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Abstract—Digital beamforming is a critical technology for
next-generation satellite communications. Conventional solutions
in current missions primarily rely on hybrid analog-digital
architectures due to the significant power consumption challenges
of a fully-digital implementation. For future systems, Fast Fourier
Transform (FFT)-based beamforming has been proposed as
an efficient digital alternative, especially for managing many
beams. However, the use of a FFT beamforming alone is not
compatible with non-uniform antennas and beams. This inflexi-
bility poses a significant challenge for modern satellite systems,
which require beam reconfigurability to accommodate changing
traffic demands. The Non-Uniform FFT (NUFFT) offers the
needed flexibility for non-uniform grids, but it involves higher
computational costs due to extra processing steps. This paper
presents a new method to lower this cost by mapping the spatial
samples onto a hexagonal grid instead of the traditional Cartesian
grid. Taking advantage of the efficient 2D sampling efficiency
of the hexagonal lattice, our approach uses circularly symmetric
windows more effectively. This efficiency allows for more accurate
signal reconstruction with fewer operations. The hexagonal
transformation offers a more power-efficient and adaptable way
to achieve real-time, dynamic beam steering required in advanced
satellite systems.

Index Terms—Digital beamforming, non-uniform arrays,
NUFFT, hexagonal sampling, satellite communications, FFT.

I. INTRODUCTION

The demand for higher throughput and greater flexibility in
satellite communication (SatCom) systems has driven signifi-
cant interest in fully-digital beamforming architectures [1]. In
contrast to current-generation systems, which predominantly
use power-efficient but less flexible hybrid analog-digital
beamformers, future payloads are envisioned to be fully dig-
ital. This transition promises unprecedented reconfigurability
in generating and steering a massive number of beams, which
is essential for meeting dynamic traffic demands [2]. However,
the main obstacle to realizing fully-digital payloads remains
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Fig. 1: Illustration of non-uniform antenna arrays and reconfigurable
beam lattices for satellite coverage [8] [9].

the high power consumption and computational complexity as-
sociated with processing signals for very-large antenna arrays.

An effective method to reduce the computational load of
digital beamforming (DB) is to leverage the Fast Fourier
Transform (FFT) [3]. For a uniform planar array generating
a corresponding uniform grid of beams, the beamforming
operation is equivalent to a 2D Discrete Fourier Transform
(DFT), which can be computed efficiently using a 2D-FFT
algorithm. This approach reduces the complexity from O(N?)
to O(NlogN), where N is the total number of antenna
elements [4], [5]. This computational saving makes FFT-based
beamforming a compelling solution for future systems with
thousands of beams and array elements [6].

However, the strict reliance of the FFT on a uniform
structure for both the antenna elements and the beam po-
sitions imposes a fundamental limitation. Modern SatCom
systems, particularly those in Non-Geostationary Satellite Or-
bits (NGSO), require the ability to dynamically reconfigure
beam patterns to adapt to changing user density and traffic
hotspots [7]. Furthermore, the use of non-uniform arrays, such
as sparse or thinned lattices, is desirable for reducing the total
number of radiating elements and controlling sidelobe levels
[8]. The inherent rigidity of the standard FFT algorithm makes
it incompatible with these requirements.

The Non-Uniform Fast Fourier Transform (NUFFT) frame-
work was developed to bridge this gap, enabling the appli-
cation of FFT-level efficiency to non-uniformly sampled data
[10], [11]. The NUFFT framework is generally categorized
into three distinct problems. The Type 1 NUFFT evaluates
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Fig. 2: Conceptual block diagram of a conventional NUFFT-based
beamformer, showing the pre-processing, FFT, and post-processing
stages. This architecture forms the baseline against which our pro-
posed hexagonal transformation method is compared.

the transform at non-uniform outputs from uniform spatial
data. Conversely, the Type 2 NUFFT, the adjoint of Type
1, evaluates the transform at uniform frequencies from non-
uniform inputs. The most general case, the Type 3 NUFFT,
handles both non-uniform input and ouput samples. Our pro-
posed approach is suitable for all cases and is of particular
interest for the Type-3 operation. Table I shows the mapping
of these three NUFFT types into the actual transmission and
reception scenarios. The core of these NUFFT algorithms is
the interpolation step, which relies on convolving the data with
a carefully chosen windowing function at the non-uniform
domain and then applying a scaling function at the uniform
domain. Fig. 2 shows a pictorial description of the processing
chain for the reception operation using a non-uniform array.
The pre-processing block is in charge of the interpolation of
the non-uniformly sampled data, and the post-processing block
does the scaling in accordance with the interpolation function
in use, being a sampled version of the Fourier transform of the
interpolation function. Different kinds of kernel interpolation
functions have been proposed in the literature. A common
choice for this function is the Kaiser-Bessel window, which
is known to be optimal from a least mean square error
reconstruction criterion [12], [13]. For a 1D case, the Kaiser-
Bessel window is given by:
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where W is the window width or support, Iy(-) is the zeroth-
order modified Bessel function of the first kind, and /3 is a
shape parameter that controls the trade-off between main-lobe
width and side-lobe level. For 2D problems on a Cartesian
grid, this window is typically applied separately along each
dimension. While effective, this separable application is sub-
optimal for circularly band-limited signals and motivates our
proposed approach. In this paper, we propose an approach
that significantly improves the accuracy of the DB process
while keeping the same computational costs as the Cartesian
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NUFFT. The key contribution is the use of a hexagonal grid for
the intermediate uniform domain, instead of the conventional
Cartesian (rectangular) grid. A hexagonal lattice is known to
be the most efficient method for sampling 2D signals. By
mapping the non-uniform data to a hexagonal grid, we can use
circularly symmetric windowing functions more effectively,
leading to a more accurate signal reconstruction with fewer
computational operations. This hexagonal transformation of-
fers a more power-efficient pathway to achieving the full
flexibility required for next-generation, very-large non-uniform
arrays. The remainder of this paper is organized as follows.
Section II describes the system model for DB with non-
uniform arrays. Section III details the proposed algorithm
based on hexagonal transformations. Section IV presents a
performance assessment and comparison with conventional
methods. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We model an active planar antenna array for a satellite com-
munications payload, designed to operate in both transmission
(Tx) and reception (Rx) modes. A key aspect of this model
is its ability to handle non-uniformity in both the antenna
element positions and the beam placement. While the physical
locations of the array elements are fixed after deployment,
the grid of beams is desired to be fully reconfigurable during
operation to adapt to changing traffic conditions. The array
is composed of NN radiating elements located at arbitrary,
non-uniform positions in the zy-plane. The position of the
n-th element is given by the vector p, = (z,yn) for
n = 0,1,...,N — 1. An example of such a geometry is
shown in Fig. 3, which illustrates a Density-Tapered aperiodic
Array obtained through a density-driven synthesis approach
[14]. While this particular configuration is used as a reference,
the proposed beamforming technique is general and applicable
to other types of non-uniform arrays. The array is required to
form M simultaneous beams, each pointing towards a specific
direction. These directions are also potentially non-uniform
and are defined in terms of their direction cosines (,, U, ),
where u = sinfcos¢ and v = sinfsin ¢. The wave vector
for the m-th beam is thus k,,, = 2T’T(um, Um), Where X is the
wavelength.

For the next analysis, we will focus on the receive (Rx) case
without loss of generality, as the principles and performance
trade-offs are directly applicable to the receive (Rx) case
through reciprocity. The overall beamforming operation can
be represented by the matrix-vector multiplication:

x = Wr, 2)

where r € CM is the vector of received complex values in each
of the N antennas, x € CM is the vector of M recovered
signals, and W € CM>*¥ js the beamforming matrix. The
elements of W are given by:

(Wl = ¢ 9T = 70X (mnomyn) — (3



TABLE I: Classification of Beamforming Scenarios according to NUFFT Type Definitions

Type 1 NUFFT Type 2 NUFFT Type 3 NUFFT
(Uniform Input — Non-Uniform (Non-Uniform Input — Uniform (Non-Uniform Input — Non-Uniform
Output) Output) Output)

Reception (Rx) Uniform Array (Input) —

Non-Uniform Beams (Output)

Non-Uniform Array (Input) —

Non-Uniform Array (Input) —

Uniform Beams (Output) Non-Uniform Beams (Output)

Transmission (Tx) Uniform Beams (Input) —

Non-Uniform Array (Output)

Non-Uniform Beams (Input) —

Non-Uniform Beams (Input) —
Non-Uniform Array (Output)

Uniform Array (Output)
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Fig. 3: Example of a Density-Tapered aperiodic Array geometry
containing 688 unit-cell antennas. The shown z and y values are
normalized to the wavelength.

Remark 1. The direct computation of (2) has a complexity of
O(MN), which is prohibitive for the large values of M and
N envisioned for future systems.

The primary goal of the beamforming network is to maxi-
mize the signal quality for each user. A key metric for this is
the Signal-to-Interference Ratio (SIR). Let us consider a user
intended to be served by the k-th beam, located at the direction
(ug, vk ). The signal power received by this user is proportional
to the squared magnitude of the array factor of the k-th beam
evaluated at its pointing direction. The interference is the
undesired power contribution from all other beams, m # k,
at that same location. Assuming the data symbols transmitted
on each beam are independent and have equal power, the SIR
for user k£ can be expressed as

| A (g, vi) |2
> matke [Am (i, vig) |2

where A, (u,v) is the far-field array factor of the m-th beam
evaluated at direction (u,v), which is given by:

SIR;, = “4)

N—-1
Am(u,v) — Z e_j2Tﬂ-[(“mr_“)fn“‘(vm_”)yn]. (5)
n=0

Given the computational barrier of direct computation, ex-
pressed in Remark 1, efficient algorithms like the NUFFT
are necessary. The following section details our proposed
enhancement to the conventional NUFFT framework to further
improve its efficiency.

III. PROPOSED ALGORITHM FOR NON-UNIFORM ARRAY
AND BEAM LATTICES

The conventional NUFFT approach, which maps non-
uniform data onto a Cartesian grid, suffers from inefficiencies
when dealing with signals whose spectral support is approxi-
mately circular, as is common in antenna array theory. The use
of separable windowing functions on a square grid requires a
higher sampling density than theoretically necessary, leading
to increased computational cost in the FFT stage. The core
of the proposed method is to map the non-uniform spatial
samples (from the array elements or for the beams) onto a
regular, oversampled hexagonal grid. This process can be
conceptualized in two steps.

1) Step One: A set of base points on a standard rectangular
grid (Xo,Y)) can be defined with spacings d, and d:

Xo = kdgho, Vke{l,...,M;},

6
Yo =ldyhe, VI€{l,...,N,}, ©

where )\g is a reference wavelength, and M, N, define the
grid size.

2) Step Two: A linear matrix transformation translates the
rectangular coordinates into a hexagonal lattice. The resulting
hexagonal grid points (X,Y") are given by:

X [V3/2 0] [Xo

o=
Once the target uniform hexagonal grid is defined, the interpo-
lation from the non-uniform sample points is performed. For
each non-uniform point, we identify the nearest hexagonal grid
points and distribute its value among them using a circularly

symmetric windowing function, such as a 2D version of the
Kaiser-Bessel window defined in (1).

)

Remark 2. After the non-uniform data has been gridded
onto the hexagonal lattice, the system processes the samples
with a standard 2D FFT, thus preserving the computational
advantages. The final step involves a deconvolution in the
transform domain to compensate for the effect of the inter-
polation window, similar to the conventional NUFFT process.

IV. PERFORMANCE ASSESSMENT

In this section, we evaluate the performance of the pro-
posed hexagonal grid-based NUFFT beamformer against a
conventional NUFFT implementation that uses a Cartesian
(square) grid. The primary goal is to demonstrate that for an
identical computational budget, our hexagonal approach yields
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Fig. 4: Beamforming pattern of the aperiodic array of Figure 3 when
no steering is applied.

a superior beamforming pattern. To ensure a fair comparison,
the computational cost for both methods was kept the same.
Both NUFFT implementations utilize a 64x64-point 2D-
FFT for the core transform. The interpolation stage for both
methods is based on a convolution using a kernel derived from
a Kaiser-Bessel function. For each non-uniform sample, this
continuous interpolation function is discretized over a 13x13
support grid. The smallest coefficients within this support
are then nullified, leaving 85 valid points that are used to
distribute the signal’s value onto the neighboring uniform grid
points.

To establish an ideal benchmark, we first compute the
reference radiation pattern using a brute-force calculation of
the Array Factor, as defined by the double summation in (5).
This pattern, shown in Fig. 4, represents the “ground truth”
directivity and serves as the benchmark against which we
measure the accuracy of both NUFFT implementations.

The core of our performance evaluation is presented in
Fig. 5, which provides a direct comparison of the same beam
generated by both methods. Because the underlying uniform
grids are different, the beam indices are not identical (1,14 for
the square grid vs. 1,16 for the hexagonal); however, care was
taken to ensure both beams point to the same spatial direction
in the uv-plane.

Figures 5a and 5b illustrate the full 3D directivity patterns.
While both methods successfully reconstruct the main beam,
the key difference lies in the quality of this reconstruction. A
more detailed analysis is provided by the 2D cross-sections
in Figures 5c¢ and 5d. These plots clearly show that for the
same computational cost, the hexagonal grid approach results
in a cleaner beam pattern with lower sidelobe levels and
a more circularly symmetric main lobe. This demonstrates
that the hexagonal lattice, due to its superior 2D sampling
properties, allows the interpolation kernel to reconstruct the
signal more accurately. The advantages of these results are
further increased because the parts that are most affected by
Side Lobe Level (SLL) are in the middle of the pattern, but the
designed base radiation pattern will leave the high interference
components out of the field of view.

V. CONCLUSIONS

This paper proposes a hexagonally transformed NUFFT
that significantly improves the quality of digital beamforming
in non-uniform arrays without increasing computational cost.
In particular, it showcased that for an identical computa-
tional cost—specifically, using the same size 64x64 2D-FFT
and the same 85-point interpolation kernel derived from a
13x13 support grid—the proposed hexagonal method yields
a beamforming pattern with superior quality compared to the
conventional Cartesian grid approach.

We obtain the results for a Type-2 NUFFT in reception, but
the results can be extrapolated to the Type-1 in transmission
and can be extended into a Type-3 operation, where both
antennas and beams can be non-uniformly placed. While
the results are based on a specific antenna geometry, they
strongly suggest that the conclusions are applicable to other
configurations.

The fundamental advantage of the hexagonal grid lies in
its inherent efficiency for sampling 2D space. For the same
number of points, the area of the hexagonal grid’s unit cell
is v/3/2 times that of the Cartesian grid’s unit square. This
results in an effective sampling density that is approximately
15.5% higher. This increased density allows the interpolation
process to comply more effectively with the Nyquist sampling
criterion, leading to a more accurate signal reconstruction.
Consequently, the distortions that typically appear at high an-
gular frequencies in NUFFT implementations are significantly
reduced.

This improved accuracy provides two key benefits. First, it
enables the generation of a larger number of non-distorted
beams across the field of view compared to the Cartesian
method under the same computational constraints. Second, the
resulting beam patterns exhibit lower sidelobe levels, which is
critical for managing interference and SIR levels.

The advantages are further enhanced in practical systems, as
the designed base radiation pattern of the antenna can ensure
that the highest interference components are placed outside
the operational field of view.

Looking forward, the enhanced stability and efficiency of
the hexagonal grid open the possibility for future research
into novel interpolation windows that were previously dis-
carded due to numerical instabilities on Cartesian grids. The
development of such new interpolation kernels could lead to
implementations requiring a much smaller number of opera-
tions. This would directly translate into a significant reduction
in computational cost, a critical advantage for future onboard
satellite missions where power and physical area are extremely
limited and expensive resources.
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