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Abstract

Computer-Aided Design (CAD) models are typically
constructed by sequentially drawing parametric sketches
and applying CAD operations to obtain a 3D model. The
problem of 3D CAD reverse engineering consists of recon-
structing the sketch and CAD operation sequences from 3D
representations such as point clouds. In this paper, we
address this challenge through novel contributions across
three levels: CAD sequence representation, network de-
sign, and training dataset. In particular, we represent CAD
sketch-extrude sequences as Python code. The proposed
CAD-Recode translates a point cloud into Python code
that, when executed, reconstructs the CAD model. Taking
advantage of the exposure of pre-trained Large Language
Models (LLMs) to Python code, we leverage a relatively
small LLM as a decoder for CAD—Recode and combine it
with a lightweight point cloud projector. CAD—Recode is
trained on a procedurally generated dataset of one million
CAD sequences. CAD—-Recode significantly outperforms
existing methods across the DeepCAD, Fusion360 and real-
world CC3D datasets. Furthermore, we show that our CAD
Python code output is interpretable by off-the-shelf LLMs,
enabling CAD editing and CAD-specific question answer-
ing from point clouds.

1. Introduction

Computer-Aided Design (CAD) modeling is the standard
approach for designing manufactured objects, ranging from
furniture to mechanical components [3, 30]. However, cre-
ating a 3D CAD model is a time-consuming task that de-
mands specialized expertise, as the model must not only
capture the object’s shape but also maintain its functional
requirements—commonly referred to as the design in-
tent [4, 27]. To streamline this process, 3D CAD reverse
engineering aims at generating CAD models directly from
3D scanned objects, offering a faster and more accessible
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Figure 1. 3D CAD reverse engineering is a process of convert-
ing a point cloud into a CAD model (top). Existing methods are
constrained by the use of method-specific CAD representations
and limited hand-crafted training datasets (a). On the contrary,
CAD-Recode employs a pre-trained LLM with a lightweight pro-
jector that translates point clouds into executable Python code and
is trained on a procedurally generated dataset (b).

pathway to CAD creation [17].

Automated 3D CAD reverse engineering has a long his-
tory in the fields of computer vision and graphics [13, 43],
with goals evolving alongside advancements in the field.
These objectives have progressed from identifying CAD
parts in 3D point clouds [43] to predicting the sequence of
steps a designer may take to recreate a 3D scanned object
in CAD software [21, 34]. This latter goal is particularly
appealing, as it aims not only to produce a final CAD para-
metric model but also to capture the design steps behind
it, enabling further editing within CAD software [21, 45].
In CAD software, designers typically construct their CAD
model as feature-based design sequences, where a sequence
of 2D sketches is transformed into 3D objects via opera-



tions such as extrusion and revolution [47, 50]. Follow-
ing the release of large CAD datasets [7, 22, 47], recent
works have focused on learning feature-based CAD se-
quences from input point clouds, specifically as sketch-
extrude sequences [12, 21, 28, 33, 39, 45, 48]. As depicted
in Figure 1(a), although varying in methodology, these ap-
proaches share a common pipeline: (1) crafting a CAD
sketch-extrude sequence representation, (2) converting raw
CAD data [22, 47] into this format, and (3) training dedi-
cated neural networks to output these representations from
input point clouds.

Despite recent advances in feature-based CAD reverse
engineering, key limitations constrain the broader appli-
cability of existing approaches. Firstly, existing methods
often use customized CAD representations, such as cus-
tom CAD languages [12, 21, 34, 48] or simplified ex-
trusion shapes [28, 39, 45], to facilitate model training.
These representations are difficult to interpret, require post-
processing to be compatible with CAD tools, and restrict
design capabilities to basic operations. Secondly, these ap-
proaches typically rely on designing networks that output
language-like CAD representations [12, 21] and training
them from scratch. This requires the networks to learn not
only the geometry of the point clouds, but also the syntax of
the CAD sequence representation.

In this paper, we pose the following question: In view
of the recent breakthrough performance of Large Language
Models (LLMs), how can their advanced language under-
standing be leveraged for CAD reverse engineering?

To address this question, we base our approach on three
key observations: (1) LLMs can generate valid Python
code [36, 55], (2) modern CAD software increasingly sup-
ports modeling through Python scripting [10], and (3) re-
cent efforts have shown that LLMs can be fine-tuned to
process point clouds [49, 61]. As shown in Figure 1(b),
we propose CAD—Recode, a solution for CAD reverse en-
gineering by fine-tuning an LLM to map input point clouds
into CAD sketch-extrude sequences represented as Python
code. In particular, instead of crafting a CAD represen-
tation, we base our representation on the existing Python
CadQuery library [10]. This code-based representation is
not only interpretable but also inherently allows for incor-
porating modular CAD features and design practices such
as reusing design elements and abstracting low-level design
steps (e.g. 3D box to represent a four-line sketch of a square
and its extrusion). To learn the mapping between point
clouds and CAD Python code, we fine-tune a pre-trained
LLM, Qwen2-1.5B [55], augmented with a lightweight,
trainable point cloud projector. To train CAD-Recode, a
potential approach could be using existing sketch-extrude
datasets [47, 48] and converting them to Python CadQuery
code. However, these datasets are limited in size and de-
sign features included due to the efforts required to con-

vert their original proprietary representation into one that is
suitable for learning. As a solution, we propose a proce-
durally generated training dataset composed of one million
CAD sketch-extrude sequences as Python CadQuery code.
This dataset consists of CadQuery Python scripts generated
following predefined heuristics with randomized parameter
selection. The execution of each generated script results in
a parametric CAD model. Unlike existing CAD datasets,
this procedurally generated dataset provides an alternative
for learning the mapping between point clouds and CAD
sketch-extrude sequences in Python code, with full control
over the design features, patterns and dataset size included
during training. Our contributions can be summarized to:

* A CAD sketch-extrude sequence representation in Python
code using CadQuery [10] for CAD reverse engineering.

e CAD-Recode, the first LLM-based CAD reverse en-
gineering model designed to predict CAD Python code
from point clouds. The model, consisting of a pre-trained
LLM and a point cloud projector is trained end-to-end to
generate code that reconstructs the input geometry.

* A one million procedurally generated training dataset
of CAD sketch-extrude sequences as CadQuery Python
code. This provides precise control over dataset size, fea-
tures, and design patterns included during training, re-
sulting in significant performance improvement. We will
make this dataset publicly accessible.

» Extensive experiments on three publicly available
datasets show that CAD-Recode achieves substan-
tial improvements over state-of-the-art methods in
CAD reverse engineering. Moreover, we show that
CAD-Recode, when operating on point clouds and gen-
erating CAD code, can be integrated with an off-the-shelf
LLM to perform CAD Question Answering (CAD-QA)
and CAD editing from point clouds.

2. Related Works

LLM, Point Cloud and CAD: Recent works have explored
integrating point clouds with LLMs for various tasks, in-
cluding 3D generation [56, 62], captioning [16, 18, 49],
and question answering [6, 19]. These approaches typically
employ complex point cloud encoders, either aligning with
CLIP embeddings [31, 53, 54, 61, 64] or directly with LLM
feature spaces [49]. Such methods require two-stage train-
ing: first pre-training the point cloud encoder, then fine-
tuning with the LLM through instruction-based prompts.
In parallel, recent works have started exploring LLMs’
capabilities in a range of CAD-related tasks. Reparam-
CAD [23] infers shape variations from parametric models
and text descriptions, while CADTalk [60] generates se-
mantic descriptions of CAD parts. The works in [1, 2]
focus on the generation of CAD models from text using
LLMs, and SGP-Benchmark [38] evaluates LLMs’ under-



standing of CAD sketch-extrude sequences using CAD-
specific question answering. While Img2CAD [57] at-
tempts CAD reverse engineering from images using GPT-
4V [36], it still requires a separate transformer for param-
eter inference. In contrast, CAD—Recode introduces the
first approach for point cloud to CAD reconstruction com-
bining point clouds with the sequence modeling capabilities
of pre-trained LLMs.

CAD Reverse Engineering from Point Cloud: CAD
reverse engineering aims to reconstruct parametric CAD
models from 3D shapes (e.g., meshes or point clouds) in a
compatible representation with CAD software. A key chal-
lenge lies in the choice of this representation. A line of
works attempts to address sub-problems of the CAD reverse
engineering task by focusing on parameter estimation for
edges and surface primitives [8, 9, 15, 26, 32, 42, 46, 63] or
reconstructing B-Rep construction history [11, 24, 47, 50].
In order to obtain a representation that is closer to CAD
modelling, several methods [14, 20, 29, 58, 59] use Con-
structive Solid Geometry (CSG), representing models as
compositions of 3D primitives and Boolean operations.
While this enables reconstruction, the CSG representation
diverges from modern CAD workflows [50].

Recent works have adopted the more CAD-aligned
sketch-extrude representation, introduced by Deep-
CAD [48] for CAD generation [51, 52] or predicting
extrusion cylinder [39, 45]. Considering the sequential
nature of sketch-extrude operations, methods have explored
a template-based approach [25] given a rounded voxel in-
put representation. Furthermore, transformer architectures
have been investigated for both autoregressive [21] and
non-autoregressive [12, 48] prediction of sketch-extrude
sequences from point clouds. The work in [34] combines
a lightweight pre-trained language model [40] with a
point cloud encoder using a diffusion-based approach.
Alternative methods using self-supervised [28] or unsu-
pervised [29] learning still face integration challenges due
to their non-standard sketch representations (e.g., signed
distance functions). In contrast to these approaches that
require full parameter learning of specialized networks for
both CAD geometry and representation syntax, we leverage
pre-trained LLMs that have been exposed to programming
patterns through large-scale training on code repositories.
Our method outputs Python code using the CadQuery
library [10] that is directly executable and can easily be
interpreted. Additionally, we address the data limitation
through automated generation of a large-scale training
dataset, enabling full control over design features included
during training.

3. CAD Representation as Code

Modern feature-based CAD modeling relies on se-
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(a) Sketch-Extrude sequence

SOL Line -50 -50 Line 50 50 Line 50 -50 Line -25
-50 Ext. 0 0 1 0 0 0 14 0 NewBody SOL Circle 0 0 40
SOL Circle 0 0 30 Ext. 0 0 1 0 0 O -10 O Union

(b) DeepCAD representation

import cadgquery as cqg

w = cq.Workplane ('XY")

w.box (100,100,14) .union(
w.sketch () .circle (40).circle (30, mode="s")
.finalize () .extrude (-10))

(c) Our CadQuery representation

Figure 2. Sketch-extrude sequence (top) in DeepCAD representa-
tion (middle) and our CadQuery code (bottom).

quences of 2D sketches and operations to create 3D mod-
els. Designers first draw geometric primitives (lines, arcs,
circles) on a selected plane, then apply operations like ex-
trusion or revolution to generate 3D geometry [50]. As
depicted in Figure 2(a), we focus on sketch-extrusion se-
quences, a fundamental CAD modeling pattern widely
adopted in previous works [21, 48, 51]. Below, we present
our CAD representation, highlighting its advantages over
existing language-like encodings, and describe our proce-
durally generated training data.

3.1. CadQuery Code

Recent approaches in CAD language modeling [12, 21, 33,
48, 51] encode sketch-extrude sequences as numerical vec-
tors representing features and their parameters as shown
in Figure 2(b). However, this representation constrains the
modeling to specific CAD practices, lacks interpretability,
and requires post-processing for CAD kernel compatibility.
We propose using CadQuery [10] Python code to represent
sketch-extrude sequences for CAD reverse engineering, of-
fering the following advantages:

Modularity of CAD Features and Design Practices: Ex-
isting language-based CAD reverse engineering methods
rely on custom representations of low-level geometric fea-
tures (lines, arcs, circles) for sketch construction [41, 48].
This approach inherently limits the range of implementable
features and design practices. In contrast, CadQuery pro-
vides comprehensive built-in CAD functionality, encom-
passing both low-level features and higher-level geometries
like cylinders and boxes as shown in Figure 2(c). Further-
more, its programmatic nature enables variable reuse and
code modularity. This allows reusing common design fea-
tures or practices across models, as illustrated by the shared
center coordinates across two circles in Figure 2 (c). This



representation naturally accommodates diverse CAD fea-
tures and design practices without requiring complex cus-
tom encodings or post-processing steps.

Interpretability and LLM Compatibility: The proposed
representation, based on Python and CadQuery syntax,
presents an alternative to abstract numerical encodings with
improved interpretability. Its code-based format facilitates
model editing both programmatically and through CAD
software. Importantly, this representation aligns with pre-
trained LLMs’ demonstrated proficiency in Python code
generation and manipulation. Indeed, state-of-the-art pro-
prietary LLMs like GPT-4 [36] achieve over 90% accuracy
on the Python code HumanEval benchmark [5], while even
lightweight open-source models such as Qwen2-1.5B [55]
show promising code generation capabilities. Hence, this
code representation facilitates fine-tuning of pre-trained
LLMs for the specific task of reverse engineering point
clouds into CAD Python code and opens the doors for new
capabilities with off-the-shelf LLMs.

3.2. Procedurally Generated Training Dataset

Figure 3. Examples of procedurally generated CAD models.

The training of current CAD sketch-extrude reverse en-
gineering methods [12, 21, 33, 34, 48] predominantly rely
on datasets collected from CAD model repositories [7, 22,
47]. Considerable efforts are required to parse the CAD
models from their original proprietary representations to a
suitable one for deep learning [47, 48]. As a result, existing
datasets are restricted not only in scale, but also in control
over the design features and patterns included in training.

To address these limitations, we propose to procedu-
rally generate a training dataset of one million CAD models
in the form of sketch-extrude sequences written in Python
CadQuery [10] code. Our proposed pipeline randomly gen-
erates sketch and CAD operation parameters guided by
topological and geometrical heuristics to ensure control
over the amount of generated models and the features in
the generated codes. The algorithm outlining the steps of
this generation pipeline is provided in the supplementary
materials along with further statistical analysis of the gen-
erated dataset. The modularity of CAD features is incor-
porated by utilizing both low-level primitives (i.e. circles,
lines, and arcs) and their abstractions (i.e. boxes, cylinders,
and rectangles) as well as reusing design elements within

the generated sequences. In this work, we focus on some
aspects of modularity (i.e., reusing point coordinates, extru-
sion planes, and abstracting basic shapes such as boxes and
cylinders). Further modularity features (e.g., reusing func-
tions corresponding to arbitrary CAD parts, additional CAD
operations) can also be integrated in the future. Note that
although our generated dataset does not include sequences
from human-designed CAD models, it offers significant
control over the features and design patterns to which the
network is exposed during training. Examples of generated
CAD models are shown in Figure 3.

4. CAD—-Recode

Building on the introduced CAD code representation and
generated training dataset outlined in the previous section,
this section introduces CAD—Recode, our proposed model
for predicting CAD sketch-extrude sequences as code from
input 3D point clouds. We formalize the problem of CAD
code prediction, describe the architecture of CAD-Recode,
and detail its training and inference processes.

4.1. Problem Statement

Let us denote the set of all possible code strings
as X*, where each code string is composed of ele-
ments from the finite set of alphanumeric characters
and operators in the programming language . Let
Gsyn : X* — {True,False} represent the syntactic vali-
dation function for Python programming rules (e.g., vari-
able declarations, expression syntax, and statement struc-
ture), and ¢euq : L* — {True,False} denote the valida-
tion function for CAD-specific rules. The latter includes
the syntactic validity of the code w.r.t. to the CAD library,
i.e. CadQuery [10], and the geometric validity of the recon-
structed model from the code (e.g., an extrusion can only
be applied on a closed loop of 2D primitives, a circle radius
cannot be negative). An executable valid CAD code can be
formally described by a code string C' € C, where

C= {U} ex” | ¢syn(w) A ¢cad(w)} )

represents the set of all valid CAD codes. This formulation
ensures that any code string w in C satisfies both the syntac-
tic requirements of Python (¢y,) and the CAD code valida-
tion rules (¢eaq). Let P = {p;}".; € R"*3 denote an
input point cloud, where each point p; € R3 represents 3D
Cartesian coordinates. The objective of CAD-Recode is to
learn a mapping

TR 5, C=0(P),

that maps the input point cloud to a valid CAD code
C € C such that the code, when executed, produces a
CAD model geometrically approximating the input point
cloud P. Note that the CAD code execution results in a
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Figure 4. Overview of CAD-Recode. The pipeline comprises two parts: (1) a point cloud projector (marked blue) (2) a fine-tuned pre-
trained LLM (yellow). An input point cloud is processed using (1), and outputs are then passed to an LLM (2), which predicts a CAD

sketch-extrude sequence in the form of executable Python code.

Boundary-Representation (B-Rep) [24]. Unlike meshes or
point clouds, B-Rep is a parametric representation of the
CAD model’s geometry, enabling seamless integration into
modern CAD software and allowing for further modifica-
tions. The goal of CAD-Recode is to infer the CAD code
describing the design steps of the CAD model, that when
executed results in a B-Rep.

4.2. Proposed Model Architecture

CAD-Recode builds on pre-trained LLMs and their prior
exposure to Python code, augmenting these with point
cloud processing capabilities and CAD-specific Python
code knowledge. As shown in Figure 4, its architecture con-
sists of two components: (1) a point cloud projector map-
ping the 3D point cloud into learnable tokens, and (2) a pre-
trained LLM-based auto-regressive CAD code decoder.

Point Cloud Projection Module: CAD-Recode intro-
duces a lightweight projection module ¥, that directly
maps a dense point cloud P € R"*%_ where d, = 3 cor-
responds to the dimension of point coordinates, into a se-
quence of n, < n query tokens Q, = [qzlj7 . ,qZ”} €
R"»*da_ of embedding dimension d,. The point cloud
projector, trained in an end-to-end manner with the CAD
code decoder module, consists of three simple components:
(1) furthest point sampling to downsample the input point
clouds to n,, points, (2) Fourier positional encoding [62] of
coordinates, and (3) a linear layer projecting the encoded
coordinatesinto Q.

LLM as CAD Code Decoder: Our CAD code decoder,
denoted as Wy, adapts a pre-trained LLM for the specific
task of CAD code generation. We leverage the Qwen2-1.5B
model [55] as our LLM backbone, chosen for its balanced
trade-off between model capacity and computational re-
quirements. The decoder’s input consists of point query to-
kens Q,, from the point cloud projector, augmented with n;
code tokens Q; € R™*44 obtained by tokenizing the input
code as in [55]. The complete input sequence is denoted as
(Q,; Qi) € R»Fm)xda \where semicolon indicates con-
catenation along the sequence dimension. The LLM de-

coder generates the CAD code sequence through next-token
prediction. As in [55], each predicted token is mapped to
a symbol from the vocabulary 3, which includes alphanu-
meric characters and operators.

Overall, CAD-Recode repurposes the LLM’s sequence
modeling capabilities for the specialized task of translating
geometric point clouds into executable CAD code.

4.3. Training and Inference Details

Training Strategy: Our training process consists of a sin-
gle stage. The model operates on query tokens of dimension
d, = 1536 and processes input point clouds downsampled
to n, = 256 points. Gaussian noise with mean zero and
standard deviation of 0.01 is added to the coordinates of the
input points with a probability of 0.5 per model. The net-
work is trained on the procedurally generated CAD codes,
hence exposed to the CAD features and design practices
that were included in the algorithm. The training objec-
tive minimizes the Negative Log-Likelihood (NLL) of the
target CAD code sequence, using special tokens (<s> and
<e>) to demarcate sequence boundaries. The point cloud
projector ¥,, learns geometric features from scratch, while
the pre-trained decoder Wy, is fine-tuned for CAD code
generation.

Inference Strategy: At inference time, the point cloud pro-
jector ¥, processes the input point cloud P to generate
query tokens Q,, which are then fed to the decoder along
with the start token <s>. The model autoregressively gen-
erates CAD code tokens until producing a complete code se-
quence C ending with token <e>. Following [21], we em-
ploy a test-time sampling approach where we generate ten
distinct CAD code candidates, each from a different sam-
pling of the input point cloud. For each candidate, we sam-
ple points from the predicted CAD model and compute the
Chamfer distance w.r.t. the input point cloud. The candidate
with the minimum Chamfer distance is selected as the final
output. This verification step effectively favors executable
CAD code solutions that are geometrically consistent w.r.t.
the input point cloud.



Train Dataset

Method

DeepCAD Test Set

Fusion360 Test Set

Name Size MeanCD]| Med.CD] IoUt IR] MeanCD| Med.CD| IoUT IR}
DeepCAD [48] DeepCAD 160k 42.5 9.64 46.7 7.1 330 89.2 39.9 25.2
PrismCAD [25] DeepCAD 127k - 4.28 72.1  16.2 - 4.75 65.3 18.0
Point2Cyl [45] DeepCAD 35k - 4.27 73.8 3.9 - 4.18 67.5 3.2
HNC-CAD [52] DeepCAD 125k - 8.64 65.3 5.6 - 36.8 63.5 7.3
MultiCAD [33] DeepCAD 160k - 8.09 - 11.5 - 42.2 - 16.5
TransCAD [12] DeepCAD 140k 32.3 4.51 65.5 1.1 78.6 33.4 60.2 24
CAD-Diffuser [34] DeepCAD 160k - 3.02 743 1.5 - 3.85 63.2 1.7
CAD-SIGNet [21]  DeepCAD 160k 3.43 0.28 77.6 0.9 7.37 0.48 65.6 1.6
CAD-Recode DeepCAD 160k 0.89 0.20 86.2 0.0 1.77 0.30 75.6 0.0
CAD-Recode Ours 1M 0.30 0.16 920 04 0.35 0.15 87.8 0.5

Table 1. Comparison of CAD reverse engineering methods on DeepCAD and Fusion360 datasets. Our CAD-Recode trained on the 160 k
DeepCAD dataset demonstrates an improvement over existing state-of-the-art methods both in terms of geometric fidelity and validity of
the generated sketch-extrude sequences. Our procedurally generated dataset provides a significant boost in the prediction quality.

5. Experiments

In order to validate the effectiveness of CAD-Recode, we
conduct a series of experiments across two different scenar-
ios. The first scenario focuses on the reverse engineering
task, where the goal is to reconstruct a CAD sketch-extrude
sequence in Python code from a given input point cloud.
The second assesses the interpretability and editability of
the generated CAD code with a proprietary LLM [36].

5.1. Reverse Engineering

Experimental Setup: CAD-Recode is evaluated on
three test datasets: DeepCAD [48] (8046 models), Fu-
sion360 [47] (1725 models), and the real-world CC3D [35]
(2973 models). The point clouds are obtained by sampling
points on the meshes for DeepCAD and Fusion360. The
CC3D dataset provides a real-world scenario with input
point clouds sampled from actual 3D scans of CAD mod-
els containing surface noise, smoothed edges and missing
parts (see supplementary materials for more details). Im-
plementation details are provided in the supplementary.

Metrics: To evaluate the quality of the predicted CAD
sketch-extrude sequences, we use three metrics: Chamfer
Distance (CD) [21], Intersection over Union (IoU) [34], and
Invalidity Ratio (IR) [48]. We report both mean and median
CD values computed using 8192 points to assess geomet-
ric accuracy. Reported CD values have been multiplied by
103. The IoU is computed from the resulting CAD model
meshes and expressed as a percentage. The IR indicates
the percentage of generated sequences that fail to produce a
valid CAD model.

Results & Analysis: Table 1 presents results on the
test sets of DeepCAD and Fusion360 datasets, where
CAD-Recode establishes new state-of-the-art perfor-
mance across all metrics. Note that the results of state-

of-the-art methods in Table 1 are borrowed from [34],
except for CAD-SIGNet [21], MultiCAD [33], Tran-
sCAD [12], and DeepCAD [48] which were taken from [21]
and [12]. First, we convert the DeepCAD dataset (160k
models) to CadQuery Python code and use it to train
CAD-Recode (results are in row before last of Ta-
ble 1). When trained on DeepCAD dataset as exist-
ing methods, CAD-Recode outperforms them in almost
all metrics. These results showcase the effectiveness of
CAD-Recode and the proposed CAD code representation.

Training on 1 M generated samples results in substantial
improvements in CD and IoU metrics while maintaining a
negligibly low invalidity ratio (last row of Table 1), reflect-
ing significantly better geometric fidelity in the predicted
CAD models. CAD-Recode demonstrates a ten-fold im-
provement in mean CD and an increase of IoU by over 10%
on both DeepCAD and Fusion360 datasets compared to the
existing best methods. These results confirm that our large-
scale procedurally generated training dataset provides sub-
stantial benefits.

As illustrated in Figure 5, this translates to consistent
reconstruction quality, where CAD-Recode reliably pro-
duces CAD models that accurately capture the geometry
from the input point cloud. In contrast, CAD-SIGNet [21]
can generate shapes that deviate significantly from the tar-
get geometry, further highlighting the advantages of our ap-
proach.

Real-world Scenario: In Table 2, we evaluate
CAD-Recode on the real-world CC3D dataset, where
input point clouds are sampled from 3D scans and contain
artifacts such as surface noise, smooth edges, and missing
parts. Even under these challenging conditions, our method
achieves significant improvements over CAD-SIGNet [21],
with a 89% lower median CD and a 30% higher IoU,
while maintaining a low IR. From the CC3D qualitative
results in Figure 5, CAD-Recode is able to recover



DeepCAD Dataset

Point Cloud

CAD-SIGNet

CAD-Recode

GT

Fusion360 Dataset

@ (@ x@

Real-world CC3D Dataset

399
a3¢

Y
) |

v

Figure 5. Qualitative results on the DeepCAD, Fusion360, and CC3D datasets. For each input point cloud (first row), we compare CAD
models produced by CAD-SIGNet (second) and our CAD—Recode trained on our dataset (third) with a ground truth CAD model (bottom
row). While CAD-SIGNet often fails to restore the general shape, CAD-Recode outputs only slightly deviate from ground truth in most

cases.

Method Mean CD| Med. CD| IoUT IR|
DeepCAD [48] - 263 - 127
CAD-SIGNet [21] 14.82 2.90 42.6 2.5
CAD-Recode 0.76 0.31 74.2 0.3

Table 2. Results on the CC3D dataset, where input point clouds
are sampled from real 3D scans. CAD-Recode significantly out-
performs DeepCAD, and CAD-SIGNet.

geometries that are much closer to the ground truth than
current state-of-the-art. However, it can be observed that
CAD-Recode still lacks the expressiveness to model
complex shapes that contain operations beyond the extru-
sion operation such as revolution and fillet. This can be
attributed to the choice of features and design practices in
the procedurally generated training dataset. Nevertheless,
we believe that this can be addressed in future works by
incorporating further features in the dataset generation
procedure. Our results on CC3D are compared with
methods previously reported for this dataset [21], namely
CAD-SIGNet and DeepCAD.

Ablation Study: To evaluate the different components of
CAD-Recode, we conduct a comprehensive ablation study
on the amount of training data, test-time sampling, and the
number of input points and model parameters.

Training CAD-Recode on 160 k procedurally generated
samples using the method described in Section 3.2 leads to
significant improvements in geometric fidelity of the pre-
dicted samples over training on the DeepCAD dataset with
the same amount of data (see row 2 and 3 of Table 3). Fur-
thermore, scaling our training dataset to 1 M samples pro-
vides further improvements across all datasets (row 4 of Ta-
ble 3). As compared to DeepCAD training dataset, our pro-
cedural dataset generation provides a better way of learning

the mapping between point clouds and CAD codes which
can be further improved by scaling up the dataset size.

We investigate the effectiveness of the test-time sam-
pling approach that generates multiple CAD code predic-
tions through different point cloud samplings, as described
in Section 4.3. As shown in the third and last row of Table 3,
the test-time sampling approach mainly helps reducing the
ratio of invalid predicted CAD codes (IR). For compari-
son, CAD-SIGNet [21] employs a probability-based sam-
pling. Yet, even without test-time sampling our method still
performs better on the reconstruction metrics than CAD-
SIGNet [21].

Results in Table 4 show an ablation of the input point
cloud size and the number of parameters of the LLM back-
bone. It can be observed that using an input point cloud
of 256 points and Qwenl.5b results in the highest ToU.
This setting with a relatively small input point cloud and
lightweight LLM backbone provides the best balance be-
tween prediction accuracy and memory requirements. Re-
sults on all metrics are included in the supplementary mate-
rials.

5.2. CAD-QA and Editability

CAD-QA and LLM Interpretability: CAD SGP-
Bench [38] is a benchmark of 1000 CAD-specific Ques-
tion Answering (CAD-QA) tasks that test LLMs’ under-
standing of CAD model geometry from sketch-extrude se-
quences encoded as in DeepCAD [48]. These questions
require analyzing various geometric aspects, such as rela-
tive sizes and 3D primitive types. We extend this bench-
mark to evaluate CAD reverse engineering methods by us-
ing point clouds as input instead of CAD sequences. Our
evaluation follows a two-stage process: first predicting
sketch-extrude sequences from point clouds as CadQuery
code with CAD-Recode, then using GPT-40 [36] to an-



Method Train Dataset Test-time DeepCAD Fusion360 Real-World CC3D
Name Size Sampling CD] IoUT IRl CD|] IoUf IR], CDJ IoUt IR|
Previous best [21] DeepCAD 160k v 343 776 09 737 656 1.6 1480 426 4.4
CAD-Recode DeepCAD 160k v 0.89 862 00 177 756 0.0 243 625 0.0
CAD-Recode Ours 160k v 0.54 883 0.3 066 820 01 127 690 0.2
CAD-Recode Ours 1M v 030 920 04 035 878 05 076 742 0.3
Previous best [21] DeepCAD 160k X 6.81 773 44 145 584 93 3259 39.1 155
CAD-Recode Ours 1M X 083 871 31 121 791 50 321 605 98

Table 3. Ablation of training data and test-time sampling. The results demonstrate the advantage of training on our procedurally generated
data, while the test-time sampling helps reducing the invalidity ratio. CD stands for mean Chamfer distance.

Points Model DeepCAD Fusion360 CC3D
) Size CD| IoUT CD| IoUT CD| IoU?
128 0.5B 0.18 899 0.18 843 038 719
256 0.5B 0.17 906 0.17 854 0.36 T72.6
256 1.5B 0.16 920 0.15 878 0.31 74.2

Table 4. Ablation of architecture details. CD stands for median

Chamfer distance.

Method CAD-QA Accuracy?
PointLLM [49] 42.3
CAD-SIGNet [21] — GPT-40 63.2
CAD-Recode — GPT-4o0 76.5

Table 5. Point cloud CAD-specific question answering (CAD-QA)
on the SGP-Bench benchmark. Our CAD-Recode supplied with
a GPT-4o significantly outperforms baseline methods.

swer CAD-specific questions. Without requiring additional
interpretation hints, our approach achieves 76.5% accu-
racy on this CAD-QA task (Table 5). For comparison, we
evaluate two baseline approaches: CAD-SIGNet [21] and
PointLLM [49]. When using CAD-SIGNet’s output with
GPT-40, even with provided interpretation hints explain-
ing the sequence format, the accuracy reaches only 63.2%.
PointLLM, which directly processes point clouds for lan-
guage tasks, achieves 42.3% accuracy when prompted with
the CAD-specific questions. These results demonstrate that
CAD-Recode effectively captures CAD geometric infor-
mation while generating an output in a format that propri-
etary LLMs can naturally interpret and process.

Editing Pipeline: Leveraging the interpretable nature of
our code-based output, we present an automated editing
pipeline using GPT-40 [36]. Through a simple prompt, the
system refactors the generated code to expose geometric pa-
rameters via interactive sliders, enabling direct manipula-
tion of the reconstructed model. As shown in Figure 6, the
resulting code can be directly executed in a Python environ-

CAD-Recode Output
import cadquery as cq
wO=cq.Workplane( )
r=(w0.workplane (offset=-50) -

.cylinder(100,100) -
.union(w@.workplane (offset=50)
.cylinder(100,34)))

User Edit
n
I

Executed Code

GPT

) Base DI Base Diam.
Refactor the code, add functions and ase Diam. ase Diam,
. Base Height Base Height
variables that can make the code T

‘op Diam. Top Diam.

easier to edit and more interpretable. Top Height 45
Add in the code, sliders to edit the

size of each primitive.

Top Height

User Prompt

Figure 6. Interactive editing of a CAD model. Given the code
output from CAD-Recode and a generic prompt, GPT-40 allows
automated and interactive editing of the CAD model.

ment to provide an interactive editing interface. Implemen-
tation details are provided in the supplementary materials.

6. Conclusion

This work rethinks the problem of feature-based CAD re-
verse engineering by approaching it through pre-trained
LLMs taking advantage of CAD Python-based representa-
tion. Our key contributions include a new CAD code repre-
sentation for reverse engineering sketch-extrude sequences,
very large-scale procedurally generated training dataset in
the form of CAD programs, and a point cloud-to-CAD code
model. We demonstrate that CAD-Recode outperforms
existing methods by a large margin on three datasets, in-
cluding the real-world CC3D dataset. We also showcase
that combining pre-trained LLMs with geometric under-
standing enables powerful new workflows, where designers
can reconstruct CAD models from point clouds and modify
them through natural language. We believe that this work
will open new perspectives for CAD reverse engineering.
We identify the following interesting future works: (1) fur-
ther exploiting the modularity of the proposed CAD code
representation, (2) scaling up the LLM and the dataset to
enable reverse engineering of more complex CAD models.
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A. Training Details

The CAD-Recode implementation uses Qwen2-1.5B as
the LLM decoder. The training configuration employs the
AdamW optimizer with a learning rate of 0.0002 and weight
decay of 0.01, while maintaining other parameters at their
default values from the HuggingFace implementation [44],
including the cosine learning rate scheduler. The train-
ing process is conducted for 100 k iterations, incorporating
an initial warmup period of 1k iterations. Using a single
NVIDIA H100 GPU with a batch size of 18, the complete
training process takes approximately 12 hours. For abla-
tion study examining decoder size impact (Section 5.1 of
the main paper), we utilize Qwen2-0.5B.

B. Training Dataset Generation Algorithm

In Section 3.2, the procedurally generated training dataset
is presented. The main advantage of generating data over
using the existing DeepCAD dataset for training is that the
algorithm allows full control over the amount of data as well
as the features and design patterns that the network is ex-
posed to during training. We generate one million valid
Python CadQuery code snippets, through an automated
pipeline leveraging PythonOCC [37] and CadQuery [10].
The generation process consists of two primary compo-
nents: (1) a sketch profile generator (Algorithm 1) that cre-
ates valid 2D sketches, and (2) a CAD model generator
(Algorithm 2) that produces 3D CAD models from these
sketches.

The sketch generation process combines primitive
shapes (circles and rectangles) through boolean operations
(union and cut). From each generated sketch, we extract
the primitives (lines, arcs, and circles) from both inner and
outer loops. The validity of the generated sketch is en-
sured through multiple verification steps, including verify-
ing that loops do not intersect, and each primitive has a
length greater than zero. Finally, we ensure that the ran-
domly generated CAD code has not previously been gener-
ated using the duplicate detection protocol outlined in [51].
This ensures that each sample in the dataset is unique.

The CAD model generation procedure extrudes the val-
idated sketches and combines them through union opera-
tions. The planes on which the sketches lie are randomly
generated by choosing one of the three canonical planes
translated by a random amount. Each resulting model un-
dergoes normalization to fit within a unit bounding box
centered at the origin. The parameters are quantized so
that the coordinates of any point on the CAD surface are

within the range —100 to 100 with a minimum resolution
of 1 unit. We then simplify the sequence using higher
level abstractions (rectangle, box, and cylinder) by con-
sidering the sequence parameters. Our validation frame-
work verifies that a generated code w executes without
errors (¢gyn). Furthermore, we check that the executed
code produces a geometric valid CAD model (¢,q) using
the BRepCheck_Analyzer function from PythonOCC
as in [48]. Invalid models are excluded from the dataset.

Figure 7 presents examples of CAD models alongside
their corresponding CadQuery Python code from our pro-
cedurally generated dataset. It is worth noting that the gen-
erated codes are fairly compact, this was designed to fa-
cilitate training. All code examples are directly executable
using a standard Python interpreter with the CadQuery li-
brary. The codes follow a consistent three-part structure:
(1) necessary library import, (2) definition of sketch planes,
and (3) sketch-extrude operations combined through union.

The training dataset generation procedure provides full
control over the features included. In Figure 8, it can be ob-
served that the distribution of our CAD models is skewed
towards models with larger face and edge count per model
with interquartile ranges. As a result, our procedurally gen-
erated dataset provides a larger variety of models.

C. Real-World CC3D Dataset

Results on the real-world CC3D [7, 35] dataset are pre-
sented in Table 3 of the main paper. This scenario provides
an experimental evaluation in a realistic setting, as the in-
put point clouds are sampled from actual 3D scans of CAD
models. Sample models are depicted in Figure 9, where ar-
tifacts such as surface noise, smoothed edges, and missing
parts can be observed. Furthermore, several models from
the CC3D dataset are constructed using a range of opera-
tions beyond simple extrusion, including revolution, cham-
fer, and fillet. Consequently, the real-world CC3D dataset
provides a challenging set of inputs that enables robust in-
the-wild evaluation of our proposed method.

D. Further Experimental Results

Qualitative Results: Additional qualitative results for the
reverse engineering of CAD models from point clouds
are presented for DeepCAD (Figure 10), Fusion360 (Fig-
ure 11), and real-world CC3D (Figure 12) datasets. As de-
tailed in Section 5.1 of the main paper, CAD-Recode con-
sistently generates shapes that closely approximate the in-
put point cloud geometry, whereas CAD-SIGNet [21] can
generate predictions that greatly differ from the input.

Code Outputs: Figure 13 illustrates the predicted code
sequences and their corresponding reconstructed shapes.
The predicted codes have a syntax that is consistent with
the procedurally generated training examples, showing that



Algorithm 1 Generate2DSketch

function GENERATE2D SKETCH
numPrimitives <— RandInt(3,8)
compositeShape < 0
for i < 1 to numPrimitives do

booleanOperation < random from {Union, Cut}

> Choose random number of shape primitives
> Initialize empty shape
> Build shape by combining primitives

> Union adds, Cut subtracts

compositeShape < ApplyOperation(compositeShape, primitive, booleanOperation)

1:
2
3
4:
5: primitive < random from {Circle, RotatedRectangle}
6.
7
8

end for

9: boundaryLoops + Extract BoundaryLoops(compositeShape)

10: boundaryComponents < ()
11: for loop € boundaryLoops do

12: (edgeSequence, isOuter) «— AnalyzeBoundary(loop)

13: boundaryComponents. Append((edgeSequence, isOuter))

14: end for

15: boundaryComponents < ValidateShapeT opology(boundaryComponents)
16: return boundaryComponents

17: end function

> Extract shape boundaries
> Process each boundary loop

> List of parametric curves (lines, arcs, circles)

> Ensure valid shape topology
> Returns list of (edges, boolean) tuples

Algorithm 2 GenerateCAD

1: function GENERATECAD

2:  cadModel < 0

3 planes < GenerateRandomPlanes()

4: sketches < Generate2D Sketch()

5: for sketch € sketches do

6: plane < RandomSelect(planes)

7 volume < ExtrudeSketch(sketch, plane)
8: cadModel < BooleanUnion(cadM odel, volume)
9: end for

10: cadModel < NormalizeModel(cadM odel)

11: cadModel + QuantizeParameters(cadModel)

12: cadModel <+ SimplifyC ADModel(cadM odel)
13: cadModel <+ ValidateC AD Model(cadM odel)
14: cadModel < CheckDuplicate(cadM odel)

15: return cadM odel

16: end function

> Initialize empty CAD model

> Create set of reference planes

> Get sketches from Algorithm |

> Create 3D volumes from sketches
> Select random reference plane

> Create 3D volume by extrusion

> Add volume to model

> Ensure the model fits within a unit box

> Discretize model parameters

> Identify high-level abstractions (rectangle, box, and cylinder)
> Ensure validity of CadQuery code and CAD model geometry
> Ensure that the sequence has not previously been generated.

CAD-Recode successfully learns both the features and
CAD design patterns established in the training set.

Ablation Results: Table 6 shows the architecture ablation
results on all metrics, complementing Table 4 of the main
paper. Results show that for the same size of input point
clouds Qwen1.5b always produces better geometric perfor-
mance (median CD and IoU) than Qwen0.5b. This can be
attributed to the higher number of parameters as well as
to the better ability of the model to produce valid python
code before fine-tuning. Furthermore, increasing the size of
the input point cloud demonstrates a similar pattern, with
Qwenl.5b with an 256 input points appears to be the set
of architecture parameters leading to the best performance.
Note that the mean CD is a metric that is very sensitive to
outlier predictions. While Qwen1.5b with 256 input points
appears to result in the highest IR, it is negligibly low on
all datasets (less 0.5%). This can also be explained by the
fact that this setting produces more complex CAD sketch-
extrude sequences, making them more susceptible to errors.
Note that a key idea of our method is to leverage pre-trained
LLMs as decoder of Python code. In the absence of LLM-
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based CAD reverse engineering methods, we compare our
approach to SOTA methods despite the difference in model
sizes. For reference, CAD-SIGNet contains 6 M parame-
ters.

Command & Parameter Accuracy: In order to evaluate
the ability of CAD-Recode to predict numerical values
and sequences that are consistent with the training set, we
evaluate CAD-Recode trained on the DeepCAD dataset
converted to CADQuery python codes with the AcCcommand
and AcCparameter a8 introduced in [48]. The results on the
DeepCAD testing set are presented in Table 7. It can be
observed that CAD-Recode achieves comparable perfor-
mance to the state-of-the-art on the commnad type accuracy
and significantly higher performance on the parameter accu-
racy. This demonstrates that CAD-Recode is able to pre-
dict numerical values accurately. Note that, those metrics
were originally developed to evaluate autoencoding abil-
ity. However, there may exist many different possible valid
CAD sequences to construct the same CAD model and these
metrics do not take this into account. As a result, these met-
rics were omitted in recent works (CAD-SIGNet [21] and



import cadquery as cqg

w0 = cqg.Workplane('zZX', origin=(0, -13, 0))

r = w0.workplane (offset=-87 / 2).moveTo(52.5, .box (57, 83, 87
.union (w0.workplane (offset=23 / 2) .moveTo (— )) .cylinder (23,
.union (w0.workplane (offset=113 / 2).moveTo(-29, 0).cylinder (113

import cadquery as cqg

w0 = cg.Workplane('zX', origin=(0, -30 0))

r = wO.sketch().segment(( 30, =-27), ( -31)) .segment ((-19, -31)).segment ((-19, -100))
.segment ( (3 il, 0)). segment ((3 31)) .segment ( (10, 31)) .segment ( (13, )
.arc((30, —-13 ), (/‘7, 5)) . segment(( 3, 33)) .segment ((16, 39)).arc((-12, -9, 33))
.close () .assemble () .finalize () . extrude(’f)

import cadquery as cqg

wO = cq.Workplane ('YZ', origin=(-14, 0))

0,
\ r = wO.workplane (offset=1 / 2). moveToH, -73.5).box (104, 53, 17)
unlon(wO sketch() segment(( 8, 3, (2, ) .segment ( (40, 17))
.arc( (42, 1), (4 =30)) . segment(( 18, 5)). segment(( L, 5))
seqment(( ~,, ’4;)) segment((fl, 100)) . close() assemble ()
.push ([ (0, 2)1) .circle (50, mode='s').finalize () .extrude (29))

import cadquery as cqg
w0 = cg.Workplane('XY', orlgln

(0, 0, 42))
wl = cqg.Workplane('YZ', origin=(-17, 0, 0))
r = wO.sketch().arc((-12, 6), (34, -29), (-1, 16)).segment ((5, 4)).segment ((-8, —-2))
. \ .close () .assemble () .finalize () .extrude (56)
X .union (w0. sketch() arc((-42, 54), (=12, 71), (19, 54)). segment(( g))
.segment ((-42, 8)) .close() .assemble () .finalize () .extrude (58))

.union (wl.sketch() .segment ((-44, -100), (51, -100)).segment((51, 5)).segment ((27, 5))
.arc((-58, 40), (-44, 51)) .close() . assemble() reset()
.face(wl.sketch().arc((ffr, -17), (=26, =34),(3, -17)). close()

.assemble (), mode='s') .reset ().face(wl.sketch().segment ((-54, 14), (3, 14))
.arc((-26, 31), (=54, 14)) .assemble(), mode='s"'). flnallze() extrude (-13))

import cadquery as cqg

w0 = cg.Workplane('YZ', orlgln

wl = cqg.Workplane('zX'", orlgln

r = wO.sketch{(). segment ((-100,
.segment ((-75, 62)) .segment

83)) .segment ((-80

8 -52)) .segment ( (=75, -50))
egment ((17, —-62

segment ( (-40, -62))
))

.segment ( (-3 e 1)) .segmen 3)) .segment ( (43, 8

.segment ((43,83)) .segment ( ( close () .assemble () .finalize () .extrude (8)
.union (wl. sketch() segment ( (- , (76, =53)).arc((76, —48),(77, —-42))
.segment ((77, )) .segment ((=77, 53)). close() .assemble ()
.push ([ (38.5, 5)1).rect (9, 57, mode*'.') finalize () .extrude (119))

Figure 7. Examples from our procedurally generated training dataset. Each row contains CadQuery Python code and a corresponding CAD
model. Examples contain not only basic line, circle, and arc primitives, but also higher-level abstractions such as rect, box, and cylinder.

Qul —— { Qul +—— |
Dataset Dataset
DeepcaD| F—{ [} DeepcaD| F—{ [ }———

5 10 20 25 30 35 40 0 20 40 60 80 100
Number of faces per model Number of edges per model
(a) Box-plot graph of the distribution of the number of faces per model. (b) Box-plot graph of the distribution of the number of edges per model.

Figure 8. Our 1 M procedurally generated training dataset displays distributions CAD models that are skewed towards models with larger
edge and face count per model than the DeepCAD dataset (160 k models).

TransCAD [12]). in the training dataset (Figure 14(c) and (d))).

Invalid Predictions: The invalidity rate of
CAD-Recode predictions is very low, below 1% on the
DeepCAD [48], Fusion360 [47] and real-world CC3D [35]
dataset. Some examples of invalid code predictions are
presented in Figure 14. Invalid predictions happen when
the CAD model contains features of dimension smaller
than the resolution induced by quantization (Figure 14(a)
and (b)) or when the ground truth CAD model contains
features, such as revolution or B-spline, that are not present
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Ground truth
CAD model

Real-world
noisy scan

Figure 9. Example models from real-world CC3D dataset. The scans exhibits numerous artifacts such as surface noise, missing parts and
smoothed edges. In the CC3D experiments reported in the main paper, the input point clouds are sampled from the scans. Zoom in for
better details.

Points Model DeepCAD Fusion360 CC3D
Size MeanCD| Med.CD| IoUfT IRl MeanCD] Med.CD] IoUT IR|] MeanCD| Med.CD| IoUT IR}
64 0.5B 0.42 0.20 88.5 0.1 0.58 0.22 82.1 0.1 0.87 0.45 70.1 0.1
1.5B 0.36 0.19 89.3 0.0 0.43 0.20 83.7 0.1 0.83 0.42 71.2 0.0
128 0.5B 0.36 0.18 89.9 0.1 0.43 0.18 84.3 0.1 0.87 0.38 71.9 0.1
1.5B 0.27 0.17 91.0 0.1 0.36 0.17 86.1 0.1 0.79 0.34 73.1 0.1
956 0.5B 0.36 0.17 90.6 0.2 0.40 0.17 85.4 0.4 0.87 0.36 72.6 0.1
1.5B 0.30 0.16 92.0 04 0.35 0.15 87.8 0.5 0.76 0.31 742 03
Table 6. Ablation of architecture details.
Method AcCcommand (%) Accparameter (%)
DeepCAD [48] 80.4 69.6
PrismCAD [25] 73.0 66.8
HNC-CAD [52] 82.7 74.6
CAD-Diffuser [34] 88.5 82.9
CAD-Recode 83.9 92.1

Table 7. Command and parameter accuracy results [48] on the
DeepCAD dataset. All methods (incl. CAD-Recode) are trained
and tested on DeepCAD dataset.
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Figure 10. Qualitative results on the DeepCAD dataset.
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Figure 12. Qualitative results on the real-world CC3D dataset.
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import cadquery as cqg

w0 = cqg.Workplane('XY', origin=(0, 0, -17))

r = w0.sketch () .segment ((-48, -64), (24, —-64)).segment ((24, —-43)).segment ((-27, —-43))
.segment ((-27, 60)).segment ((27, 60)).segment ((27, -39)).segment ( (48, -39))
.segment ((48, 100)).segment ((-48, 100)).close() .assemble().finalize () .extrude (20)

.union (w0.sketch() .segment ((-82, -100), (=27, -100)).segment ((-27, 80)). segment((77, 80))
.segment ((27, -100)) .segment ((82, -100)).segment( (82, -79)).segment ( (4 =79))
.segment ( (48, 100)) .segment ((-48, 100)) .segment ((-48, 773))45egment((782, -79))
.close() .assemble () .finalize () .extrude (34))

import cadquery as cqg

w0 = cqg.Workplane('XY', origin=(0, 0, -16))

r = w0.sketch().arc((-46, -23), (=95, -74), (-27, —-56)).segment ((30, -56))

.arc((96, -72), (44, -25)).segment ((44, -12)).arc((31, 14) (30, 42))

.arc( (L, 92), ( 31, 44)).arc((-32, 43), (=33, 43)) rc(( 20), (-39, -2))
.segment ((-39, 7\7)).segment((fﬁ3, —=12)).arc((-45, 717),(7 —23)) .assemble ()
.push ([ (=64, -56)1]1).circle(28, mode:'s').push([(o, 6)1) . c:ch le (28, mode='s")
.push ([ (0, -19)]).circle (28, mode="s").push ([ (65, —56)])

.circle (28, mode='s'").finalize () .extrude (32)

import cadquery as cqg

w0 = cqg.Workplane('ZX', origin=(0, 40, 0))

wl = cqg.Workplane('XY', origin=(0, 0, -19))

r = w0.sketch().arc((-24, -47), (41, -99), (87, —-32)).segment ((88, -32)).segment ((88, 100))
.segment ((82, 100)).segment ((82, -52)).arc((34, -94), (-18, -52)) .segment ((-18, 100))
.segment ((-24, 100)).close() .assemble().finalize () .extrude (-80)

.union (wl.workplane (offset=-69 / 2) .moveTo (52, 0).cylinder (69, 32))

import cadquery as cg

w0 = cqg.Workplane('ZzX', origin=(0, 31, 0))

r = w0.workplane (offset=-75 / 2).cylinder (75, 62)

.union (w0.workplane (offset=-25 / 2).cylinder (25, 81))

.union (w0.workplane (offset=13 / 2).cylinder (13, 100))

import cadquery as cqg

w0 = cqg.Workplane('zX', origin=(0, 69, 0))

wl = cqg.Workplane('zX', origin=(0, -85, 0))

r = w0.workplane (offset=-150 / 2).cylinder (150, 15)

.union (w0.workplane (offset= lO / 2).cylinder (10, 31))

.union (w0.workplane (offset / 2).cylinder (31, 8))

union (wl.workplane (offset=-15/2) .cylinder (15,46))

import cadquery as cqg

w0 = cqg.Workplane('ZX', origin=(0, 20, 0))

r = wO.sketch().circle(61).circle (25, mode="'s") .push ([ (34, 4)]1)

.circle (4, mode='s"').finalize() .extrude(-41)

.union (w0.sketch() .segment ((-100, 19), (-88, 11)).segment((-97, -34)).segment ((-67, -41))
.segment ((-77, -66)).segment ((-57, —74)) .segment ((-57, -72)) .segment ((-56, -72))
.segment ((-56, -75)) .segment ((-32, -80)) .segment ((-35, -95)) .segment ((-16, —-100))

@ .segment ((-11, -83)).segment ((33, -100)).segment ((45, —70)).segment ((68, -76))
.segment ((76, -61)) .segment ((66, —-56)).segment ((100, —-30)).segment ((88, -19))
.segment ((97, 34)).segment ((67, 41)).segment ((77, 66)).segment ((57, 74))
segment ((51, 69)).segment ((51, 70)).segment ((32, 76)).segment ((35, 95))
segment ((16, 100)).segment ((11, 83)). segment((—jfs, 100)) .segment ((-45, 70))
.segment ((-68, 77)).segment ((-76, 62)).segment ((-66, 56)).close().assemble()
circle (26, mode='s'").finalize () .extrude (-20))

Figure 13. CAD-Recode predictions on DeepCAD (top 2 rows), Fusion360 (mid 3 rows), and CC3D (last row) datasets.

contains predicted CadQuery Python code and its result after execution in Python interpreter.
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import cadquery as cq

w0 = cqg.Workplane('XY', origin=(0, 0, 0))

wl = cqg.Workplane('YZ', origin=(0, 0, 0))

r = wO.workplane (offset=0 / 2).cylinder (0, 98)
.union(wl.workplane (offset=0 / 2).cylinder (0, 100))

(a) The ground truth model contains three very thin cylinders with height smaller than 1. As a result, CAD—Recode is not able to predict
heights with sufficient precision due to quantization and predicts cylinders with height 0, producing an invalid model.

import cadquery as cqg

Ej ﬂ( w0 = cg.Workplane ('XY' origin (0, O, )
r = w0. sketch() rect(_ )0, 124). push([( 3.5, 25)1).rect (51, 60, mode='s")
.push ([ (55, 5)1) .rect (50 0, mode='s'").finalize () .extrude (0

(b) As the ground-truth model has thickness less than 1, CAD-Recode predicts an extrusion distance of 0 as a quantized approximation
(highlighted in yellow), resulting in an invalid CAD model.

import cadquery as cqg

w0 = cqg.Workplane('YZ', orlgln— 0))

wl = cqg.Workplane ('XY"', orlgln (0, 0, 44))

r = w0.sketch() .segment ((-7, J), (11, =36)) .segment ( (1 24)) .arc((1, -14)
(6, —2)).segment ((-1, 19)). segment(( , 23)) . seqment(( 1, 28)
.segment ((11, 29)).segment ((12, 9)) .segment ((12, 35))

.segment ((-4, 36)).close() . assemble() flnallze() extrude(f 33)
.union (w0.sketch () .segment ((5, -7), ( 2)) .segment ((8, 8)).arc((7, 0),
(5, =7)).assemble() . flnallze().extrude(
.union(wl.sketch() .arc((-100, 12), (-85, ), (=70, 5)).arc((-68, 6),
5)) .arc((=59, 4), (=52, 2)).arc((= 3), (=50, 4)).arc((=72, 7),
12)) .close() .assemble () .finalize() . extrude(fu%)

(c) The ground-truth CAD model is created with B-spline primitives. Since CAD-Recode supports only arc, circle and line primitives, it
tries to approximate the solution with multiple arcs, but fails to provide a valid CAD model. In particular, the prediction contains an arc
constructed from three co-linear points (highlighted in yellow), which raises an error in CadQuery.

import cadquery as cqg
w0 = cqg.Workplane('XY', origin=

0, -79)

(0, 0,
r = w0.sketch() .segment ((-100, 7;), (-91, fl)).arc((‘, -93), (91, -1)
.segment ((100, -1)).segment ((100, ) .segment ( (91, )).arc((0, 99),
9 egment ((-100, 1)) .close assemble() ush([(u, 2)1)
90, mode='s'").finalize( rude (-2)

o

) -
.union (w0.workplane (offset=140 / 2).
.union (w0.sketch () .segment ( (=51, 15)
.segment ( (51, 15)). segment((
(=48, 27)) .segment ( (- 7)
(d) The ground-truth CAD model is created with a revolutlon operation. Since CAD—Recode supports only extrusion operation, it tries to
approximate the solution with multiple arcs. However, one of the sketch (highlighted in yellow) results in a self-intersecting loop, which

is not a valid face.

0, -53), (50, 15))
48, 27)).arc((0, -53),
() .finalize () .extrude (159))

(=50, 15)).arc((
27)) segment ( (

91
L)
0.
ext
cylinder (140, 2))
’ (
51,
). close().assemble

Figure 14. Examples of invalid predictions. Each row contains the ground-truth CAD model (left) and an invalid predicted CadQuery
Python code (right). The CAD models in (a) and (b) are taken from the DeepCAD dataset and the CC3D dataset for (c) and (d). Invalid
predictions mostly take place when the ground-truth contains features of very small dimension with respect to the size of the CAD model
as in (a) and (b), or when the ground-truth model contains operations other than the ones supported as in (c) and (d).
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E. Test-time Sampling

The ablation study in Section 5.1 of the main paper demon-
strates the effectiveness of our test-time sampling strategy.
This approach generates multiple plausible solutions by
sampling different input point clouds. Figure 15 illustrates
the qualitative results from different sampling instances.
While CAD-Recode successfully captures the overall ge-
ometry across different samplings, fine-grained details may
vary in reconstruction quality due to the relatively sparse
point cloud input. However, this limitation can be effec-
tively addressed by leveraging multiple sampling iterations
to capture different aspects of the input geometry.

F. Interpretability and CAD-QA

In this section, we provide further details on the CAD-QA
experiments reported in Section 5.2 of the main paper. We
start by providing more details on the SGP-Bench bench-
mark [38]. Then, we present results further results and ex-
amples of GPT-40 outputs.

F.1. Representation and CAD-QA

The goal of the SGP-Bench benchmark is to evaluate the
spatial-semantic reasoning skills of LLMs from symbolic
graphics programs [38]. One aspect of the benchmark is
a set of 1000 multiple choice questions on 3D CAD mod-
els given their corresponding sketch-extrude sequence in
the DeepCAD [48] format. An example is depicted in Fig-
ure 16.

To evaluate the interpretability of our code-based CAD
representation, we translated the 1000 questions of SGP-
Bench from the DeepCAD representation (Figure 16(a)) to
the CadQuery code format (Figure 16(b)). Using the same
protocol as in SGP-Bench [38], and GPT-40 [36], we found
that the accuracy on the multiple choice question in Cad-
Query format is 82.4%. This is about 4% higher than us-
ing the DeepCAD format with an interpretative hint. This
suggests the proposed code representation provides a more
structured and naturally LLM-interpretable representation
of CAD models.

F.2. Point Cloud and CAD-QA

In Table 6 of the main paper, the results for point cloud
CAD-QA are presented. Figure 17(a) depicts an example
of point cloud and question that was used to obtain these
results. In this particular question, the task is to deduce
the number of holes present in the CAD model given the
point cloud as input. Figure 17(b), the answer provided by
PointLLM is shown and it can be observed that PointLLM
is unable to retrieve the correct answer. It is worth not-
ing that PointLL.M is a network trained to answer semantic
questions about object given its point cloud representation,
as result in most cases the network is unable to describe
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geometric CAD-specific questions. For both CAD-SIGNet
and CAD-Recode, the point cloud CAD-QA is done in a
two step process. First the sketch-extrude is sequence is
predicted from each network, then the sequence along with
the question is passed through GPT-40. Note that for CAD-
SIGNet an interpretative hint is provided to provide context
on the structure of the sequence. A sample output for CAD-
SIGNet and GPT-40 can be found in Figure 17(c), and in
Figure 17(d) for CAD-Recode and GPT4-0. As the se-
quence was incorrectly predicted by CAD-SIGNet the an-
swer to the question is wrong (1 hole), whereas the pre-
diction from CAD-Recode captured better the geometry
of the input point cloud leading to a correct answer. It is
worth noting, that despite not being provided any informa-
tion about CadQuery Python code in the prompt, GPT-40 is
able to breakdown the predicted sequence into its primitive
components and provide correct and accurate geometric de-
scriptions. This can be explained by the fact that LLMs are
exposed to large amounts of code data during training. As a
result, the CadQuery Python representation of CAD models
is appropriate for

G. Editing Pipeline Details

We provide more details on the editing pipeline presented
in Section 5.2 of the main paper. The goal of this
pipeline is to integrate automated editability capabilities to
CAD-Recode. To this end, we present a simple process
using an off-the-shelf LLM, GPT-40 [36]. Starting from an
output CAD Python code from CAD-Recode as shown in
Figure 18a, we prepare a simple and generic prompt (Fig-
ure 18b) for the LLM to generate a refactored version of
the code such that when executed the user can change with
the dimensions of each primitive. As seen in Figure 18c,
the LLM is able to generate a code with comments that de-
scribe the different primitives semanticallly and include ap-
propriate variables for the dimensions of each of the prim-
itive, such as the height and the diameter of each cylinder.
The code generated by the LLM, can be directly executed
in a Jupyter notebook with the CadQuery and ipywidgets
libraries. Figure 6 of the main paper shows the generated
sliders and how can the shape be then edited. This demon-
strates that the CAD representation as Python code within
a reverse engineering scenario opens the door to new appli-
cations when combined with LLMs.
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Figure 15. CAD-Recode predictions from different point cloud sampling on DeepCAD, Fusion360, and real-world CC3D datasets. For
each prediction, 256 points are sampled randomly from the input point cloud.

Examine the following CAD code carefully to understand the 3D object it generates and answer the question based on your
interpretation of the rendered image of that object.

SOL; Line:(221,128); Line:(221,223) ;Line:(128,223); Line:(128,128); Ext: (128,128,128,32,110,128,98,167,128, Newbody,
One-sided); EOS

Hint: the CAD code has the following syntax: CAD code consists of a sequence of CAD commands that describe a 3D
object. The commands fall into two categories: sketch and extrusion. Sketch commands are used to specify closed curves on
a 2D plane in 3D space. Each closed curve is referred as a loop, and one or more loops form a closed region called a profile.
A loop always starts with an indicator command <SOL>> followed by a series of curve commands. All the curves on the loop
are in counterclockwise order, beginning with the curve whose starting point is at the most bottom-left. In total, there are three
possible curve commands: Line, Arc, and Circle. Line(x, y): a line, with x, y as line end-point. Arc(x, y, u, f): an arc, with X,y
as arc end-point, u as sweep angle and f as whether it is counter-clockwise, f=0 means it is counter-clockwise, f=1 means it is
not counter-clockwise. Circle(x, y, r): a circle, with X,y as the center point and r as the radius. The extrusion command has two
purposes: 1) It extrudes a sketch profile from a 2D plane into a 3D body, and the extrusion type can be either one-sided, symmetric,
or two-sided with respect to the profile’s sketch plane. 2) The command also specifies (through the parameter b in Ext) how to
merge the newly extruded 3D body with the previously created shape by one of the boolean operations: either creating a new body,
or joining, cutting or intersecting with the existing body. Ext(x, y, z, 0, p, g, s, €, f, b, u): extrude operation, with X, y, z as the sketch
plane orientation, o, p, q as the sketch plane origin, s as the scale of the associated sketch profile, e, f as the extrude distances towards
both sides, b as the type of merge operation (could be New-body operation, join operation, cut operation and intersect operation)
and u as the extrude type (could be one-sided, symmetric or two-sided). <EOS> means the end of the code.

Question: How many faces does the CAD object in the image have?

(a) DeepCAD Representation

Examine the following CAD code carefully to understand the 3D object it generates and answer the question based on your
interpretation of the rendered image of that object.

import cadquery as cq
def make_shape():

plane0 = cq.Plane(origin = (-0.75,-0.1406,0.0),xDir = (1.0,0.0,0.0),normal = (0.0,0.0,1.0))

w0 = cq.Workplane(plane0)

face0 = wO.sketch().face(w0.sketch().segment( (0.0, 0.0), (0.7495, 0.0)).segment((0.7495, 0.0), (0.7495, 0.7656)).seg-
ment((0.7495, 0.7656), (0.0, 0.7656)).segment((0.0, 0.7656), (0.0, 0.0)).assemble(), mode = ’a’).finalize()

shape( = face0.extrude(0.3046875, both=False)

return shapeQ

Question: How many faces does the CAD object in the image have?

(b) CadQuery Representation
Figure 16. Example of a CAD question from SGP-Bench in the DeepCAD representation (b) and using the CadQuery representation (c).

When asking the question in CadQuery format no hint is provided, while in DeepCAD format a long interpretative hint is required. The
choice of answers are A) 6, B) 4, C) 8 and D) 5. The correct answer is A) 6.
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Question: How many holes does the CAD object in the image have?
A) Two, B) Three, C) Four, D) Five
Correct Answer: B

(a) Point cloud and corresponding CAD-specific question

’ The CAD object in the image has five holes.

(b) PointLLM output from point cloud

To determine the number of holes in the CAD object, let’s break down the CAD code step by step:
1. Extrusion Command:
Start;Ext:(128,130,128,128,130,128,128,128, NewBody,96);
This command sets up an extrusion with specific parameters and indicates that a new body will be created.
2. First Loop:
Line:(43,0);Arc:(213,0,255,43);Line:(213,85);Arc:(43,85,0,43);EOL;
- Line:(43,0) - A line from the starting point to (43,0).
- Arc:(213,0,255,43) - An arc with midpoint (213,0) and endpoint (255,43).
- Line:(213,85) - A line from the previous endpoint to (213,85).
- Arc:(43,85,0,43) - An arc with midpoint (43,85) and endpoint (0,43).
- EOL - End of the loop.
This forms a closed loop, which is a profile for extrusion.
3. Second Loop:
Circle:(43,43,43,51);EOL;
- Circle:(43,43,43,51) - A circle with the most left point at (43,43) and the most top point at (43,51).
- EOL - End of the loop.
This forms another closed loop, which is another profile for extrusion.
4. End of Sketch and Extrusion:
EOF;EOS;End;
- EOF - End of face.
- EOS - End of sketch.
- End - End of the code.
From the above analysis, we can see that the CAD object consists of:
- One main profile formed by the first loop.
- One circular profile formed by the second loop.
The circular profile represents a hole within the main profile. Since there is only one circular profile, the CAD object has one hole.
Answer: A

(c) GPT-40 output from CAD-SIGNet prediction

Let’s break down the CAD code step by step to understand the 3D object it generates and determine the number of holes.

1. Workplane Creation:

w0 = cq.Workplane(’XY’, origin=(0,0,1))

This line creates a workplane on the XY plane with an origin at (0,0,1).

2. Sketching the Shape:

r = w0.sketch()

This initializes a sketch on the workplane.

3. Defining the Shape:

.segment((-66,-34),(50,-34)) .segment((50,-32)) .arc((100,0),(50,32)) .segment((50,34)) .segment((-66,34)) .segment((-66,32)) .arc((-100,0),(-66,-32))
.close()

These lines define a closed shape with segments and arcs. The shape appears to be symmetrical along the Y-axis.

4. Adding Holes:

.assemble() .push([(-66,0)]).circle(10, mode="s") .push([(0,0)]).circle(10, mode="s") .push([(66,0)]).circle(10, mode="s") .finalize()
These lines add three circles (holes) to the shape at positions (-66,0), (0,0), and (66,0).

5. Extruding the Shape:

.extrude(-4)

This line extrudes the shape by -4 units, creating a 3D object with the defined shape and holes.

From the code, we can see that three circles (holes) are added to the shape. Therefore, the CAD object has three holes.

Answer: B

(d) GPT-40 output from CAD-Recode prediction

Figure 17. Example of Point cloud CAD-QA (a) and answers provided by PointLLM (b), CADSIGNet and GPT-40 (c) and
CAD-Recode and GPT-4o (d).
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import cadquery as cq

w0 = cqg.Workplane('XY', origin=(0, 0, 0))

r = w0.workplane (offset=-100 / 2).cylinder (100, 100)
.union (w0.workplane (offset=100 / 2).cylinder (100, 34))

(a) CAD—-Recode output as CadQuery Python code.

Refactor the code, add functions and variables that can make the code easier to edit and more interpretable. Add in the code, sliders to edit the size of each primitive: import
cadquery as cq w0=cq.Workplane("XY",origin=(0,0,0)) r=w0.workplane(offset=-100/2).cylinder(100,100).union(w0.workplane(offset=100/2).cylinder(100,34))

(b) Prompt for GPT-40

import cadquery as c
from ipywidgets import interact, FloatSlider

default_base_diameter
default_base_height =
default_top_diameter = 3
default_top_height = 100

def create

return

der (workplan

> with a given diameter, h
er (height, diameter / 2)

s a cylinder on
rkplane.workpla

def build_model (base_diameter-default_base_diameter, base_height=default_base_height,
top_diameter-default_top_diameter, top_height-default_top_height) :

B

with stable ba op ¢

w0 = cq.Workplane ("XY", origin=(0, 0, 0))

base_cylinder = create_cylinder (w0, base_diameter, base_height, offset=-base_height / 2)
top_cylinder = create_cylinder (w0, top_diameter, top_height, offset=base_height / 2)

model base_cylinder.union (top_cylinder)
return model

base_diameter_slider — FloatSlider (value-default_base_diameter, min=—
base_height_slider = FloatSlider (value=default_base_height, min=10,

top_diameter_slider = FloatSlider (value=default_top_diameter, min=10,
top_height_slider = FloatSlider (value=default_top_height, min=10, max=2(

00, step=5, description="Ba

=5, description=
=5, descriptio
description="Top

@interact (
base_diameter=base_diameter_slider,
base_height-base_height_slider,
top_diameter-top_diameter_slider,
top_height-top_height_slider

def update_model (base_diameter, base_height, top_diameter, top_height):

model = build_model (base_diameter, base_height, top_diameter, top_height)
show_object (model) ] T

display_model_with_sliders ()

(c) GPT-40 output: executable refactored code with interactive sliders

Base Diam. Base Diam. R

Base Height Base Height

Top Diam. Top Diam.

Top Height Top Height R

(d) Executed code produces interactive sliders that the designer can use to modify the size of the primitives.
Figure 18. Editing pipeline: given a predicted code from CAD-Recode from a point cloud (a), a generic prompt can be constructed to

refactor the predicted code to enhance editibility (b). The output from GPT-40-2024-08-06 is shown in (c), and the generated sliders and
possible CAD edits are depicted in (d).
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