steps of S5, s AND gadget has different costs: 20(¢ —1)+¢—1 = stepy, 4s({ —1) + s = step,,
0(¢ — 1) = stepg, and 2s(¢ — 1) = step,. In total, the second phase costs:

G = (step; + stepy + steps + stepy)na + (£ 4+ s — 1)ng
=((l-1)30+6s)+L+s—1)ny+ (L +s—1)ng
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Lastly, the output decoding phase applies the decoding function to every output, but
since the number of outputs is negligible compared to the number of gates ng and na, we
conclude that the total cost of the implementation to transform a circuit C to S5, 5(C) is:

Grs+Gr=(l—-1)(s(s+11)+30+6s)+L+s—1)ny+ ({+5—1)ng

5.3 S5 and ISWoDS comparison

Theoretic implementation cost Let C be a circuit with ng and n, number of XOR
and AND gates, respectively. We showed in Theorem 1 that the total implementation
size for ISWyoDS(C) (the more secure order of application of the two countermeasures)
has a total implementation size in (6s — 4)(3¢? — 3{)ns + fsng gates, compared to
(=1 (s(s+11)+30+65)+L+s—1)nsr+ (£ + s — 1)ng for S5, 4(C).

We can observe that to transform a AND gate, S5y 5(C) scales quadratically with both ¢
and s, while ISW,0DS(C) scales quadratically with ¢ but only linearly with s. Moreover,
the AND gate transformation of ISW,0DS,(C) is less expensive when ¢ = s than S5, +(C).
However, even if the XOR gate transformation scale linearly for both s and ¢ for both
S5¢,5(C) and ISW,0DS,(C), when ¢ = s, it scales linearly with S5 ,(C) and quadratically
with ISW,0DS,(C).

In-practice implementation cost Table 4 shows the implementation size differences
for a 10-round AES. S5 has a lower Implementation size for similar parameters, with a
proportional difference increasing with ¢ and s. This huge difference can be explained for
two main reasons: the first is that there are more XOR gates than AND gates in the AES
base implementation (62% XOR, 20% AND, 18% NOT).

The second is that for ISW and for Dummy Shuffling, the wboxkit tool creates a
pseudo-random number generator (PRNG) to generate fresh randomness. In a circuit
transformed by Dummy Shuffling, a first PNRG is created, and then, by applying ISW, it
is encoded and a second one is created, which is much more heavy, while not accounted
for in the theory. Whereas for S5, only one PRNG is created.

Table 4: Comparison of the implementation size (in million of gates) between ISW,0DS;
and S5y applied to a 10-round AES (31k gates), using the implementation given in
the wboxkit tool (https://github.com/hellman/wboxkit), and our S5 implementation
(https://github.com/S5white-box/code).

ISW,oDS, S5,
2 3 4 5 6 7 2 3 4 5 6 7

o~
o~

02 10 1.2 1.6 21 25
0.7 1.7 21 28 35 42
1.1 27 3.2 42 53 6.3
1.6 3.7 45 60 75 89
2.1 5.0 6.0 80 10.0 12.0
2.7 6.5 7.8 104 129 15.5

0.0 0.4 0.5 0.6 0.8 0.9
03 0.6 0.7 09 1.1 1.3
06 09 1.0 1.3 15 1.7
0.8 1.2 14 1.7 2.0 23
1.2 1.6 19 23 26 3.0
1.6 2.1 25 29 34 39

N O U W N
N O Uk W N

Conclusion Both ISW,0DS; and S5, s are efficient countermeasures against state-of-
the-art attacks, and have different characteristics so should both be considered as valuable
options against gray-box attacks in the white-box context, however, S5 shows being more
efficient in practice.

We also recall that [BU21] described a bit-sliced implementation of dummy shuffling by
filling a 64-bit CPU register with one variable from 64 slots. Contrarily to ISW,0DS;, S5 s
can not benefit from this technique due to interactions of unslotted and slotted variables.
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Lastly, even if S5 is more efficient in practice, we recommend both countermeasures
as they might not have the same weaknesses for future attacks, as we showed that slight
differences in the structure are enough to create a vulnerability (see Section 4).

6 Security analysis

In this section, we discuss and prove the security of the three combined schemes against
the relevant trace-based gray-box attacks, mainly correlation (HODCA) and algebraic
(HDDA).

Algebraic security First, we reproduce the relevant definitions and results about
the dummy shuffling from [BU21]. The error of a Boolean function f : F§ — F, is given

by err (f) = min(|f[,[f & 1[)/2".

Definition 5. For an implementation C' : % — FJ*, the set F(9(C) denotes all functions
obtained by combining intermediate functions computed in C' with a function of degree at
most d. Elements of this set are Boolean functions f mapping F4 to F,.

Definition 6 (Scheme [BU21]). Let F': F} — F3* be a function. A scheme S computing
F consists of

1. an encoding function S.enc(x,r.) : F§ x IFIQT‘fl —Fy;
2. an implementation S.comp(z',r.) : F§ x IE";C‘ — Fy';
3. a decoding function S.dec(y’) : Fy* — Fg.

Definition 7 (7-error-d-AS scheme [BU21|). Let S be a scheme and let d > 1 be an
integer. Let 7 be the minimum error among all non-trivial functions from F(®(S.comp)
composed with S.enc = S.enc(z, ) for any fized x = & € F}:

7 = min {err( f(S.enc(z,-),")) ‘ f(x,re) € F9D(S.comp)\ {0,1}, Z € ]Fg} )

where the error is computed over r.,r.. If 7 > 0, the scheme S is said to be degree-d
algebraically secure with error T (T-error-d-AS).

6.1 Definitions of schemes

First, we recall the basic dummy shuffling scheme (called “the evaluation-phase model”,
EPM) from [BU21].

Definition 8 (Scheme SP%). Let C : F} — FJ* be an implementation and let s > 2.
Define the scheme SP9(C) with the following phases:

o S5, .enc(x,re) : Fy x IF';F" — FT creates extra s — 1 fully random inputs, derives
random shuffling flags f from the input randomness ., and shuffles all the inputs
using these flags (c.f. Subsection 3.4). Note i = n X s.

o 554 5.comp(z) : F§ — F3* evaluates C at each of the s shuffled inputs (independently)
and outputs all the s outputs. Here m = m X s.

o S5y .dec(z, f): F* x IF'Qf‘ — F2* unshuffles the s outputs from the previous phase
using the flags f (which need to be securely passed from the encoding phase) and
outputs the right output. This phase is only defined for the correctness and is not
covered by security analysis in [BU21].
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Before applying dummy shuffling, the circuit needs to be “refreshed”.

Definition 9 (Refreshed Circuit). Let C(x) : F§ — FZ* be a Boolean circuit implementa-
tion with at most n, AND gates. Define the refreshed circuit C(z,r) : Ty x Fy* — Fy*
as follows. Replace each AND gate a; = 2; A z; in C, 1 < k < n, by the circuit
ap, =1k P ar =1 B (% A z;j), where 1, is the k-th extra bit; each wire using ay, is rewired
to use a,.

In our security proofs, we reduce the new combined schemes to the original dummy
shuffling scheme SP9, and then apply the main theorem from [BU21].

Theorem 2 ([BU21]). Let C be an implementation and s > 2 an integer. The dummy
shuffling scheme S = SP5(C) is T-error-d-AS for any 1 < d < s—1, with T > 2724.(s—d) /s.

We now formally define the three schemes of countermeasure combinations considered
in the paper. The main purpose of this is specifying the part of the implementation
covered by the proof: the operations’ gadgets excluding any shuffling/sharing or decoding
operations (in line with existing state-of-the-art of dummy shuffling / ISW). For brevity,
we will only describe the main phase (comp) of each scheme.

Definition 10 (Scheme S5; 5). Let C : FZ — FZ* be an implementation and let > 2,5 > 2.

Define the scheme S5.,(C) with S5,.,.comp(z, re) : Fi x Fy*l — FI* as follows. The input
x is consists of n lists of s + £ — 1 share each, as well ass 3n, groups of preshuffled shared
randomness (¢ bits each). The computation proceeds by applying the S5, s gadgets
according to the circuit C, using fresh randomness from r. and the preshared randomness
from .

Remark 1. The S5’s AND gadget already includes an equivalent of the refreshing, therefore
S5y s is intended to be applied directly to the original circuit C, without the refreshing
circuit transformation.

Definition 11 (Scheme SfSSOISW). Let C : F3 — F5* be an implementation and let [ >
2,5 > 2. Let Crsw(z,r.) denote the circuit where the gates of C are replaced by the ISW
gadgets and r/, denotes the extra randomness used by these gadgets. Observe that Crgw
has n,¢> AND gates, where C has n, AND gates. Define the scheme Sff"ISW(C) with

2 ~
SPSISW comp(a, 1) : Fy ™ Hemat x Flirel — F3f™ in the same way as SP5(Cysw)).comp,
where an extra randomness r;, used by Crsw is included (in s copies) in r.. Observe that
Crgw has input size extended from ¢n to fn + ny¢? due to the refresh bits.

Definition 12 (Scheme Sl{f;WODS). Let C : F3 — F3* be an implementation and let

1>2,5>2. Let Cps(z) denote SP5(C).comp, i.e., s independent copies of the refreshed
circuit C' in parallel. Define the scheme Sp3WePS(C) with S;3W P comp(x, 1) : FE™ x
Fa|re| — F5™ being the ISW-protected version of Cpg(x), i.e., where each input bit is
replaced by ¢ shares and each gate is replaced by the corresponding gadget; the randomness
r¢ is used in the ISW gadgets.

6.2 Security proofs

Intuitively, algebraic security of all of the combined schemes is ensured by the fact
that all of them contain dummy shuffling structure inside them, and ISW-like sharing
does not compute any new intermediate function of original inputs. For examples, the
ISW multiplication only algebraically “leaks” the product of the original (unshared)
intermediates, but this product was already present in the original circuit.

In the following, we present these ideas more formally. The high-level idea is to partition
the set of possible inputs of comp (for each possible fixed input of enc) and randomness into
instances of basic dummy shuffling circuits. Then, the algebraic error 7 is lower bounded
by the minimum error across these instances, which is given by Theorem 2.
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Proposition 2. Letl > 2,s > 2. Then, for any underlying implementation C, the scheme
S5y is T-error-d-AS for alld, 1 < d < s —1, with T > 2724(s — d)/s.

Proof. For each input group of shares 1, -+ ,T¢—1,%¢1, -, T¢,, let us consider x1,- -+ ,xp_1
fixed. This makes the corresponding global input bit (which is also considered fixed by
the model) encoded in the dummy shuffling manner, in the slotted variables x¢ 1, -, Z¢ 5.

Furthermore, for each application of the AND gadget (Algorithm 4), let us consider all
the used randomness fixed, except the shared pre-shuffled randomness R = SPSR¢, where
we fix R; ; foralli e (1,---,s),j € (2,---,¢—1) (i.e., we don’t fix R; ). Assuming by
induction that both inputs’ linear parts are fixed (i.e., 1, - ,Z¢—1,Y1, " ,Yo—1), it is
easy to verify that the output linear part (z1,---,z¢—1) is also fixed. Furthermore, the
output slotted variables z,; would be equal to a quadratic function of z,; and y, ;, which
is equal to (x¢; + ¢2)(Yei + ¢y) + . for some ¢y, ¢y, ¢, plus the unfixed SPSRy variable
R;.1. This exactly matches the dummy shuffling structure with refreshes, up to adding
some negations around the gadget (note that the XOR gadget also preserves the invariant).
We thus obtain the required bound for each assignment of the fixed values and conclude
that the bound holds for the full construction. O

Proposition 3. Let ] > 2,s > 2. Then, for any underlying implementation C, the scheme
SfSSOISW is T-error-d-AS for alld, 1 < d < s — 1, with T > 272(s — d)/s.

Proof. This follows directly from Theorem 2, since dummy shuffling is applied on top of
(the ISW-protected) implementation. O

Proposition 4. Let |l > 2,s > 2. Then, for any underlying implementation C, the scheme
Sl{’fw"DS is T-error-d-AS for alld, 1 <d <s—1, witht > 2_2d(s —d)/s.

Proof. The difference between the two compositions (ISWoDS and DSoISW) lies only
where the AND-refreshes are placed. Letting Ref denote the refresh procedure, which
needs to be done before dummy shuffling (slotting), we have either ISWoDSoRef or
DSoRefoISW. However, the pure ISW transformation and the pure slotting procedure
(making s copies with s — 1 random inputs and shuffling) commute. Indeed, the considered
S ZI)‘EW"D S.comp consists of s copies of the ISW-shared implementation. We can reinterpret
it as dummy shuffling applied to one of the copies (without adding refreshes). In other
words, ISWoDSoRef is the same as DSoISWoRef. It is thus left to show that ISWoRef
maintains the property of the refreshed circuit required to show Theorem 2.

We recall briefly that the proof of Theorem 2 in [BU21] requires that the copied circuit
can be precomposed with a bijection (on the input and randomness) so that the resulting
circuit only computes (at most) quadratic functions. This is easy to show due to the
refresh procedure applied before ISW. The ISW sharing is applied to the refresh bit of
each AND gate, effectively transforming it into ¢ random shares (in the case of a dummy
slot), passed to the input of the slot, and added to the shared output of the corresponding
AND gate (i.e., SecMult in the shared version). Therefore, the desired bijection can
replace the £ refreshing shares with the result of the refreshing. This would make the result
of the refreshing equal to the input of the composition of the circuit and the bijection.
Consequently, any further SecMult gadget would only use such composition inputs as
arguments and thus only quadratic functions would be computed, concluding the proof.

O

Probing security of ISWoDS  We recall an informal definition of SNI from
[BBDT16], for the full technical definition, we refer the reader to the original paper.

Definition 13 (SNI [BBD'16]). A gadget is t-SNI whenever any ¢ of its wires can be
simulated using only its shared inputs, and if its output encoding is uniform and (¢t —d)-wise
independent even if d shares of each of its inputs are known (for all d such that 0 < d < ¢).
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Firstly, as for the dummy shuffling countermeasure, security proofs of schemes based
on dummy shuffling are only valid for the second phase of the algorithm, as described in
Definition 4; therefore, we will not prove the first and last phase and the algorithms that
generate the randomness, and the encoding and decoding functions.

In [BBD*16], the authors stated that in the ISW scheme with ¢-shares the SecMult
(Algorithm 1) is (¢ — 1)-SNI. In the case of ISW,0DS,(C'), since ISW, is applied after
Dummy Shuffling, it ensures that ISW,0DS(C) is (¢ — 1)-probing secure. However, it
is not clear if DS;0ISW, is (¢ — 1)-probing secure as ISW, is applied before, although
we showed in Section 4 that we should not consider it as weaker to higher-order filtering
attacks.

Probing security of S5 First, it is important to note that S5 XOR, NOT, refresh and
Algorithm 6 are existing schemes proven to be SNI [BBD'16]; thus, we will only prove
SNI security of S5’s AND gadget.

To prove (¢ — 1)-probing the security of S5, 5 gadgets, we fix the main slot to the first
one, which can only lower the scheme’s security. By symmetry, evaluating the SNI security
by fixing the first slot implies evaluating the security of the other s slots. If each of these
cases does not leak, then any distribution of these cases (in particular, uniform or almost
uniform) does not leak as well (when considered over the full implementation).

To this end, we consider the S5, ; gadget where the main slot is the first one (x,1) and
the dummy slot variables ¢, -,z s are refreshed using the pre-shuffled randomness
(see Algorithm 4). We then implemented? this variation in the MaskVerif tool [BBCT19]
and verified the (¢ — 1)-SNI security of this gadget for 2 < s, < 7.

Proposition 5. S5, AND gadget is ({ —1)-SNL

Proof. Let us consider the gadget AND of S5, ¢ with ¢ linear shares and s slots, depicted
in Algorithm 4. We will fix the main slot to the first one for the above reasons. We will
denote the computations related to the dummy slots by D and the linear part by L, where
the main slot can be considered a share of the linear part. Therefore, we have the following
sets, forming a partition of S5, if we don’t take into consideration the randomness involved:

Inputs:
— Iy, contains x;,y;,i € (1,---,£ —1) and x¢,1,ye1 for the main slot.
— Ip contains x¢;, ye 4,5 € (2, ,5)

Intermediate:

— N, contains the elements M; ;,; - y;, %; - y; as well as the elements of the main
slot ;- ye1, 201 - Yis Teq - ye,1, forany i, 5 € (1,--- £ —=1),i #j

— Np contains x; -y j, Tej - Yi, Tok Yo, 5 Mire—1,5,1 € (1,--- ,£=1),5 € (2,---,5)
Outputs:

— Oy, contains z;,7 € (1,--- ,¢ —1) and 2,1 for the main slot

— Oy contains zg;,i € (2,---,5)

Lemma 1. The sub-gadget taking inputs in Iy, intermediate wires in Ny, and outputs in
Or, constitutes an (£ — 1)-SNI gadget.

Proof. If we take the input of Step 1, which corresponds to the linear shares of S5 input,
namely (z1,---,2¢—1) and (y1, - ,ye—1), and observe the computations done in this step
and Step 3, and consider (zy,---,2¢—1) its output (without XORing M, ), we obtain

4https://github. com/S5white-box/code
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exactly the Secure Multiplication algorithm depicted in Algorithm 1, which is a known
(¢ — 2)-SNI gadget [BBD'16].

Reminder : The Algorithm 6 used in line 31 of Algorithm 4 takes for input pre-shuffled
randomness, a list S of s random values such that the one corresponding to the main
slot equals zero, and shares each random element of this list using an (¢ — 2)-SNI refresh
gadget over ¢ — 1 shares, resulting in a two-dimensional array R. Therefore, for every
i€ (1,---,8) we have @185571 R; ; = S;, and such that the XOR is equal to zero for the
value of i corresponding to the main slot.

By fixing the main slot to the first one, we can also observe that, by including M; , to
the output computation, it forms a SecMult algorithm taking inputs in I, having outputs
in O, and having intermediate values in Ny, that is (¢ — 1)-SNI, since the XOR of Shared
Pre-Shuffled Randomness (c.f. Algorithm 6) XORs to zero for the main slot.

O

(1): If the t intermediate wires are only selected amongst Ny, and the output wires
amongst Oy, then, thanks to Lemma 1, it only depends on the inputs in I, and S5 AND
gadget is (¢ — 1)-SNTL.

Now, we prove that the dummy wires do not prevent the (¢ — 1)-SNI security of S5. For
this, we need to show that for any set of ¢ elements of N and any subset A C O, such that
t+|A| < £—1, there exists a subset B C I such that |B| < ¢, such that the ¢ intermediate
variables and the output variables in A can be perfectly simulated from the input variables
in B.

Firstly, we can observe that the elements of Op are refreshed thanks to the XOR
of Shared Pre-Shuffled Randomness (c.f. Algorithm 6), and therefore can be perfectly
simulated using random values. So, choosing some elements of Op does not impact the
number of input wires to simulate them.

(2): The |A| chosen elements from the output wires only impact the number of input
wires necessary to simulate when chosen in Op.

Now, let’s study the case where the ¢ intermediate wires are chosen (partially or
totally) amongst Np, which can be decomposed into two groups: the elements of Step 2:
Ti Yo Teg - Yini € (1, £ —1),5 € (2,---,s), denoted by Ngtepg; and the elements of
Step 4: Mi¢—1,j,1€ (2,---,s),j € (1,---,£—1) denoted by Ngtep4.

We can remark that every element of Ip is refreshed using shared randomness in lines
1 and 2 of Algorithm 4, and therefore can be perfectly simulated.

(3): Thus in Np*?) to simulate z; - yo; and/or zp - y; for i € (1,--- ,£—1),j €
2,-++,8), we need their respecting inputs z; and/or y;. More precisely, to simulate these
g

wires, we need one input per x; - Yo ; Or Xgj - Y;.

We can observe that the elements of N%tep‘l are all refreshed using SPSR, and therefore
can be perfectly simulated using random data, as Algorithm 6 is an SNI refreshing gadget.

(4): Thus, choosing the ¢ intermediate wires amongst N]%tem does not impact the
number of input wires to simulate them.

So, thanks to (2) and (4), to prove that S5 AND gadget is (¢ — 1)-SNI, we need to
prove that for any set of ¢ elements of Ny U NEthQ and any subset A C Op, such that
t+|A| </ —1, there exists a subset B C I such that |B| <t, such that the ¢ intermediate
variables and the output variables in A can be perfectly simulated from the input variables
in B.

Let u and v be integers such that 0 < u,v < ¢ and u + v = t. Let us suppose that
among the ¢ intermediate wires that we choose in Ny, U Ngtepz, u are in Ngtepz, and v in
Nyp. Thanks to (3), we know that we will need u input nodes to simulate the wires in
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N%me. Similarly, since z-SNI = (z — 1)-SNI, and with Lemma 1, we will need at most
v inputs to simulate the wires in Nz,. Therefore, to simulate ¢t wires in Nz, U Ngﬂeﬂ, we
will need ¢ inputs, with max(u,v) < i < u+ v = t, as the same input can help simulate
two elements of Ny, and NgtepQ.

(5): So, thanks to (4), choosing intermediate wires among Np can only diminish the
number of inputs required to simulate the intermediate wires.

Conclusion: Thanks to (2), we know that choosing the output wires only matters
when chosen amongst Op. Thanks to (5), choosing intermediate wires among Np can
only diminish the required inputs to simulate them. In conclusion, since every output
and intermediate wire selection only depends on the input wires in I, to be simulated,
the worst case is when we choose the outputs amongst Oy and the intermediate wires
amongst Ny, which only depends on the inputs I1,; and, thanks to (1), S5, s AND gadget
is (¢ — 1)-SNL.

O
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