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Abstract—The increasing demand for high-capacity and
globally accessible wireless services has intensified the need
for spectrum-efficient and wide-coverage solutions. Integrated
terrestrial-satellite networks (ITSNs) offer a promising architec-
ture to address these challenges, while with the deployment of
integrated sensing and communication (ISAC) and rate-splitting
multiple access (RSMA) further enhances system functionality
by supporting joint communication and sensing while effectively
managing interference. This paper investigates RSMA for a
multi-antenna LEO satellite that shares the licensed spectrum of
terrestrial distributed MIMO systems to simultaneously perform
target sensing and provide communication services. A weighted
sum-rate maximization problem is formulated, subject to power,
sensing, and interference constraints. To solve the resulting non-
convex problem, we develop a hybrid solution that combines
a deep convolutional neural network (CNN) for power allo-
cation with a semidefinite relaxation (SDR)-based method for
precoding and rate optimization. Simulation results demonstrate
that the proposed scheme satisfies all constraints and achieves
performance close to a successive convex approximation (SCA)-
based benchmark, while significantly reducing computational
time, which makes it suitable for real-time deployment in
resource-constrained satellite systems. Additionally, the RSMA-
based approach outperforms conventional baseline methods.

Index Terms—Integrated terrestrial-satellite networks, dis-
tributed MIMO, rate-splitting multiple access (RSMA), inte-
grated sensing and communication (ISAC), artificial intelligence
(AI).

I. INTRODUCTION

The exponential growth in wireless data traffic, driven by
multimedia services and bandwidth-intensive applications, has
intensified spectrum scarcity. Concurrently, achieving global
wireless coverage remains constrained by the high cost and
logistical complexity of deploying terrestrial infrastructure
in remote regions. These challenges highlight the need for
solutions that enhance spectrum efficiency and extend cov-
erage. Integrated terrestrial-satellite networks (ITSNs) offer
a promising architecture to address these issues by enabling
spectral coexistence between terrestrial and satellite systems,
thereby improving both spectral and energy efficiency across
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diverse geographical areas [1]. Their performance can be
further enhanced with distributed multiple-input multiple-
output (MIMO) in the terrestrial network, which mitigates
inter-cell interference through distributed access points that
cooperatively serve users, improving service uniformity and
system capacity [2], [3]. These capabilities are especially
beneficial in complex environments with distributed devices,
where maintaining reliable connectivity and efficient spectrum
utilization is challenging.

The deployment of integrated sensing and communication
(ISAC) adds further value by enabling dual use of wireless
signals for communication and sensing [4]. ISAC improves
spectral efficiency, reduces hardware redundancy, and en-
ables applications such as environmental monitoring, drone
tracking, and remote sensing. Rate-splitting multiple access
(RSMA) complements ISAC by managing interference and
leveraging common messages for sensing, eliminating the
need for dedicated radar signals [5], [6]. This makes RSMA
particularly suitable for ITSNs, where efficient resource use
and interference mitigation are critical.

Several studies have explored ISAC-enabled beamforming
and resource allocation in terrestrial [4] and satellite networks
[7]. The integration of ISAC into satellite—terrestrial relay
networks has been considered in [8], where user activity sens-
ing is employed to support a dynamic bandwidth allocation
framework. This approach aims to enhance random access
performance and maximize overall system throughput, under-
scoring the potential of ISAC to improve network adaptability
and efficiency. In [9], the authors investigated a reconfig-
urable intelligent surface (RIS)-assisted ISAC-enabled ITSN
in a single-cell scenario, focusing on sum-rate maximization.
However, these works did not incorporate RSMA.

RSMA has been studied across various domains, including
terrestrial networks [5], distributed MIMO systems [10], ISAC
systems [6], and LEO-ISAC system [7]. These studies con-
sistently demonstrate RSMA’s superiority over conventional
multiple access schemes in terms of spectral and energy
efficiency. Nevertheless, prior works of ISAC and RSMA
[4]-[10] primarily focus on terrestrial, satellite, or single-cell
scenarios and do not investigate the joint integration of RSMA
and ISAC within ITSNs incorporating terrestrial distributed



MIMO networks.

The practical deployment of joint communication and sens-
ing systems faces significant challenges due to the complexity
of their joint optimization. Traditional optimization methods
are computationally intensive and struggle to adapt to dynamic
channel conditions. Al-based approaches, particularly deep
learning (DL), offer a promising alternative by learning system
dynamics and enabling real-time adaptation of beamforming
and resource allocation strategies. For instance, [11] pro-
posed a deep convolutional linear precoder neural network
for RSMA-based aerial computing networks, demonstrating
the potential of DL in managing interference and improving
spectral efficiency. Similarly, [9] introduced a deep Q-network
for sum-rate maximization in ISAC-enabled ITSNs. However,
this work did not include a feasibility analysis or a comparison
with upper-bound benchmark schemes, leaving open questions
regarding its practical performance and optimality.

Motivated by these insights, our work addresses the gap
in the joint integration of RSMA and ISAC within satel-
lite—terrestrial architectures, particularly under cognitive radio
constraints and in distributed MIMO networks. To this end,
we propose a novel Al-driven beamforming framework that
enables efficient resource allocation and interference man-
agement. The proposed system model involves a LEO satel-
lite interacting with a terrestrial distributed MIMO system
to perform simultaneous sensing and communication using
RSMA. Our objective is to maximize the system sum rate
while satisfying power, interference, and sensing constraints.
The main contributions can be summarized as follows:

« We propose a cognitive satellite—terrestrial network ar-
chitecture in which a multi-antenna LEO satellite shares
the licensed spectrum of a terrestrial distributed MIMO
system to simultaneously perform target sensing and
provide communication services to satellite users using
RSMA. The spectrum sharing mechanism is designed
to ensure that satellite transmissions do not exceed an
interference threshold for terrestrial operations.

o We formulate a weighted sum-rate maximization problem
by jointly optimizing the common precoder vector, com-
mon rate variables, and power allocation to satellite users
subject to constraints on satellite power, minimum beam-
pattern gain toward the sensing target, and maximum
interference to terrestrial users. To solve the resulting
non-convex problem, we propose a hybrid solution that
combines a deep convolutional neural network (CNN)-
based model for power allocation with a semidefinite
relaxation (SDR)-based method for common precoding
and rate optimization.

o Numerical simulations demonstrate that the proposed
scheme satisfies all constraints and achieves performance
close to the near-optimal successive convex approxima-
tion (SCA)-based benchmark, while significantly reduc-
ing computational time. Additionally, the RSMA-based
approach outperforms conventional maximum ratio trans-
mission (MRT) and zero-forcing (ZF) precoding.
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Fig. 1: ISAC-enabled integrated satellite and terrestrial dis-
tributed MIMO system.

II. SYSTEM MODEL

We consider a LEO satellite with N antennas serving K
satellite users (SUs) and performing sensing toward a target,
as illustrated in Fig. 1. The terrestrial network includes B
base stations (BSs), each with Ng antennas, and M terrestrial
users (TUs). Each BS serves all TUs over the same time-
frequency resource block, coordinated by a central processing
unit (CPU) via backhaul links. We use underlay cognitive radio
to enable the satellite system to share the licensed spectrum
of terrestrial networks while ensuring that interference to
terrestrial operations remains below a defined threshold.

Under RSMA at the satellite, each user message my is
split into a common part m§ and a private part m}. The
common parts are jointly encoded into a common stream S,
which is intended to be decoded by all users. Meanwhile, the
private parts are independently encoded into private streams
sy. Linear precoding is then applied to all streams, where
Po denotes the common precoder for sy, and py denotes the
private precoder for for si. It has been shown that the common
stream in RSMA can be exploited for sensing purposes,
effectively replacing the need for a dedicated radar signal [6].
Accordingly, the transmit signal at the satellite is denoted as

K
Xs :p050+Zkak- (D
k=1

In the terrestrial network, we assume that the BSs employ
local zero-forcing precoding to transmit the stream s1Y to the
m-th TU. Then, the transmit signal at the b-th BS is given by

M
XBS,p = Z \/MWT,b,msﬁU7 2

m=1
where ¢ ,, denotes the power allocated to the m-th TU
at the b-th BS, and wry ,, is the corresponding precod-
ing vector. The precoding matrix at the b-th BS is given

_ _ WT,b,1 Wb, M
by WT,b - [WT,b,lv ceey wT,b,JW] - Wroil? " TWroarl|?
o~ _ - - _ H -

where WT,b = [WT,b717~--7WT,b,JVI] = GT,b(GTJ,GT,b)

and Gry = (87,1, 8rpm] € CVEXM with grp €



CNBX1 representing the channel vector from the b-th BS to
the m-th TU.
In the satellite network, the received signal at the k-th SU
is given by
K
Yk :hg,kposo + Z hg,kpk/sk’
B M o (3)

+ Z Z 8840 /Tom Wb m S + Tk,
b=1m=1
where gg ;. € CN*1 denotes the channel from the satellite
to the k-th SU, ggp 1 € CNBX1 represents the channel from
the b-th terrestrial BS to the k-th SU, and nj denotes the
additive white Gaussian noise with zero mean and variance
U,%. We assume perfect channel state information (CSI), and
discussions on imperfect CSI can be found in [12]. Each k-th
SU first decodes the common stream s, by treating all private
streams as noise. Then, the signal-to-interference-and-noise-
ratio (SINR) of sq at the k-th SU is given by
b pol”
2 B M 2 ’
+bz > Qb,m’ggb’kWT,b,m + o2
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Next, the k-th SU applies successive interference cancel-
lation (SIC) to remove the interference from the common
message and then decodes its private stream. Hence, the SINR
of s at the k-th SU is expressed as

H 2
p_ |hS,kpk| 5)
Yk K Py B M 2 ’
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The corresponding achievable rates at the k-th SU for the
common stream Sy and the private stream si are given by
R{ = log, (1+~5) and R} = log, (1 + 1), respectively.
To ensure that the common stream sy can be successful
decoded by all the SUs, its rate must not exceed Ry =
min (R, ..., RS ). Since Ry consists of the common parts of

K
the K SU’s messages, it can be expressed as Ry = > ¢,

where ¢, denotes the common rate associated with tkfe_ }f-th
user’s common message part mj,. Hence, the total achievable
rate of the k-th SU is defined as Ry, = cj, + RY.

The interference from the satellite to the m-th TU can be
expressed as

; (6)

2 K 2
Im = ‘hgmpol + Z lhg{mpk’
k=1
where hr,, € CN*1 denotes the channel vector from the
satellite to the m-th TU.
For radar sensing, both common and private precoding
vectors are used to simultaneously perform target detection and

data transmission. The radar sensing performance is evaluated
using the transmit beampattern metric, defined as

P(0) =a" (0) (popé{ - ZpkpkH) a(0), ™

k=1

where a (0) = [1,e/2mdasin(®)  _ ei2r(N-1)da Si“(‘))}T is the
steering vector with direction 6, with da denoting the normal-
ized spacing between adjacent antenna elements relative to the
carrier wavelength. The desired beam pattern is designed to
maximize the minimum beampattern gain in the direction of
the target, where 6 represents the potential target location [4].
Our objective is to maximize the weighted sum rate of the
SUs, subject to a power budget constraint at the satellite, a
minimum beampattern gain requirement for target sensing,
and a maximum allowable interference toward the TUs. The
proposed optimization problem is formulated as follows:

K
max uk (R}, + cx) (8a)
POPk:CE
K
st.Cl: Y ep < RE, Yk (8b)
k'=1
C2: P (0) > Gmin (8c)
K
C3:[[pol* + D IPr]l* < Prnax (8d)
k=1
C4: Iy < Imax, VM (8e)
C5:c, > 0, Vk, (8)

where uj denotes the rate weight for the k-th SU, G
represents the minimum beampattern gain in the direction
of the target, P, is the satellite’s total power budget,
and I,,,, is the maximum allowable interference to TUs.
Constraint C1 ensures that sg can be successfully decoded
by all SUs. Constraint C2 enforces the radar requirement by
guaranteeing a minimum beampattern gain, while constraint
C4 limits the interference introduced to the terrestrial network.
The proposed problem (8) is non-convex. To address this, we
propose a hybrid solution that combines a deep CNN-based
model with an SDR-based method.

III. PROPOSED SOLUTION

The design of the private precoding vectors {pi,..., Pk}
is based on ZF. Then, the private precoding is defined as
Pr = Qi Hg:\l’ where o2 represents the transmit power and

- ey 1
for ZF, pj. is the k-th column of Pg = Hg (H?HS) =

[B1, ..., D] € CN*K with Hg = [hgy, ..., hg x] € CN¥K,
Next, we divide the non-convex problem (8) into two sub-
problems. First, we develop a CNN-based scheme to optimize
the power allocation variables {«y}. CNNs are particularly
well-suited for this task, as the input data consists of complex
channel vectors that can be represented as two-channel images,
allowing the model to effectively capture spatial patterns and
correlations. The CNN model is trained offline using a dataset
generated by an SCA-based method. Subsequently, given the
power allocation variables {cy, } predicted by the trained CNN
model, we propose a SDR-based method to optimize the
common precoder py and the common rate variables {cy}.
This hybrid framework not only enables an efficient solution
to the original non-convex problem (8), but also improves
constraint satisfaction through the SDR module.
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Fig. 2: Proposed CNN-based model for power allocation.

A. CNN-based model to predict {ay}.

The proposed CNN-based model is composed of five inputs
and one output representing the power allocation variables
{ay}, as illustrated in Fig. 2. The first input is the ZF based
matrix Pg, which consists of real and imaginary components.
These components are treated as separate image channels,
allowing the matrix to be represented as an image-like input.
The second input is the channel matrix Hg from the satellite
to the SUs, which can also be considered as an image
with two image channels. The third input is the correlation
between private precoders and the channels associated to
TUs, defined by Cpg m, |PHH,| € RKXM, where

h h b

Hr = [y, o peary | and Ps = | By B | The
fourth input is the correlation between private precoders, and
the steering vector of the angle associated with the direction of
the target, which can be represented as cpg g = ‘P (0)‘ €
RE*1 The last input is the power budget of the satellite.

In Fig. 2, the Conv w X (b x b) module is composed of
three sequential layers. First, a convolutional layer with w
filters and a kernel size of b x b is applied. This is followed
by a batch normalization layer, which accelerates training
and enhances stability. Finally, a Parametric ReLU (PReLU)
activation function is used to introduce non-linearity, allowing
for adaptive learning of the negative slope. The model is
trained using the Adam optimizer and compiled with mean
squared error (MSE) as both the loss function and evaluation
metric, making it well-suited for regression tasks. The Conv
module enables feature extraction from complex-valued inputs,
effectively capturing and consolidating this information in a
high-dimensional feature space. These extracted features are
then merged with real-valued inputs, such as power levels and
directional correlation toward the target. The combined repre-
sentation is subsequently passed through three fully connected
(FC) layers to generate the power allocation variables {cy }.

B. SDR-based method to optimize po and {ci}.

In this subsection, we describe the SDR-based method,
given the power allocation variables {ay}, to optimize pg
and {cy}. First, we define Py = pop{!, Hs) = hgykhgk,

Hr, = hp,hfl |, and hSk”g;H Then, it
implies that the matrix Py is rank-one symmetric positive

semidefinite, i.e., Po = 0 and rank (Py) = 1. Moreover, the
2

following equivalences hold: ||po”® = Tr (Py),

Tr (HsPo), and |hZ po|> = Tr(Hr,.Po). Then By
relaxing the rank-one constraint on Py, the original non-
convex problem (8), given {ay}, can be reformulated into a
convex optimization problem as follows:

K

max Uk Ck (9a)
Po,ck =1

subject to

K
> cpr K
—Tr (HsxPo) + (2’“'1 Y 1) < E ai’mk,k’|2

k'=1

B M 2
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K
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Problem (9) is convex and the solution can be obtained
by the CVX toolbox in MATLAB [13]. The computational
complexity of solving problem (9) can be expressed as
O (VN (N®+ (K + M) N?)log (1/¢)) [14]. If the pre-
dicted values of {«j} result in an infeasible problem, a
slack variable s can be introduced into constraint (9d) and
incorporated as a penalty term in the objective function to
ensure feasibility. Subsequently, the values of oy, are updated
based on constraint (9d) using P, s*. Moreover, if the optimal
P{ to problem (9) is rank-one, the common precoder vector
can be obtained by pyg = \/Amax (P0)Vmax,py> Where Apax
denotes the largest eigenvalue of matrix Py, and v« p, 1S
the corresponding eigenvector. If P{ is not rank-one, penalty-
based optimization approach [15] can be employed to approx-
imate the rank-one matrix constraint, enabling the derivation
of near-optimal solutions by progressively enforcing rank-one
through penalization.

IV. SIMULATION RESULTS

Numerical simulations are presented to validate the effec-
tiveness of the proposed scheme. The terrestrial channels from
the b-th BS to k-th SU and m-th TU are modelled based on [2]
and are defined as gg(7),p,k(m) \/Wgs(;p) bok(m)>
where gs(1).6,k(m) represents the small-scale fading with
elements following CA (0, 1), and Q5(TY,b,k(m) denotes the
large-scale fading coefficient, which accounts for both path
loss and shadow fading, as described in [2].



The channel vector from the satellite to k-th SU follows
the model described in [12], [9], and is given by hg ) =

VG bY2 o pl/? ,
— g e Org, ©exp(jOs,k), where G, accounts
in Sk TRy Sk Sk P (j0s.k) u

for the antenna gain of the SU, dg; denotes the distance
between the satellite and the k-th SU, A represents the
wavelength, x=1.38x10723/K is the Boltzmann’s constant,
T = 300 K is the system noise temperature, and By is the
bandwidth. The beam gain component is defined as bg ., =

2
GMaz N10sikm) 4 36 JS(;SS’W , where G4 denotes the
205,k,n 0% g

maximum beam gain, and 7 (-) and Js (+) are the first- and
third-order Bessel functions of the first kind, respectively.
5S,k,n = 2.07123 (sin (ﬂS,k’,n) /sin (193,133)), where ﬁS,k,n
denotes the angle between the n-feed and the k-th SU, and
J34p represents the angle at which the antenna gain is reduced
by 3 dB. rgy is an N-dimensional vector representing the
rain attenuation, and Og, is the channel phase vector with
elements independently and uniformly distributed over the
interval [0,27]. The channel vector from the satellite to the
m-th TU follows the same model.

The LEO satellite is positioned at an altitude of 600 km,
located at coordinates (0,0). SUs are randomly distributed
within a circular area of 10 km radius centered at (0,0).
The BSs and TUs are deployed within a 1 km radius area
centered at (12km, 0). The BSs are mounted at a height of 15
m, while the TUs are positioned at 1.65 m. SUs are equipped
with receiver dishes installed at 10 m. The satellite employs a
directional antenna with a maximum gain of 35 dBi and one-
half the 3 dB beamwidth of 1.6°, while the satellite receiver
achieves 39.74 dBi gain. The system operates at a carrier
frequency of 20 GHz with a total bandwidth of 500 MHz. We
consider B = 2 terrestrial BSs, each equipped with Ngp = 4
antennas and transmitting at 25 dBm. The transmit power is
equally divided among M = 2 served TUs. The satellite is
equipped with N = 4 antennas, serving K = 2 SUs with
ur = 1, and operates with a power budget ranging from 30
dBm to 36 dBm. An interference-to-noise ratio (I/N) threshold
of -10 dB is considered at the TUs.

We compare the proposed hybrid CNN-SDR scheme, re-
ferred to as "RSMA-CNN”, with the near-optimal SCA-based
method [10], [14], denoted as "RSMA-SCA”, which iteratively
solves the non-convex problem (8) by constructing and solving
a sequence of convex approximations. Additionally, we con-
sider RSMA without radar constraints, denoted as "RSMA w/o
radar”, as well as two baseline schemes based on ZF and MRT,
which optimize the power allocation for user precoders and the
complex precoding vector of the dedicated radar signal.

The RSMA-SCA method was employed to generate the
dataset used for training the deep CNN model, comprising
32,000 training samples and 8,000 validation samples. After
fine-tuning, the selected model parameters include F; = 8§,
Fy, = 4, F5 = 64, 1024 hidden neurons in the FC layers,
a batch size of 128, and an initial learning rate of [r with
a exponential decay factor of 0.95 applied every 1,000 mini-
batch updates. Fig. 3a illustrates the convergence behavior of
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Fig. 3: (a) Convergence behavior of the CNN-based model.
(b) Sum-rate versus the transmission power.

the proposed deep CNN-based scheme under different learning
rates. It can be observed that relatively high learning rate
values lead to unstable MSE behavior. In contrast, lower
learning rates result in higher final MSE values. Therefore,
a learning rate of {r = 0.005 is selected for training the final
model, as it provides a good balance between stability and
performance.

Fig. 3b presents the sum-rate performance according to the
power budget at the LEO satellite. We can see that RSMA-
based schemes outperform the baseline methods of ZF and
MRT, owing to the ability of RSMA to partially decode both
radar and inter-user interference through the common stream.
RSMA w/o radar achieves a slight improvement in sum-rate
compared to the proposed RSMA with radar, owing to the
additional radar constraints (8c) that restrict its communication
performance. Notably, the proposed hybrid CNN-SDR scheme
achieves 99.9% of RSMA-SCA’s sum-rate with significantly
lower computational complexity.

Fig. 4a illustrates the cumulative distribution function (CDF)
of the sum-rate over multiple channel realizations, considering
power budgets of Pp,x = 32 dBm and P, = 36 dBm.
The results show that the proposed hybrid CNN-SDR scheme
closely matches the performance of the RSMA-SCA method
for different channel realizations, demonstrating its effective-
ness in achieving near-optimal power allocation and precoding.
Moreover, the RSMA-based schemes consistently outperform
the baseline methods of ZF and MRT.

Fig. 4b presents the normalized transmit beampattern ob-
tained for the target with P,,,, = 30 dBm, where the angle
0* = 0 is selected for improved visualization. The trans-
mit beampattern is normalized with respect to the minimum
required beampattern gain, G,,;,. It can be observed that
the RSMA-SCA and RSMA-CNN schemes yield comparable
performance in satisfying the radar requirement. Addition-
ally, the baseline methods of ZF and MRT exhibit similar
beampattern characteristics to the RSMA-based schemes. This
is attributed to the radar constraint (8c), which enforces a
minimum beampattern gain while allowing the remaining
resources to be allocated for maximizing the users’ sum-rate.

Fig. 4c shows the CDF of the computational time required
by each comparative scheme. All simulations were conducted
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on a workstation equipped with an Intel Core i9-14900K
processor and 64 GB of RAM. The computational time for
the proposed method includes both the CNN-based model and
the SDR-based technique, with the CNN inference averaging
4.3 ms when executed solely on the CPU to ensure a fair
comparison with the baseline methods. The iterative baseline
schemes are considered converged when the relative change
in the objective function between successive iterations falls
below 10~%. Our proposed hybrid CNN-SDR scheme achieves
an average 97.3% reduction in computational time compared
to the RSMA-SCA method. It also achieves 97.5% and 97.8%
reductions relative to the ZF and MRT baselines, respectively,
both of which involve radar precoding vector optimization.
These results highlight the superior computational efficiency
and overall performance of the proposed approach.

V. CONCLUSION

In this paper, we have proposed a RSMA-based cognitive
satellite—terrestrial network architecture that enables a multi-
antenna LEO satellite to perform joint communication and
sensing while sharing spectrum with a terrestrial distributed
MIMO system. We investigated the weighted sum-rate max-
imization problem under power, sensing, and interference
constraints, and proposed a hybrid CNN-SDR solution that
leverages deep learning for power allocation alongside SDR-
based common precoding and rate optimization. Simulation
results confirmed that the proposed scheme achieved perfor-
mance close to a SCA-based benchmark, satisfied all system
constraints, and significantly reduced computational complex-
ity. Furthermore, the RSMA-based approach consistently out-
performed conventional baseline schemes, demonstrating its
viability as a practical solution for future integrated satel-
lite—terrestrial networks.
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