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Preface
The dream of expansion beyond our home planet has always been a powerful motivator, yet 
it is a vision defined by immense engineering challenges. This thesis is the embodiment of a 
research journey driven by a fundamental question: How do we build the adaptive autonomy 
that robots need to operate reliably in the remote and unstructured environments of space? 
This thesis details my effort to answer that question.

My research path followed two interconnected directions. The first was the creation of a 
virtual playground where robots could learn from a near-infinite diversity of challenges. The 
second involved developing and applying a learning methodology that empowers robots with 
the physical intelligence needed to master the complex tasks they will face in extraterrestrial 
environments. This work presents the design of the combined framework and the principles of 
learning it enables.

This endeavor would not have been possible without the guidance of my advisors, the discus-
sions with my colleagues, and the support of my family and friends. It is my sincere hope 
that these contributions will serve as a small but meaningful step toward building the truly 
autonomous systems that will one day help us explore and build new worlds.

Defense Committee

Committee Members: Prof. Holger Voos

Prof. Keenan Albee

Dr. Claudio Semini

Co-Supervisor: Dr. Carol Martinez

Supervisor: Prof. Miguel Olivares-Mendez
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All models are wrong, but some are useful.

— George E. P. Box
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Abstract
The growing ambition for a sustainable human presence beyond Earth requires autonomous 
robotic systems capable of reliable operation in extreme and unpredictable conditions. 
However, developing such autonomy is hindered by the scarcity of extraterrestrial data, the 
prohibitive cost of hardware testing, and the critical sim-to-real gap. This thesis confronts 
these obstacles by challenging the conventional pursuit of a singular high-fidelity digital twin. 
Instead, it proposes a paradigm of diversity over fidelity, where true robotic robustness is 
achieved not by perfecting one simulation, but by learning to master a massive distribution of 
scenarios.

To enable such a vision, this work introduces the Space Robotics Bench, a comprehensive open-
source simulation framework for robot learning in space that combines scalable parallelization 
with an integrated procedural engine for the on-demand generation of diverse mission-relevant 
applications. Building on this foundation, a model-based reinforcement learning methodology 
is leveraged to acquire robust control policies that can adapt to novel situations.

Experimental validation demonstrates that the principle of procedural diversity yields policies 
capable of mastering a wide range of mission-critical capabilities, extending from planetary 
landing and resilient traversal on unstructured deformable terrains to high-precision assembly 
and tool-aware manipulation. These efforts culminate in the successful zero-shot sim-to-real 
transfer of a learned policy to a physical rover.

Ultimately, this thesis delivers a new paradigm for the development and validation of learning-
based autonomy. By contributing a powerful open-source toolkit and a validated methodolog-
ical blueprint, this work establishes a scalable pathway for developing and verifying the adaptive 
robotic systems that will be essential for our multiplanetary future.
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Glossary
Space

ESA – European Space Agency: An intergovernmental organization of member states dedi-
cated to the research and exploration of space. 3

EVA – extravehicular activity: An activity performed outside a spacecraft in a space environ-
ment, often involving tasks like assembly, maintenance, and scientific research. 4, 18

ISAM – in-space servicing, assembly, and manufacturing: A paradigm of space operations 
focused on servicing existing satellites, assembling large structures in orbit, and manufactur-
ing components directly in space. 20

ISRU – in-situ resource utilization: The practice of collecting, processing, and utilizing 
resources found on-site in an extraterrestrial environment to support future robotic and 
human missions. 3, 20, 36, 85

ISS – International Space Station: A modular space station in low Earth orbit, serving as a 
microgravity and space research laboratory. 3, 18, 61

JAXA – Japan Aerospace Exploration Agency: The Japanese national agency responsible for 
space exploration, research, and development. 3

NASA – National Aeronautics and Space Administration: An agency of the United States 
responsible for the civil space program and research. 3, 5, 20

V&V – verification and validation: A process used to ensure that a system meets specifica-
tions and fulfills its intended purpose, particularly in safety-critical applications. 8, 33, 50

cislunar: The region of space between the Earth and the Moon. 4

microgravity: A condition in which objects are perceived to be weightless, typically experi-
enced in orbital environments. 4, 13, 19, 34, 51

regolith: A layer of loose superficial deposits covering solid rock. It includes dust and soil found 
on the surface of the Moon, Mars, and other celestial bodies. 3, 4, 5, 8, 15, 19, 20, 21, 43, 49, 
51, 56, 77, 85, 87, 88, 97

terramechanics: The study of the interaction between vehicles and terrain, particularly for off-
road traversal on deformable surfaces like sand or regolith. 21
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Machine Learning

BC – behavior cloning: A basic form of imitation learning where a policy is trained in a 
supervised manner to directly mimic the state-action pairs from a demonstration dataset. 28

DR – domain randomization: A technique used to bridge the sim-to-real gap by training a 
policy in a simulation with a wide range of randomized parameters. 10, 11, 13, 30, 31, 33, 
39, 43, 45, 46, 49, 55, 60, 62, 68, 74, 77, 81, 94

DreamerV3: A model-based reinforcement learning algorithm that learns a latent world model 
from observations and uses this model to train its actor-critic networks entirely within 
imagined trajectories. 10, 27, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 82, 87, 90

IL – imitation learning: A type of machine learning where an agent learns to perform a task 
by observing and imitating demonstrations from a human or another controller. 28, 61

LSTM – long short-term memory: A type of recurrent neural network architecture that is 
capable of learning long-term dependencies in sequential data. 78

LfD – learning from demonstration: A machine learning paradigm where an agent learns to 
perform tasks by observing demonstrations. It can include techniques like imitation learning 
and behavior cloning. 17, 28, 98

MBRL – model-based RL: A class of reinforcement learning algorithms that employ a model 
of the environment dynamics. 10, 12, 13, 23, 27, 35, 46, 63, 65, 67, 70, 92, 94, 95

MDP – Markov decision process: A mathematical framework for modeling decision-making 
in situations where outcomes are at least partially under the control of an agent. It is the 
formal foundation for most reinforcement learning problems. 17, 24, 25, 27, 40

POMDP – partially observable MDP: An extension of the Markov decision process where 
the agent does not directly observe the full state of the environment but instead receives an 
observation that may be noisy or incomplete. 25, 64, 78, 87

PPO – Proximal Policy Optimization: An actor-critic reinforcement learning algorithm that 
constrains policy updates to a small region to promote stable learning by optimizing a clipped 
surrogate objective function. 10, 26, 64, 65, 66, 67, 78, 79

RL – reinforcement learning: A type of machine learning where an agent learns to make 
decisions by taking actions in an environment to maximize a cumulative reward signal. 6, 7, 
8, 10, 12, 13, 14, 15, 17, 25, 26, 28, 29, 34, 36, 37, 39, 40, 42, 46, 49, 60, 63, 64, 67, 68, 71, 
75, 76, 78, 79, 80, 82, 96

RNN – recurrent neural network: A class of neural networks designed for processing sequen-
tial data by maintaining a hidden state that captures information about previous inputs. 68
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SAC – Soft Actor-Critic: An off-policy actor-critic reinforcement learning algorithm based 
on the maximum entropy framework, which aims to maximize both the expected return and 
the entropy of the learned policy. 10, 26, 42, 64, 65, 66

TD3 – Twin Delayed Deep Deterministic Policy Gradient: An off-policy actor-critic 
algorithm that addresses value overestimation and instability by employing a pair of critic 
networks and delayed policy updates. 10, 26, 64, 67, 78

TQC – Truncated Quantile Critics: An off-policy actor-critic algorithm that extends Soft 
Actor-Critic with a truncated quantile distribution to improve stability and robustness. 42

actor-critic: A class of reinforcement learning algorithms that use two separate entities in the 
form of an actor that selects actions based on the current policy and a critic that evaluates the 
actions by estimating the value of the resulting state. This architecture results in more stable 
and efficient learning. 25, 26, 42, 68

agent: The learner and decision-maker in a reinforcement learning problem. It perceives its 
environment and takes actions to maximize a cumulative reward, also known as return. 2, 4, 
6, 7, 8, 10, 12, 13, 15, 21, 24, 25, 27, 28, 29, 30, 31, 34, 35, 37, 39, 40, 41, 43, 45, 46, 47, 49, 
53, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 85, 86, 87, 
88, 89, 90, 91, 92, 94, 97

end-to-end: A learning approach where a model is trained to directly map raw inputs to outputs 
without intermediate representations or feature extraction. This is often used in complex 
applications where traditional feature engineering is impractical. 12, 40, 53, 69, 83, 84, 92

environment: In reinforcement learning, the world in which the agent exists and interacts. It 
receives actions from the agent and returns new states and rewards. 7, 8, 9, 10, 24, 25, 26, 27, 
28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 62, 
63, 64, 65, 67, 68, 69, 74, 75, 76, 77, 78, 81, 82, 86, 90, 94, 97

episode: A single sequence of interactions between an agent and its environment, starting from 
an initial state and ending in a terminal state. 30, 39, 60, 77, 87

generalization: The ability of a learned policy to perform effectively in scenarios that were not 
encountered during its training. Opposite of overfitting and a core focus of this thesis. 2, 6, 
7, 8, 9, 10, 11, 12, 13, 15, 31, 33, 35, 36, 48, 53, 62, 64, 66, 68, 73, 74, 75, 76, 78, 81, 88, 92, 
95, 96

latent space: A lower-dimensional representation of high-dimensional data learned by a ma-
chine learning model, often used to capture the essential features of the data while discarding 
noise and redundancy. 27, 42

off-policy: A category of reinforcement learning algorithms that can update the current policy 
using data collected from any policy, typically stored in a replay buffer. 26, 42, 64, 78
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offline RL: A paradigm in reinforcement learning where the agent learns a policy from a static 
dataset of interactions, without any active exploration or online data collection. 28, 29

on-policy: A category of reinforcement learning algorithms that update the current policy using 
only data collected while acting with that same policy. 26, 64, 78

overfit: A modeling error that occurs when a function is too closely fit to a limited set of data 
points. In reinforcement learning, it results in a policy that performs well on its training 
environment but fails to generalize to new situations. 8, 10, 31, 34, 39, 45, 66, 90, 95

policy: In reinforcement learning, the strategy used by an agent to determine which action to 
take in a given state. In deep learning, this function is typically approximated by a neural 
network. 2, 5, 6, 7, 8, 9, 10, 12, 13, 15, 24, 25, 26, 27, 28, 29, 30, 31, 34, 36, 37, 39, 40, 42, 
43, 45, 46, 47, 49, 53, 54, 60, 63, 65, 66, 68, 69, 72, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 
90, 91, 92, 94, 97, 98

reward function: A function that defines the goal in a reinforcement learning problem. It 
provides a numerical signal to the agent at each step to indicate the immediate desirability of 
its actions. 43, 78, 87, 91

sample efficiency: A measure of how much data an algorithm requires to learn a task. Algo-
rithms with high sample efficiency can learn effective policies from a relatively small number 
of environmental interactions. 10, 26, 27, 65, 68, 78, 79, 80

self-play: A training method where an agent improves by playing against other agents, often 
previous versions of itself. It is a powerful technique for discovering robust and general 
strategies. 13, 91

sim-to-real: The process and challenge of transferring a policy or model trained in a simulation 
environment to a physical system operating in the real world. 2, 7, 12, 13, 15, 17, 29, 32, 33, 
35, 36, 44, 45, 46, 48, 49, 51, 62, 74, 75, 79, 82, 84, 92, 94, 95, 96, 98

value function: A function that estimates the expected cumulative reward, also called return, 
from a given state or state-action pair. It is used to evaluate the quality of states or actions in 
reinforcement learning. 25, 26, 28, 42

world model: A learned model of environment dynamics used in model-based reinforcement 
learning. It can predict future states and rewards given the current state and an action. 27, 
46, 66, 68, 73, 85, 93, 94

zero-shot transfer: The process of deploying a model or a policy on a new task or in a 
new environment, without any additional training or fine-tuning on data from the newly 
encountered scenario. 12, 43, 78, 81, 97
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Robotics

ATE – average tracking error: A measure of performance for reference tracking problems, 
defined as the average linear or angular distance between the reference trajectory and the 
actual trajectory followed by the robot. 79, 83

DoF – degree of freedom: The number of independent parameters that define the configura-
tion of a mechanical system. For a robotic arm, it typically refers to the number of its actuated 
joints. 13, 21, 23, 39

EE – end-effector: The tool at the end of a robotic arm that is designed to interact with its 
environment, such as grippers, scoops, and drills. 5, 6, 22, 23, 37, 40, 43, 52, 53, 70, 71

IK – inverse kinematics: A computational method used in robotics to determine the joint 
configuration necessary to place the end-effector at a specific position and orientation in 
Cartesian space. 9, 10, 23, 53, 70, 71, 88, 90

IMU – inertial measurement unit: An electronic device that measures the linear accelera-
tion, angular rate, and sometimes orientation by using a combination of accelerometers, 
gyroscopes, and magnetometers. 53

Jacobian: A matrix of first-order partial derivatives that relates the joint velocities of a manip-
ulator to the linear and angular velocities of its end-effector. 23

OSC – operational space control: A control methodology for robotic manipulation that 
formulates the equations of motion and control laws directly in the task space. It allows for 
the explicit specification of the end-effector compliance via virtual stiffness and damping 
parameters. 10, 12, 13, 23, 47, 53, 63, 70, 71, 73, 87, 94, 95

SE(3) – special Euclidean group in 3D: The mathematical group representing rigid body 
motions in 3D space through a combination of all possible translations and rotations. 21, 
71, 87

Cartesian space: A coordinate system in which the position of a point is defined by its distances 
from a set of perpendicular axes. In robotics, it is often used to describe the position and 
orientation in 3D space. 37, 43, 64

compliance: The ability of a robotic system to yield or deflect in response to external forces, 
which is a critical property for physical interaction. 9, 10, 23, 70, 71, 72, 73, 85, 87, 88, 92, 
94, 95, 96

damping: A property of a control system to resist motion proportional to its velocity. In 
compliant control, it is used to dissipate energy and prevent oscillations. 10, 13, 23, 71, 87, 
92, 94
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embodiment: The physical form and structure of a robot that includes its morphology, sensors, 
and actuators. The embodiment fundamentally influences how an agent can interact with 
and learn about its environment. 15, 51, 53, 63, 72, 87

kinematics: A branch of mechanics that describes the motion of objects without considering 
the forces that cause the motion. 37, 40, 53

octree: A hierarchical data structure in which each internal node has exactly eight children that 
partition a 3D space through a recursive subdivision. 37, 40, 41, 42, 43, 46

stiffness: A property of a control system to resist displacement caused by an external force. In 
compliant control, high stiffness results in rigid behavior and faster response. 10, 13, 23, 71, 
72, 87, 92, 94

task space: The space in which a robotic manipulator operates, defined by the position and 
orientation of its end-effector. 6, 23, 37, 46, 70

teleoperation: The direct control of a remote system by a human operator. In space, this is 
often hindered by significant communication delays. 4, 19, 28, 61, 62

Software

API – application programming interface: A set of protocols for building software applica-
tions that define how different software components should interact. 11, 31, 39, 50, 58

Blender: A free and open-source computer graphics software used for modeling, sculpting, 
animation, simulation, texturing, and rendering of 3D content. It is utilized in this thesis for 
both manual and procedural asset generation. 34, 38, 57, 59

Gymnasium: A widely adopted standard interface and library for reinforcement learning 
environments. All applications developed in this thesis are compliant with Gymnasium. 11, 
50, 54, 62

Isaac Sim: A scalable robotics simulator developed by NVIDIA. It serves as the core backend 
for the Space Robotics Bench. 31, 49, 55

PBR – physically-based rendering: A computer graphics approach that seeks to render images 
in a way that models the flow of light in the real world, resulting in more consistent visual 
appearances. 31, 37, 38, 58

PCG – procedural content generation: The programmatic and algorithmic creation of data, 
such as 3D models and environments. It is used in this thesis to generate diverse training 
scenarios at scale. 10, 11, 12, 13, 14, 15, 33, 34, 37, 38, 45, 46, 49, 52, 56, 60, 62, 65, 68, 74, 
76, 81, 86, 88, 94
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ROS – Robot Operating System: A framework and set of tools for writing robot software. It 
is a popular standard for middleware in the robotics research community. 11, 32, 39, 50, 60, 
61, 62

SRB – Space Robotics Bench: The open-source simulation framework developed in this 
thesis, designed for robot learning research in diverse and procedurally generated space 
environments. 13, 15, 29, 33, 36, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 
64, 66, 67, 69, 72, 73, 74, 75, 76, 85, 92, 93, 94, 95, 96, 98

SimForge: The open-source procedural engine developed in this thesis for generating diverse 
3D assets and environments that are particularly tailored for space robotics. 14, 15, 57, 58, 
59, 60, 73, 86

USD – Universal Scene Description: A file format and framework for the interchange of 3D 
computer graphics data. It is the native format for NVIDIA Isaac Sim. 58

middleware: A framework that acts as a communication bridge between different software 
components. 50, 62
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1
Introduction
Space, once a realm of mythology and distant contemplation, is rapidly evolving into a 
dynamic domain for scientific discovery, sustained human presence, and resource exploitation 
as humanity actively architects its multiplanetary future. The vision of permanent settlements 
on the Moon and Mars is no longer confined to science fiction [1]. It has become a tangible 
objective pursued by a global consortium of space agencies and pioneering private ventures. 
This new era is driven by ambitious missions that aim to unlock the secrets of our solar system, 
harness extraterrestrial resources, and pave the way for human expansion into the universe [2], 
[3], [4].

Embarking on this transformative journey beyond Earth requires more than human courage 
and ingenuity alone. The environment is extreme, and the communication distances are 
vast. Consequently, sophisticated robotic systems are emerging not merely as tools but as 
indispensable enablers of this expansion. They are tasked with diverse operations from scouting 
planetary surfaces and assembling orbital megastructures to maintaining life-support systems 
in off-world outposts. The sheer scale and complexity of these missions demand more than 
mechanically proficient machines. The impracticality of constant human oversight mandates 
a fundamental shift towards autonomous systems capable of intelligent decision-making and 
adaptive behavior. Yet, traditional robotic control paradigms, which rely on pre-programmed 
execution under nominal conditions, are insufficient when confronted with the dynamic, 
unstructured, and often poorly understood environments of space  [5]. This capability gap 
highlights an urgent need for data-driven control approaches that can learn from experience to 
develop robust strategies and adapt to unforeseen challenges.

Unlocking the full potential of robot learning in space necessitates more than just algorithmic 
advancements. The current landscape is characterized by a significant scarcity of relevant 
data, the prohibitive cost of comprehensive technology demonstrations, and limited access to 
representative simulations. These constraints render many terrestrial development methodolo-
gies impractical for the unique requirements of extraterrestrial missions. This thesis directly 
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confronts these critical challenges by proposing a new paradigm of achieving robustness not 
through the pursuit of a single digital twin, but through the mastery of immense procedural 
diversity. It introduces a comprehensive framework centered on this principle that leverages 
large-scale simulation and data-efficient learning to achieve the generalization required for space 
operations. The core of this work lies in establishing a scalable and diverse virtual testbed that 
facilitates the efficient training and systematic benchmarking of autonomous systems across a 
wide range of space-relevant scenarios. Building upon this foundational framework, the thesis 
further explores the applications of a novel robot learning methodology designed to equip 
agents with the robust, compliant, and generalizable behaviors required for complex tasks across 
diverse robotic platforms and application domains. The complete procedural paradigm, from 
scenario generation to sim-to-real validation, is conceptually illustrated in Figure 1.1.

Procedural Diversity

Cross-Domain Scenarios

Sim-to-Real

Figure 1.1 – The procedural paradigm at the core of this thesis leverages programmatically 
generated scenarios for large-scale policy training in a parallelized simulation, which is a 

methodology validated by its successful zero-shot sim-to-real transfer to a physical robot.
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1.1  Motivation

The human ambition to explore and establish a sustainable presence beyond Earth is a powerful 
catalyst for technological innovation. Future space missions envisioned by agencies as well 
as commercial entities are predicated on complex operations conducted in environments far 
removed from direct human intervention. For instance, the scientific exploration of the Moon 
and Mars by ESA and NASA requires autonomous rovers capable of traversing vast, hazardous 
terrains to independently collect diverse samples and perform sophisticated in-situ analyses [6]. 
Concurrently, robotic manipulators are becoming indispensable for building and maintaining 
orbital infrastructure, including next-generation space stations and advanced telescopes  [3], 
[4]. These systems will need to assemble large structures from smaller components, extend the 
operational lives of existing satellites through servicing [7], and tackle the escalating problem 
of space debris. The development and deployment of such systems is underway through tech-
nology demonstrations of robots like those developed by GITAI shown in Figure 1.2.

Furthermore, a cornerstone of sustainable presence is the ability to utilize the land through 
in-situ resource utilization (ISRU)  [12]. This entails robots capable of excavating regolith, 
extracting water ice, and converting indigenous materials into vital resources for construction, 
propellant production, and life support. Ultimately, as our presence extends further into 

(a) Demonstration of GITAI R1 inside a JAXA facility [8] (b) Demonstration inside a GITAI regolith chamber [9]

(c) Demonstration of GITAI S1 inside the ISS [10] (d) Demonstration of GITAI S2 outside the ISS [11]

Figure 1.2 – Technology demonstrations of GITAI for in-space operations that illustrate the 
manipulation skills required for both planetary and orbital domains.
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space, robots will play a crucial role in supporting astronaut activities. They will assist with 
extravehicular activities (EVAs), undertake hazardous tasks, and perform routine maintenance 
to improve crew safety and mission productivity. These applications share a common, critical 
need for robots that can operate with minimal human supervision and adapt to novel situations. 
This thesis is deeply motivated by addressing this capability gap and advancing robot learning 
techniques tailored to the unique challenges of space robotics.

1.1.1  Rise of Robots Beyond Earth

The expansion of human endeavor into space depends critically on a new generation of robotic 
autonomy. The sheer scale of interplanetary missions introduces substantial communication 
delays that range from seconds for lunar operations to many minutes for Mars. This renders 
real-time teleoperation impractical for intricate tasks. Even within cislunar space, continuous 
human oversight is a scarce and valuable resource that limits the scope and pace of operations. 
Consequently, robots are no longer mere extensions of human capability. They are becoming 
essential and independent agents tasked with navigating and acting in these remote domains.

However, sending robots beyond Earth immerses them in environments far more demanding 
and less forgiving than any terrestrial setting. Extraterrestrial domains are often poorly charac-
terized. They present highly unstructured terrains where unexpected events are the norm. 
These events can range from sudden micrometeoroid impacts to the gradual degradation of 
hardware. The success of pioneering missions like the Perseverance rover on Mars showcases the 
potential of robotic exploration. It also highlights current limitations because its operations are 
constrained by meticulous planning cycles and delayed communication [2]. Robots in these 
conditions must therefore possess the intrinsic ability to perceive their surroundings, make 
intelligent decisions in the face of uncertainty, and adapt their strategies without constant 
human guidance.

These operational demands are compounded by a unique combination of environmental ex-
tremes. Robots must endure drastic temperature fluctuations and persistent cosmic radiation. 
Orbital environments introduce the complexities of vacuum and microgravity, which funda-
mentally alter object dynamics and heat dissipation. Planetary surfaces present different gravity 
magnitudes that influence locomotion and manipulation in non-intuitive ways. Abrasive 
regolith and rock fragments can damage mechanical systems and alter interaction dynamics, 
as shown in Figure 1.3. The safety-critical nature of space missions, where failures can lead to 
catastrophic losses, further underscores the need for exceptionally robust systems. All of this 
must be achieved under severe constraints on available energy, computational power, and 
communication bandwidth.
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Figure 1.3 – Damage to the wheel of the NASA Curiosity rover on Mars. This image highlights 
the challenges posed by hazardous planetary terrains, where sharp rocks can cause significant 

hardware degradation over time [13].

1.1.2  Versatility of General-Purpose Robotics

The dynamic and evolving demands of future space missions make the deployment of highly 
specialized, single-task robots both logistically and economically unfeasible. In a prospective 
lunar base, a single robotic system may be tasked with excavating regolith, assembling habitat 
modules, and later deploying scientific instruments. Developing, launching, and maintaining 
a distinct robot for each activity would introduce prohibitive complexity and cost. This 
operational reality gives rise to modular robotic architectures. An example is a common mobile 
platform equipped with a manipulator and various end-effectors (EEs).

This hardware versatility exposes a more profound software challenge. A physically adaptable 
robot remains functionally inert if its control system cannot accommodate a new tool or an 
unfamiliar task. Manually engineering control policies for every hardware configuration and 
mission objective is a brittle and unscalable strategy. The key to unlocking true versatility lies 
not in pre-programming a robot for one specific mission but in equipping it with a learned set 
of fundamental, transferable skills. Instead of a monolithic policy for a complete construction 
project, a truly general-purpose robot must master foundational primitives such as reliable 
navigation, grasping, and precision insertion. This approach abstracts a complex problem to its 
underlying physical components. For instance, a learned peg-in-hole sequence is a foundational 
motion applicable to structural assembly, spacecraft docking, and electrical connector mating.
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Achieving this level of transferability, as depicted in Figure 1.4, requires that learned skills are 
fundamentally agnostic to hardware specifics. The methodology in this thesis pursues this goal 
by learning control policies in the robot’s task space. For instance, the high-level policy would 
command EE motion rather than specific joint torques. This ensures a policy can be deployed 
across manipulators with different kinematic structures. By leveraging standardized or abstract 
sensory representations, the system also becomes invariant to the precise type or placement 
of its sensors. This approach transforms a general-purpose robot from a mere collection of 
reconfigurable parts into a truly adaptable agent capable of applying its learned knowledge to 
novel challenges. This adaptable intelligence is the cornerstone of sustainable and scalable in-
space operations. The pursuit of generalization does not exclude the need for specialization. 
Safety-critical sequences like a planetary landing will likely continue to depend on platform-
specific policies. Yet, the vision of general-purpose versatility is to build a broad foundation of 
composable skills to solve the vast majority of tasks encountered during a mission.

Skill
Transfer

Figure 1.4 – The conceptual idea of acquiring skills that can be transferred among different 
application domains of space robotics. A single learned skill, such as peg-in-hole insertion, 
could be deployed to diverse tasks across planetary and orbital environments, enabling a general-

purpose robot to adapt to various mission objectives.

1.1.3  Promise of Learning-Based Autonomy

The quest for versatile and truly autonomous space robots necessitates a departure from tradi-
tional control paradigms that depend on precise environmental models and pre-programmed 
behaviors. These methods inherently struggle when confronted with the unmodeled dynam-
ics and fundamental uncertainties of extraterrestrial operations. Robot learning offers a 
transformative pathway to provide robots with the adaptive intelligence required for these chal-
lenges [14]. Among the available paradigms, reinforcement learning (RL) has gained popularity 
due to its suitability for solving sequential decision-making problems [15]. By learning from 
direct interaction with its surroundings, an RL agent can acquire a sophisticated understanding 
of physics and task dynamics.
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This process embodies two capabilities that are critical for space missions. First, RL agents 
can discover non-intuitive yet effective strategies for interacting with their environment. An 
example is learning to use environmental contacts to guide a misaligned part into place. These 
emergent behaviors are often difficult, if not impossible, for a human to explicitly program. 
Second, and central to the promise of this thesis, is achieving generalization. When trained 
across thousands of diverse simulation instances, an RL policy should become invariant to 
irrelevant details such as the exact shape of a rock or the intensity of ambient illumination, 
and instead distill the underlying principles of the task. Although the application of advanced 
learning techniques to space robotics is still limited, their success in tackling complex terrestrial 
problems and even super-human challenges signals their profound potential [16], [17]. This 
thesis argues that the synergy of modern RL algorithms with a comprehensive and diverse 
simulation framework is the key to transforming this promise into demonstrable, reliable 
autonomy for the next generation of space exploration.

1.1.4  Role of High-Fidelity Simulation

The entire promise of robot learning for space is contingent upon high-fidelity simulation as a 
single enabling technology. The extreme cost, safety-critical nature, and logistical impossibility 
of conducting the millions of trials required for modern robot learning make the virtual world 
the only feasible training ground. Terrestrial analog facilities, while valuable, cannot fully repli-
cate the unique physics of different gravitational fields or the vast topographies of other worlds. 
Simulation provides the necessary safe, cost-effective, and scalable environment to develop and 
validate the next generation of autonomous systems.

The success of this paradigm relies on bridging the critical gap between the virtual and real 
worlds. This is not a simple sim-to-real problem but a more complex sim-to-lab-to-space 
challenge. A policy must first prove its efficacy by transferring from a virtual environment to 
a physical robot in a laboratory. It must then be robust enough to generalize to the far more 
unstructured conditions of its final extraterrestrial deployment. This dual challenge exposes 
the inadequacy of many existing space-grade simulators for robot learning. Traditionally, these 
tools were designed for mission verification, with the aim of testing a pre-determined plan under 
specific, nominal conditions [18], [19]. They were not built for the open-ended discovery and 
generalization that RL requires. To train a truly adaptive agent, a simulation must be more 
than a mere digital twin of a single scenario. It must become a universe of possibilities. It must 
expose the agent to a near-infinite variety of environmental conditions, object configurations, 
and potential failure modes. The lack of a simulation framework that integrates these learning-
centric principles with high-fidelity space physics represents a major bottleneck to progress. 
Addressing this critical void is the primary focus of the research presented in this thesis.
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1.2  Problem Statement

While the motivation for autonomous space robotics is compelling, its realization is obstructed 
by a set of fundamental and interconnected challenges. The successful deployment of learning-
based systems beyond Earth is not just an engineering effort. It is a scientific problem that lies 
at the intersection of generalization, standardization, and safety. This thesis is constructed to 
directly address the following critical problem areas that currently impede progress in the field.

1.2.1  Challenge of Generalization

The central technical problem confronting robot learning in space is the profound challenge of 
generalization. An autonomous agent must perform reliably not just in the specific conditions 
under which it was trained. It must perform across the full, unpredictable spectrum of scenarios 
it will encounter during a mission. Extraterrestrial environments represent the ultimate out-
of-distribution test case. A rover trained on simulated Martian terrain must contend with real-
world regolith whose mechanical properties differ from any training sample. A manipulator 
arm learning to assemble a structure must handle components whose dimensions may have 
subtly changed due to thermal expansion or launch-induced vibrations.

This demand for robustness is where many contemporary robot learning approaches falter. 
Policies trained on limited or static datasets, even those of high fidelity, tend to overfit to the 
particularities of their training environment [20]. They may learn to exploit subtle visual or 
physical artifacts in the simulation that do not exist in reality. Consequently, when deployed, 
such policies often exhibit brittle behavior and fail catastrophically in the face of even minor 
novelty [21]. This discrepancy between performance in training and performance in operation 
reveals a critical generalization gap. Closing this gap is the foremost challenge. A policy that 
cannot generalize beyond its training data is fundamentally unsuitable for the unstructured and 
evolving nature of space.

1.2.2  Lack of Standardized Benchmarks

The challenge of generalization is exacerbated by a significant infrastructural problem, namely 
the absence of standardized benchmarks tailored for robot learning in space. Scientific progress 
in fields like computer vision and RL is historically driven by the availability of common 
testbeds that allow researchers to rigorously compare methodologies, reproduce results, and 
build upon each other’s work. The domain of space robotics currently lacks such a unifying 
platform.

Existing space simulators like GMAT [18] and Basilisk [19] focus primarily on astrodynamics 
while being typically employed for mission verification and validation (V&V) of pre-planned 
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trajectories. They are often proprietary, narrow in scope, and ill-suited for the unique demands 
of robot learning research, which requires thousands of diverse and randomized simulations 
in parallel. Recent efforts have produced learning-focused simulators for specific tasks like 
rover navigation [22] or spacecraft rendezvous [23], but a comprehensive platform is missing. 
Conversely, established robot learning benchmarks, such as RLBench [24], Meta-World [25], 
FurnitureBench  [26], and ManiSkill3  [27], are overwhelmingly terrestrial. They focus on 
tabletop manipulation or indoor navigation tasks. Their underlying physics and operational 
constraints do not capture the complexities of variable gravity, orbital dynamics, or large-scale 
unstructured terrains. This lack of a suitable and accessible testbed raises the barrier to entry for 
researchers and stifles innovation. Without a common ground for evaluation, the community 
cannot effectively measure progress toward achieving robust, generalizable autonomy.

1.2.3  Safety-Critical Nature of Space Operations

Finally, all solutions must be developed under the immense pressure of the safety-critical 
nature of space operations. Robotic systems in space are multi-million or even multi-billion 
dollar assets, and mission failure is not an acceptable outcome. A policy that is not robust or 
generalizable is inherently unsafe. An autonomous system that executes unpredictable, jerky, 
or overly rigid motions poses a direct threat to itself, to other mission-critical hardware, and 
potentially to human astronauts.

This problem is particularly acute for the contact-rich manipulation tasks that are central to 
this thesis, such as assembly and excavation. Traditional kinematic controllers like inverse kine-
matics (IK) are often brittle when unexpected contact occurs, potentially generating large forces 
that damage the robot or its environment. True safety in interaction requires not just positional 
accuracy but also physical compliance. The robot must be able to gracefully yield to unmodeled 
forces and adapt its physical behavior in response to contact. The problem, therefore, extends 
beyond mere task success. It is a question of how to learn policies that are not only effective but 
also inherently smooth, stable, and compliant, thereby ensuring the safety and integrity of the 
entire mission.

1.3  Research Questions

The preceding problem statement gives rise to a set of fundamental research questions that 
this thesis aims to answer. These questions are designed to systematically deconstruct the 
overarching challenge of achieving adaptive autonomy in space. They address the issues of 
generalization, learning methodology, and algorithmic limitations in a structured manner. The 
investigation of these questions forms the core intellectual pursuit of this work.
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Research Question 1
How can simulation environments be leveraged to effectively train robotic policies that 
generalize across the diverse and unpredictable conditions of space?

At the heart of this thesis lies the challenge of generalization. Training a robot directly in space 
is infeasible, so simulation is the only viable alternative. This question explores the very nature 
of the simulation required for this purpose, moving beyond the idea of a single, high-fidelity 
digital twin. Instead, it investigates the construction of a virtual training ground that actively 
fosters robust and adaptable policies. The central hypothesis is that exposure to immense diver-
sity is the key to generalization. This leads to an inquiry into the most effective techniques for 
generating this diversity, focusing on a combination of procedural content generation (PCG) 
for creating a near-infinite variety of physical assets [28] and extensive domain randomization 
(DR) of physical and visual parameters [29]. By training an agent within this constantly shifting 
world, the aim is to force it to learn the underlying principles of a task, rather than to overfit to 
the superficial details of any single scenario.

Research Question 2
What learning methodologies and control representations unlock the adaptive and compli-
ant behaviors necessary for complex operations in space?

This question addresses the learning process itself. It probes which algorithmic and control-
theoretic choices are best suited to producing the kind of behavior needed for space robotics. 
The inquiry compares different RL paradigms, particularly model-free approaches like Prox-
imal Policy Optimization (PPO)  [30], Twin Delayed Deep Deterministic Policy Gradient 
(TD3)  [31], and Soft Actor-Critic (SAC)  [32] with model-based RL (MBRL) approaches 
like DreamerV3 [33], to determine which offers superior sample efficiency and generalization 
capabilities. The question then delves into the representation of actions, challenging the suffi-
ciency of standard IK for contact-rich tasks. It specifically explores operational space control 
(OSC) as a framework for providing software-defined compliance [34]. The core of this inquiry 
is to determine whether an agent can learn not only where to move but also how to physically 
interact with its environment by dynamically modulating its own stiffness and damping. The 
goal is to discover a synergistic combination of learning algorithm and control representation 
that yields policies that are not just successful, but also inherently adaptive and compliant.
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Research Question 3
What are the key failure modes and limitations of state-of-the-art robot learning algorithms 
when faced with the unstructured complexities of space-relevant scenarios?

This final question adopts a critical and empirical perspective, seeking to systematically identify 
the breaking points of current state-of-the-art techniques. By developing a standardized bench-
mark, this thesis provides the means to rigorously probe the capabilities of existing algorithms. 
The investigation aims to answer practical questions: How does performance degrade with 
increasing environmental complexity? What is the performance gap between learning from 
privileged state compared to raw pixel data? At what point do long-horizon tasks with sparse 
rewards become intractable? By identifying these failure modes, this research aims to provide 
a clear assessment of where the current state-of-the-art stands, establishing a concrete roadmap 
for future work.

1.4  Research Objectives

To answer the stated research questions, this thesis pursues a set of specific and actionable 
research objectives. These objectives form a structured plan for the development, implemen-
tation, and validation of the concepts explored in this work.

Research Objective 1
Design and implement an open-source simulation framework for robot learning in space.

The first objective is to create the necessary infrastructure for this research. This involves the 
design and implementation of a novel, open-source simulation framework built to address the 
limitations of existing tools. The framework must be highly parallelizable, integrate PCG and 
DR as core features, and provide standardized interfaces like the Gymnasium API [35] and 
Robot Operating System (ROS) 2 [36] to make it accessible to the broader research community.

Research Objective 2
Establish a standardized suite of benchmark tasks within the developed simulation frame-
work to rigorously evaluate the generalization and adaptation capabilities of robot learning 
algorithms in space-relevant scenarios.

Building upon the core framework, the second objective is to populate it with a suite of 
meaningful and challenging benchmark tasks. This involves carefully designing tasks that test 
the specific capabilities required for future space missions, from mobility and manipulation to 
complex, long-horizon assembly. The objective is to create a standardized testbed that allows 
for the systematic evaluation of learning algorithms to quantify performance, measure gener-
alization, and identify failure modes.
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Research Objective 3
Investigate and develop a learning methodology for robust adaptive control.

With the framework and benchmark in place, the third objective is to develop a learning 
methodology capable of producing adaptive and compliant behaviors. This involves a compar-
ative analysis of RL algorithms and an exploration of control representations suited for 
contact-rich interaction. The goal is to formulate a blueprint for learning adaptive control 
that combines the strengths of world-modeling through MBRL agents with the stability and 
expressiveness of learned compliant control via OSC.

Research Objective 4
Validate the proposed framework and methodology via sim-to-real transfer in a terrestrial 
analogue facility.

The final objective is to bridge the gap between simulation and physical reality. This entails vali-
dating the key principles and learned policies on physical robotic hardware within specialized 
terrestrial analogue facilities, such as the LunaLab [37]. The goal is to demonstrate successful 
zero-shot transfer from the simulation framework to real robots. This will provide a validation 
of the entire approach and its potential applicability to future space missions.

1.5  Key Contributions

This thesis makes several significant contributions to the fields of robot learning and space ro-
botics. These contributions are organized into primary and secondary categories. The primary 
contributions represent the core, novel advancements that form the central pillars of this work.

1.5.1  Primary Contributions

The research presented in this thesis yields contributions that directly address the stated 
research objectives and provide novel solutions to the core problems identified.

The foundation of this work was laid through Publication I, which introduced several novel 
concepts for robot learning in space. This research explored a simulation-centric approach to 
learn an end-to-end RL policy from high-dimensional visual inputs and established the feasi-
bility of zero-shot transfer to a physical robot. This initial work demonstrated the potential of 
procedural asset generation and highlighted the importance of PCG for enhancing the gener-
alization capabilities of learned policies.
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Following this, the systematic investigation of PCG and DR across multiple RL algorithms 
in Publication II demonstrated their effectiveness in enhancing generalization. The findings 
provide strong empirical evidence that exposure to a wide distribution of training data is a 
critical strategy for closing the generalization gap.

The primary artifact of this thesis is the Space Robotics Bench (SRB), first conceptualized in 
Publication III before being fully introduced in Publication VII. It is a comprehensive open-
source simulation framework designed specifically for robot learning in space. SRB provides 
a standardized and highly configurable platform that integrates high-fidelity physics with 
extensive DR and streamlined PCG pipelines, as proposed in Publication IV. Its sim-to-real 
capabilities were further validated in Publication V by demonstrating the successful transfer of 
learned policies to a rover operating in a dusty lunar-analogue facility.

A key methodological contribution is the development of a novel learning methodology for 
adaptive compliant control, as detailed in Publication VI. This methodology integrates MBRL 
with OSC to enable robots to learn to dynamically adjust their physical interaction properties. 
The work demonstrates that an agent can learn to modulate its own stiffness and damping 
in response to environmental interactions, which is essential for safe and reliable operations 
in space.

1.5.2  Secondary Contributions

In the course of pursuing the primary objectives, this research also produced several valuable 
secondary contributions. Leveraging the SRB framework, a system for autonomous visual 
inspection of orbital targets was developed in a collaborative effort presented in Publication XI. 
This application served as a powerful external validation of the framework’s utility and modu-
larity, demonstrating that the core MBRL methodology could be effectively applied by other 
researchers to control a spacecraft for complex 6-degree of freedom (DoF) maneuvers around 
larger targets under microgravity.

Participation in the Robot Air Hockey Challenge 2023 resulted in a novel application of a 
MBRL algorithm to a highly dynamic and competitive task. The approach leveraged self-play 
to acquire a robust policy and ultimately achieved second place, followed by a successful sim-
to-real deployment. A retrospective analysis of all solutions is presented in Publication X.

Beyond these applications, this thesis provides a broad contribution to the research community 
by establishing extensive algorithmic benchmarks. Although minuscule in comparison to large-
scale terrestrial datasets  [38], the evaluation performed on SRB tasks represents one of the 
largest studies of RL algorithms on space-relevant problems to date, highlighting the strengths 
and weaknesses of different learning paradigms. Finally, the research is underpinned by signif-
icant open-source contributions. These include the SRB framework itself with its hundreds 
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of unique assets and robot configurations, framework-agnostic SimForge engine for PCG, and 
various utilities for robotics and RL research.

1.6  Thesis Outline

The remainder of this thesis is structured to systematically build upon the motivation and 
problems articulated in this introduction. The chapters are organized to first establish the 
necessary background, then present the core contributions, and finally, provide a thorough val-
idation and discussion of the results. The logical progression of these core themes is illustrated 
in Figure 1.5.

Chapter 3: Laying the Foundation

Chapter 4: Forging Virtual Frontiers Chapter 5: Achieving Adaptive Autonomy

Chapter 6: Empirical Validation

Figure 1.5 – A visual representation of the thesis structure, mapping the main chapters to their 
core themes and showing the progression from foundational work to the final conclusions.
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A comprehensive review of the related work and foundational concepts that underpin this 
thesis is provided in Chapter 2. It covers the domain of space robotics, the principles of robot 
control, the paradigm of robot learning with a focus on RL and the sim-to-real challenge, 
and the existing ecosystem of robotics simulation. This chapter concludes by synthesizing this 
information to precisely define the research gap that this work addresses.

Chapter 3 details the initial investigation from Publication I that laid the groundwork for the 
main contributions of this thesis. It describes a simulation-centric approach to learning robotic 
grasping on the Moon and establishes the core concepts of PCG and the use of 3D observations. 
The chapter recounts the successful sim-to-real transfer of a learned policy to a physical robot 
in a terrestrial analogue facility. These outcomes served as the foundation for the subsequent 
research, providing critical insights that highlighted the limitations of existing infrastructure 
and set the stage for the development of a more comprehensive framework.

SRB, the core artifact of this thesis, is presented in Chapter  4. This chapter offers a deep 
dive into the design philosophy, architecture, and capabilities of the open-source simulation 
framework. It details the suite of benchmark tasks, the diverse robotic fleet, the procedural 
generation engine SimForge, and the integrations with the broader robotics and machine 
learning ecosystems.

Chapter  5 presents the methodological contribution, revolving around a novel learning 
methodology for achieving adaptive autonomy. This chapter details the investigation into 
different RL paradigms and control representations. It presents the algorithmic baselines, 
demonstrates the benefits of world modeling, and introduces the framework for learning com-
pliant manipulation. It also explores the influence of robot embodiment and tool-awareness on 
learned strategies.

The empirical validation for the proposed framework and methodology is provided in Chap-
ter  6. This chapter presents a series of in-depth case studies on key applications, including 
adaptive traversal and tool-aware regolith excavation, to provide robust evidence of the gener-
alization and adaptation capabilities of the developed agents.

Finally, Chapter 7 summarizes the findings of this research. It revisits the research questions and 
objectives outlined in this chapter and demonstrates how they have been addressed and fulfilled. 
The chapter discusses the broader implications of this work, acknowledges its limitations, and 
proposes promising directions for future research.
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Throughout the chapters, this thesis synthesizes a body of research that has been presented 
in a series of peer-reviewed publications. To maintain a clear and cohesive narrative focused 
on the central scientific arguments, the following content presents the primary methodologies 
and principal findings of this work. Consequently, certain implementation details, such as 
exhaustive hyperparameter lists, minor variations in experimental setups, and supplementary 
results, have been omitted for brevity. For a complete and detailed account of any specific study, 
the reader is respectfully directed to the original publication.
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2
Background and Related Work
This chapter provides the foundational context necessary to situate the contributions of this 
thesis within the broader landscape of space robotics and robot learning. It begins by explor-
ing the domain of space robotics, tracing its historical evolution and outlining the unique 
challenges that motivate the need for advanced autonomy. Next, it reviews the fundamental 
principles of robot control for both mobility and manipulation, with a particular focus on 
the distinction between kinematic and compliant control strategies. The chapter then delves 
into the paradigm of robot learning. It introduces the mathematical framework of the Markov 
decision process (MDP) and discusses the core concepts of RL, learning from demonstration 
(LfD), and the critical sim-to-real challenge. Finally, it surveys the ecosystem of robotics simu-
lation and highlights the role of procedural generation and standardized benchmarks in driving 
progress. The chapter culminates in a synthesis that clearly identifies the research gap this thesis 
aims to fill.

2.1  Domain of Space Robotics

Space robotics is a specialized field of robotics concerned with the design, development, and 
operation of robotic systems capable of functioning in extraterrestrial environments. These 
systems are instrumental in performing tasks that are too dangerous, repetitive, or precise for 
humans. They also operate in locations that are entirely inaccessible to direct human presence. 
From the earliest automated probes to the sophisticated rovers currently exploring Mars, robots 
have been fundamental to humanity’s quest to understand and venture into the cosmos.

2.1.1  Evolution of Automation in Space

The history of space robotics is deeply intertwined with the history of space exploration 
itself. The first robotic systems in space were simple, automated spacecraft that followed 
pre-programmed trajectories and executed simple commands [39]. Manipulation tasks were 
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Figure 2.1 – A photograph of the Apollo 12 mission displaying the use of a manual tool for 
collecting lunar rock samples [42].

initially performed by human astronauts using hand tools, as illustrated in Figure 2.1. These 
early missions relied entirely on human dexterity for complex interactions, highlighting the 
capability gap that modern autonomous robotics aims to fill. Over the decades, the level 
of automation has steadily increased. The Viking landers featured a robotic arm capable of 
scooping Martian soil [40]. The actions of this arm were meticulously sequenced and uploaded 
from Earth. The Sojourner rover represented a significant step forward with its limited ability 
to autonomously navigate around obstacles [41].

More recent missions, such as the Spirit, Opportunity, and Curiosity rovers, have demonstrated 
progressively more sophisticated autonomous navigation and instrument placement capabil-
ities [43]. The Perseverance rover, currently active on Mars, leverages advanced vision-based 
navigation to traverse challenging terrain more quickly than its predecessors [2]. In orbit, the 
Canadarm on the Space Shuttle and its successor, Canadarm2 on the ISS, have been crucial 
for satellite deployment, station assembly, and supporting EVAs. These systems, however, still 
rely heavily on human operators to guide their actions. The evolution has been one of gradual 
delegation. It moved from pre-programmed sequences to teleoperated control, and finally to 
supervised autonomy, where high-level goals are commanded from Earth [5]. The next logical 
step in this evolution is the transition to truly adaptive autonomy. This transition is the central 
focus of this thesis.
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2.1.2  Unique Challenges of Extraterrestrial Environments

The environments beyond Earth present a set of challenges that are fundamentally different 
and more severe than those encountered in any terrestrial setting. These challenges affect 
every aspect of a robot’s design and operation. Communication latency is a primary driver 
for autonomy. The round-trip communication latency to the Moon is a few seconds. This is 
manageable for high-level supervision but disruptive for direct control. However, the latency 
increases significantly with distance, which renders real-time teleoperation impossible for any 
intricate task. This delay eliminates the possibility for an Earth-based operator to perform 
reactive control. An unexpected event, such as a manipulator encountering an obstacle or a tool 
getting stuck, would require an immediate response that cannot wait for a signal from Earth.

The physical environment itself is hostile. Extreme temperature variations between illuminated 
and shadowed areas can cause thermal stresses on materials and electronics. Persistent exposure 
to cosmic and solar radiation can degrade components over time, leading to unexpected 
hardware failures [44]. This necessitates the use of radiation-hardened electronics, which are 
often generations behind their terrestrial counterparts in computational power. This creates 
a challenging paradox. The need for greater autonomy demands more onboard computation, 
while the environment restricts the available computational resources.

In orbital environments, the vacuum affects heat dissipation and can lead to phenomena like 
cold welding. Microgravity fundamentally alters the dynamics of all physical interactions. An 
object that is released does not fall but drifts, and any force exerted by a manipulator will 
produce an equal and opposite reaction on its spacecraft base. As illustrated in Figure 2.2, plan-
etary surfaces are often covered in fine, abrasive regolith that can infiltrate mechanical joints, 

Figure 2.2 – The rugged landscape of Mars’ Jezero Crater delta, where rovers must navigate 
through a hazardous mix of steep inclines, loose regolith, and boulder fields [45].
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obscure sensors, and create unpredictable traction conditions for rovers. Furthermore, these 
environments are largely unstructured and poorly mapped. A robot must constantly contend 
with novelty and uncertainty in a domain where every component is a safety-critical asset.

2.1.3  Vision for Future Robotic Missions

The ambition of future space missions necessitates a leap in robotic capabilities. The vision 
extends far beyond simple exploration to encompass large-scale construction, industrial-style 
resource utilization, and permanent human habitation. Initiatives like NASA’s Artemis pro-
gram aim to establish a sustainable human presence on the Moon. This goal relies on robots 
to perform preparatory work such as site surveying, habitat construction, and infrastructure 
deployment before the arrival of astronauts [1]. A cornerstone of this vision is ISRU [12], where 
robots will excavate regolith to extract resources like water ice and minerals. These resources 
can then be used for construction, propellant production, and life support.

In orbit, the concept of in-space servicing, assembly, and manufacturing (ISAM) is gaining 
traction [4]. This involves robots that can refuel and repair existing satellites to extend their 
operational lifespan, assemble large structures like telescopes or solar power stations from 
components launched separately, and even manufacture parts directly in space  [3], [7]. For 
deep space exploration, a new generation of autonomous science laboratories on wheels or 
propellers will be needed to explore ocean worlds or methane lakes, where communication is 
severely limited, and mission risk is high [46]. The complexity of these missions may require 
heterogeneous teams of robots working collaboratively to achieve common goals [47]. In all 
these envisioned futures, as depicted in Figure 2.3, robots are not just tools but are foundational 
infrastructure. They will work persistently and adaptively to create and maintain a human 
foothold beyond Earth. This vision can only be realized if these robotic systems are endowed 
with a level of autonomy that far surpasses the state of the art today.

(a) Orbital inspection (b) Autonomous manipulation (c) Planetary exploration

Figure 2.3 – The vision for future robotic missions across multiple domains.
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2.2  Foundation of Robot Control

The ability of a robot to perform useful work in its environment is predicated on its capacity 
for controlled motion. Robot control is the discipline concerned with calculating the necessary 
actuator commands to achieve a desired state or behavior. This section provides a brief overview 
of the fundamental control concepts relevant to this thesis. It focuses on the distinct but often 
intertwined challenges of mobility and manipulation.

2.2.1  Mobility

Mobility refers to a robot’s ability to move its entire body through an environment. For space 
robotics, this encompasses a wide range of platforms with vastly different control requirements 
that are heavily influenced by the operational domain. The approaches to achieving stable and 
efficient locomotion on a planetary surface are fundamentally different from those required for 
maneuvering in the vacuum of space.

Planetary mobility presents challenges of traction, stability, and navigation over unstructured 
terrain. The control of wheeled rovers often involves kinematic models like skid-steer or 
Ackermann steering. These models map desired chassis velocities to individual wheel speeds. 
Their effectiveness is complicated by the interaction with deformable terrain, a field known as 
terramechanics [48]. The unpredictable nature of wheel slip on loose regolith makes precise 
odometry and path following a persistent challenge. Legged robots, such as quadrupeds or 
humanoids, offer the potential for greater mobility in extreme terrain but introduce a more 
complex control problem. Due to their higher dimensionality and the need to maintain 
dynamic stability, their control is typically hierarchical. A high-level planner determines foot-
step locations while a low-level controller calculates the joint torques or positions required to 
execute stable locomotion [49]. A third mode of planetary mobility is aerial. The Ingenuity he-
licopter on Mars demonstrated the feasibility of flight in a thin atmosphere. Its control involves 
precisely modulating rotor speeds to generate the necessary lift and thrust for controlled flight, 
which offers a unique vantage point for reconnaissance and exploration.

In orbital environments, mobility is governed by orbital mechanics and the principles of rocket 
propulsion. Spacecraft control involves the precise firing of thrusters to achieve a desired change 
in velocity. This is used for fundamental operations like station-keeping, trajectory correction, 
and orbital insertion, while more complex operations include rendezvous and docking. These 
tasks require an agent to maneuver a spacecraft to approach and precisely match the full 6-DoF 
state in the SE(3) of a target object. The challenge is magnified when the target is uncooperative, 
such as a piece of tumbling debris, as this requires the chasing spacecraft to predict its motion 
and execute a complex intercept trajectory. In all orbital maneuvers, the control problem is 
constrained by fuel optimization, as propellant is a finite and mission-critical resource. Across 
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all these diverse platforms, the objective of the mobility controller is to accurately track a desired 
trajectory for the robot’s base while navigating the specific physical constraints of its domain.

2.2.2  Manipulation

Manipulation involves the control of a robotic arm and its EE to interact with objects in the 
environment. This is the primary focus of the complex tasks addressed in this thesis, such as 
assembly and excavation. The core problem of manipulator control is to move the EE to a 
desired pose in space by actuating the manipulator’s joints. The approaches for solving this 
problem can be broadly categorized into kinematic and compliant control. A quintessential 
example of a contact-rich manipulation task is the peg-in-hole problem, illustrated in Figure 2.4. 
Its apparent simplicity contrasts with a complex control challenge that is fundamental to nearly 
all assembly operations. It has been a subject of extensive research for decades [50], [51], [52].

Figure 2.4 – The peg-in-hole task is a common problem in robotics, fundamental to a vast 
range of operations from industrial manufacturing to everyday interactions like connector 
inserting. Its successful execution requires precise control over contact forces and alignment.
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Kinematic Control

Kinematic control focuses on the geometry of motion without considering the forces or torques 
that cause it. The most common problem in this domain is IK. Given a desired EE pose, IK 
calculates the corresponding set of joint angles required to achieve that pose. For manipulators 
with many DoF, there can be multiple or even infinite solutions to this problem.

A common approach for real-time control is differential IK, which relates EE velocities to joint 
velocities through a matrix known as the Jacobian  [53]. By inverting or taking the pseudo-
inverse of the Jacobian, a controller can compute the necessary joint velocities to achieve a 
desired EE velocity. This method forms the basis for many standard robot control interfaces. 
However, a key limitation of purely kinematic control is its rigidity. It commands the robot 
to achieve a specific position or velocity without regard for external forces. If the robot’s path 
is obstructed or it makes an unexpected contact, a rigid kinematic controller will continue to 
drive the motors. This can potentially generate large forces that could damage the robot or its 
environment. This brittleness makes it ill-suited for tasks involving contact-rich interactions in 
unstructured settings, a limitation that became evident in the foundational study of this thesis 
Publication I.

Compliant Control

Compliant control addresses the limitations of rigid kinematic control by allowing a robot 
to safely interact with its environment. Instead of commanding a strict position, a compliant 
controller specifies a relationship between the robot’s position and the external forces it experi-
ences. This enables the robot to adjust its control when it encounters resistance. This mimics 
the natural compliance of human motion.

One powerful framework for implementing compliant behavior is OSC [34], which formulates 
the control problem directly in the robot’s task space. It allows the designer to specify the desired 
dynamic behavior of the EE as if it were a mass-spring-damper system. By setting the controller 
gains for stiffness and damping, one can define how the EE should react to external forces. Low 
stiffness allows the robot to be very compliant and easily moved by external contacts, whereas 
high stiffness makes it behave more rigidly. OSC provides a principled way to manage forces 
during interaction. This makes it highly suitable for contact-rich tasks like assembly and exca-
vation. As explored in Publication VI, this thesis demonstrates that the ability to dynamically 
modulate these compliance parameters through MBRL provides a powerful mechanism for 
achieving adaptive and robust manipulation [54], [55].
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2.3  Paradigm of Robot Learning

Robot learning is a subfield of machine learning that focuses on endowing robots with the 
ability to acquire new skills and adapt their behavior through experience [14]. It represents a 
fundamental departure from traditional programming, where a robot’s behavior is explicitly 
defined by a human engineer. Instead of following a fixed set of instructions, a learning 
robot improves its performance on a task over time by interacting with its environment or by 
observing demonstrations. This paradigm is particularly well-suited for the unstructured and 
unpredictable domains of space robotics, as it is impossible to pre-program a robot for every 
possible contingency.

2.3.1  Markov Decision Process

Many problems in robot learning are formalized using the mathematical framework of the 
Markov decision process (MDP)  [15]. An MDP provides a model for sequential decision-
making in an environment where outcomes are at least partially under the control of an agent. 
An MDP is defined by a set of states 𝒮︀, a set of actions 𝒜︀, and a set of rewards ℛ︀. The dynamics 
of the MDP are defined by a probability distribution 𝑝:𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) (2.1)
This function specifies the probability of transitioning to state 𝑠′ and receiving reward 𝑟, given 
that the agent was in state 𝑠 and took action 𝑎 at timestep 𝑡. The capital letters denote random 
variables, while the lowercase letters denote their specific values.

The agent’s goal is to learn a policy, denoted as 𝜋(𝑎 | 𝑠), which defines a mapping from states 
to a probability of selecting each possible action. The objective is to find an optimal policy 𝜋∗ 
that maximizes the expected cumulative sum of future rewards, known as the return. For an 
ongoing task, the discounted return at timestep 𝑡 is defined as:

𝐺𝑡 = ∑∞𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1 (2.2)
where 𝛾 ∈ [0, 1] is the discount factor. This factor determines the present value of future 
rewards. Values closer to 0 prioritize immediate rewards while values closer to 1 emphasize long-
term gains. The core assumption is the Markov property, which states that the state 𝑆𝑡 provides 
all necessary information for the agent to make an optimal decision, independent of the history 
of states, actions, and rewards that came before it. For example, in a robotic manipulation task, 
the full state might include the precise joint angles of the arm, the poses of all objects in the 
scene, and their mutual interaction forces.



2.3 / PAR ADIGM OF ROBOT LEARNING 25

However, in many real-world robotics problems, the agent does not have access to the complete 
state of the environment. This situation is known as partial observability and is more accurately 
described by a partially observable MDP (POMDP). A POMDP extends the MDP with a set 
of observations and an observation probability distribution 𝑂(𝑜 | 𝑠′, 𝑎). This gives the proba-
bility of receiving observation 𝑜 after the agent took action 𝑎 and the environment transitioned 
to state 𝑠′. In a POMDP, the agent receives an observation, such as an image from a camera, 
which may be a noisy or incomplete representation of the true state. It must often rely on a 
history of past observations to infer the underlying state and make informed decisions, a core 
challenge addressed in Publication II.

2.3.2  Reinforcement Learning

Reinforcement learning (RL) is a learning paradigm centered on the MDP framework. It is 
concerned with how an intelligent agent should take actions in an environment to maximize 
cumulative reward, without being explicitly told which actions to take  [15]. The learning 
process is driven by trial and error. The agent explores the environment by taking actions 
and observing the resulting states and rewards. It uses this feedback to update its policy and 
gradually converges towards an optimal strategy. The fundamental interaction loop of RL is 
depicted in Figure 2.5.

Agent

Environment

ActionState Reward

Figure 2.5 – The fundamental interaction loop of RL. The agent takes an action in the envi-
ronment, which transitions to a new state and emits a reward. The agent uses this information 

to update its policy and inform future actions.

Modern RL algorithms are often combined with deep neural networks as function approxi-
mators, giving rise to the field of deep RL. This allows agents to learn complex policies directly 
from high-dimensional sensory inputs and to control robots with high-dimensional action 
spaces. Many prominent deep RL algorithms employ an actor-critic architecture, illustrated in 
Figure 2.6. In this setup, an actor network learns a parameterized policy 𝜋𝜃(𝑎 | 𝑠), while a critic 
network learns a value function to evaluate the actor’s actions by estimating their long-term 
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value. One common value function is the action-value function, which estimates the expected 
return for taking action 𝑎 in state 𝑠 and thereafter following policy 𝜋:𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋[𝐺𝑡 | 𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] (2.3)
The critic, with parameters 𝜑, learns an approximation 𝑞𝜑(𝑠,𝑎) ≈ 𝑞𝜋(𝑠,𝑎). Its evaluation is then 
used to update the actor’s parameters 𝜃, typically by moving them in the direction of improved 
performance.

TD Error

Critic

Environment

Actor

Reward

State Action

Policy Update

Figure 2.6 – The interaction loop of actor-critic RL. The actor (policy) selects an action, and 
the critic (value function) evaluates the quality of that action. The critic’s feedback is then used 

to update the actor, guiding it toward more rewarding behaviors.

The algorithms can be broadly categorized as model-free or model-based. Model-free algo-
rithms learn a policy and/or a value function directly from experience without explicitly 
learning a model of the environment’s dynamics. They are often robust and can achieve high 
performance. Prominent model-free methods include on-policy algorithms like PPO  [30], 
known for their training stability, and off-policy algorithms like TD3  [31] and SAC  [32], 
which often exhibit greater sample efficiency. However, a common drawback of model-free 
approaches is that they can require millions or even billions of environmental interactions to 
learn a complex task.
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Model-Based Reinforcement Learning

Model-based RL (MBRL) approaches aim to improve sample efficiency by employing a model 
of the environment’s dynamics alongside the policy [56]. A learned world model, parameterized 
by 𝜓, is a function 𝑝𝜓 that approximates the true dynamics 𝑝 of the MDP:(𝑠′, 𝑟) ∼ 𝑝𝜓(⋅ | 𝑠, 𝑎) (2.4)
This learned model acts as a surrogate for the real environment. It allows the agent to predict the 
consequences of its actions without having to physically execute them. The agent can use this 
model for planning or to generate large quantities of simulated experience to train its policy, as 
illustrated in Figure 2.7. Research in the area of MBRL has demonstrated significant gains in 
data efficiency on robotic control problems through algorithms like PILCO [57].

Agent

Environment

World Model

RewardState Action

Figure 2.7 – The interaction loop of MBRL. The agent learns a world model from real-world 
interactions. It then uses this model for planning or to generate imagined trajectories, which 

are used to efficiently update the policy without requiring further real-world interaction.

Modern algorithms like DreamerV3 have demonstrated remarkable success by learning a 
compact, latent space model of the world directly from high-dimensional observations [33]. 
The agent can then learn a policy entirely within the imagined trajectories of its learned model. 
This process can be significantly faster and more data-efficient than interacting with the real 
or even a simulated environment. This ability to learn a predictive world model is particularly 
promising for space robotics. It provides a mechanism for planning and reasoning that is crucial 
for tackling complex, long-horizon tasks. This thesis heavily leverages the MBRL paradigm due 
to its potential for efficient learning and its inherent suitability for adaptation.
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2.3.3  Learning from Demonstration

While RL offers a powerful framework for discovering behaviors through exploration, the 
process can be slow and undirected, especially for tasks with sparse rewards or complex action 
spaces where successful outcomes are rare. Learning from demonstration (LfD) provides an 
alternative or complementary approach that leverages existing data to accelerate and guide the 
learning process [58]. Instead of relying solely on trial and error, the agent learns by observing 
how a task should be performed. This data can be collected from human teleoperation, scripted 
policies, or the rollouts of a previously trained agent.

Imitation Learning

The most direct form of LfD is imitation learning (IL). In this paradigm, the problem is framed 
as a supervised learning task where the agent learns a policy that mimics the actions of an expert. 
The simplest approach, behavior cloning (BC), trains a policy to map states to actions from 
expert trajectories. Given its simplicity, BC has been successfully applied to complex robotic 
manipulation tasks [59]. Several works have also combined it with RL to learn contact-rich 
assembly skills [60], [61].

While straightforward, BC can suffer from issues like covariate shift. This occurs when small 
errors in the learned policy cause the agent to drift into states not seen in the expert data. 
Once off the expert’s trajectory, the agent has no data to guide its recovery, which often leads 
to compounding failures. More advanced IL methods exist to mitigate this issue. For example, 
some techniques involve querying the expert for corrective actions from states the agent has 
visited. A fundamental constraint of pure IL remains. The learned policy’s performance is 
ultimately bounded by the quality and coverage of the expert demonstrations. The agent can 
only learn to replicate what it has seen and cannot discover novel or better strategies on its own.

Offline Reinforcement Learning

Offline RL bridges the gap between RL and IL. It aims to learn a policy from a fixed, pre-existing 
dataset of transitions without any further interaction with the environment. Unlike pure IL, 
it does not assume that the data comes from an expert. The dataset can be a mix of optimal, 
suboptimal, and purely random behaviors. Offline RL algorithms use dynamic programming 
or model-based methods to stitch together the best parts of the trajectories in the dataset. This 
allows them to learn a policy that can potentially outperform the best trajectory seen in the data.

This paradigm is highly relevant for space robotics, where online data collection is expensive or 
dangerous. The primary challenge in offline RL is distributional shift. This occurs when the 
learned policy favors actions that lead to out-of-distribution states for which the value function 
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is not well-defined, often leading to erroneously high value estimates. Modern offline RL 
algorithms mitigate this issue using various forms of policy constraints or conservatism. This 
ensures the agent primarily utilizes actions and states that are well-supported by the dataset. The 
progress in this area is fueled by the availability of large-scale robotics datasets [38]. Although 
not investigated in this work, the capability of SRB to collect teleoperated data and record 
trajectories from trained RL agents provides the necessary infrastructure for future research 
into creating similar datasets for the space domain.

2.3.4  Sim-to-Real Challenge

A central premise of this thesis is that simulation provides the only feasible environment for 
training the complex robotic skills required for space. Yet, the real-world applicability is the 
ultimate goal. This reliance on simulation introduces a fundamental obstacle known as the sim-
to-real gap. This gap refers to the discrepancy between the simulated environment and the real 
world, as illustrated in Figure 2.8 from Publication I. A simulation is always an approximation 
of reality, no matter how high its fidelity. Differences in visual appearance, object dynamics, 
friction, sensor noise, and actuator behavior can cause a policy that performs perfectly in 
simulation to fail completely when deployed on a physical robot. Bridging this sim-to-real gap 
is one of the most significant challenges in modern robot learning research.

Figure 2.8 – A conceptual illustration of the sim-to-real gap, taken from the foundational 
study of Publication  I. A policy trained exclusively in a simulation domain may fail when 
deployed in the real world due to discrepancies in physics, visuals, and other unmodeled effects. 

The goal of sim-to-real transfer is to develop policies that are robust to this gap.
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Domain Adaptation

Domain adaptation techniques aim to make the simulation more closely resemble the real 
world or to make the learned policy less sensitive to the differences between the two. This can 
involve a range of methods. For example, system identification can be used to measure the phys-
ical parameters of a real robot and its environment, such as joint friction or actuation delays. 
These parameters can then be used to fine-tune the simulator’s physics engine  [21]. Other 
approaches involve fine-tuning a policy that was pre-trained in simulation with a small amount 
of data collected from the real world. While these methods can be effective, they often require 
access to the target real-world domain during the training process. This dependency on real-
world data makes them challenging to apply in space robotics, where the target environment is 
remote, poorly characterized, and largely inaccessible.

Domain Randomization

Domain randomization (DR) takes a different and, in many ways, opposite approach. Instead 
of trying to create a perfect replica of one specific real-world scenario, it aims to make the 
simulation so diverse that the real world appears to the policy as just another variation [29]. This 
is achieved by systematically randomizing the parameters of the simulation during training, 
as shown in Figure 2.9. This can include randomizing visual aspects like lighting conditions, 
textures, and camera positions. It also includes randomizing physical properties like object 
masses, friction coefficients, and actuator dynamics.

Figure 2.9 – An example of DR, where each training episode features a unique combination 
of graspable object models, textures, and illumination conditions. This encourages the agent to 

learn a generalizable grasping strategy [62].
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By exposing the agent to a vast range of conditions, DR forces the policy to become robust 
to these variations. The agent learns to ignore superficial and irrelevant features of the environ-
ment and instead focuses on the underlying physical principles required to solve the task. This 
process acts as a form of implicit regularization that discourages the policy from a tendency 
to overfit to simulation-specific artifacts. More advanced techniques even allow the agent to 
learn to make the simulation more challenging for itself, further enhancing robustness [63]. 
Although domain knowledge is beneficial, this approach does not require any data from the 
target real-world environment. It is thus highly suitable for space applications where conditions 
are unpredictable. The methodology in this thesis relies heavily on DR as a core strategy for 
achieving robust generalization.

2.4  Ecosystem of Robotics Simulation

The development and validation of robotic systems are increasingly dependent on simulation. 
Simulators provide a safe, cost-effective, and scalable environment for prototyping algorithms, 
training learning-based agents, and testing system behavior under a wide range of conditions. 
This section surveys the landscape of available robotics simulators, discusses the transformative 
potential of procedural generation, and highlights the critical role of standardized benchmarks 
in the advancement of the field.

2.4.1  Proprietary and Open Source Landscape

The ecosystem of robotics simulation is diverse. It encompasses both proprietary commercial 
software and community-driven open-source projects. Each category presents distinct advan-
tages and trade-offs. Open-source simulators like Gazebo  [64] and physics engines such as 
MuJoCo [65] and DART [66] offer great flexibility, transparency, and accessibility. They allow 
researchers to modify and extend the software to suit their specific needs, which fosters a 
collaborative development environment. However, they have sometimes lagged behind their 
commercial counterparts in terms of rendering fidelity and computational performance.

In recent years, the line between these two categories has begun to blur. Powerful platforms 
have emerged that blend proprietary core technology with open access and APIs for the research 
community. Isaac Sim, the platform upon which the framework in this thesis is built, is a 
prominent example. It provides GPU-accelerated physics and physically-based rendering (PBR) 
capabilities that were largely exclusive to high-end proprietary software while also offering an 
open and extensible Python-based workflow. This shift has been instrumental in democratizing 
access to high-fidelity simulation. A comparison of several prominent simulators is provided 
in Table 2.1.
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Table 2.1 – A comparison of prominent robotics simulators and game engines, qualitatively 
evaluating each platform on its primary strengths and limitations in the context of developing 

and validating learning-based autonomous systems.
Simulator Key Strengths Primary Limitations
CoppeliaSim2 • User-friendly • Not optimized for scalability

• Lower visual & physics fidelity
Drake3 • High-fidelity physics

• Excellent for model-based control

• Not optimized for scalability

Gazebo4 • Large community

• Close ROS integration

• Not optimized for scalability

Isaac Sim5 • Scalable

• Realistic rendering

• Vendor-locked hardware requirements

MuJoCo6 • Large community

• Scalable

• High-fidelity physics

• Lower visual fidelity

PyBullet7 • User-friendly

• Lightweight

• Lower visual fidelity

SAPIEN8 • Scalable

• Realistic rendering

• Not general enough

Unity9 • Large community

• Realistic rendering

• High integration effort for robotics

Unreal Engine10 • Large community

• Realistic rendering

• High integration effort for robotics

Webots11 • User-friendly • Not optimized for scalability

• Lower visual fidelity

Despite the capabilities of these general-purpose platforms, they exhibit a profound terrestrial 
bias. Consequently, the challenge lies not merely in selecting a simulator but in constructing a 
domain-specific framework that leverages high-performance physics and rendering to generate 
the massive, diverse, and physically accurate experience that is essential for bridging the sim-to-
real gap prevalent in space robotics.

2https://coppeliarobotics.com
3https://drake.mit.edu
4https://gazebosim.org
5https://developer.nvidia.com/isaac/sim
6https://mujoco.org
7https://pybullet.org
8https://sapien.ucsd.edu
9https://unity.com
10https://unrealengine.com
11https://cyberbotics.com

https://coppeliarobotics.com
https://drake.mit.edu
https://gazebosim.org
https://developer.nvidia.com/isaac/sim
https://mujoco.org
https://pybullet.org
https://sapien.ucsd.edu
https://unity.com
https://unrealengine.com
https://cyberbotics.com
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2.4.2  Space Simulation Frameworks

Simulation is a cornerstone of space mission development, traditionally used for high-fidelity 
verification of astrodynamics via tools like GMAT  [18] and Basilisk  [19]. However, space 
robotics introduces challenges that require physically realistic models of contact dynamics and 
complex terrains. To meet these needs, a new generation of specialized simulators has emerged, 
often developed by space agencies for specific missions, such as VIPER RSIM [67] or Astrobee 
Sim [68].

These mission-specific simulators are invaluable for their intended purpose of V&V, but are ill-
suited for the broader needs of robot learning research. They are designed to model a static, 
singular reality with maximum fidelity, which is misaligned with the massive data generation 
and environmental diversity required by modern learning algorithms. In response, the research 
community has developed several learning-focused simulators for specific domains, including 
rover navigation [22], spacecraft rendezvous [23], and orbital manipulation [69]. While these 
platforms are crucial steps forward, they are often tightly coupled to their original research 
objectives and a single robotic platform, making it difficult to study generalization across 
different robots or applications. Table 2.2 summarizes this diverse landscape. SRB is designed 
for multi-domain autonomy with a focus on high scalability and extensibility, enabled by its 
combined PCG and DR approach for the sim-to-real challenge.

Table 2.2 – Comparison of existing space simulation frameworks.
Simulator Primary Focus Sim-to-Real Scalability Gymnasium
GMAT [18] Orbital Mechanics Digital Twin Low No
Basilisk [19] Orbital Mechanics Digital Twin Medium Yes [70]
VIPER RSIM [67] Rover V&V Digital Twin Low No
Astrobee Sim [68] Free-Flyer V&V Digital Twin Low No
Int-Ball2 Sim [71] Free-Flyer V&V Digital Twin Low No
HeliCAT-DARTS [72] Rotorcraft V&V Digital Twin Low No
EELS-DARTS [73] Snake Robot V&V Digital Twin Low No
OmniLRS [74] Planetary Navigation Photorealism Medium No
RLRoverLab [22] Planetary Navigation DR High Yes
RANS [23] Spacecraft Navigation DR High Yes
SpaceRobotEnv [69] Orbital Manipulation DR Low Yes
GraspPlanetary (Publication I) Planetary Manipulation DR+PCG Low Yes
SRB (Publication VII) Multi-Domain DR+PCG High Yes
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2.4.3  Power of Procedural Content Generation

A key technique for enhancing the diversity and scalability of simulation environments is 
procedural content generation (PCG) , which encompasses a set of algorithms for creating data 
automatically rather than manually. While widely adopted in the gaming industry to create vast 
and varied game worlds, its application in robotics simulation is still emerging. Traditionally, 
robotic simulation environments have been built using manually created assets. This limits 
their variety and makes the creation of large-scale, diverse scenarios a labor-intensive process.

PCG offers a solution to this bottleneck. By using parametric pipelines, a near-infinite number 
of unique 3D assets can be generated on demand. This approach is not only efficient but also 
enables a level of environmental diversity that is unattainable through manual design. As argued 
throughout this thesis, diversity is a critical requirement for training truly generalizable robot 
learning policies [28]. By forcing the agent to succeed across a wide distribution of scenarios, 
PCG effectively regularizes the learned policy and prevents it from a tendency to overfit to 
simulation-specific artifacts. Furthermore, PCG can be used to facilitate curriculum learning, 
where the complexity of the generated content is gradually increased to guide the agent’s 
learning process from simple to more challenging tasks [75]. The pipeline used in this thesis 
leverages Blender’s Geometry Nodes to create a flexible and powerful system for on-demand 
asset creation, as introduced in Publication IV.

2.4.4  Role of Benchmarks in Driving Progress

Standardized benchmarks have played a crucial role in accelerating progress in machine learn-
ing. A benchmark provides a common set of tasks, environments, and evaluation metrics that 
allow researchers to directly compare the performance of their algorithms in a reproducible 
manner. This is particularly important in RL, where subtle differences in implementation can 
lead to significant variations in results, making reproducibility a persistent challenge [20].

In robotics, benchmarks like RLBench  [24], Meta-World  [25], ManiSkill3  [27], Robo-
suite  [76], and RoboHive  [77] have been instrumental in advancing research in terrestrial 
manipulation. Other benchmarks have focused on more specialized domains, such as long-
horizon assembly in FurnitureBench  [26], dexterous manipulation with RoboPianist  [78], 
and humanoid locomotion via HumanoidBench [79]. While invaluable, these existing bench-
marks are Earth-centric. They do not capture the unique challenges of space robotics, such as 
microgravity dynamics, unstructured planetary terrains, or the specific tasks relevant to space 
missions. This highlights a critical gap in the available tools for the community, a gap that 
Publication VII aims to fill. The development of a dedicated, open-source benchmark for space 
robotics is therefore a primary motivation for this thesis.
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2.5  Synthesis and Research Gap

The preceding sections have traced the parallel and intersecting paths of space robotics, robot 
control, and robot learning. The synthesis of these fields reveals a clear and compelling need 
for a new approach to developing autonomous systems for space. The vision for future space 
exploration demands robots with a high degree of adaptive autonomy. Traditional control 
methods lack the necessary robustness for unstructured and remote environments. Robot 
learning, particularly deep MBRL, offers a promising paradigm for acquiring the required 
adaptive behaviors. Its application to space robotics is severely hampered by the sim-to-real 
challenge and the unique constraints of the domain.

This review of the state of the art exposes a critical research gap. The space robotics community 
has developed high-fidelity simulators but lacks an open platform designed for the data-inten-
sive needs of modern robot learning [18], [19]. The robot learning community has produced 
powerful algorithms and benchmarks, but has focused on terrestrial applications that do not 
capture the unique physics of space [24], [26]. There is a clear need for a bridge between these 
two worlds.

This thesis aims to fill this gap by addressing three specific deficiencies. First, there is a 
lack of a comprehensive, open-source benchmark for robot learning in space that integrates 
diverse, procedurally generated environments with high-fidelity physics. Second, there is insuf-
ficient understanding of how to best train agents for robust generalization in contact-rich 
manipulation tasks, particularly with respect to learning compliant behaviors. Third, there is 
no systematic evaluation of state-of-the-art learning algorithms against a standardized suite 
of space-relevant tasks. This work directly confronts these issues by developing the necessary 
simulation infrastructure and a novel learning methodology to advance the state of adaptive 
autonomy for robots beyond Earth.
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3
Laying the Foundation
The progress of this thesis towards achieving adaptive autonomy in space began not with a 
comprehensive benchmark but with an empirical investigation into a fundamental manipula-
tion skill. This chapter details the initial research presented in Publication I, which served to 
validate the foundational hypotheses of this thesis. The work confronted a concrete challenge 
of teaching a robot to grasp unknown objects on the Moon. This task, while specific, served 
as a foundation for testing the core principles that underpin this entire thesis. The successful 
outcomes of this early work established the critical methodologies that would later be scaled 
and generalized into the full SRB and the adaptive control framework. It provided the first 
concrete evidence that a simulation-centric approach, grounded in procedural diversity and 
robust perception, could successfully bridge the sim-to-real gap for a complex space robotics 
task. This chapter recounts that foundational experiment, detailing its successes and exposing 
the limitations that motivated the more advanced work to come.

3.1  Core Concepts
The research focused on the task of vision-based robotic grasping of previously unknown 
objects in a simulated lunar environment. Grasping was selected as it is a prerequisite for a 
vast range of mission-critical operations, from sample collection and ISRU to the assembly and 
maintenance of infrastructure. The goal was not merely to solve this specific problem but to 
use it as a testbed for establishing a set of core principles for learning generalizable policies. Four 
key concepts were central to this initial investigation.

First, the work revolved around a simulation-centric development approach. This principle 
acknowledges the fundamental impossibility of collecting the vast datasets required for modern 
RL through physical trials in space. The prohibitive cost, safety-critical nature, and logistical 
constraints of extraterrestrial operations mandate that the virtual world serve as the primary 
training ground. This decision necessitated the development of a simulation that was not only 
physically and visually realistic but also sufficiently diverse to foster the robust generalization 
required for real-world deployment.
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Second, to achieve this diversity, the research introduced the use of PCG for creating environ-
mental assets. This concept directly confronts the limitations of training on static, finite 
datasets of 3D models. Such datasets fail to capture the sheer variability of an unknown 
environment like the lunar surface. By developing custom pipelines to synthesize a wide variety 
of terrains and rocks algorithmically, the training distribution becomes effectively infinite. 
This approach forces the agent to learn the general physical principles of grasping rather than 
memorizing the specific visual features of a limited set of objects.

Third, the research challenged the sufficiency of traditional 2D image-based observations for 
complex 3D manipulation. It proposed a novel approach based on 3D octree representations 
of the environment. The hypothesis was that a 3D data structure would provide a more natural 
and robust input for a policy that must reason about objects and movements in three-dimen-
sional space. A 3D representation offers inherent invariance to camera viewpoint and sensor 
resolution. The octree was chosen specifically for its computational and memory efficiency 
compared to dense voxel grids [80], [81], [82].

Finally, to ensure the learned policy would be transferable across different robotic arms, the 
control was formulated in the robot’s task space. A policy that learns to command individual 
joint angles is intrinsically tied to a specific kinematic structure. By instead commanding the 
desired displacement of the EE in Cartesian space, the policy becomes agnostic to the under-
lying kinematics of the manipulator. This decouples the high-level goal of the task from the 
low-level mechanics of the robot, a crucial step towards creating truly general-purpose and 
reusable skills. These four concepts, when integrated, formed the blueprint for the successful 
proof-of-concept experiment detailed in this chapter.

3.2  Simulation-Centric Approach

The entire development and training pipeline for this foundational study was centered within a 
custom simulation environment. This approach was not a matter of convenience but a necessity 
driven by the core challenges of RL. The millions of interactions required to train a deep neural 
network policy are impossible to collect on physical hardware, especially for a safety-critical and 
inaccessible domain like space. The primary goal, therefore, was to create a virtual world that 
was not just a replica of a single scenario but a diverse and challenging testbed for learning.

The environment was built using the Gazebo robotics simulator  [64]. It was chosen for 
its open-source nature, which promotes reproducibility, and its mature and extensible archi-
tecture. For this contact-rich grasping task, physical realism was paramount. The simulation 
leveraged the DART physics engine for its stable and accurate handling of rigid-body dynam-
ics [66]. Visual fidelity was achieved using the OGRE 2 rendering engine, which provided PBR 
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capabilities for more realistic lighting and material interactions. The resulting environment 
was designed to encapsulate the key characteristics of a mobile manipulation task on the lunar 
surface. It integrated a simulated rover with an articulated robotic arm and a stereo camera for 
visual perception.

3.2.1  Procedural Generation of Assets

A core innovation of this early work was the extensive use of PCG to create the environmental 
assets. This strategy directly addressed the inadequacy of existing 3D model datasets for this 
specific domain. While large-scale datasets of common objects exist, they are not representative 
of the natural, geological forms found on planetary surfaces. Manually creating thousands 
of unique rock and terrain models would be prohibitively time-consuming. PCG provided a 
scalable solution.

New pipelines were created using the Geometry Nodes feature of Blender. These node-based 
systems allowed for the programmatic and parametric creation of assets, as conceptualized in 
Figure 3.1. For the terrain, a flat 2D plane was programmatically displaced using a combination 
of procedural noise textures to create an uneven surface with features resembling impact craters. 
For the rocks, simple convex polyhedra were similarly displaced to generate a wide variety of 
shapes and sizes, including complex non-convex geometries. Each generated model was also 
assigned a random set of PBR material textures from a static dataset to increase visual diversity. 
This approach allowed for the creation of a nearly unlimited number of unique environments 
from a small set of procedural rules.

Figure 3.1 – The procedural generation pipeline for creating diverse lunar assets. It uses 
Blender’s Geometry Nodes to generate terrains and rocks, which are then exported with PBR 

textures via automated Python scripts for direct use in the Gazebo simulator.
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Extensive DR was applied during training. In each episode, the simulation randomized the pose 
of the rover, the camera extrinsics, the terrain model, the number and models of the rocks, their 
physical properties like density and friction, and even the direction of the simulated sunlight to 
mimic the harsh illumination conditions on the Moon [29]. This constant variation was essen-
tial for preventing the agent from a tendency to overfit and for encouraging the development 
of a robust, generalizable policy.

The simulated task involved a Summit XL-GEN mobile manipulator, a rover equipped with a 
7-DoF Kinova Gen2 robotic arm and a three-finger gripper, as shown in Figure 3.2. The agent’s 
task was to grasp one of the procedurally generated rocks scattered in its workspace and lift it 
to a specified height. Visual perception of the scene was provided by a simulated stereo camera, 
which is a sensor choice motivated by its prevalence on actual space rovers [43]. The camera 
produced both monochromatic images and depth maps of the scene from the perspective of 
the rover base.

To maintain focus on the core manipulation skill, the problem was constrained to the 
immediate workspace of the manipulator. Any prior movement of the rover was assumed to 
be handled by other means. The simulation environment provided a standardized interface 
compatible with modern RL frameworks, specifically following the OpenAI Gym API [83] 
and facilitated by the Gym-Ignition library [84]. This allowed for seamless integration with 
the learning algorithm and facilitated a structured, episodic formulation of the grasping task. 
Communication between the simulation, the learning agent, and the robot control stack was 
managed using ROS 2 [36]. This choice simplified the eventual transfer of the learned policy 
to the physical robot by providing an identical software interface in both the simulated and real 
domains.

Figure 3.2 – The Summit XL-GEN mobile manipulator, with a 7-DoF Kinova Gen2 robotic 
arm and a stereo camera, which was used in both the simulation and the physical experiments.
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3.3  End-to-End Learning from 3D Octree Observations

The learning methodology for this initial study was designed to directly map sensory inputs 
to robot actions in an end-to-end fashion. This approach contrasts with traditional robotics 
pipelines that segment a task into discrete stages such as perception, pose estimation, grasp 
planning, and motion execution. Such pipelines can be brittle, as errors from an earlier stage 
can compound and lead to failure in later stages. An end-to-end policy, in contrast, learns a 
single function that maps raw observations directly to low-level control commands, which can 
lead to more robust and reactive behaviors, albeit often at the cost of reduced interpretability 
and explainability [85].

The approach, illustrated in Figure 3.3, was built on the key innovation of using a compact 3D 
data structure for representing the visual scene while employing a model-free RL algorithm for 
policy optimization. The entire system was designed to be invariant to the specific robot kine-
matics and robust to the visual diversity introduced by the procedural simulation environment. 
The grasping task was formulated as an MDP, and the agent’s objective was to find an optimal 
policy 𝜋∗ that maximizes the expected discounted return from Equation (2.2).
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Figure 3.3 – An overview of the end-to-end learning approach. Visual data from a stereo 
camera is converted into a 3D octree representation. This, along with proprioceptive data, is 
fed into a shared feature extractor. The resulting features are then used by separate actor and 

critic networks to produce continuous task-space actions for the robot EE.

3.3.1  Octree-Based Scene Representation

A central hypothesis of this work was that traditional 2D image-based observations are 
suboptimal for learning 3D manipulation tasks. While 2D convolutional networks generalize 
well over the horizontal and vertical position of features in an image, they do not inherently 
understand the spatial relationships of a three-dimensional world, a limitation noted in other 
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robotics research [86]. To address this, the visual scene was represented as a 3D octree in a choice 
motivated by the need for a data structure that is both computationally efficient and provides 
a rich geometric representation suitable for 3D convolutional networks [87].

The process of constructing the observation, illustrated in Figure 3.4, began by converting the 
depth map and monochromatic image from the simulated stereo camera into a point cloud. 
This point cloud was transformed into the robot base coordinate frame and cropped to a 
fixed volume of 40 × 40 × 40 cm. This fixed volume was then used to construct the octree, 
a hierarchical data structure that efficiently represents the 3D space by recursively subdividing 
it into eight octants [82]. Unlike a dense voxel grid, an octree only recursively subdivides and 
stores data for occupied space, making it highly efficient for the sparse scenes typical of a robot 
workspace.
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Figure 3.4 – The process of creating an octree-based scene representation. A raw point cloud 
is generated from sensor data. This point cloud is then transformed into the robot coordinate 
frame and cropped to a fixed volume. Finally, it is voxelized into an efficient octree data struc-

ture, which serves as the primary visual input for the learning agent.

To provide the agent with a rich description of the scene, three distinct features were computed 
and stored in the leaf nodes of the octree for each occupied cell, as depicted in Figure 3.5. These 
features were the average unit normal vector 𝑛 which provided crucial information about the 
local surface geometry, the average distance of the points from the cell center 𝑑, and the average 
intensity 𝑖 for textural information. This multi-modal feature set gave the agent a compact yet 
descriptive summary of the scene’s geometry and appearance. The observation was completed 
with proprioceptive data, including the gripper’s pose using a continuous 6D rotation repre-
sentation [88] and its open or closed state.
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Figure 3.5 – A representation of the features stored within a single leaf octant of the octree. All 
points from the source point cloud that fall within the volume of a cell are used to compute the 
average unit normal vector 𝑛, the average distance to the cell center 𝑑, and the average intensity 𝑖.
3.3.2  Model-Free Reinforcement Learning

To learn the grasping policy, a model-free, off-policy actor-critic algorithm known as Truncated 
Quantile Critics (TQC) was employed [89]. TQC is a variant of SAC [32] that is well-suited for 
continuous control problems. It operates under the maximum entropy RL framework, which 
augments the standard reward objective with an entropy term to encourage exploration.

A novel neural network architecture, shown in Figure 3.6, was designed to process the 3D octree 
observations. It adapted an octree-based convolutional network [80] to serve as a shared feature 
extractor for both the actor and critic. This feature extractor processed the octree through a 
series of 3D convolutions and pooling layers to produce a compact latent space representation 
of the scene. Sharing the feature extractor reduces the total number of learnable parameters and 
allows both the policy and the value function to benefit from a common, rich representation 
of the state.

Critic Network

Feature Extractor
Actor Network

Figure 3.6 – The network architecture used for learning from octree observations. A shared 
octree-based convolutional network extracts features from the 3D representation. These fea-
tures, combined with proprioceptive data, are then fed into separate actor and critic networks.
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The policy learned by the agent was designed to be robot-agnostic. The action space 𝒜︀ was 
defined in the Cartesian space of the EE:𝑎𝑡 = [Δ𝑥,Δ𝑦,Δ𝑧,Δ𝜑𝑧, 𝑔𝑎] (3.1)
where the first four terms represent the relative translational displacement and yaw rotation 
of the gripper, and 𝑔𝑎 is a continuous value controlling the gripper’s state. These high-level 
commands were then sent to the MoveIt 2 motion planning framework, which used a combi-
nation of TRAC-IK and RRT-Connect solvers to calculate the necessary joint movements to 
execute the action while ensuring collision-free motion [53], [90].

To guide the learning process, a shaped reward function was used. The task was decomposed 
into four sequential stages, namely reaching, touching, grasping, and lifting. The agent received 
a sparse positive reward upon the completion of each stage, with the reward value increasing 
exponentially to incentivize progress through the entire sequence. This provided a denser 
learning signal that guided the agent towards the final goal.

3.4  Sim-to-Real Validation in Lunar Analogue Facility

The ultimate test for any policy trained entirely in simulation is its performance in the physical 
world. For space robotics, this validation must take the form of a zero-shot transfer. The policy 
must work out of the box. The final phase of this foundational research was therefore a rigorous 
zero-shot transfer experiment to validate the effectiveness of the developed approach.

This experiment was conducted in the LunaLab, a unique Moon-analogue facility at the 
University of Luxembourg [37]. The LunaLab is specifically designed to replicate the visual 
characteristics of the lunar surface. It features a basin filled with basalt gravel that mimics the 
appearance of lunar regolith, and a configurable light projector that can reproduce the harsh 
illumination found on the Moon. This facility provided a realistic and challenging testbed for 
the physical validation.

The Summit XL-GEN mobile manipulator used in the simulation was employed for the 
physical experiments, as shown in Figure  3.7. The real robot was equipped with an Intel 
RealSense D435 stereo camera that was mounted at the base of the rover. To systematically 
evaluate the core hypotheses, the experiment was designed around two key variables, namely 
the type of sensory observation, either 2D image or 3D octree, and the level of environmental 
diversity during training, reduced or full DR. The real-world task involved scattering a set of 
eight different physical rocks, shown in Figure 3.8, within the robot workspace and tasking the 
agent with grasping one of them over 25 independent trials for each condition.
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Figure 3.7 – The physical setup for the sim-to-real validation experiments, conducted in the 
LunaLab facility at the University of Luxembourg that is filled with 20 tons of basalt gravel [37].

5 cm

Figure 3.8 – The eight physical rocks used during the sim-to-real evaluation.
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Figure 3.9 – A successful real-world grasp sequence.

A successful grasp sequence is depicted in Figure 3.9. The agent, guided solely by its learned 
policy, successfully perceives the scene, selects a target rock, approaches it with the gripper, 
secures a stable grasp, and lifts it off the ground. Despite the limited sim-to-real success rate, 
the quantitative results from Table 3.1 reveal two critical insights. First, agents trained in the 
fully randomized simulation environment with PCG assets demonstrated significantly better 
performance on the real robot than those trained in the static environment with reduced DR. 
This result was particularly apparent because the agents trained with reduced randomization 
achieved much higher success rates within their low-diversity simulation environment used 
during training. It demonstrates that they had not learned a generalizable skill, but had effec-
tively overfit to the small and predictable set of scenarios. This provided strong evidence that a 
combination of PCG and DR is a critical component for bridging the sim-to-real gap.
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Table 3.1 – Quantitative results of the sim-to-real transfer experiment.
Observation Type Level of Randomization Success Rate (N=25)

Image Reduced 12%
Image Full 20%
Octree Reduced 8%
Octree Full 32%

Second, the agent trained with 3D octree observations achieved the highest success rate of all, 
outperforming its 2D image-based counterpart. This validated the hypothesis that a 3D scene 
representation provides a more robust foundation for learning complex manipulation skills. 
The successful demonstration of a learned policy grasping previously unseen physical rocks 
in a realistic analogue facility marked a critical milestone. It proved the viability of the entire 
simulation-centric learning pipeline.

3.5  Limitations and Key Takeaways

This foundational study on learning to grasp on the Moon yielded several key insights that 
profoundly shaped the subsequent research direction of this thesis. It served as a successful 
proof-of-concept. It validated the core premise that a simulation-centric approach could be 
used to train policies for complex, contact-rich manipulation tasks and successfully transfer 
them to the real world.

The most significant takeaway was the demonstrated importance of diversity in training. The 
experiments showed that agents trained with extensive PCG and DR were far more robust 
and generalized better to the novel conditions of the physical world. This finding established 
environmental diversity not as an optional enhancement but as a fundamental requirement for 
achieving meaningful sim-to-real transfer. Secondly, the study provided strong evidence for the 
superiority of 3D vision for manipulation. Finally, the successful use of task space control and 
a modular software architecture suggests the viability of creating hardware-agnostic skills.

However, this initial work also revealed several critical limitations that motivated the next 
phases of research. While the model-free RL algorithm was successful, its learning process was 
often sample-inefficient and exhibited instability, especially in the highly varied procedural 
environments. This highlighted the need to explore more advanced and data-efficient learning 
paradigms, such as MBRL. A learned world model could potentially learn to filter out irrelevant 
environmental variations and enable the agent to learn more efficiently.
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Furthermore, the control strategy, while effective for grasping, was based on rigid kinematic 
control. The policy had no mechanism for managing contact forces. It could only command 
a target pose, and the underlying controller would attempt to reach it regardless of resistance. 
This pointed towards the need to investigate compliant control methodologies like OSC. A 
truly adaptive agent must be able to modulate its physical interaction, not just its position in 
space.

Lastly, and most importantly, the entire experiment was built around a single simulation 
environment for one specific skill. The ad-hoc nature of this initial setup was not scalable 
for comparing different algorithms, testing a wide range of robots, or exploring long-horizon 
tasks. This infrastructural limitation was the most significant barrier to further progress. It 
became clear that before more advanced learning methodologies could be developed, a proper 
foundation had to be built. These limitations directly informed the design of SRB and the 
development of the adaptive control framework detailed in the chapters that follow.
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4
Forging Virtual Frontiers
The proof-of-concept detailed in the previous chapter served as a critical validation. It 
confirmed that a simulation-centric approach grounded in procedural diversity could indeed 
bridge the sim-to-real gap for a complex space robotics task. However, that foundational 
study also exposed a profound set of limitations. The bespoke, single-task environment was 
an effective testbed for one experiment but represented a significant infrastructural bottleneck 
to broader scientific inquiry. To systematically investigate generalization, evaluate advanced 
learning algorithms across diverse tasks, and explore the capabilities of a wide range of robot 
morphologies, a dedicated and standardized platform was required. This chapter introduces 
the core contribution of this thesis, the Space Robotics Bench (SRB).

SRB is not merely a collection of simulation environments but a complete framework designed 
to accelerate the development of adaptive autonomy for space applications. It is the architec-
tural answer to the infrastructural gap identified in the background review and the experimental 
limitations revealed in the foundational grasping study. This chapter provides a thorough 
overview of SRB, detailing its design philosophy, its core architectural components, the suite of 
benchmark tasks it contains, and its seamless integration with the broader robotics and machine 
learning ecosystems. It presents SRB as the foundational artifact upon which the core scientific 
investigations of this thesis are built, providing the necessary tools to rigorously test and validate 
the learning methodologies for achieving robust and generalizable robotic behavior in space. 
The SRB source code is openly available at github.com/AndrejOrsula/space_robotics_bench.

4.1  Design Philosophy

The design and development of SRB were guided by a set of core principles formulated to 
address the specific needs of the robot learning and space robotics research communities. They 
ensure that SRB is not just a powerful tool for this thesis, but also a valuable and lasting resource 
for researchers and developers working on the future of autonomous systems in space.

https://github.com/AndrejOrsula/space_robotics_bench
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Realism and Diversity

The framework prioritizes the accurate simulation of space-relevant physics, including mod-
eling of regolith as granular media via particle physics based on extended position-based 
dynamics  [91]. However, this realism is not pursued for a single, static scenario. The core 
philosophy of this thesis dictates that true robustness for learning lies in capturing the immense 
diversity and unpredictability of space. This approach reframes the sim-to-real gap not as a fixed 
bias to be bridged, but as a distribution of potential realities to be encountered and overcome. 
The goal is to train agents that are robust not because they have mastered one perfect simulation, 
but because they have learned to generalize across thousands of imperfect but varied ones, 
making the real world appear as just another variation [29]. This is achieved through the deep 
integration of PCG and extensive DR. For complex physical phenomena that are not explicitly 
modeled, such as atmospheric drag, the framework approximates their impact by applying 
random disturbances, forcing an agent to learn a policy that is inherently robust to a wide range 
of unmodeled dynamics.

Scale and Performance

Modern robot learning algorithms are notoriously data-hungry. To support this demand, SRB 
is built to be highly parallelizable. Leveraging the GPU-accelerated physics and rendering of 
Isaac Sim, the framework can run thousands of unique simulation instances concurrently, 
achieving a throughput of over 100k simulation steps per second for some tasks. This scale 
dramatically accelerates data collection for online RL. The performance is further enhanced 
with backend optimizations, including Rust extension modules for high-performance CPU-
bound logic via PyO3 [92] and offloading computationally expensive task logic to the GPU 
using TorchScript [93] to maximize data throughput.

Modularity and Extensibility

Recognizing that every space mission is unique, SRB is designed with a flexible and modular 
architecture. It avoids the monolithic, hard-coded task definitions of the initial grasping 
environment. All assets, sceneries, robots, actuation models, and tasks are instead implemented 
as configurable, interchangeable modules registered within an internal registry. This allows 
researchers to easily introduce new elements by providing a standard model format and a data-
validated configuration, and in turn adapting the framework to their specific needs without 
significant changes to the core codebase.
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Openness and Accessibility

To maximize its impact and foster a collaborative research community, SRB has been developed 
as a fully open-source project, directly addressing the lack of standardized benchmarks. The 
framework is accompanied by comprehensive documentation, user-friendly installation proce-
dures, and a unified command-line interface. Crucially, it provides standardized interfaces to 
established ecosystems, including the Gymnasium API [35] for the robot learning community 
and the ROS 2 [36] middleware for the broader robotics community.

4.2  Benchmark Suite

SRB is not a single environment but a comprehensive suite of assets, robots, and tasks that 
can be composed into a vast array of mission-relevant scenarios. These components are the 
fundamental building blocks of the benchmark, providing the practical implementation of 
the modular design philosophy. This section details these components, beginning with its posi-
tioning in the simulation landscape before diving into the multi-domain physics, the extensive 
robotic fleet, and the standardized tasks that constitute the suite.

4.2.1  Situating SRB in the Simulation Landscape

The development of SRB was motivated by a critical gap in the existing ecosystem of simulation 
tools. As outlined in Table  2.2, current space simulators are typically designed for mission-
specific V&V and are often proprietary, while existing robot learning benchmarks exhibit a 
profound terrestrial bias and fail to capture the unique physics of space. SRB is purpose-built to 
bridge this gap, offering an open-source platform that uniquely synthesizes massive parallelism, 
procedural diversity, and space-relevant challenges. It complements mission-specific simulators 
by providing a platform for data-intensive development of generalizable policies, and it expands 
the horizons of the robot learning community by introducing a new suite of challenges beyond 
the well-explored domain of tabletop manipulation.

4.2.2  Domains

With its general-purpose simulation backend, a key feature of SRB is its ability to simulate a 
variety of extraterrestrial domains, each with distinct physical and visual characteristics. The 
framework models the gravitational pull of different celestial bodies and environmental factors 
like the intensity, color temperature, and angular diameter of solar illumination. Each domain 
presents unique challenges that directly influence robot dynamics, control strategies, and 
perception, as showcased in Figure 4.1.
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(a) Surface of the Moon (b) Martian surface (c) Orbit — Low Lunar Orbit

Figure 4.1 – A selection of simulated SRB domains, ranging from planetary environments to 
orbital scenarios. Each domain is characterized by its unique physical, visual, and environmental 

properties that directly impact the design and control of autonomous systems.

The framework supports five primary domains. The orbit domain simulates the microgravity 
environment of space. The asteroid domain represents small celestial bodies with variable low 
gravity. Planetary domains include the Moon and Mars. Finally, a standard terrestrial Earth 
domain serves as a crucial baseline and is vital for sim-to-real transfer. The key properties of 
these domains are summarized in Table 4.1.

Table 4.1 – A comparison of the physical properties and associated robotic challenges for the 
primary domains simulated in SRB.

Domain Gravity (𝑚𝑠2 ) Solar Irradiance ( 𝑊𝑚2 ) Key Robotic Challenges
Orbit 0.0 1361 Momentum management, reaction dynamics, …

Asteroid 0.14 ± 0.14 190 ± 25 Low-traction mobility, unpredictable dynamics, …
Moon 1.62 ± 0.01 1361 Cratered terrain, harsh lighting, abrasive regolith, …
Mars 3.72 ± 0.01 590 ± 113 Challenging terrain, dusty atmosphere, …
Earth 9.81 ± 0.03 775 ± 225 Sim-to-real transfer for baseline performance validation

Beyond these domain-level characteristics, SRB supports additional application-specific inter-
actions, including articulated rigid-body dynamics, propellant consumption of spacecraft, and 
particle physics for regolith.

4.2.3  Robotic Fleet

SRB includes a diverse and extensible fleet of robotic platforms, organized into three main 
categories: mobile robots, manipulators, and mobile manipulators. The collection is sum-
marized in Table 4.2 and includes commercially available robots and custom designs inspired 
by actual space hardware, enabling the systematic investigation of how a physical embodiment 
influences learning. Although not space-rated, the inclusion of commercial robots is a delib-
erate choice that offers a practical and more accessible starting point for students and academics 
due to their widespread availability and well-documented specifications.
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Table 4.2 – A quantitative overview of the robotic fleet available in SRB.
Category Sub-Category Examples Number of Platforms

Wheeled Perseverance, Pragyan 6
Legged Spot, ANYmal 7
Aerial Ingenuity, Crazyflie 2

Mobile Robots

Spacecraft ISS, PCG cubesat 11 + 1 PCG
Serial Arms Canadarm, Franka, Kinova, UR 14
Active EEs Gripper, dexterous hand 8

Manipulation Systems

Passive EEs Screwdriver, PCG scoop 8 + 1 PCG
Humanoids Unitree H1, Unitree G1 4Mobile Manipulators
Combined Any mobile base + manipulator Composable

A key feature is its compositional design, which allows researchers to dynamically create novel 
mobile manipulators by combining any mobile base, manipulator arm, payload, and EE, as 
shown in Figure 4.2. While not all of the 5000+ possible configurations are physically sensible, 
this flexibility is aimed at empowering researchers to explore a vast design space.

Figure 4.2 – An example of the modular composition of robots in SRB. The framework allows 
for the combination of any compatible mobile base with any manipulator and EE to create 

novel mobile manipulation systems.
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Actuation Models

SRB provides a library of modular actuation models that map normalized agent actions 
to low-level robot commands. The framework emphasizes high-level abstractions to improve 
generalization across embodiments, such as target velocity control for wheeled robots and IK or 
OSC for manipulators. Furthermore, the composition of action spaces for multi-component 
robots and multi-robot systems is fully automated. For instance, an agent controlling a mobile 
manipulator interfaces with a unified action space that seamlessly combines the individual 
models for the mobile base, manipulator, and actuated EE. Supported control modalities 
include:

• Wheeled
‣ Target linear & angular velocity mapped via kinematics
‣ Target joint velocities

• Legged & Humanoid
‣ Target joint positions

• Aerial
‣ Target linear & angular accelerations

• Spacecraft
‣ Activation of static/gimbaled thrusters with limited fuel
‣ Target linear & angular acceleration

• Manipulator
‣ Differential IK or OSC
‣ Target joint positions

• End-Effector
‣ Target joint positions
‣ Target joint velocities

Sensory Modalities

SRB also provides agents with access to a rich variety of sensory information, organized into 
distinct modalities to support diverse learning paradigms.

• State: Privileged simulation information (ground-truth poses, velocities, contact forces)
‣ Purpose: Establish performance upper bounds, privileged (asymmetric) learning

• Proprioception: Internal measurements (kinematic state, IMU readings, fuel)
‣ Purpose: Train policies with realistic onboard sensor data

• Visual: Rendered images (RGB, depth, normals, segmentation masks)
‣ Purpose: Learn end-to-end policies directly from pixel inputs

• Commands: High-level control signals (target velocity, relative waypoint pose)
‣ Purpose: Develop goal-conditioned policies for navigation tasks
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To clearly distinguish between learning paradigms and optimize performance, tasks that 
utilize visual sensors are purposefully registered as separate Gymnasium environments with 
a _visual  suffix. This makes the intended input modality explicit and ensures non-visual 
tasks run more efficiently. Furthermore, observations are divided based on whether their 
dimensionality is fixed or varies with robot morphology. This design enables research into cross-
morphology policy learning by isolating morphology-invariant observations from those that 
depend on the specific robot configuration.

4.2.4  Standardized Tasks

Building upon the diverse domains and robotic fleet, SRB provides a suite of standardized 
benchmark tasks. Each task is designed to test specific capabilities, as showcased in Figure 4.3 
and detailed in Table 4.3. These tasks are designed to be representative of the challenges required 
for future space missions, ranging from basic mobility to long-horizon, complex sequences. The 
design prioritizes the evaluation of complete, mission-relevant skills over narrow, isolated sub-
problems. For example, the peg_in_hole  task requires the full pick-and-place sequence, not 
just the final insertion. This holistic approach produces more practical and generalizable skills 
that can be composed into complex, long-horizon behaviors. The full suite of tasks is organized 
into three primary categories: mobile robotics, manipulation, and mobile manipulation.

Figure 4.3 – A collage showcasing the diversity of SRB tasks.
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Table 4.3 – Overview of the standard SRB benchmark tasks with their primary focus.
Task ID Objective Robot Morphology
Mobile Robotics

landing Descend and safely land with limited fuel Spacecraft
rendezvous Approach and match the state of a tumbling object Spacecraft
orbital_evasion Maneuver to avoid dynamic obstacles Spacecraft
velocity_tracking Follow dynamic velocity commands Wheeled

↳ locomotion_* ↳ Variant for legged systems Legged/Humanoid
waypoint_navigation Track a dynamic waypoint Wheeled

↳ locomotion_* ↳ Variant for legged systems Legged/Humanoid
↳ aerial_* ↳ Variant for aerial vehicles Aerial
↳ orbital_* ↳ Variant for spacecraft Spacecraft

Manipulation (Fixed Base)
debris_capture Capture and stabilize a tumbling debris Manipulator
sample_collection Grasp a domain-specific sample Manipulator

↳ multi_* ↳ Variant with multiple samples Manipulator
excavation Excavate and lift granular media Manipulator
peg_in_hole Pick up and precisely insert a peg into its hole Manipulator

↳ multi_* ↳ Variant with multiple assemblies Manipulator
screwdriving Fasten a bolt into a threaded hole Manipulator
solar_panel_assembly Assemble a structure via a sequence of insertions Manipulator

Mobile Manipulation
mobile_debris_capture Approach and capture a tumbling debris Spacecraft + Manipulator
mobile_excavation Excavate and store granular media Ground + Manipulator

4.3  Core Architecture

The capabilities of the SRB are supported by a carefully designed software architecture that 
integrates a high-performance simulation backend, a powerful procedural generation engine, 
and a comprehensive system for DR. This synergistic relationship creates the scalable and 
unpredictable training distribution that is essential for forging truly adaptive autonomy.

4.3.1  Simulation Backend

The foundation of SRB is built upon Isaac Sim, a modern robotics simulation platform pow-
ered by NVIDIA Omniverse [94]. Its GPU-accelerated physics and ray-traced rendering enable 
the parallel execution of many independent simulation instances with complex interactions on 
a single workstation. As showcased in Figure 4.4, this architecture enables the simultaneous 
rendering and physics simulation of many parallel environments, which is a feature fundamen-
tal to making the procedural paradigm practical while satisfying the data-hungry requirements 
of modern robot learning.
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Figure 4.4 – The parallel architecture of SRB in action during the training of the excavation  
task. Each of the 64 environment instances features a unique PCG terrain and a distinct particle 

physics system for simulating the granular regolith as discrete particles.

To quantify the scalability of SRB, the simulation throughput was evaluated across the 
benchmark tasks using a workstation equipped with an AMD Ryzen 9 7950X CPU and an 
NVIDIA  RTX  4090 GPU. The results, presented in Figure  4.5 demonstrate the aggregate 
throughput with respect to the number of parallel environment instances.
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Figure 4.5 – The aggregate throughput of SRB tasks.
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4.3.2  Procedural Engine

To populate the simulation with a near-infinite variety of content, SRB integrates a custom 
procedural engine named SimForge. This engine automates the process of generating 3D assets 
on demand using parametric pipelines created in Blender  [95]. SimForge acts as a flexible, 
simulator-agnostic asset factory that decouples the complex task of content creation from the 
simulation environment itself. Its modular architecture, shown in Figure 4.6, is based on three 
core concepts: declarative assets that act as blueprints, generators that produce content from 
these blueprints, and integrations that connect the engine to frameworks like SRB.

Integration

Generator

request
Asset

blueprintcontent

Figure 4.6 – The modular workflow of the SimForge architecture, where an integration can 
request assets, which are then produced by a generator and returned to the integration.

The integration between SimForge and SRB is realized through a seamless, on-demand asset 
pipeline. Engineered for high-throughput operation, this system transforms the static concept 
of a simulation environment into a dynamic, generative process, enabling the runtime creation 
and loading of unique procedural content for each parallel instance. As illustrated in Figure 4.7, 
the workflow unfolds in five distinct stages when a new simulation is launched:

1. Initialization: The user defines a scenario, specifying the number of parallel environ-
ments, the desired robots, and the procedural assets (e.g., terrains, tools, targets). SRB 
consumes this configuration and prepares the main simulation stage.
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2. Request: For each parallel environment, SRB generates a unique, deterministic seed. 
It then identifies all procedural assets required for the scenario and dispatches a batch 
request to the SimForge API, specifying the asset blueprints and their corresponding 
seeds. This ensures every requested asset will be a distinct and reproducible variant.

3. Generation: SimForge receives the batch request and invokes its generation backend in 
a headless mode for each asset variant. This step is managed in the background, ensuring 
the generation process is deterministically isolated from the simulation runtime.

4. Export: As each asset is generated, the automated workflow of SimForge bakes its proce-
dural materials into a set of standard PBR textures. The final model, comprising both its 
mesh and textures, is exported as a Universal Scene Description (USD) file to a shared 
cache directory, which is a format optimized for rapid and parallel loading within the 
Omniverse ecosystem.

5. Spawning: SRB monitors the cache for the newly created USD files. Once available, it 
loads each asset directly into memory and spawns it into its designated parallel environ-
ment.

This entire pipeline is designed for efficiency, making the on-demand generation of hundreds 
of unique procedural worlds a practical reality that can be completed in a matter of seconds.

Space Robotics Bench SimForge

Asset Cache

1 2

5

4

3

Figure 4.7 – The on-demand asset generation pipeline that programmatically links SRB with 
SimForge: (1) Initialize, (2) Request, (3) Generate, (4) Export, and (5) Spawn.
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Figure 4.8 – Examples of procedural assets generated by SimForge, including varied terrains, 
rocks, and structured 3D models like excavation tools, peg-in-hole modules, and spacecraft.

The primary generator uses Blender to construct parametric pipelines for a wide range of 
assets, from extraterrestrial landscapes to spacecraft components, as shown in Figure 4.8. Each 
blueprint is a declarative Python class, as shown in the asteroid example of Listing 4.1. The 
generation process is fully automated so that when a new environment instance is initialized, a 
unique seed is passed to SimForge, which uses it to deterministically generate a unique asset.

class Asteroid(GeometryBase): Python
    # Procedural pipeline
    nodes: Nodes = Nodes("geo_nodes.py")
    # Configurable asset properties
    detail: int = 5
    scale: Sequence[float] = (1.0, 1.0, 1.0)
    .......

Listing 4.1 – A declarative SimForge asset definition for a procedural asteroid geometry. This 
Python class serves as a high-level blueprint that specifies the parameters for the underlying 

Blender generation pipeline, making asset creation programmatic and reproducible.
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4.3.3  Extensive Domain Randomization

While SimForge provides structural diversity through PCG, DR applies a final, critical layer 
of parametric variation. At the beginning of each training episode, a wide range of simulation 
parameters are sampled from pre-defined distributions across three main categories: physical, 
visual, and dynamic. As summarized in Table 4.4, this comprehensive randomization strategy 
is essential for training agents that can handle the unpredictable nature of real-world physics 
and perception.

Table 4.4 – A summary of the parameters subject to DR in SRB.
Category Randomized Parameters Purpose

Physics • Gravity magnitude
• Inertial matrix
• Contact parameters
• Material properties
• Actuator modeling

Learning policies robust to unmodeled physical variations and hard-
ware degradation.

Visuals • Lighting direction
• Lighting intensity
• Lighting color
• Skydome appearance
• Camera pose
• Post-processing effects

Achieving invariance to superficial visual changes and different light-
ing conditions.

Dynamics • Initial entity state
• External disturbances
• Sensor noise level

Training policies that are stable and can recover from unexpected 
disturbances.

This three-tiered architecture of scalable parallelism, procedural diversity, and comprehensive 
randomization forms the technical core of SRB to provide the rich and varied stream of 
experience necessary to train adaptive and generalizable policies.

4.4  Open Platform for the Community

A core objective of the SRB is to serve as a catalyst for research and collaboration. It is designed 
as an open and extensible platform for seamless integration with existing tools and workflows.

4.4.1  Integrations and Interfaces

SRB directly integrates a number of modern RL libraries like Stable Baselines3  [96] and 
skrl [97]. To support more traditional development workflows and bridge the gap to physical 
hardware, the framework features a comprehensive, dynamically configured ROS  2  [36] 
interface that exposes nearly every aspect of the simulation to the ROS ecosystem. This allows 
researchers to leverage standard robotics tools like the RViz2 visualizer, as shown in Figure 4.9.
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Figure 4.9 – An example of the ROS 2 interface showing the RViz2 visualization of the state 
and visual observations for a mobile manipulator inside SRB simulation.

Inherited from the underlying backend, SRB also supports the collection of visual data with 
ground truth annotation. As shown in Figure 4.10, this includes synchronized RGB, depth, 
and segmentation streams from an onboard camera. This is essential for developing learning-
based perception systems for tasks like orbital inspection.

Figure 4.10 – Orbital inspection scenario of SRB providing synchronized RGB, depth, and 
segmentation streams from an onboard camera maneuvered around the ISS and Gateway.

Furthermore, the framework provides comprehensive support for human-in-the-loop teleop-
eration using various input devices like those shown in Figure  4.11, enabling expert data 
collection for IL and direct comparison of autonomous and human performance.
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(a) Gamepad (b) SpaceMouse (c) Haptic interface

Figure 4.11 – A selection of teleoperation interfaces supported by SRB.

4.4.2  Sim-to-Real Workflow

A key innovation enabling rapid hardware deployment is the framework’s automated sim-to-
real workflow. This system leverages runtime reflection to inspect a simulated Gymnasium 
environment and generate its lightweight, real-world counterpart. This hardware-specific envi-
ronment routes the actions, observations, rewards, and termination signals through a set of 
modular hardware interfaces that can be implemented via any middleware, such as ROS  2. 
The generation process automatically handles critical details like action space scaling and rate 
limiting to ensure consistency between the simulated and real domains. This modular design 
provides a versatile and robust solution for bridging the sim-to-real gap, forming the critical 
pathway for the validation experiments in Chapter 6.

4.5  Vision for Standardized Evaluation of Robots in Space

The ultimate purpose of SRB extends beyond serving as a tool for individual research projects. 
It aims to catalyze a paradigm shift in how autonomous systems are developed and validated 
for space. By offering a shared suite of challenging tasks, a diverse robotic fleet, and consistent 
performance metrics, the benchmark enables researchers to directly compare the efficacy 
of novel algorithms in a reproducible scientific manner. This transforms development from 
disconnected efforts into a collaborative, community-driven pursuit.

Crucially, such a vision goes beyond simply measuring success rates on static tasks. The deep 
integration of PCG and DR enables a more meaningful form of evaluation in the form of a 
direct measurement of generalization capabilities across a wide distribution of unseen scenarios. 
This allows the community to move beyond asking whether an agent can solve a task and 
towards answering the more critical question about the robustness of its solution to novelty and 
uncertainty. Quantifying this generalization gap is fundamental to building trust in learning-
based systems for safety-critical applications.
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5
Achieving Adaptive Autonomy
With SRB established as the foundational framework for this investigation, the focus shifts 
from the environment where an agent learns to the principles of the learning process itself. 
The availability of a diverse, scalable, and realistic testbed provides the necessary foundation to 
move beyond baseline applications and enables a systematic investigation into the fundamental 
question of how an agent forges the skills required for adaptive autonomy. This chapter 
presents the core methodological contributions of this thesis, detailing the inquiry into the 
learning paradigms, control representations, and perceptual strategies that together enable the 
development of robust, generalizable, and physically compliant robotic behaviors. This chapter 
directly addresses the methodological limitations of sample inefficiency and rigid kinematic 
control identified in the foundational grasping study, presenting the advanced learning frame-
work developed to overcome them.

Achieving this level of autonomy requires a holistic approach that extends beyond the selection 
of a single RL algorithm. Therefore, this chapter systematically deconstructs the agent environ-
ment interaction loop to construct a complete methodological blueprint. The first component 
is the learning paradigm, where an empirical comparison reveals the critical role of world 
modeling. The next component addresses the influence of perception, establishing a pragmatic 
approach for focused research. The central pillar of this framework, however, is the redefinition 
of how a learned agent physically interacts with its world. This work moves past the brittleness 
of standard kinematic control to introduce a framework for learning compliant manipulation 
with MBRL through OSC. Finally, the blueprint accounts for the influence of embodiment, 
showing how this adaptive methodology allows agents to develop strategies that are sensitive 
to their own physical morphology. This integrated methodology constitutes the workflow for 
learning adaptive control that is designed to produce a policy capable of succeeding in the 
unpredictable domain of space.
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5.1  Learning Paradigm

The foundation of any autonomous agent is the learning paradigm that governs its acquisition 
of knowledge and skill. This choice dictates how the agent processes information, explores 
its environment, and generalizes from its experience. This section opens with a systematic, 
empirical comparison of different RL paradigms to establish the most effective approach for 
the challenging scenarios presented by SRB.

5.1.1  Algorithmic Comparison and Baselines

To ground the discussion of learning methodologies in empirical evidence, this research 
conducted a thorough comparison of algorithms representing the three main paradigms of 
deep RL: on-policy model-free (PPO), off-policy model-free (SAC, TD3), and model-based 
(DreamerV3).

Focused Comparison on a Representative Task

The initial comparison focused on the procedurally generated peg-in-hole assembly modules 
shown in Figure 5.1, a prototype challenge in contact-rich manipulation detailed in Publica­
tion  II. To isolate the core challenges of precision and generalization that are independent 
of manipulator dynamics, the task was constrained to a simulation with direct control of the 
peg trajectory in Cartesian space. The problem was formulated as a POMDP due to the agent 
having no direct access to latent physical properties like the precise geometry of the procedurally 
generated pegs, material friction, or contact forces.

Figure 5.1 – Procedurally generated assembly modules used in the peg-in-hole task to create a 
diverse training and evaluation distribution.
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As illustrated in Figure 5.2, the observation space was constructed from the relative transfor-
mations between the peg and the hole, and the agent learned to output target linear and angular 
velocity commands.

Figure 5.2 – The observation space of the peg-in-hole task agents is defined by the 𝑻 pegentrance 
and 𝑻 pegbottom transformations that capture the kinematic state of the assembly.

This setup, combined with 1024 parallel environments featuring unique PCG modules, pro-
vided a challenging testbed and a clear initial hierarchy of algorithmic performance, as shown 
in Figure 5.3. The MBRL agent, DreamerV3, demonstrated its superior sample efficiency by 
converging to a high-performance policy significantly faster than its model-free counterparts.
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Figure 5.3 – Learning curves for the peg-in-hole assembly task from Publication II, comparing 
model-free (PPO, SAC) and model-based (DreamerV3) algorithms.
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The performance of the model-free methods was directly tied to their ability to handle the task’s 
partial observability. While the standard PPO algorithm struggled, a variant incorporating a 
history of past observations (PPO-STACK) learned a moderately successful policy. Similarly, 
the performance and stability of SAC were improved by its SAC-STACK counterpart, under-
scoring the critical role of temporal context for model-free agents. As shown in Figure  5.4, 
the DreamerV3 agent not only learned fastest but also achieved the quickest task completion 
times. This is a direct result of its inherent ability to handle temporal dependencies through its 
recurrent world model, which provides a more powerful mechanism for memory than explicit 
observation stacking.
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Figure 5.4 – Time until successful completion for the peg-in-hole assembly task. DreamerV3 
demonstrates the fastest completion times across all scenarios, followed by the SAC variants.

The most critical distinction, however, emerged during evaluation on a test set of unseen 
procedural modules. Here, the DreamerV3 agent demonstrated robust generalization by 
maintaining its high success rate, while the SAC variants exhibited a significant performance 
degradation, highlighting their greater tendency to overfit to the training distribution.

Baselines for the Space Robotics Bench

The performance hierarchy established in the focused study was decisively confirmed by a 
large-scale evaluation across the full suite of tasks in SRB, as presented in Publication VII. 
The results, summarized in Figure 5.5, consistently demonstrated the superior performance 
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of the MBRL paradigm. Across nearly all tasks, from landing  to sample_collection , the 
DreamerV3 agent achieved the highest episodic returns and success rates.
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Figure 5.5 – RL baselines across SRB tasks from Publication VII. The results compare the 
performance of PPO, TD3, and DreamerV3 agents. DreamerV3 consistently achieves the 

highest performance across the majority of tasks.

However, this performance comes at a greater computational cost in terms of wall-clock 
training time. With our setup and 32 updates per environment step, DreamerV3 required on 
average 5.3× longer to train than PPO for the same number of environment steps. This trade-
off positions MBRL as a powerful but resource-intensive paradigm, particularly suitable for 
complex problems where physical simulation or real-world interactions are the primary bottle-
neck. This large-scale evaluation also clearly delineates the frontier of current capabilities, as the 
most complex long-horizon tasks like solar_panel_assembly  remained unsolved by any of 
the tested algorithms.
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5.1.2  Importance of World Modeling

The consistent performance advantage of the DreamerV3 agent is a direct consequence of its 
core component, namely the learned world model [33]. As depicted in Figure 5.6, this learned 
model provides two profound advantages. First, it dramatically improves sample efficiency by 
allowing the agent to train on vast amounts of imagined experience, a process orders of magni-
tude faster than interacting with the full physics simulation. Second, the world model learns an 
abstract representation of the environment. It learns to filter out the superficial sensory details 
introduced by DR and PCG to focus on the latent dynamics essential for prediction. This 
learned abstraction is a powerful, implicit mechanism for generalization, forcing the policy to 
become robust to the immense diversity of the training distribution.
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Figure 5.6 – The concept of learning in imagination, where the agent uses its world model 
to predict sequences of future latent states and rewards. The actor-critic networks are trained 

entirely on these imagined trajectories, which dramatically improves sample efficiency.

5.1.3  Benefits of Recurrent Architecture

The world model within the DreamerV3 agent integrates a recurrent neural network (RNN). 
This structure is essential for addressing the partial observability inherent in all the benchmark 
tasks, as the agent never has access to the complete ground truth state of the environment. 
The recurrent state of the world model functions as the agent’s memory, integrating the 
current observation with its previous state to build a more complete and temporally coherent 
understanding of the environment’s hidden dynamics. This ability to reason about the world 
over time is critical for success and explains why adding observation stacking also improved the 
performance of the model-free RL agents in the peg-in-hole task from Publication II.
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5.2  Role of Perception

The ability of an autonomous agent to act effectively is fundamentally constrained by its ability 
to perceive its environment. This section investigates the challenges of learning directly from 
raw visual data, a critical step towards creating truly end-to-end autonomous systems.

5.2.1  Learning from Pixels

Learning directly from high-dimensional visual observations is a significant challenge, requiring 
the agent to simultaneously learn a meaningful representation of the world from raw pixel data 
in addition to a control policy. To explore this within SRB, experiments were conducted on 
the landing  and peg_in_hole  tasks using only rendered RGB images as input, with camera 
perspectives shown in Figure 5.7.

t-1t-2t-3t-4t-5t-6t-7t-8
(a) landing_visual

t+8t+7t+6t+5t+4t+3t+2t+1
(b) peg_in_hole_visual

Figure 5.7 – Camera perspectives for the end-to-end learning. The landing  task uses a 
bottom-mounted camera, while the peg_in_hole  task uses wrist- and base-mounted cameras.

The results, summarized in Table 5.1, demonstrated that learning from pixels is indeed feasible, 
but performance was lower than that of agents trained with access to privileged state informa-
tion. The learning process was slower, less stable, and resulted in a lower final success rate. These 
findings highlight the immense challenge that visual complexity adds to the learning problem. 
They also underscore the value of state-based observations as a tool for research by decoupling 
the perception and control problems.

Table 5.1 – Success rates of end-to-end policies trained with different sensory modalities.
Task State Proprioception Visual

landing 63.2% 11.4% 47.6%
peg_in_hole 97.8% 0.0% 73.2%
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5.3  Learning Adaptive Compliance

For the complex manipulation tasks central to this thesis, actions result in physical, contact-
rich interactions. This section details the investigation into control representations that enable 
skillful and safe interaction, moving from the inherent limitations of rigid control to a more 
sophisticated framework of learned, adaptive compliance.

5.3.1  Brittleness of Rigid Kinematic Control

The standard actuation model for many robotic manipulators is differential IK. While effective 
for motion in free space, this position-based approach is fundamentally non-adaptive when 
faced with physical contact, attempting to follow a commanded trajectory regardless of external 
forces. This rigidity is a critical failure point in unstructured environments. If an agent attempts 
to insert a peg with a slight misalignment, the rigid controller can generate an uncontrolled 
escalation of contact forces, leading to jamming, hardware damage, or mission failure. This 
inherent brittleness, first identified as a key risk in the foundational grasping study, necessitates 
a control paradigm that can gracefully and intelligently manage physical contact.

5.3.2  Operational Space Control as a Compliant Framework

To overcome the brittleness, this research adopted operational space control (OSC) [34]. This 
framework formulates the control problem directly in the task space and models the EE as a 
programmable mass-spring-damper system, providing a principled method for implementing 
software-defined compliance. The first step of the investigation was to confirm the hypothesis 
that even passive compliance offers an advantage. To this end, initial experiments compared 
the rigid IK  baseline against an OSC-CONST  strategy, which used OSC with fixed, hand-
tuned gains. As shown in the learning curves of Figure 5.8, the results were immediate and 
conclusive. Across contact-rich tasks, the OSC-CONST  agent demonstrated significantly more 
stable learning and achieved higher final returns than its rigid counterpart. This confirmed that 
even a constant, passive level of compliance is a powerful first step toward robust interaction.

5.3.3  Learning to Dynamically Modulate Stiffness and Damping

While fixed compliance provides some benefits, the ideal level of compliance is not constant but 
dynamic and task-dependent. For example, a manipulator should be stiff and precise during 
free-space motion but become soft and yielding upon making contact to guide a part into place. 
This observation led to the central methodological combination of this thesis for empowering 
an MBRL agent to learn its own adaptive compliance strategy.
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Figure 5.8 – Learning curves comparing different control strategies on the debris_capture  
and peg_in_hole  tasks. The adaptive OSC variants ( OSC-STIFF  and OSC-VAR ) demonstrate 

more stable convergence and higher final returns than the rigid IK  approach.

This was achieved by augmenting the agent’s action space. In addition to commanding the 
desired EE motion, the agent also learned to output the desired stiffness and damping gains for 
the OSC controller at each timestep. Two adaptive strategies were investigated: OSC-STIFF , 
where the agent modulated only the six stiffness (𝐾𝑝) gains, and OSC-VAR , where it learned to 
control all twelve stiffness (𝐾𝑝) and damping (𝐾𝑑) gains, as illustrated in Figure 5.9.
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Figure 5.9 – Conceptual illustration of adaptive compliance through OSC. The RL agent 
learns to dynamically modulate the EE’s stiffness and damping parameters in addition to its 
SE(3) motion commands, enabling it to adapt its physical interaction strategy in real-time.

The performance metrics, summarized in Table 5.2, further reinforce these findings. The data 
reveals a clear pattern of improvement when agents are empowered with adaptive compliance.

Table 5.2 – Relative performance of DreamerV3 using rigid IK and adaptive OSC controllers. 
The results are normalized with respect to the IK baseline for numerical clarity.

Task Controller Return Motion Jerk
IK 1.00 1.00debris_capture
OSC-VAR 0.97 0.42
IK 1.00 1.00peg_in_hole
OSC-VAR 1.10 0.50
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The results of this investigation were conclusive. As shown in Figure 5.8, the agents with learned 
compliance ( OSC-STIFF  and OSC-VAR ) consistently outperformed both rigid and fixed-
compliance strategies. This superiority was validated across distinct manipulation challenges:

• For the delicate debris_capture  task, where minimizing disturbances is paramount, the 
adaptive agent learned a safer, more conservative strategy, achieving a 58% reduction in 
motion jerk compared to the rigid IK  controller.

• For the high-precision peg_in_hole  task, the ability to compliantly negotiate contact 
states resulted in a 10% higher final success rate, measured via normalized return.

By learning to dynamically modulate its own compliance, the agent discovered sophisticated, 
emergent strategies analogous to human motor intelligence, such as using high stiffness for 
rapid approaches, then softening upon contact to gently guide parts into place. This cohesive 
result demonstrates that learned adaptive compliance is a critical capability for achieving robust, 
safe, and effective physical interaction in the unpredictable environments of space.

5.4  Influence of Embodiment

The behavior of an autonomous agent is shaped not only by its learning algorithm and control 
representation but also by its physical form, or embodiment. The modular design of SRB 
provides a unique opportunity to investigate this interplay. Experiments comparing different 
robot morphologies on several key tasks revealed that physical design creates strong priors 
that either facilitate or hinder the learning process. In the locomotion_velocity_tracking  
task, quadrupedal robots consistently learned stable gaits more quickly than bipedal robots, 
suggesting their inherent static stability provides a simpler learning landscape. In the landing  
task, performance varied significantly between different spacecraft designs. These results, with 
learning curves shown in Figure 5.10, underscore that optimal performance is achieved when 
the hardware embodiment and the learned control policy are well-matched. This highlights that 
embodiment is a key factor, and a truly general agent must learn policies that can generalize 
not just across environments, but also across variations in its own physical form. This principle 
of embodiment-awareness finds its most compelling validation in the tool-aware manipulation 
case study of the next chapter.
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Figure 5.10 – Learning curves comparing the performance of different robot morphologies.
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5.5  Blueprint for Adaptive Control

The investigations detailed throughout this chapter distill into a cohesive blueprint for achiev-
ing adaptive control in complex robotic systems. This blueprint is not a single algorithm but a 
methodological framework that combines several key principles.

The first principle is the adoption of a model-based learning paradigm. The evidence strongly 
suggests that for complex tasks with partial observability, an agent that learns a predictive world 
model like DreamerV3 offers superior data efficiency, generalization, and planning capabilities.

Building upon this predictive model, the second principle is to embrace learned compliant 
control. The brittleness of pure position-based controllers makes them unsuitable for reliable 
interaction. This blueprint, therefore, prescribes using a compliant control framework like 
OSC and, crucially, empowering the agent to learn not just where to move but how to physically 
behave by dynamically modulating its own compliance parameters.

Underpinning this entire framework is the final principle of training with maximum experien-
tial diversity. The ability of an agent to develop generalizable and adaptive strategies is directly 
proportional to the richness of its training distribution. SRB, with its procedural engine 
SimForge, is the practical embodiment of this principle and provides the necessary experiential 
foundation for the learning methodologies to succeed.
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6
Empirical Validation
The preceding chapters have established the theoretical foundations, developed the simulation 
framework, and formulated a blueprint for achieving adaptive autonomy. This chapter now 
moves from principles to practice to provide an empirical validation of the proposed system. 
Its purpose is to demonstrate, through a series of in-depth case studies, that the integrated 
framework of SRB and the adaptive control methodology can successfully solve a range of 
challenging, mission-relevant tasks.

This validation is not a simple measure of task success under a single set of conditions. Instead, 
each scenario is designed to specifically probe the key capabilities central to this thesis, namely 
generalization, adaptation, and robustness in the face of uncertainty. By leveraging the full 
power of PCG and DR within SRB, these experiments are designed to answer the critical 
question of whether the proposed methodology produces agents that can reliably perform 
complex tasks not just in a familiar setting, but across a wide distribution of previously unseen 
environments and configurations.

The chapter will present detailed results for three distinct scenarios, each chosen to highlight 
a different aspect of adaptive autonomy. The first case study provides a complete sim-to-
real validation of adaptive traversal on unstructured terrain. The second study delves into 
the complexities of contact-rich interaction through tool-aware resource excavation. The final 
study offers a unique validation of the core diversity principle in a competitive, high-speed, 
and adversarial domain. The quantitative results and qualitative behaviors observed in these 
experiments provide the evidence supporting the core claims of this thesis, showcasing the 
practical effectiveness of the developed framework in preparing autonomous systems for the 
unpredictable challenges of space.
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6.1  Adaptive Traversal on Unstructured Terrain

Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces 
is a critical enabler for future space exploration. This first and most comprehensive case study 
addresses this foundational challenge by presenting a complete sim-to-real validation of the 
entire thesis framework. It details the successful development and deployment of a robust 
control policy for dynamic waypoint tracking on challenging granular surfaces, as presented in 
Publication V.

The core hypothesis of this validation is that policies trained with extensive procedural diversity 
can be transferred zero-shot to a physical rover and achieve robust, high-performance navigation 
to successfully bridge the sim-to-real gap for a task dominated by complex contact dynamics. 
The sim-to-real experiment, conceptually outlined in Figure 6.1, leverages the full capabilities 
of SRB. It uses massively parallel simulation to train RL agents across a vast distribution of 
procedurally generated environments with randomized physics. Furthermore, it explores the 
benefits of high-fidelity particle simulation for modeling granular media. The resulting policies 
are then deployed directly without any real-world fine-tuning onto a physical wheeled rover 
operating in the LunaLab, which is a lunar-analogue facility filled with basalt gravel that was 
also used in Chapter 3.

Sim

Real

Figure 6.1 – The conceptual parallel for the adaptive traversal case study from Publication V, 
where agents are trained in SRB to track dynamic waypoints across diverse, procedurally gener-
ated scenarios. The generalization learned from this experience enables the acquired policies to 

be transferred to a physical rover operating on granular media in a lunar-analogue facility.
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6.1.1  Experimental Setup and Methodology

The validation was built upon an integrated framework combining a powerful simulation 
environment for training, a realistic physical testbed for evaluation, and a mission-relevant 
control task.

Simulation Framework and Training Regimes

All policy development occurred within SRB. The primary training methodology leveraged the 
massive parallelization capabilities of the framework, running 512 environment instances on 
rigid surfaces simultaneously to generate the vast amount of experience required for RL. To 
test the core hypothesis of this thesis, two distinct training regimes were explored, as illustrated 
in Figure 6.2:

• Stacked regime served as a baseline representing a more traditional approach. All parallel 
environment instances were trained on a single and shared PCG terrain. This setup risks 
policy overfitting to the specific features of that one scenario.

• Procedural regime, embodying the core philosophy of this thesis, provided each of the 
512 parallel environment instances with its own unique PCG terrain. This was designed to 
force the agent to learn a generalizable navigation strategy, rather than memorizing paths 
on a single map.

(a) Stacked regime (b) Procedural regime

Figure 6.2 – Parallel simulation regimes of SRB. In the stacked regime, all agents share 
a single static terrain, risking overfitting. In the procedural regime, each parallel environ-

ment instance is exposed to a unique terrain to foster generalization.
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Beyond this structural diversity, extensive DR was employed to enhance policy robustness. 
At the start of each training episode, key parameters were varied, including the gravity vector 
and small offsets of the rover’s base frame to account for manufacturing variations. Crucially, 
randomized noise and variable delays were injected into both actions and observations to build 
resilience to the unpredictable latencies and sensor inaccuracies inherent in a physical system. 
The experimental framework also supports a high-fidelity physics mode, shown in Figure 6.3, 
which models the granular media as millions of discrete particles. Due to its computational 
expense, this mode was reserved for a specialized fine-tuning experiment.

Figure 6.3 – High-fidelity simulation environment with millions of discrete particles used for 
fine-tuning. This setup provides a more realistic model of wheel-regolith interaction dynamics.

Physical Testbed and Task Formulation

All real-world validation was conducted in the LunaLab, a lunar-analogue facility at the 
University of Luxembourg containing 20 tons of basalt gravel that emulates the properties of 
regolith [37]. The robotic platform was the Leo Rover, a four-wheeled skid-steer mobile robot, 
shown in Figure 6.4. For ground-truth localization, an OptiTrack motion capture system was 
used. This was a critical methodological choice, as it supplied the high-frequency pose data 
needed for both real-time control and post-experiment analysis, allowing for the evaluation of 
the policy’s performance independent of any potential state estimation errors.
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Figure 6.4 – The real-world validation setup in the LunaLab facility with a Leo Rover.

The agent’s objective was to master dynamic waypoint tracking, formulated as a POMDP. The 
policy operated at 25 Hz, receiving the relative 2D position and yaw to the target and outputting 
linear and angular velocity commands. The reward function was carefully shaped to encourage 
a sequence of behaviors in the form of a continuous penalty on distance to guide the general 
approach, rewards for precise alignment that became dominant near the target, and penalties 
on large action changes to encourage smooth and stable tracking.

6.1.2  Algorithmic Comparison and Selection

The investigation first identified the most suitable RL algorithm for zero-shot transfer in this 
dynamic control task. Four distinct algorithmic paradigms were evaluated: on-policy PPO, a 
recurrent variant of PPO with long short-term memory (LSTM) [98] network, off-policy TD3, 
and model-based DreamerV3. Each agent was trained for a comprehensive duration in 512 
unique parallel environments in the procedural regime to ensure a fair test of generalization. 
The learning curves from simulation, shown in Figure 6.5, provided the first piece of evidence. 
DreamerV3 demonstrated vastly superior sample efficiency, converging to a higher and more 
stable final episodic return in only 20 million steps, compared to the 100 million steps required 
by the model-free agents.
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Figure 6.5 – Learning curves of the evaluated RL algorithms from Publication V. The results 
are averaged over five random seeds, with shaded regions representing the standard deviation. 

DreamerV3 demonstrates superior sample efficiency and achieves a higher final return.

This simulated performance translated directly to the physical world. The quantitative sim-to-
real results, presented in Table 6.1, decisively confirm the superiority of the DreamerV3 agent. 
It achieved a substantially lower average tracking error (ATE) across all tested velocities, with an 
error rate that was often less than a quarter of its model-free counterparts. While PPO offered 
the lowest inference latency, a critical consideration for resource-constrained flight hardware, 
the vastly superior real-world tracking performance of DreamerV3 made it the clear choice for 
this mission-critical application. The training and evaluation were conducted on a workstation 
with an AMD Ryzen 9 7950X CPU and an NVIDIA RTX 4090 GPU. While this high-perfor-
mance hardware acceleration is not yet space-qualified, this limitation is being continuously 
addressed by rapid advancements in onboard computing [99].

Table 6.1 – A comparison of the sim-to-real transfer ATE performance, training duration, and 
inference latency for policies trained with different RL algorithms.

PPO PPO (LSTM) TD3 DreamerV35 cm/s 13.2 cm | 7.8° 11.4 cm | 4.8° 12.6 cm | 8.5° 2.3 cm | 1.7°15 cm/s 13.7 cm | 8.6° 11.2 cm | 8.1° 11.6 cm | 6.2° 3.3 cm | 1.9°25 cm/s 14.8 cm | 8.7° 12.9 cm | 9.9° 13.1 cm | 9.1° 3.6 cm | 2.3°
Training 13.5 h (100M) 25.0 h (100M) 15.0 h (100M) 17.5 h (20M)
GPU Inference 0.42 ± 0.1 ms 0.71 ± 0.2 ms 0.43 ± 0.1 ms 1.27 ± 0.1 ms
CPU Inference 0.24 ± 0.1 ms 0.71 ± 0.2 ms 0.43 ± 0.1 ms 2.38 ± 0.2 ms
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The quantitative superiority is visually apparent in the qualitative trajectory plots in Figure 6.6. 
The path traced by the DreamerV3 policy is smooth, precise, and closely aligned with the target 
trajectory. In contrast, the other agents exhibit large deviations and erratic behavior, clearly 
demonstrating a failure to generalize to the complex dynamics of the physical world.

1

0

–1

–2 –1 0 1 2 m

PPO
PPO (LSTM)

TD3
DreamerV3
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Figure 6.6 – Real-world trajectories of the physical rover following a capsule-shaped path, 
controlled by policies trained with different RL algorithms.

Given its overwhelming advantages in both sample efficiency and real-world performance, 
DreamerV3 was selected as the exclusive algorithm for all subsequent experiments in this study. 
The high quality of the learned controller was further demonstrated by deploying it on a series 
of more complex paths, as shown in Figure 6.7, and by observing the highly repeatable tracks it 
imprinted in the granular media, seen in Figure 6.8.
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Figure 6.7 – Additional real-world trajectories executed by the DreamerV3 agent, including 
rectangular, circular, Lissajous, and lemniscate paths.
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Figure 6.8 – Repeatable lemniscate path imprinted by the rover’s wheels in the basalt gravel of 
the LunaLab during a real-world deployment.

6.1.3  The Critical Role of Procedural Diversity

The experiment then systematically evaluated the core hypothesis that policy robustness is a 
direct result of simulation diversity. Four distinct training regimes were compared. A baseline 
static  agent was trained with all 512 parallel environments sharing a single terrain. A DR  

agent was trained on the same static terrain but with full DR. The DR&PCG  agent was trained 
under the full procedural paradigm, with each instance featuring a unique terrain. A final 
DR&PCG+PF  agent augmented this with a fine-tuning stage using high-fidelity particle physics.

The results, presented in Table 6.2, provide definitive evidence for the procedural paradigm. 
While the static  agent learned the task in simulation, its performance on the physical rover 
was poor, exhibiting high tracking error and instability. The addition of DR  alone provided 
a substantial improvement, particularly in orientation error, confirming that randomizing 
physics and noise is a critical first step. However, the best overall performance was achieved 
by the DR&PCG  agent. By forcing the policy to generalize across a vast distribution of unique 
terrains, it learned the most robust strategy, achieving the lowest tracking error at higher, more 
challenging velocities. The final fine-tuning with particle physics for the DR&PCG+PF  agent 
offered only a minor improvement at low speed for a significant additional training cost, indi-
cating that broad structural diversity from PCG is a more critical and cost-effective factor for 
generalization than high-fidelity contact modeling for this task. This result provides empirical 
evidence for the central hypothesis of this thesis that policies trained with extensive procedural 
diversity do not merely perform better in simulation, but are fundamentally more robust and 
capable of successful zero-shot transfer to the physical world.
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Table 6.2 – Sim-to-real transfer performance across different training regimes.
Velocity Static DR DR&PCG DR&PCG+PF5 cm/s 3.4 cm | 4.2° 2.5 cm | 1.6° 2.3 cm | 1.7° 2.2 cm | 1.5°15 cm/s 4.2 cm | 6.8° 3.3 cm | 2.3° 3.3 cm | 1.9° 3.3 cm | 2.0°25 cm/s 4.4 cm | 7.1° 4.1 cm | 2.9° 3.6 cm | 2.3° 4.3 cm | 2.6°
Training 17.0 h (20M) 17.0 h (20M) 17.5 h (20M) +82.0 h (+1M)

6.1.4  Ensuring Stability for Hardware Deployment

The final set of experiments within this case study addressed a practical engineering concern 
critical for any real-world mission in terms of the stability and smoothness of the learned 
controller. While RL optimization can produce highly performant policies, the resulting 
controllers often generate high-frequency and oscillating actions. These jerky commands, 
while potentially optimal for maximizing a reward signal in the discrete-time environment 
of a simulation, can lead to unstable behavior, cause excessive mechanical stress, and increase 
power consumption on physical hardware, thereby compromising the long-term reliability of 
the robotic system.

To investigate this issue and identify a practical solution, the performance of the raw, unfiltered 
DreamerV3 policy was compared against versions augmented with three different low-pass 
action filters. The selected filters represent common and computationally efficient approaches 
to signal smoothing:

• Moving average filter with a history window of 5 steps.

• Savitzky-Golay (third order) filter with a history window of 9 steps.

• Butterworth (third order) filter with a cutoff frequency of 2.5 Hz.

The results, presented in Table 6.3, reveal a critical trade-off between tracking precision and 
motion stability. The unfiltered policy, while achieving the best tracking accuracy at higher 
speeds, did so at a significant cost while producing motion three times jerkier than the filtered 
alternatives. All smoothing filters dramatically reduced motion jerk, but the Savitzky-Golay 
filter’s large history window introduced a significant phase lag, leading to catastrophic instabil-
ity at high speed. The simple moving average filter provided the most satisfactory compromise, 
substantially reducing motion jerk by 67% with only a minor and acceptable accuracy penalty 
at high speed. This experiment underscores a crucial lesson that real-world deployment of opti-
mizing for raw performance metrics alone is insufficient. A well-tuned action filter represents 
a practical, computationally efficient, and effective method for achieving the control stability 
required for safe and reliable long-term robotic operation.
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Table 6.3 – Sim-to-real performance and relative motion jerk of different action smoothing 
filters. While the unfiltered policy is the most accurate at high speeds, it produces significantly 

jerkier motion. The Savitzky-Golay filter fails at high speed due to phase lag.
Velocity Unfiltered Moving Avg. Savitzky-Golay Butterworth5 cm/s 2.3 cm | 1.7° 2.2 cm | 1.6° 2.6 cm | 1.7° 2.8 cm | 1.7°15 cm/s 3.3 cm | 1.9° 3.7 cm | 2.4° 5.0 cm | 2.3° 4.3 cm | 2.1°25 cm/s 3.6 cm | 2.3° 4.2 cm | 2.1° 64.9 cm | 16.4° 4.9 cm | 2.4°

Motion Jerk 1.00 0.33 0.30 0.39
6.1.5  The Perceptual Sim-to-Real Gap

As a final investigation, this study explored the feasibility of learning an end-to-end policy 
directly from visual data. An agent was trained with access to a 64×64 px depth map from 
an onboard camera. While this policy could be transferred to the physical rover, its tracking 
accuracy was significantly degraded, with an ATE of 9.2 cm and 6.5° at 15 cm/s. The reason for 
this performance collapse became immediately apparent when comparing the simulated and 
real-world sensor data, as shown in Figure 6.9. The standard simulation provided a clean and 
ideal depth map, but the physical basalt gravel in the LunaLab created a noisy sensor signal with 
substantial dropouts due to its reflective properties and lack of significant texture when using 
the Intel RealSense D455 camera.

(a) Simulated depth map (b) Real-world depth map

Figure 6.9 – Comparison of simulated and real-world depth views. The simulated map is 
clean, while the real-world image suffers from significant noise and signal dropout due to the 

properties of the basalt gravel.
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This result highlights a crucial limitation and a key area for future work. Even with a robust 
and well-generalized control policy, unmodeled sensor physics can create a severe perceptual 
sim-to-real gap that becomes the primary point of failure. It also serves as a strong justification 
for the methodological choice in this thesis to primarily focus on state-based observations for 
developing the core control and interaction methodologies. By decoupling the immense chal-
lenge of perception from the equally difficult challenge of control, it becomes possible to make 
systematic progress on the latter. Closing this perceptual gap through higher-fidelity sensor 
simulation and the development of perception algorithms robust to real-world noise remains 
a critical open problem for achieving true end-to-end autonomy.
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6.2  Tool-Aware Regolith Excavation

Following the successful validation of adaptive traversal on physical hardware, this second 
case study delves into the complexities of contact-rich manipulation. It addresses a challenge 
central to the vision of ISRU with an essential task of autonomous regolith excavation. This 
task is foundational for future off-world construction and resource extraction, but it presents 
a formidable control problem. The interaction is dominated by the complex, unpredictable 
physics of granular media, where forces are difficult to model analytically. Furthermore, true 
autonomy demands versatility and a robot must be able to operate effectively with a variety 
of tools, whether due to mission requirements or unforeseen hardware degradation from the 
abrasive lunar environment.

This case study, based on the work in Publication VI, serves as a direct and rigorous validation of 
the adaptive control methodology proposed in Chapter 5. The core hypothesis is that an agent 
can learn a generalizable excavation skill by combining a predictive world model with learned 
adaptive compliance. The experiment is specifically designed to test whether training an agent 
on a procedural distribution of tool geometries forces it to develop a robust, tool-aware policy 
that can generalize to unmodeled tool changes.

6.2.1  Experimental Setup and Methodology

The experimental simulation setup for this validation was the excavation  task within SRB. 
To accurately capture the complex physics of the problem, the regolith was modeled using a 
high-fidelity particle simulation based on extended position-based dynamics  [91], as shown 
in Figure 6.10. This provided the realistic, non-linear force feedback necessary for learning a 
physically grounded skill.

Figure 6.10 – A generalizable excavation skill is learned in SRB by training an agent on a vast 
distribution of randomized scenarios with procedurally generated tools.
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The principle of procedural diversity was applied in two key ways, as shown in Figure 6.11. 
First, each of the 16 parallel training environments featured a unique lunar terrain generated by 
the SimForge engine. Second, and central to this study, the agent was equipped with a unique 
PCG excavation tool geometry.

(a) Procedurally generated assets (b) Parallel training environments

Figure 6.11 – The procedural paradigm for the excavation  task, where PCG pipelines 
generate diverse terrains and tools that are then used to populate parallel environment instances.

The procedural pipeline for the tools, featuring over forty parameters, was designed to produce 
a wide spectrum of morphologies, varying scoop width, depth, curvature, and the number and 
shape of teeth. This forced the agent to learn an abstract understanding of excavation, rather 
than a strategy tied to a single tool. A variety of the generated tools is shown in Figure 6.12.

teeth 

tapered

alignment

wear
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squareness
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roundness

Figure 6.12 – A grid of PCG excavation tool geometries from Publication VI.
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The agent controls a stationary Franka Emika manipulator and is trained using the DreamerV3 
algorithm. The task is formulated as a POMDP, where the agent had no direct knowledge of 
its equipped tool’s geometry or the specific physical properties of the regolith. Its action space 
was designed to directly test the adaptive compliance framework, combining SE(3) motion 
commands with learned stiffness (𝐾𝑝) and damping (𝐾𝑑) gains for OSC. The reward function 
was structured to incentivize lifting and stabilizing a large volume of regolith while penalizing 
undesirable behaviors such as dust generation and jerky motions.

6.2.2  Results and Analysis

The validation involved a systematic comparison of agents trained under different conditions 
to isolate the effects of compliance, procedural diversity, and perception. A baseline rigid IK  
agent was compared against several compliant agents. A SPECIALIST  agent was trained with 
the full adaptive compliance model but only ever used a single, static tool geometry. In contrast, 
the generalist ADAPTIVE  agent was trained on the full procedural distribution of tools. A final 
VISUAL  agent was also trained, augmenting the ADAPTIVE  agent’s proprioceptive inputs with 

depth maps from two camera views, as shown in Figure 6.13.

w
ris

t
ba

se

t+1 t+2 t+3 t+4 t+5t [s]
Figure 6.13 – Visual feedback provided to the VISUAL  agent from two camera views over the 
course of a single excavation episode. The depth maps provide rich and real-time information 

about the robot workspace.

The results provide definitive evidence for the core hypotheses of this thesis. As shown in the 
learning curves in Figure 6.14, the SPECIALIST  agent learned its task more quickly, as it only 
needed to master a single condition. However, this apparent efficiency was deceptive. When 
evaluated on a held-out test set of eight novel tool geometries, its performance collapsed, as 
shown in Table 6.4. It was unable to generalize its strategy to tools it had never seen, excavating 
almost no regolith. In stark contrast, the ADAPTIVE  agent, trained with procedural tool diver-
sity, maintained a high level of performance across all unseen tools. This outcome confirms that 
training with procedural diversity in embodiment is a critical factor in forging a truly robust 
and tool-aware policy.
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Figure 6.14 – Learning curves for the excavation task, where the VISUAL  agent, trained with 
vision on diverse PCG tools, achieves the highest final performance.

Furthermore, the study validated the benefits of both learned compliance and visual percep-
tion. The agents with learned adaptive compliance learned significantly smoother and safer 
excavation strategies compared to a rigid IK baseline using PCG tools, with the VISUAL  agent 
achieving an 80% reduction in motion jerk. The VISUAL  agent also achieved the best overall 
performance, excavating nearly double the volume of regolith compared to its proprioception-
only counterpart. This confirms that augmenting the agent with direct visual perception of the 
terrain and its own tool provides a significant advantage for planning and reactive control in 
such a dynamic task. This case study successfully demonstrates that the integrated framework 
can produce sophisticated, tool-aware behaviors, validating a critical capability for the future of 
autonomous construction and resource utilization in space.

Table 6.4 – Zero-shot generalization performance on eight novel tool geometries. The 
SPECIALIST  agent fails to generalize. The ADAPTIVE  agent generalizes well, and the VISUAL  

agent achieves the best performance across all metrics.
Agent Excavated Volume (L) Dust Generated Motion Jerk

IK  (baseline) 0.13 1.00 1.00
SPECIALIST 0.02 0.91 0.39
ADAPTIVE 0.14 0.94 0.44
VISUAL 0.27 0.89 0.20
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6.2.3  Implications for Hardware Co-Design

This methodology presents a novel opportunity to inform hardware development. Because the 
learned generalist agent can operate a wide variety of tools, it can serve as a consistent evaluation 
metric for different mechanical designs. The performance of the VISUAL  agent across the 
held-out set of novel tools, shown in Figure 6.15, reveals a significant variance in performance 
attributable to tool geometry alone. Some designs consistently enabled the agent to excavate 
more material with lower dust generation. For instance, tools with deeper cavities and more 
rounded designs generally performed better. This data-driven approach could enable a syner-
gistic co-design process where hardware and control policies are developed in parallel to create 
tools that are inherently more compatible with autonomous systems.

vol.  : 0.32
dust: 95% 

vol.  : 0.21
dust: 93%

vol.  : 0.20
dust: 92%

vol.  : 0.28
dust: 82%

vol.  : 0.04
dust: 84%

vol.  : 0.25
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vol.  : 0.14
dust: 89%

vol.  : 0.35
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Figure 6.15 – The performance of the VISUAL  agent across the held-out set of novel tool 
geometries. The results show significant performance variation based on tool design, highlight-

ing the potential for data-driven hardware optimization.
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6.3  Adversarial Air Hockey Diversity

To test the generality of the core principles beyond traditional space robotics tasks, this final case 
study examines their application in a highly dynamic, competitive, and contact-rich setting of 
the Robot Air Hockey Challenge 2023, detailed in Publication X. While seemingly unrelated 
to planetary exploration or orbital servicing, this task serves as a powerful abstract validation of 
the diversity-over-fidelity paradigm. In this context, diversity is not procedural or parametric, 
but strategic and adversarial. The intelligent, ever-changing behavior of an opponent becomes 
the source of unpredictable variation that the agent must learn to generalize against.

The challenge involved training a learning-based agent to control a 7-DoF KUKA iiwa14 
manipulator to play air hockey against the agents of other teams, as shown in Figure 6.16. The 
task is characterized by fast-paced dynamics, the necessity for precise physical interaction with 
the puck, and the need to react to an intelligent opponent in real-time. Consistent with the 
blueprint developed in this thesis, the DreamerV3 algorithm was employed, training a policy 
from sparse rewards corresponding only to goals scored or faults conceded. The control inter-
face also adhered to the principle of task-space control, where the agent learned to command an 
absolute target position for the mallet in the Cartesian plane, which was then mapped to joint 
commands via differential IK.

Figure 6.16 – MuJoCo [65] simulation environment of the Robot Air Hockey Challenge.

The core finding of this study was a direct and compelling parallel to the procedural diversity 
experiments. An agent trained solely against a single, static baseline opponent became highly 
specialized and overfit. This static  agent appeared to master the game, achieving a near-
perfect win rate against its predictable training partner. However, this mastery was an illusion. 
When faced with novel strategies from other competitors, the agent’s performance was 
extremely brittle, and it failed catastrophically.
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The solution was to introduce diversity through self-play, a form of adversarial training. The 
self-play  agent was trained against an ever-evolving pool of its own past policies. This 

process was further enriched by pre-populating the opponent pool with specialist agents 
that had been trained with distinct reward functions to encourage aggressive, defensive, and 
balanced playstyles. This forced the agent to continuously discover and patch weaknesses in its 
own strategy, leading to a much more robust and generalizable policy.

The deceptive nature of the static training is made explicit by the quantitative results from 
head-to-head matches, summarized in Table  6.5. The static  agent utterly dominated the 
baseline  it was trained against with an average score of 14.5 to 0.1. However, when matched 

against the self-play  agent, its strategy collapsed, and it was defeated just as decisively with 
a score of 0.7 to 14.3. This result is a powerful demonstration of overfitting. The static  
agent had not learned to play air hockey, but merely exploited the specific weaknesses of a single 
opponent.

Table 6.5 – Match results, where the static  agent, trained only against the baseline  
opponent, appears dominant until it faces the novel strategies of the self-play  agent.

Agent 1 Agent 2 Average Match Score
static baseline 14.5 : 0.1

self-play baseline 6.1 : 0.2
static self-play 0.7 : 14.3

This process is a direct strategic analogue to training against procedurally generated terrains. In 
both cases, the agent is prevented from overfitting to a narrow, predictable set of conditions and 
is instead forced to learn the fundamental, generalizable principles of its task. The self-play  
agent ultimately secured second place in the tournament and was successfully transferred to 
the real-world robotic platform, losing only to a solution that leveraged optimal control and 
task priors. This success demonstrates the universality of the diversity-over-fidelity paradigm as 
a core principle for achieving robust and generalizable intelligence.
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6.4  Discussion

The case studies in this chapter provide comprehensive validation for the core claims of this 
thesis, transitioning the work from methodological design to practical demonstration. The 
results form a cohesive picture of how the proposed framework achieves adaptive autonomy.

A foundational principle, confirmed across all validations, is the critical role of procedural 
diversity. From the successful zero-shot sim-to-real transfer of the traversal policy to the general-
ization across unseen tools in the excavation task and the robust performance against adversarial 
strategies in the air hockey challenge, the evidence is that an extensive experiential diversity is a 
fundamental prerequisite for learning generalizable policies.

While diversity enhances generalization, robust physical interaction demands a more sophis-
ticated capability of a learned adaptive compliance. The success of the tool-aware excavation 
hinged on the agent’s ability to gracefully manage unpredictable contact forces by dynamically 
modulating its own stiffness and damping, which is a skill a rigid controller lacks.

The success of these validations is ultimately a product of the synergistic combination. SRB 
provided the rich playground of experience, the MBRL paradigm supplied the efficient learning 
algorithm, and the learned compliant control methodology endowed the agent with physical 
intelligence. This integrated system, validated on real-world hardware, constitutes the practical 
realization of the blueprint for adaptive autonomy proposed by this thesis.

Finally, these validations also highlight the frontiers of current capabilities. The pronounced 
perceptual sim-to-real gap, identified in the traversal study, remains a significant hurdle. This 
finding suggests that even with a robustly transferred control policy, unmodeled sensor physics 
can be a primary point of failure, isolating robust perception as the next critical frontier for 
achieving true end-to-end autonomy. In conclusion, this chapter has grounded the contribu-
tions of this thesis in rigorous empirical evidence, providing tangible proof that the proposed 
framework is an effective and validated pathway toward building the autonomous systems 
required for the final frontier.
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7
Conclusion
This thesis began with the grand challenge of creating robotic intelligence that can generalize to 
the profound uncertainty of extraterrestrial environments. It was guided by the hypothesis that 
true adaptive autonomy emerges not from the pursuit of perfect fidelity, but from the mastery 
of immense diversity. The research presented here systematically investigated this principle, 
delivering the Space Robotics Bench (SRB), an open-source framework for generating diverse 
experience at scale, and a learning blueprint that combines predictive world models with adap-
tive compliant control. The resulting body of evidence, culminating in successful real-world 
hardware deployments, confirms this core hypothesis and offers a new paradigm for developing 
robust autonomous systems for space.

This final chapter serves as a synthesis of that evidence. It begins by revisiting the research ques-
tions that structured the inquiry and providing the definitive answers this work has produced. 
It demonstrates how each of the initial research objectives was systematically fulfilled. The 
discussion then abstracts from the specific results to consider their broader implications for 
the scientific communities of machine learning and robotics, and for the engineering practice 
of space mission design. The thesis concludes with a critical reflection on its limitations and 
a forward-looking perspective on the open scientific questions that now lie on the path to a 
future of autonomy beyond Earth.
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7.1  Answers to Research Questions

This research was structured as an inquiry into three fundamental questions. The work has 
produced distinct, evidence-backed answers to each.

Research Question 1
How can simulation environments be leveraged to effectively train robotic policies that 
generalize across the diverse and unpredictable conditions of space?

The answer provided by this thesis is that simulation must be leveraged not as an attempt to 
create a single, perfect digital twin, but as a factory for generating a vast and varied distribution 
of potential realities. The experiments consistently demonstrated that a policy’s robustness is 
a direct product of the diversity of its training data. The combination of PCG for structural 
novelty and DR for parametric variation proved to be a powerful method for creating a training 
distribution rich enough to force a learning agent to discover invariant, generalizable strategies. 
The successful zero-shot sim-to-real transfer of the rover navigation policy in Chapter 6 serves 
as the primary evidence, where the agent trained with procedural diversity vastly outperformed 
its statically-trained counterpart in the physical world.

Research Question 2
What learning methodologies and control representations unlock the adaptive and compli-
ant behaviors necessary for complex operations in space?

This work concludes that adaptive autonomy is unlocked by a methodology that endows an 
agent with both a predictive mind and a compliant body. The consistent superiority of the 
MBRL paradigm across all benchmark tasks points to the critical importance of an internal 
world model for efficient learning and effective decision-making under uncertainty. However, 
abstract prediction alone is insufficient for physical interaction. The integration of learned 
adaptive compliance via OSC provided the missing link, endowing the agent with physical 
intelligence. This allowed it to learn not just where to move but how to physically interact by 
dynamically modulating its own stiffness and damping in response to the world.

Research Question 3
What are the key failure modes and limitations of state-of-the-art robot learning algorithms 
when faced with the unstructured complexities of space-relevant scenarios?

Through systematic benchmarking with SRB, this research identified three primary limitations 
that define the current frontier of the field. First, there is a clear planning horizon limit. State-
of-the-art algorithms consistently fail on tasks requiring long, precise action sequences, such 
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as the  solar_panel_assembly  task, suggesting that current methods for temporal credit 
assignment and deep exploration are insufficient. Second, a significant perceptual sim-to-real 
gap remains. As shown in Section 6.1, performance degrades substantially when learning from 
pixels due to unmodeled sensor noise, indicating that robust representation learning is a major, 
unsolved challenge. Third, the most pervasive failure mode is the brittleness of static training. 
This lack of generalization, confirmed in every case study, reinforces that policies that overfit to 
their training conditions are not merely suboptimal, but they are fundamentally unsuitable for 
the unpredictable nature of real-world robotics.

7.2  Summary of Fulfilled Objectives

The pursuit of answers to these questions was operationalized through four research objectives, 
all of which were successfully fulfilled.

Research Objective 1
Design and implement an open-source simulation framework for robot learning in space.

This objective was fulfilled by the creation and open-source release of SRB. As detailed in 
Chapter 4, this platform provides the critical infrastructure for this research, integrating a high-
performance backend with a powerful procedural engine and accessible robotics and learning 
interfaces.

Research Objective 2
Establish a standardized suite of benchmark tasks within the developed simulation frame-
work to rigorously evaluate the generalization and adaptation capabilities of robot learning 
algorithms in space-relevant scenarios.

This objective was realized by populating SRB with a comprehensive suite of mission-relevant 
benchmark tasks. The tasks, presented in Chapter  4, provide the standardized, challenging 
testbed that enabled the rigorous empirical evaluations forming the core evidence of this thesis.

Research Objective 3
Investigate and develop a learning methodology for robust adaptive control.

This objective was fulfilled by the development of the learning blueprint in Chapter 5. This 
work systematically established the superiority of a model-based paradigm and introduced a 
novel methodology for learning adaptive compliance through the integration of MBRL with 
OSC.
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Research Objective 4
Validate the proposed framework and methodology via sim-to-real transfer in a terrestrial 
analogue facility.

This final and most critical objective was met through multiple, successful zero-shot sim-to-real 
experiments. The foundational grasping study in Chapter 3 and the comprehensive validation 
of adaptive traversal in Chapter 6 provide definitive physical proof that the framework and 
methodologies developed in this thesis can successfully bridge the sim-to-real gap.

7.3  Broader Implications and Impact

The conclusions of this research have implications that extend beyond the specific domain of 
space robotics, contributing new tools, methodologies, and insights to the broader scientific 
and engineering communities.

7.3.1  Machine Learning

For the machine learning community, this work serves as a large-scale case study in embodied 
intelligence, providing strong empirical evidence that generalization in physical systems is 
deeply tied to the diversity of the learning curriculum. SRB itself is a significant contribution, 
offering a new, challenging, open-source testbed for research in RL, representation learning, 
and long-horizon planning that moves beyond the well-explored domain of tabletop manipu-
lation. The success of the learned compliance framework reinforces a key idea in embodied AI 
where true intelligence is not just about abstract reasoning but also about skillful and adaptive 
physical interaction with the world.

7.3.2  Terrestrial Robotics

The methodologies forged for the extreme unstructured environments of space are directly 
applicable to the most challenging domains on Earth. The blueprint of combining procedural 
simulation with learned compliant control can enhance the robustness of robots in fields such 
as agriculture, construction, disaster response, and logistics, where robots must operate in 
similarly unpredictable and dynamic conditions. The open-source framework can be adapted 
to create new benchmarks for these domains, fostering a similar data-driven approach to solving 
their respective contact-rich challenges.
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7.3.3  Space Mission Design and Operations

For the space sector, this research offers a new paradigm for developing and validating 
autonomous systems. The traditional and deterministic verification process can be augmented 
with the methodology presented here. The ability to probabilistically validate control software 
against thousands of procedurally generated scenarios provides a pathway to building statistical 
assurance in learning-based systems. This can increase the technological readiness of autonomy 
more efficiently, enable more ambitious mission concepts, facilitate the data-driven co-design 
of robotic hardware and software, and ultimately accelerate the deployment of the persistent 
robotic infrastructure needed for a sustainable human presence beyond Earth.

7.4  Limitations

A rigorous scientific inquiry requires a clear acknowledgment of its boundaries. While this 
thesis provides a validated pathway toward adaptive autonomy, the findings are subject to 
several important limitations that define the frontier of current research.

7.4.1  The Inescapable Reality of the Sim-to-Real Gap

The entire methodology is simulation-centric. While successful zero-shot transfer was demon-
strated, this success was achieved in controlled laboratory analogues. A residual gap to the true 
physics of extraterrestrial environments undoubtedly remains, with phenomena like extreme 
thermal cycles, vacuum effects, and complex regolith chemistry. The ultimate performance of 
these policies in space is therefore an extrapolation, contingent on the core assumption that the 
procedural distribution of simulated realities is broad enough to contain the single reality of 
the target environment.

7.4.2  Constraints of Space-Grade Hardware

This research focused on developing generalizable software and, as such, did not fully model 
the severe constraints of flight-certified hardware. The performance of a policy on a real space 
robot will be affected by factors like the limited computational power of radiation-hardened 
processors, different sensor noise profiles, and unique actuator dynamics that were only 
approximated through randomization. The inference latency of the preferred model-based 
agent, while manageable on modern hardware, presents a significant challenge for deployment 
on current space-grade computers.
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7.4.3  The Grand Challenge of Verification and Validation

The most significant limitation, shared by the entire field of learning-based control, is the lack 
of formal safety guarantees. The policies are products of a stochastic optimization process 
and are not amenable to traditional verification techniques that rely on deterministic models. 
While their robustness is demonstrated empirically across thousands of test cases, this does not 
constitute a mathematical proof of safe behavior under all possible conditions. This verifiability 
gap remains the primary obstacle to the deployment of any learned policy in a mission-critical 
context where failure is not an option.

7.5  Future Work

This thesis provides a solid foundation and a clear direction for future scientific inquiry. The 
identified limitations motivate several critical and exciting avenues of research that can build 
directly upon the contributions of this work.

The most immediate priority is to continue closing the perceptual sim-to-real gap. Future 
work should focus on developing higher-fidelity sensor models within SRB and on training 
perception systems that are robust to real-world noise, potentially using techniques that learn 
to adapt to the sensor domain online.

Second, the long-horizon planning problem remains a major hurdle. The solution will likely 
require moving towards new algorithmic designs that dynamically create their own abstractions 
and automatically pursue short-horizon goals that break down complex tasks into manageable 
segments. This will involve integrating the low-level adaptive motor skills developed here with 
high-level symbolic planners. The data collection capabilities of SRB make it an ideal platform 
for exploring how these abstraction hierarchies can be bootstrapped with LfD.

A third, transformative avenue is the integration of multi-modal foundation models  [100]. 
Combining the robust control policies from this work with modern vision-language models 
could enable a new level of semantic understanding and human-robot interaction, allowing 
astronauts to command robots with natural language.

Expanding the framework to handle multi-agent coordination is another promising direction. 
The architecture of SRB is well-suited for research into collaborative robotics, a critical capa-
bility for future large-scale construction and exploration missions where teams of robots will 
need to work together.
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Finally, the grand challenge of safety verification must be confronted. Future work must focus 
on developing methods to make learned policies more interpretable, to formally bound their 
behavior in uncertain states, and to integrate them with classical safety supervisors that can act 
as a fail-safe. Solving this problem is the critical final step in transforming adaptive autonomy 
from a powerful research concept into a trusted and indispensable tool for the future of human 
presence beyond Earth.
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