
Deep Reinforcement Learning for Tuning of
Adaptive Model Predictive Control for Autonomous

Driving*
1st Feras Hamadeh

Department of Electrical and Computer Engineering
RPTU University Kaiserslautern-Landau

Kaiserslautern, Germany
fhamadeh@rhrk.uni-kl.de

2nd Anas Abdelkarim
Interdisciplinary Center for Security, Reliability and Trust (SnT) and

Department of Electrical and Computer Engineering
Luxembourg University and RPTU University Kaiserslautern-Landau

Luxembourg, Luxembourg
anas.abdelkarim@uni.lu - abdelkarim@eit.uni-kl.de

3rd Amar Hamadeh
Department of Electrical and Computer Engineering

RPTU University Kaiserslautern-Landau
Kaiserslautern, Germany
ahamadeh@rhrk.uni-kl.de

4th Daniel Görges
Department of Electrical and Computer Engineering

RPTU University Kaiserslautern-Landau
Kaiserslautern, Germany

goerges@eit.uni-kl.de

5th Holger Voos
SNT and the Faculty of Science, Technology, and Medicine (FSTM)

University of Luxembourg
Luxembourg City, Luxembourg

holger.voos@uni.lu

Abstract—Model Predictive Control (MPC) has emerged as a
pivotal technology for optimizing control tasks in autonomous
driving, particularly within Adaptive Cruise Control (ACC)
systems. However, the manual tuning of MPC cost function
weights and prediction horizons remains a significant challenge.
In this paper, we introduce a novel framework that combines
Deep Reinforcement Learning (DRL) with MPC to dynamically
tune both the weight parameters and prediction horizon in real
time. This approach, referred to as the Weights and Predic-
tion Horizon Varying MPC (W-PH-MPC), overcomes traditional
MPC limitations by utilizing proximal Policy optimisation and
Deep Deterministic Policy Gradient (DDPG) algorithms to adjust
control parameters. We evaluate the effectiveness of our approach
through simulations in vehicle-tracking scenarios. Simulation
results show that the adaptive MPC–RL controller achieves better
tracking performance, without compromising power consump-
tion, and lowers longitudinal jerk compared to a fixed-parameter
MPC baseline, resulting in smoother and more efficient vehicle
behavior.

I. Introduction
Model Predictive Control (MPC) has been widely used in
Adaptive Cruise Control (ACC) systems. For example, [1]
introduced an MPC-based Energy Adaptive Cruise Control
(EACC) approach to enhance energy efficiency and driving
comfort. Inspired by this, our work advances MPC adaptabil-
ity by integrating reinforcement learning (RL) for automatic
weight tuning. MPC computes control variables at each time
step by solving an optimization problem, defined by a cost
function and a set of constraints. MPC can be efficiently

implemented and solved using high-level model languages,
equipped with advanced solvers, such as AMPL [2], [3] or
using custom solvers such as [4], [5]. However, selecting
appropriate weighting matrices for the cost function remains
a challenging and time-consuming task that demands expert
knowledge. Automating this tuning process is highly desirable
as control tasks become increasingly complex in automated
driving.
Various methods have been explored for tuning MPC cost
functions, including meta-heuristics that can operate without
explicit knowledge of the fitness landscape (e.g., [6]),
lexicographic optimization [7], optimization via sequential
semi-definite programming [8], linear approximation
techniques [9], and Bayesian optimization (e.g., [10]).
Despite these advancements, none of these approaches fully
address the challenge of optimal vehicle guidance. Most either
impose high computational costs, making them unsuitable for
real-time applications, or require significant simplifications
that reduce their effectiveness.
To address these limitations, we propose a dynamic Weights

*This research was funded in whole, or in part, by the Luxembourg National
Research Fund (FNR), MOCCA Project, ref. 17041397. For the purpose of open
access, and in fulfilment of the obligations arising from the grant agreement,
the author has applied a Creative Commons Attribution 4.0 International (CC
BY 4.0) license to any Author Accepted Manuscript version arising from this
submission.

and Prediction Horizon-varying MPC (W-PH-MPC) approach.
The core idea is to adjust both the cost function weights
and the prediction horizon online to achieve optimal control
performance. This is accomplished by integrating MPC
with Deep Reinforcement Learning (DRL), where a deep
neural network (DNN) trained using advanced RL algorithms
dynamically determines the MPC parameters. In RL, an agent
learns by interacting with the environment through actions,
which lead to new states (observations) and rewards. The goal
is to learn a policy that maximizes cumulative rewards over
time. A well-designed reward function is critical to guiding
the agent toward the desired behavior, as it influences the
learning process and shapes decision-making during training.
Since RL can optimize a multi-objective reward structure, it
provides a powerful framework for automatic MPC tuning.
Furthermore, the tuning process can be repeated whenever
system parameters or objectives change, offering a flexible
alternative to manual MPC parameter tuning.
Although the idea of learning MPC cost function weights
with RL is not entirely new, [11] for instance, applied Q-
learning with a Q-table, discrete action space, and a piecewise
reward function to a quadcopter application—many studies
focus on modifying the control structure online. In [12],
for example, a multi-MPC approach switches between differ-
ent controllers to handle model nonlinearities and adapt to
changing operating conditions. Other works, such as [13]–[17]
have explored online control structure adaptations but do not
explicitly address the simultaneous adjustment of both the cost
function weights and prediction horizon. [18] reformulated
the prediction horizon as a discrete, positive integer time
variable and proposed a nonlinear model predictive control
(NMPC) approach for velocity regulation, incorporating a self-
correcting mechanism for adjusting the prediction horizons. As
demonstrated in [19], a tailored genetic algorithm can be used
for real-time optimization of a path-tracking controller based
on nonlinear model predictive control (NMPC), specifically
designed for low-speed vehicle operation.
Additionally, [20]–[22] demonstrate how Gaussian Process
Regression and neural networks can be used as predictive
models that self-adjust using collected data, enhancing control
accuracy and reducing computational load. Reinforcement
learning, in particular, shows promise in MPC cost function
tuning. In [23], an RL-based tuning strategy was presented,
while [11] proposed a weights-varying MPC that adapts to
different driving scenarios using DRL. Since safety is a critical
concern in RL-based control, [24] introduced a safe learning
framework that constrains DRL actions, enabling the algorithm
to identify optimal parameters without compromising safety.
Building on this, [25] demonstrated how DRL can adapt
MPC weights in real time, ensuring both safety and efficiency
throughout the learning process.
Our approach distinguishes itself by employing Policy
Gradient RL algorithms, continuous action spaces,
discrete action space, and deep neural networks for policy
representation, combined with a continuous multi-objective
reward function. Unlike prior work that typically focuses

on either cost function weights tuning or control structure
adaptation, our dynamic W-PH-MPC approach enables
real-time adjustment of both the cost function weights and
the prediction horizon, providing a more responsive and
adaptive control system. To evaluate the effectiveness of
our approach, we implement the DRL-driven W-PH-MPC
in a vehicle-tracking scenario for autonomous driving. The
optimization objectives focus on both tracking accuracy and
ride comfort.

A. Comparison with Other Adaptive MPC Tuning Methods

In addition to demonstrating the performance of the proposed
W-PH-MPC framework, it is essential to compare it with
other adaptive MPC tuning approaches from the literature.
Table I summarizes the key differences between DRL-based
W-PH-MPC, Bayesian Optimization-based MPC, and Genetic
Algorithm-based MPC.

TABLE I: Comparison of Adaptive MPC Tuning Methods
Aspect W-PH-MPC Bayesian Opt. Genetic Alg.
Adaptability Online Offline Offline
Sample Efficiency Low High Low
Computational Demand High Moderate moderate
Convergence Rate Slow Fast moderate
Robustness High moderate Moderate
Real-Time Suitability Yes No No

This comparison highlights that, although Bayesian Opti-
mization and Genetic Algorithm based MPC methods are
valuable for offline parameter tuning due to their efficiency and
global search capabilities, they generally lack the adaptability
required for real time applications. The proposed W-PH-MPC
framework, by contrast, provides continuous, online adaptation
of the MPC parameters, making it particularly suitable for
autonomous driving scenarios where environmental conditions
and vehicle dynamics may change unpredictably. This real
time adaptability enables the controller to maintain optimal
performance without manual retuning, providing a highly
responsive and flexible solution for dynamic driving environ-
ments. However, W-PH-MPC’s online nature means it must
solve an augmented quadratic program at each control step,
resulting in increased computational cost per step compared to
offline methods, in exchange for seamless real time parameter
adaptation.
This paper is structured as follows. Section II develops
the MPC-based ACC formulation, detailing vehicle dynam-
ics, cost function and constraint handling. Section III de-
fines the RL action spaces for continuous cost-weight tun-
ing and discrete prediction-horizon selection. Section IV in-
troduces signal scaling to normalize MPC cost terms, and
Section V designs a multi-objective reward balancing track-
ing accuracy, ride comfort and energy efficiency. Section
VI reviews the PPO and DDPG algorithms used for adap-
tive control. Section VII presents simulation studies in five
parts—training-phase performance, unseen-profile validation,
weights and prediction-horizon variation, comfort analysis and

computational metrics. Finally, Section VIII concludes and
outlines future research directions.

II. MPC-Based ACC
Our ACC takes into account various factors about the road
and traffic ahead, like the road’s slope, speed limits, and the
predicted speed of the car in front, to decide the best speed
for the host car. Model Predictive Control (MPC) is the main
method used in EACC because it turns the problem into an
online optimization task.

A. MPC Formulation for ACC
The MPC-based ACC optimizes the cost function

min
𝐹𝑡,𝑖 , 𝐹𝑏,𝑖 , 𝛿𝑠,𝑖 , 𝛿𝐹,𝑖

𝑘+𝐻−1∑︁
𝑗=𝑘

[
𝑓app (𝐹𝑡 ,𝑖 , 𝑣ℎ,𝑖) 𝑇𝑠 + 𝜔track 𝛿

2
𝑠,𝑖

+ 𝜔𝐹 𝛿2
𝐹,𝑖 + 𝜔𝑏 𝐹

2
𝑏,𝑖

]
(1)

subject to

𝑑𝑖+1 = 𝑑𝑖 +
𝑣𝑝,𝑖 + 𝑣𝑝,𝑖+1

2
𝑇𝑠 −

𝑣ℎ,𝑖 + 𝑣ℎ,𝑖+1
2

𝑇𝑠 , (2)

𝑣ℎ,𝑖+1 = 𝑣ℎ,𝑖 +
𝑇𝑠

𝑚eq

(
𝐹𝑡 ,𝑖 − 𝐹𝑏,𝑖 − 𝐹̄resist,𝑖

)
, (3)

𝑑𝑖+1 ≥ 𝑑min + ℎsafety 𝑣ℎ,𝑖+1, (4)
𝑑𝑖+1 ≤ 𝑑min + ℎtrack 𝑣ℎ,𝑖+1 + 𝛿𝑠,𝑖 , (5)

0 ≤ 𝐹𝑡 ,𝑖 ≤ 𝐹𝑡 ,max, (6)
𝐹𝑡 ,𝑖 ≤ 𝑎20 + 𝑎21 𝑣ℎ,𝑖 , (7)��𝐹𝑡 ,𝑖 − 𝐹𝑡 ,𝑖−1

�� ≤ Δ𝐹𝑡 ,max + 𝛿𝐹,𝑖 , (8)
0 ≤ 𝐹𝑏,𝑖 ≤ 𝐹brake,max, (9)
0 ≤ 𝑣ℎ,𝑖 ≤ 𝑣max,𝑖 . (10)

Here, 𝑇𝑠 is the sampling time in (1). The energy consumption
function 𝑓app (𝐹𝑡 , 𝑣) is a polynomial approximation of the
vehicle’s power consumption, given by

𝑓app (𝐹𝑡 , 𝑣) = 𝑝00+ 𝑝01𝐹𝑡 + 𝑝10𝑣+ 𝑝11𝐹𝑡𝑣+ 𝑝02𝐹
2
𝑡 + 𝑝20𝑣

2, (11)

where the coefficients 𝑝𝑖 𝑗 are determined offline through system
identification. In this function, 𝐹𝑡 represents the traction force
applied by the host vehicle and 𝑣 is its velocity. If the cost
function were comprised solely of the energy consumption
model, 𝑓app (𝐹𝑡 , 𝑣), as defined in (1), the host vehicle would
lack any motivation to move since 𝑓app (𝐹𝑡 , 𝑣) decreases with
a smaller traction force 𝐹𝑡 . To counter this, a second term,
𝛿2
𝑠,𝑖

, weighted by 𝜔track, is introduced. The slack variable
𝛿𝑠,𝑖 appearing in (5) and illustrated in Fig. 1 increases as a
penalty when the inter-vehicle distance 𝑑 falls below the desired
tracking distance 𝑑tracking, thereby encouraging the host vehicle
to accelerate. In (5), both 𝑑min and ℎtrack are constants.
The third component in (8) involves the slack variable 𝛿𝐹,𝑖 ,
which penalizes abrupt changes in the traction force 𝐹𝑡 between
consecutive control steps, as detailed in (8). Thus, 𝛿𝐹,𝑖 grows
larger when the variation in 𝐹𝑡 exceeds the maximum allowable
tolerance Δ𝐹𝑡 ,max, thereby promoting comfort by discouraging
strong accelerations.

The final term in (9) is included to limit the use of mechanical
braking force 𝐹𝑏 as the brakes dissipate kinetic energy. In (3),
the resistive force 𝐹̄resist is linearized to handle the nonlinear
behavior of air resistance 𝐹air. The inequality in (4) ensures
a minimum safety inter-vehicle distance, where the constant
ℎmin represents the minimum time headway. Additionally, (10)
restricts the maximum vehicle speed according to the road’s
speed limit 𝑣max, and the feasible region for 𝐹𝑡 is defined by the
piecewise linear constraints in (7).

Fig. 1: Design of the inter-car distance control for ACC

III. Action Space Definition for the Two Agents

The action space includes two key elements: the prediction
horizon and the MPC weight values, which are dynamically
adjusted through reinforcement learning. The MPC employs
a penalty-based method with slack variables to guarantee
feasibility and ease constraints when it is not possible to meet
them fully. This approach enables the RL agents to effectively
handle the constraints through the MPC’s penalty method, all
while optimizing control performance.
The prediction horizon is chosen from a fixed set of values,
allowing the agent to change how far ahead the controller plans.
This helps the system respond to different situations while
keeping calculations efficient.
The MPC weights are continuous values that balance objectives
such as energy efficiency, tracking precision, jerk minimiza-
tion, and constraint enforcement. By constraining the neural
network’s outputs to lie within predefined bounds, we prevent
extreme weight values and ensure consistently high control
performance.

A. Continuous Action Space (Weight Optimization by Agent 1)

The first RL agent dynamically adjusts the cost function weights

𝑎RL1 = 𝜋1 (𝑠) = [𝜔track, 𝜔𝑏] (12)

where 𝑠 represents the vehicle’s state, which includes speed,
inter-vehicle distance between the host and the preceding
vehicle, acceleration, and road conditions, and 𝜋1 (𝑠) is the
policy that maps the observed state to the optimal weights.
The weights are constrained:

𝜔min ≤ 𝜔track, 𝜔𝑏 ≤ 𝜔max (13)

By continuously adapting these parameters, the system can
balance energy efficiency, tracking accuracy, and passenger
comfort.

B. Discrete Action Space (Prediction Horizon Optimization by
Agent 2)
The discrete prediction-horizon selection by the second RL
agent is defined as follows. First, the number of available
horizons is

𝑁𝐻 = 𝐻max − 𝐻min + 1, (14)

where 𝐻min and 𝐻max are the minimum and maximum allowable
horizons. Next, the agent samples an index 𝑘 from its categorical
policy:

𝑘 ∼ 𝜋2 (𝑘 | 𝑠), 𝑘 ∈ {0, 1, . . . , 𝑁𝐻 − 1}. (15)

Finally, the selected prediction horizon is

𝑎RL2 = 𝐻min + 𝑘, (16)

which maps the sampled index into the actual horizon value.
𝐻min ensures real-time feasibility and 𝐻max allows for long-term
predictive planning in complex traffic conditions.

IV. Enhancing RL Learning with Signal Scaling in the
MPC Cost Function

To enhance training efficiency, signal scaling was applied
to normalize the terms in the MPC cost function, ensuring
comparable magnitudes and reducing the learning search space.
This approach helps the RL agent converge faster and focus
on learning the relative importance of cost terms, rather than
being biased by differences in their raw scales. While the MPC
controller maintains stability, the learned weights influence
performance aspects such as responsiveness, comfort, and
tracking quality.

Fig. 2: MPC–RL architecture..

The control loop uses a standard MPC scheme to receive states
and generate control actions as seen in Fig. 2. Both agents
observe the system states at each step and receive a scalar
reward that balances tracking error, ride comfort, and energy
efficiency. A PPO agent adapts the prediction horizon, while a
DDPG agent tunes the MPC cost-function weights. Each episode
lasts 𝑇 𝑓 seconds (𝑁ep = 𝑇 𝑓 /𝑇𝑠 steps, with 𝑇𝑠 the sampling

interval). During training, the PPO agent updates its policy
after collecting 𝑁𝑒 steps of experience, while the DDPG agent
updates continuously by sampling minibatches of size 𝑀 from
its replay buffer and applying soft target updates. After training,
only the learned policies are used to adjust MPC parameters
online.

V. Reward Function Design
We use a Gaussian-like distribution function, where rewards
are highest when the agent achieves low power consumption,
lower jerk, and accurate trajectory tracking. The exponential
formulation ensures that as any of these terms increase, the
reward will decrease, allowing the agent to understand the action
that resulted in a low reward is not desired. We adopt this
approach to prevent unintended behavior that exploits the reward
function. We design the system so that the agent is naturally
drawn toward an optimal operating point where both power
consumption and jerk are kept low while still maintaining good
traceability. The reward function then ultimately results as

𝑅 = 𝐴 · exp

(
−

(
𝑐2

1

2𝜎2
power

+
𝑐2

2

2𝜎2
jerk
+

𝑐2
3

2𝜎2
distance

))
(17)

where 𝐴 scales the overall reward magnitude, and 𝑐1, 𝑐2,
and 𝑐3 represent power consumption, longitudinal jerk, and
following-distance error, respectively. The parameters 𝜎power,
𝜎jerk, and 𝜎distance control the rate at which the reward decays
as each cost term increases.In our implementation, we set
𝜎power = 2.75, 𝜎jerk = 0.73, and 𝜎distance = 9.25 by running
a baseline controller on typical driving cycles and computing
the sample standard deviations of power, jerk, and distance-error
signals. These values reflect real signal variability, helping the
reward function provide smooth gradients for learning while
penalizing large deviations in a data-driven way.

VI. RL Agents Algorithm
We choose the PPO agent for prediction horizon selection, using
on-policy learning from recent interactions to keep changes
smooth and predictable. For continuous weight tuning, we use
DDPG, which leverages a replay buffer for faster fine-grained
adjustments and employs soft-target updates with scheduled
exploration noise.

A. Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) is an on-policy reinforce-
ment learning algorithm designed to train stochastic policies in
a stable and robust manner. The core principle is to maximize
a surrogate objective function while constraining each policy
update to prevent overly large, destabilizing changes. In practice,
the agent initializes its policy (actor) and value function
(critic) networks and interacts with the environment to collect
trajectories of states, actions, rewards, and next states. Based
on this experience, PPO estimates the cumulative discounted
returns and computes advantage values, which quantify how
much better a specific action performs compared to the expected
value under the current policy. For each sample, the algorithm

then computes the probability ratio between the updated policy
and the policy that generated the data. To ensure safe and
gradual learning, this ratio is clipped within a predefined range,
keeping the new policy close to the old one and preventing
sudden shifts in behavior. The actor network is updated by
maximizing this clipped objective via gradient ascent, while
the critic network is trained to minimize the error between
its value predictions and the observed returns. This cycle of
data collection, advantage estimation, and clipped policy and
value function updates contributes to the learning process and
is repeated until the policy achieves satisfactory performance.

Algorithm 1 Proximal Policy Optimization (PPO)
Initialize: Policy parameters 𝜃, value function parameters 𝜙
Repeat for each episode:
• Collect trajectories {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1} by running policy 𝜋𝜃 in the

environment
• Compute advantage estimates 𝐴̂𝑡 using Generalized Advantage

Estimation (GAE)
• Compute rewards-to-go 𝑅𝑡
• For each policy update step:

– Compute policy ratio:

𝑟𝑡 (𝜃) =
𝜋𝜃 (𝑎𝑡 |𝑠𝑡)
𝜋𝜃old (𝑎𝑡 |𝑠𝑡)

– Compute surrogate objective:

𝐿PPO (𝜃) = E
[
min

(
𝑟𝑡 (𝜃) 𝐴̂𝑡 , clip(𝑟𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖) 𝐴̂𝑡

)]
– Update policy using gradient ascent:

𝜃 ← 𝜃 + 𝛼∇𝜃 𝐿PPO (𝜃)

• For each value function update step:
– Compute value function loss:

𝐿𝑉 (𝜙) = E
[(
𝑉𝜙 (𝑠𝑡) − 𝑅𝑡

)2
]

– Update value function using gradient descent:

𝜙← 𝜙 − 𝛼∇𝜙𝐿𝑉 (𝜙)

The objective function, incorporating this constraint, is given
by

𝐿𝑃𝑃𝑂 (𝜃) = E
[
min{𝑟𝑡 (𝜃) · 𝐴̂𝑡 , clip(𝑟𝑡 (𝜃), 1 − 𝜖, 1 + 𝜖) · 𝐴̂𝑡

]
(18)

𝑟𝑡 (𝜃) denotes the ratio of the new policy to the old policy, i.e.

𝑟𝑡 (𝜃) =
𝜋𝜃 (𝑎𝑡 |𝑠𝑡)
𝜋𝜃old (𝑎𝑡 |𝑠𝑡)

(19)

This function represents the ratio of the probability of taking
action 𝑎𝑡 in state 𝑠𝑡 under the current policy 𝜋𝜃 to the probability
of taking the same action under the old policy 𝜋𝜃old . Specifically,
𝜋𝜃 (𝑎𝑡 |𝑠𝑡) is the probability of selecting action 𝑎𝑡 given state 𝑠𝑡
under the new policy parameterized by 𝜃, while 𝜋𝜃old (𝑎𝑡 |𝑠𝑡) is
the probability of selecting action 𝑎𝑡 given state 𝑠𝑡 under the old
policy parameterized by 𝜃old. The function 𝑟𝑡 (𝜃) is essential for
ensuring that the updates to the policy are not too large, which
helps maintain the stability of training in PPO.

The advantage function, denoted by 𝐴̂𝑡 , measures how much
better taking a particular action at time 𝑡 is compared to the
average value of the state. In the PPO agent, it is computed
using Generalized Advantage Estimation (GAE) from

𝐴̂𝑡 =

∞∑︁
𝑙=0
(𝛾𝜆)𝑙 𝛿𝑡+𝑙 , (20)

with the temporal-difference error 𝛿𝑡 defined as

𝛿𝑡 = 𝑟𝑡 + 𝛾 𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡). (21)

In these equations, 𝑟𝑡 represents the reward received at time
𝑡, 𝑉 (𝑠𝑡) is the value function for state 𝑠𝑡 , 𝛾 is the discount
factor controlling the importance of future rewards, and 𝜆 is a
parameter that balances bias and variance.

B. Deep Deterministic Policy Gradient (DDPG)
Deep Deterministic Policy Gradient (DDPG) is an off-policy,
model-free reinforcement learning algorithm designed for con-
tinuous action spaces. It employs an actor-critic architecture,
where the actor network maps states to continuous actions,
and the critic network estimates the Q-value of state-action
pairs to represent the expected cumulative reward. To ensure
sufficient exploration, the agent selects actions by adding noise
to the actor’s output. After executing an action, the resulting
state, action, reward, and next state are stored in a replay
buffer. During training, the agent samples mini-batches from
this buffer to update its networks, which helps decorrelate
experiences and stabilize learning. The critic network is trained
to minimize the error between its Q-value predictions and target
Q-values computed using the received reward and the target
networks. Specifically, the target Q-value is calculated as the
immediate reward plus the discounted estimate of the next state’s
value, given by the target critic and target actor. The actor
network is updated through the deterministic policy gradient
to maximize the expected Q-value predicted by the critic.
To further improve stability, DDPG maintains separate target
actor and target critic networks that slowly track the learned
networks via soft updates. Combining deterministic policy
gradients, target networks, exploration noise, and experience
replay enables DDPG to achieve stable and sample-efficient
learning for complex continuous control tasks.
The critic’s objective is to minimize the error between its
predicted Q-values and the target Q-values given by the Bellman
equation. The loss function is:

𝐿𝑄 (𝜙) =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑦𝑖 −𝑄𝜙 (𝑠𝑖 , 𝑎𝑖)

)2
, (22)

where the target value 𝑦𝑖 is defined as:

𝑦𝑖 = 𝑟𝑖 + 𝛾 𝑄𝜙′
(
𝑠𝑖+1, 𝜇𝜃 ′ (𝑠𝑖+1)

)
. (23)

Here, 𝜙 and 𝜃 are the parameters of the critic and actor
networks, respectively, while 𝜙′ and 𝜃′ denote the corresponding
target network parameters. The target Q-value 𝑦𝑖 combines the

Algorithm 2 Deep Deterministic Policy Gradient (DDPG)
Initialize:
• Actor network 𝜇𝜃 and critic network 𝑄𝜙 with parameters 𝜃, 𝜙
• Target networks 𝜇𝜃 ′ and 𝑄𝜙′ with parameters 𝜃′ ← 𝜃, 𝜙′ ← 𝜙

• Replay buffer D
• Exploration noise process N

Repeat for each episode:
• For each time step:

– Select action 𝑎𝑡 = 𝜇𝜃 (𝑠𝑡) + N𝑡

– Execute action 𝑎𝑡 , observe reward 𝑟𝑡 and next state 𝑠𝑡+1
– Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in replay buffer D

• For each gradient update step:
– Sample minibatch of transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from D
– Compute target Q-value:

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄𝜙′ (𝑠𝑖+1, 𝜇𝜃 ′ (𝑠𝑖+1))

– Compute critic loss:

𝐿𝑄 (𝜙) = E
[(
𝑦𝑖 −𝑄𝜙 (𝑠𝑖 , 𝑎𝑖)

)2
]

– Minimize 𝐿𝑄 (𝜙) using gradient descent:

𝜙← 𝜙 − 𝛼𝑄∇𝜙𝐿𝑄 (𝜙)

– Compute actor policy gradient:

∇𝜃 𝐽 = E
[
∇𝜃 𝜇𝜃 (𝑠)∇𝑎𝑄𝜙 (𝑠, 𝑎)

��
𝑎=𝜇𝜃 (𝑠)

]
– Update actor network using gradient ascent:

𝜃 ← 𝜃 + 𝛼𝜇∇𝜃 𝐽

– Soft update target networks:

𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′

𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′

immediate reward 𝑟𝑖 and the discounted estimate of the next
state’s value, using the target critic 𝑄𝜙′ and target actor 𝜇𝜃 ′ .

VII. Results and discussion
A. Training Settings
In our experiments, the simulation is implemented in Simulink
using the MPCmodel, with two agent blocks interacting with the
environment. The observation space is split into two parts: a 5-
dimensional vector containing 𝑑ℎ, 𝑣ℎ, 𝑎ℎ, the current prediction
horizon 𝑁 , and jerk for the PPO agent, and a 7-dimensional
vector with similar features but excluding 𝑁 and including
the MPC weight parameters controlled by the DDPG agent.
The action space consists of two components: a discrete set
selecting the prediction horizon from 𝑁min to 𝑁max, and a
continuous space adjusting the MPC weight parameters within
specified bounds. With a sample time 𝑇𝑠 = 0.1 seconds and
total simulation time 𝑇𝑒𝑝 = 386 seconds, each episode contains
MaxStepsPerEpisode =

𝑇𝑒𝑝
𝑇𝑠

= 3860 steps. The two agents are
trained concurrently under a decentralized learning strategy over
300 episodes.The PPO agent’s MLP actor and critic each have
two 128-unit ReLU layers; the actor outputs discrete actions
over 5 horizons (5–9) without activation, and the critic outputs a
scalar. The DDPG actor has two 128-unit ReLU layers followed

by a tanh scaled to MPC bounds. Its critic processes state and
action separately through 128-unit ReLU layers, merges them,
and outputs a scalar Q-value. Learning rates are 3×10−4/3×10−3

(PPO actor/critic) and 1×10−4/1×10−3 (DDPG). DDPG uses
Gaussian noise (𝜎 = 0.2) for exploration. A fixed seed ensures
reproducibility.

B. Tracking-Optimized Mode
Figure 3 shows the planned velocity profile 𝑉𝑝 from a segment
of a Real Driving Emissions (RDE) cycle used during training.

Fig. 3: Performance evaluation of the RL–MPC approach on a
velocity profile included in the training phase.

The RDE cycle is a standardized, publicly administered driving
test designed to capture a broad spectrum of real-world condi-
tions. In our experiments, we use a 6.5-minute velocity profile
recorded from a real vehicle on public roads, which is partitioned
into three phases—Phase A (0.0–2.0 min, urban stop-and-go,
0–50 km/h), Phase B (2.0–4.2 min, suburban mixed-flow, up
to 50 km/h with occasional stops), and Phase C (4.2–6.5 min,
high-speed segments up to 72 km/h with intermittent slowdowns
and stop-and-go behavior)—to ensure that the training data span
everything from dense congestion to sustained higher-speed
driving. During training, the host vehicle’s MPC-based ACC
system learns to adjust its cost-function weights and prediction
horizon online to track this profile smoothly. To evaluate
generalization, the trained DRL agents are then applied to
a different segment of an RDE drive—one featuring sudden
accelerations and decelerations not seen during training and
their closed-loop performance (in terms of tracking error, jerk,
and energy consumption) is compared against a fixed-parameter
MPC baseline.
Figure 3 also compares the tracking performance of the trained
RL agents (W-PH-MPC) with that of a baseline using fixed
parameters MPC. The first two subplots demonstrate that, under
the MPC–RL policy, the host vehicle 𝑣ℎ follows the preceding
vehicle 𝑣𝑝 more closely than the fixed-parameters MPC,
demonstrating the RL-enhanced controller’s performance. The

third subplot shows the inter-distance 𝑑ℎ from the host vehicle to
the preceding vehicle over time. The cyan curve representing the
performance of the RL agents stays below the magenta baseline,
indicating that the agents can maintain a shorter following
distance, resulting in better tracking performance by 17.07%.
Note that the host vehicle is designed with a hard constraint to
maintain a minimum safety inter-distance of 4.5 meters from the
preceding vehicle at all times to avoid critical driving situations.

C. Validation on a Different Velocity Profile
To further evaluate the generalization capability of the proposed
RL–MPC framework, we assess its performance on a 14.5-
minute segment of an RDE cycle that includes both rural and
urban driving conditions not present in the training dataset, as
shown in Fig. 4. The first two subplots show that under the MPC-
RL policy (W-PH-MPC), the host vehicle 𝑣ℎ tracks the preced-
ing vehicle 𝑣𝑝 more closely than the fixed-parameters MPC
baseline, with a 16.4% improvement in longitudinal tracking
performance. Finally, the bottom subplot of Fig. 4 shows that
the RL–MPC policy maintains tighter inter-vehicle distances
for tracking purposes, reaffirming its robust performance across
diverse driving scenarios.

Fig. 4: Performance validation across different velocity profile
that was not used during training

D. Weights and Prediction Horizon Variation
In this subsection, we show how reinforcement learning agents
dynamically modulate MPC weights and the prediction horizon,
directly affecting the slack variables associated with inter-
vehicle distance constraints.
The slack variable of the distance, weighted by 𝜔track, changes
over time, indicating how the agent relaxes or tightens the
distance constraint, as shown in Figure 5. Originally ranging
from 500 to 1000, it was scaled to [0.5, 1] to reduce exploration
and accelerate the training process. The Brake Change Penalty,
weighted by 𝜔b, regulates braking intensity to ensure smooth
deceleration. changes in the Brake Change Penalty As seen in

.55

.7

.85

1

.01

0.04

0.07

.1

50 100 150 200 250 300 350
Time (s)

6

7

8

9

Fig. 5: Weights and prediction horizon variations.

Figure 5, indicate how the system adaptively adjusts its braking
behavior over time.
Model Predictive Control (MPC) uses a finite prediction horizon
to optimize future control actions. A longer horizon improves
foresight but increases computational cost, while a shorter one is
faster but potentially suboptimal. The prediction horizon varies
between 𝐻min and 𝐻max, as seen in Figure 5, indicating transi-
tions between short- and long-term planning. These variations
suggest an adaptive strategy that adjusts the planning scope
based on system requirements or changing conditions.

E. Comfortability and Time Profile Consumption
Table II summarizes the longitudinal jerk statistics across
different driving scenarios to assess ride comfort.

TABLE II: Longitudinal Jerk Statistics for Comfort Analysis
Case Max Abs [m/s3] Median [m/s3] 75th Perc. [m/s3]

VP1-Fixed 3.3502 0.0086 0.1731
VP1-Varying 3.2633 0.0004 0.1798
VP2-Fixed 2.9294 0.0060 0.0908

VP2-Varying 2.8644 0.0005 0.0960

A key observation is that using the varying weight–prediction
horizon (W–PH) configuration reduces the maximum peak jerk
values across both velocity profiles, indicating fewer extreme
accelerations and a smoother overall ride. The median jerk,
which represents the middle value in the dataset, remains
extremely low—almost zero—suggesting that during most of
the drive, the vehicle experiences little to no sudden changes
in acceleration. The 75th percentile jerk represents the value
below which 75% of the jerk measurements fall, highlighting
how the system performs during more active driving segments

without being influenced by rare, extreme events. Although this
value shows a slight increase under the varying configuration,
the trade-off appears beneficial, as it enables better tracking
performance and still results in reduced peak jerk. Furthermore,
the maximum peak jerk is reduced by approximately 2.52% for
VP1 and 2.22% for VP2 under the varying W–PH setup. These
results demonstrate that the varying W–PH setup effectively
improves both tracking accuracy and ride comfort.

Time (s) Consumption-Profile 1 Consumption-Profile 2
Fixed parameters MPC 11.0184 10.6575
varying W-PH-MPC 11.0241 10.6592

TABLE III: Time profile consumption for velocity profiles 1
and 2

The tracking performance was considerably improved by a
modest rise in time profile consumption, with no adverse impact
on energy efficiency as shown in Table III.
For real-time implementation, the control and policy modules
designed in MATLAB/Simulink can be converted to ANSI/ISO
C code using MATLAB Coder or Simulink Coder. These tools
generate efficient, portable C code from supported functions or
models, which can be compiled for embedded targets like ARM
Cortex-M (e.g., STM32), dSPACE, Speedgoat, or NVIDIA
Jetson—ensuring compatibility with real-time automotive and
control systems.

VIII. Conclusion
To address the difficulties of manually tuning the MPC cost
function and selecting an appropriate prediction horizon, we
have introduced a Weights and Prediction Horizon Varying
MPC (W-PH-MPC), which autonomously learns a policy to
adjust both the cost function weights and the prediction horizon
in real time. With the help of advanced Deep Reinforcement
Learning (RL) algorithms, our method tunes these parameters
to achieve better control performance and adaptability. As
the RL-driven W-PH-MPC framework provides a flexible and
automated tuning approach, it can be applied to different control
systems, eliminating the reliance on manual adjustments.

References
[1] Y. Jia, A. Abdelkarim, X. Klingbeil, R. Savelsberg, and D. Görges,

“Performance evaluation of energy-optimal adaptive cruise control in
simulation and on a test track,” IFAC-PapersOnLine, vol. 56, no. 2, pp.
4994–5000, 2023.

[2] A. Abdelkarim and P. Zhang, “Optimal scheduling of preventive main-
tenance for safety instrumented systems based on mixed-integer pro-
gramming,” in Model-Based Safety and Assessment: 7th International
Symposium, IMBSA 2020, Lisbon, Portugal, September 14–16, 2020,
Proceedings 7. Springer, 2020, pp. 83–96.

[3] A. Abdelkarim, Y. Jia, and D. Gorges, “Optimization of vehicle-to-grid
profiles for peak shaving in microgrids considering battery health,” in
IECON 2023-49th Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 2023, pp. 1–6.

[4] A. Abdelkarim, Y. Jia, and D. Görges, “An accelerated interior-point
method for convex optimization leveraging backtracking mitigation,” in
IECON 2023-49th Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 2023, pp. 1–6.

[5] A. Abdelkarim, “Development of numerical solvers for online opti-
mization with application to mpc-based energy-optimal adaptive cruise
control,” master thesis, Technische Universität Kaiserslautern, 2020.
Available online at http://dx.doi.org/10.13140/RG.2.2.11897.28000, ac-
cessed: 2025-02-28.

[6] V. Ramasamy, R. K. Sidharthan, R. Kannan, and G. Muralidharan,
“Optimal tuning of model predictive controller weights using genetic
algorithm with interactive decision tree for industrial cement kiln process,”
Processes, vol. 7, no. 12, p. 938, 2019.

[7] A. S. Yamashita, A. C. Zanin, and D. Odloak, “Tuning of model predictive
control with multi-objective optimization,” Brazilian Journal of Chemical
Engineering, vol. 33, no. 2, pp. 333–346, 2016.

[8] G. Shah and S. Engell, “Tuning mpc for desired closed-loop performance
for mimo systems,” in Proceedings of the 2011 American Control
Conference. IEEE, 2011, pp. 4404–4409.

[9] A. Al-Ghazzawi, E. Ali, A. Nouh, and E. Zafiriou, “On-line tuning strategy
for model predictive controllers,” Journal of Process Control, vol. 11,
no. 3, pp. 265–284, 2001.

[10] D. Stenger, M. Ay, and D. Abel, “Robust parametrization of a model pre-
dictive controller for a cnc machining center using bayesian optimization,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 10 388–10 394, 2020.

[11] M. Mehndiratta, E. Camci, and E. Kayacan, “Automated tuning of
nonlinear model predictive controller by reinforcement learning,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 3016–3021.

[12] M. Soliman, O. Malik, and D. T. Westwick, “Multiple model predictive
control for wind turbines with doubly fed induction generators,” IEEE
Transactions on Sustainable Energy, vol. 2, no. 3, pp. 215–225, 2011.

[13] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng, “A linear
time varying model predictive control approach to the integrated vehicle
dynamics control problem in autonomous systems,” in 2007 46th IEEE
conference on decision and control. IEEE, 2007, pp. 2980–2985.

[14] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Switching model predictive
attitude control for a quadrotor helicopter subject to atmospheric distur-
bances,” Control Engineering Practice, vol. 19, no. 10, pp. 1195–1207,
2011.

[15] I. Masar and E. Stöhr, “Gain-scheduled lqr-control for an autonomous
airship,” in 18th International Conference on Process Control, 2011, pp.
14–17.

[16] M. X. Huang and I. Kolmanovsky, “Switch gain scheduled explicit model
predictive control of diesel engines,” Sep. 19 2017, uS Patent 9,765,621.

[17] R. G. Patel and J. J. Trivedi, “Sagd real-time production optimization using
adaptive and gain-scheduled model-predictive-control: A field case study,”
in SPE Western Regional Meeting. SPE, 2017, p. D051S016R006.

[18] Y. Wei, Y. Wei, Y. Gao, H. Qi, X. Guo, M. Li, and D. Zhang, “A variable
prediction horizon self-tuning method for nonlinear model predictive
speed control on pmsm rotor position system,” IEEE Access, vol. 9, pp.
78 812–78 822, 2021.

[19] X. Du, K. K. K. Htet, and K. K. Tan, “Development of a genetic-algorithm-
based nonlinear model predictive control scheme on velocity and steering
of autonomous vehicles,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 11, pp. 6970–6977, 2016.

[20] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-
based model predictive control: Toward safe learning in control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 3, no. 1, pp.
269–296, 2020.

[21] G. Wang, Q.-S. Jia, J. Qiao, J. Bi, and M. Zhou, “Deep learning-based
model predictive control for continuous stirred-tank reactor system,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, pp.
3643–3652, 2021.

[22] M. Rokonuzzaman, N. Mohajer, S. Nahavandi, and S. Mohamed, “Model
predictive control with learned vehicle dynamics for autonomous vehicle
path tracking,” IEEE Access, vol. 9, pp. 128 233–128 249, 2021.

[23] H. Bao, Q. Kang, X. Shi, M. Zhou, H. Li, J. An, and K. Sedraoui,
“Moment-based model predictive control of autonomous systems,” IEEE
Transactions on Intelligent Vehicles, vol. 8, pp. 2939–2953, 2023.

[24] B. Zarrouki, V. Klos, N. Heppner, S. Schwan, R. Ritschel, and
R. Voswinkel, “Weights-varying mpc for autonomous vehicle guidance:
A deep reinforcement learning approach,” in Proceedings of the 2021
European Control Conference (ECC). Delft, The Netherlands: IEEE,
2021.

[25] B. Zarrouki, M. Spanakakis, and J. Betz, “A safe reinforcement learning
driven weights-varying model predictive control for autonomous vehicle
motion control,” arXiv preprint arXiv:2402.02624, 2024, available:
https://arxiv.org/abs/2402.02624.

