UNIVERSITE DU
LUXEMBOURG

PhD-FSTM-2025-141

Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 19 December 2025 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITE DU LUXEMBOURG
EN INFORMATIQUE

by
Matteo El Hariry

Born on the 3rd of January 1994 in Cantt (Italy)

Deep Reinforcement Learning Control
for Autonomous Robots Mobility in Highly Uncertain
Environments

Dissertation defence committee

Dr Miguel Olivares-Mendez, Supervisor
Professor, Université du Luxembourg

Dr Matthieu Geist

Professenr, Université de Lorraine

Dr Carol Martinez Luna

Research Scientist, Université du Luxembourg
Dr Simon Begh

Associate Professor, Aalborg University

Dr Holger Voos, Chairman

Professor, Université du Luxembourg

Affidavit / Statement of originality

Ideclare that this thesis:

* is the result of my own work. Any contribution from any other party, and any use of gener-

ative artificial intelligence technologies have been duly cited and acknowledged;
* is not substantially the same as any other that I have submitted, and;

* is not being concurrently submitted for a degree, diploma or other qualification at the Uni-
versity of Luxembourg or any other University or similar institution except as specified in

the text.
With my approval I furthermore confirm the following:

* Ihave adhered to the rules set out in the University of Luxembourg’s Code of Conduct and

the Doctoral Education Agreement (DEA)', in particular with regard to Research Integrity.
* I have documented all methods, data, and processes truthfully and fully.
* I have mentioned all the significant contributors to the work.

* Tam aware that the work may be screened electronically for originality.

I acknowledge that if any issues are raised regarding good research practices based on the re-
view of the thesis, the examination may be postponed pending the outcome of any investigation
of such issues. If a degree was conferred, any such subsequently discovered issues may result in the

cancellation of the degree.

Approved on 2025-11-24

“The Analytical Engine has no pretensions to originate anything.

It can do whatever we know how to order it to perform.”

— Ada Lovelace

10 my family and friends.

iii

Index

1 Introduction 1
1.1 Motivation L e e e e e e e 2

1.2 Research Scope and Objectives 5

1.3 Thesis Contributions 9

2 Background and Related Work 14
2.1 Reinforcement Learning for Continuous Control 15
2.1.1 The Markov Decision Process Formalism 15

2.1.2 Policy Optimization for Continuous Actions 16

2.1.3 Handling Temporal Dependencies: PPO-RNN 18

2.14 Model-Based RLand World Models 18

2.2 Challenges for Real-World Reinforcement Learning 19
2.2.1 Data Efficiency and Exploration Costs 20

2.2.2 Simulation-Reality Mismatch and Dynamics Uncertainty 21

2.2.3 Morphology and Task Transferabilicy 22

2.2.4 Safety and Constraint Encoding 23

2.3 Simulation Frameworks for RLin Robotics 24
2.3.1 Traditional vs GPU-Accelerated Simulators 24

2.3.2 Custom Simulation Tools Developed in this Thesis 25

2.3.3 The Need for Scalable, Structured Benchmarks 27

iv

2.4 Robotic Control Domains Addressed in this Thesis 27

2.4.1 Spacecraft Simulators and Floating Platforms 27
2.4.2 Ground and Surface Robots (Wheeledand USV) 28
2.43 Fixed-Wing Vehicles in Ground-Effect 30
2.5 Trends and Critiques in RL for Robotics 31
2.5.1 The “Three Dogmas” and Environment-Centric Design 31
2.5.2 Structure, Priors, and Generalization over Optimization 32
2.5.3 Positioning This Thesis in the Evolving Landscape 33
2.6 Summary 33
3 Generalizable RL for spacecrafts ground simulators 35
3.1 MotivationandScope Lo 35
32 RelatedWork 38
3.2.1 Simulation Tools for Space Robotics 38
3.2.2 Floating Platforms and Air-Bearing Systems 38
3.2.3 RL for Spacecraft and Floating Platform Control 39

3.3 RANS: Highly-Parallelised Simulator for Reinforcement learning based Au-
tonomous Navigating Spacecrafts, 39
3.3.1 DParallelismand GPU Efficiency 40
3.3.2 Simulator Design and Task Suite 42
3.3.3 Baseline Agents and Experimental Results 44
3.3.4 3 DoF Pose Evaluationresults 46
3.3.5 3 DoF Linear Velocity Trackerresults 46
3.3.6 6 DoF GoToXYZ Evaluationresules 49
3.4 Discussionand Summary L Lo 0oL L 49
3.5 DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms 50
3.5.1 Problem Formulation., . 51
352 Simulation 54

3.5.3 TrainingProcedureo L oL oL oo 57
3.5.4 Benchmark comparison with an Optimal Controller 57
3.5.5 Laboratory ExperimentSetup 60
3.5.6 ExperimentalSetup oL 61
357 Results 63
3.6 Discussionand Summary L Lo 69

Unified Learning-Based Navigation Across Diverse Robot Platforms in Simulated

and Physical Environments 71
4.1 Introductionand Motivation 71
42 RelatedWork 73
43 RoboRANOverview 75
43.1 Robots 77
432 Tasks . ..o 78
433 Reward Formulation 80
43.4 Domain Randomization 80
435 Training Lo 81
43.6 Deployment (summary) 82
44 SimulationResults 82
441 ExperimentalSetup L Lo L Lo 82
442 Training Efficiency and Learning Trends 84
4.43 Task Success and Performance Analysis 85
444 Discussions e 89
4.5 Sim-to-Real Results (Summary) 0L 920
4.6 Conclusions e 91
FALCON:-S - Fixed Wing Aerodynamics And Control Suite 93
5.1 Introduction 93

vi

6

5.2 Related Work e, 95

5.3 Preliminaries 97
5.3.1 Physical Modeling Details 98
5.4 FALCON-SFramework 103
541 Agentmodule Lo Lo Lo 103
5.4.2 Environmentmoduleo o L 107
5.5 Experiments& Results 00 0000 110
5.5.1 Demonstrating Learning-Based Control with Dreamer 112
5.5.2 Single Controller Across Multiple Tasks 113
5.5.3 Cross-Aircraft Evaluation 114
5.5.4 Robustness Under Environmental Variations 116
5.6 Discussionand Conclusions oo L 117
Additional Studies 120
6.1 Introduction 120
6.2 RL-AVIST: Visual Inspection of Space Assets via Model-Based RL 121
6.2.1 Problem Setting and Environment oo 122
6.2.2 Model-Based vs Model-Free Learning, 122
6.2.3 Trajectory Tracking and Generalization 123
6.2.4 Deployment on Realistic Orbital Targets 124
6.2.5 Summaryand Discussiono L L. 124
6.3 Inertia Estimation via Active Excitation in Satellites 127
6.3.1 Motivationand Context 127
6.3.2 Simulation Framework oo 128
6.3.3 EstimationMethods 129
634 ResultsandInsights 129
6.3.5 Discussion 129
6.3.6 Summary and Thesis Integration 131

vii

7

6.4 Event-based Angular Rate Estimation with Starfield Observations 131

6.4.1 Motion Field Model and Single-Camera Limitations 132
6.4.2 Event-Based Sensing and Contrast Maximization. 133
6.43 SimulationPipeline. o oo o000 133
6.4.4 Performance of Single-Camera Estimation 135
6.4.5 Dual-Camera Configuration and Sensor Fusion 135
6.4.6 Discussion 137
6.47 Summary 137
6.5 Conclusion of Additional Studies Lo 137
Conclusion and Future Work 139
7.1 Answers to Research Questions L. 140
7.2 Summary of Fulfilled Objectives 143
7.3 Broader Implicationsand Impact oo 144
7.4 FutureWork 145

viii

List of Figures

1.1 Robotic Systems Considered 5
1.2 EnvironmentSpotlight 0o o000 L 6
1.3 Thesis Contributions Overview 10
2.1 RLInteractionLoop 16
22 Actor-CriticLoop 17
23 Model-BasedRLLoop 19
2.4 Curriculum Progressiono L oL oL o 21
2.5 Floating Platform System L L. 29
3.1 Floating Platform Testbed 37
32 RANSTaskRenders, 40
3.3 Isaac Sim DRL Suitability Survey o 0oL 41
3.4 Thruster Force Directions 44
3.5 Go-to-Pose Evaluation L 45
3.6 Trajectory-Following Examples 48
3.7 6-DoF GoToXYZSequence 49
3.8 Floating Platformand Target 51
3.9 Reward FunctionShapes o o 0oL 53
310 PenaltySignals. o 54
3.11 Disturbance Models 56

ix

3.12 Training and Evaluation Framework 60

3.13 Rendered Floating Platform 61
3.14 RLvs LQR:Zero-G Lab Trajectories 67
3.15 Velocity Tracking: SimulationvsLab 68
41 RoboRAN Robotic Platforms 72
4.2 ROboRAN Framework 75
43 LearningCurves 84
4.4 Simulation Results Across Robotsand Tasks 86
4.5 JetBotand Leatherback Task Examples 88
4.6 Training performance with obstacles 89

4.7 FloatingPlatform, Kingfisher, and Turtlebot2 in GoToPositionWithObstacles . . 89

48 FieldTestResults 20
5.1 Ground-Effect Aerodynamic Coefficients 100
5.2 AirshipStepResponses oL oL oL 101
5.3 Dryden Turbulence Effects 102
5.4 SensorEffects 103
5.5 FALCON:-S Architecture Overview 104
5.6 Airship Altitude-Keepingin X-Plane 110
5.7 DreamerV3 Altitude-Keeping Control 113
5.8 LQR Airship Trajectory Tracking 115
5.9 LQR Tracking: Airship, SR22, Navion 116
5.10 LQR Tracking Under Perturbations 117
6.1 Training Multiple CubeSat Morphologies 123
6.2 Generalized Velocity-Tracking Training Curves 124
6.3 DreamerV3 Inspection Trajectories 125
6.4 Inspection trajectory around the Lunar Gateway. 126

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Visual inspection simulation near Venus Express. 126

Close-proximity maneuvering around the ISS structure. 127
Excitation Profiles Overview 128
Static Inertia Estimation Error oo oo 130
Dynamic Inertia Estimation Error 130
Reference Frames for Event-Based Rate Estimation 132
Contrast Maximization for Star Motion 133
Event-Based Rate Estimation Pipeline 134
Single-Camera Angular Velocity Error oL 135
Dual-Camera Angular Velocity Accuracy 136

xi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6

Task-Specific Observation Deltas 43
State Task-SpecificData oo o Lo 53
PPO Training Parameters 58
Parameters for the Discrete LQR Controller 60
RL vs LQR Disturbance Benchmark 0000 L. 63
Velocity Error Comparison oL 69
RoboRAN Comparison 74
Robot Properties in Navigation Tasks 78
Navigation Tasks Overview 78
Reward Parameters 81
Task Success Criteria. e 82
Wall-Clock Training Time 85
Simulation Evaluation Metrics 85
Aircraft Simulation Framework Comparison 97
LQR Metrics Across Altitudes L Lo 100
Dryden turbulence velocity spectral filters. 0oL 102
Dryden Turbulence Filters o 0oL 102
Evaluation Metrics Summary L oL 112
DreamerV3 Altitude Tracking Performance 112

xii

5.7 MPPI Airship Performance Metrics L. 114

5.8 LQR Airship Performance Metrics 114
5.9 Performance Metrics Across SCenarios v v e e e e 115
5.10 Performance Metrics Under Perturbations 117
6.1 Satellite and Reaction Wheel Parameters 129
6.2 Angular Velocity RMS Erroro Lo oo 137

xiii

Acronyms

API Application Programming Interface.

CaT Constraints as Terminations.
CFD Computational Fluid Dynamics.
CMDP Constrained Markov Decision Process.

CPU Central Processing Unit.

DoF Degrees of Freedom.
DRIFT Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories.
DRL Deep Reinforcement Learning.

DVS Dynamic Vision Sensor.

EKF Extended Kalman Filter.

EV Event-based Vision.

FALCON-S Fixed-wing Aerodynamics and Learning Control Suite.
FoV Field of View.
FP Floating Platform.

Xiv

GPU Graphics Processing Unit.

IMU Inertial Measurement Unit.

ISS International Space Station.

LEO Low Earth Orbit.
LQR Linear Quadratic Regulator.

LS Least Squares.

MBRL Model-Based Reinforcement Learning.
MDP Markov Decision Process.

MPPI Model Predictive Path Integral.
ODE Ordinary Differential Equation.

PID Proportional-Integral-Derivative.

PPO Proximal Policy Optimization.

RANS Reinforcement-learning-based Autonomous Navigating Spacecraft.
RL Reinforcement Learning.
RMS Root Mean Square.

RoboRAN A Unified Robotics Framework for Reinforcement Learning-Based Autonomous

Navigation.

RW Reaction Wheel.

XV

SOTA State of the Art.
SRB Space Robotics Bench.

ST Star Tracker.

TD Temporal Difference.

UGV Unmanned Ground Vehicle.

UKF Unscented Kalman Filter.

USV Unmanned Surface Vehicle.

w.r.t. with respect to.

WIG Wing-In-Ground Effect.

xvi

Abstract

This thesis explores the use of deep reinforcement learning (DRL) for enabling robust, au-
tonomous control of robotic systems operating in highly uncertain environments. Motivated
by space applications and the need for generalizable learning pipelines, we develop a series of
simulation frameworks and experimental platforms that progressively expand the scope, realism,
and generalization capability of DRL-based controllers.

We begin by introducing GPU-accelerated simulation tools tailored to spacecraft-like dy-
namics (RANS), showing that physically grounded models and disturbance injection can yield
transferable control policies. These findings are validated through DRIFT, a framework pre-
senting an holonomic floating platform testbed where learned controllers achieve sub-centimeter
trajectory tracking despite stochastic disturbances. Building on this, we propose RoboR AN, a
modular IsaacLab-based framework that decouples robot and task specifications, enabling repro-
ducible training across diverse platforms such as ground robots, USVs, and microgravity analogs.
Sim-to-real evaluations confirm the framework’s effectiveness for low-level policy transfer. Finally,
FALCON-S broadens this research direction to fixed-wing platforms in ground-effect regimes
by integrating a full 6-DoF aerodynamic model, actuator dynamics, and unified CPU-GPU
backends. The framework accommodates both learning-based and classical control schemes,
allowing systematic benchmarking, ablation studies, and cross-validation.

Together, these contributions demonstrate that DRL can be scaled, generalized, and validated
across a range of robotic platforms, provided that simulation fidelity, modularity, and hardware
alignment are preserved. Additional studies explore visual policy learning for spacecraft inspec-
tion and sensor-driven estimation for satellite angular dynamics, broadening the thesis impact. We
conclude by outlining directions toward continual learning, sim-to-real-to-sim adaptation, and in-

tegrated world model architectures for real-world deployment.

Chapter 1

Introduction

Preface

The field of autonomous robotics has seen rapid advancements over the past decade, driven by
progress in machine learning, computational hardware, and open-source simulation environments.
Among various machine learning paradigms, Reinforcement Learning (RL) stands out as a promis-
ing tool for enabling agents to acquire control policies through interaction with their environment.
RL’s potential to solve complex sequential decision-making problems makes it particularly appeal-
ing for robotic systems operating in unstructured, dynamic, and uncertain environments.
However, deploying RL in real-world robotics remains non-trivial. The community has made
significant strides in simulation-based performance, but a large gap persists between benchmark
success and practical deployment. This thesis addresses this gap by focusing on generalizable and
robust RL control for autonomous robots operating in highly uncertain environments—such
as satellites, water vessels, ground and vehicles—through the development of scalable simulation

tools, systematic evaluation frameworks, and real-world validation.

1.1 Motivation

Reinforcement Learning has emerged as a powerful paradigm for developing control policies for
complex robotic systems. Its ability to learn directly from interaction, without requiring explicit
models, makes it particularly appealing for domains where accurate modeling is difficult or where
environmental uncertainty is dominant. In space robotics, maritime systems, and aerial vehicles,
this adaptability is crucial. These systems often operate in high-dimensional, stochastic, and par-
tially observable environments, with delayed or limited feedback. Despite the promise of RL, de-
ploying such agents on physical platforms remains a significant challenge, particularly in scenarios
with severe dynamics, limited sensing, and real-time constraints. The development of robust and

generalizable RL agents is hindered by several factors:

(i) Poor transferability from simulation to real-world systems. Policies trained in idealized
simulation environments often fail when exposed to the unmodeled dynamics, sensing noise, and
disturbances present in the real world. This is known as the sim-to-real gap. It stems from the
fact that simulators typically provide deterministic or low-noise feedback, whereas real environ-
ments are rife with stochasticity, delay, and partial observability [1, 2, 3]. For example, tactile-based
robotic manipulation policies that perform well in simulation often degrade sharply in real-world
tests unless heavily domain-randomized. Additionally, even accurate physics engines fail to model
the nonlinearities of friction, compliance, or fluid-structure interactions, which can dominate cer-

tain tasks (e.g., underwater or aerial control).

(ii) Lack of standardization in benchmarking environments and evaluation protocols. A
major bottleneck in the field stems from the limited standardization of RL benchmarks and eval-
uation protocols. The development of OpenAdl Gym [4] marked a turning point by establishing
a unified API and environment structure for training and evaluating RL agents. Gym became
the de facto foundation for modern RL research, standardizing the interface between agents and

environments and enabling reproducible comparisons across algorithms. However, most of its

tasks—such as Atari [5] and MuJoCo locomotion environments [6]—were originally designed
for algorithmic validation rather than embodied robotics.

Building upon Gym’s success, a new generation of simulation frameworks emerged to bridge
the gap between abstract tasks and physically realistic robotic scenarios. Among these, Iszac Gym
[7] introduced GPU-accelerated physics for large-scale training, Brax [8] provided differentiable
and parallelizable rigid-body dynamics, and Habitat [9] targeted embodied visual navigation and
indoor mobility. While these toolkits significantly improved performance and realism, they differ
substantially in physics fidelity, scalability, and supported robot morphologies. Moreover, few are
coupled with real-world evaluation protocols or standardized metrics across robotic systems. As
a result, reproducibility, comparability, and cross-domain generalization in robotics-focused RL

remain open challenges.

(iif) Complexity of deploying RL agents across diverse robot morphologies. Real-world
robotic systems differ substantially in actuation, sensing, dynamics, and failure modes. Transfer-
ring RL policies across such platforms is hindered by the need to carefully redesign observation
and action spaces, tailor rewards, and re-tune network architectures and hyperparameters [10,
11]. For example, a policy trained to navigate a differential drive robot cannot be reused as-is for
a holonomic mobile base, let alone a surface vehicle or drone. This lack of portability contrasts
sharply with the generalization ambitions of RL. Moreover, RL libraries and frameworks (e.g.,
RLIib [12], SB3 [13], RL-Games [14]) often require significant customization for integration
with robotic middleware such as ROS [15], and lack standardized wrappers or diagnostic tools for

sim-to-real transfer.

Addressing these issues requires a structured and systematic approach—one that embraces sim-
ulation as a key enabler while also validating solutions in physical scenarios. In this thesis, we ex-
plore how to design scalable simulators, robust policy training strategies, and unified benchmark-
ing tools to bridge the gap between reinforcement learning research and deployment in real-world

autonomous robotic platforms.

The resulting methodologies are validated in four robotic domains that present a range of con-

trol and sim-to-real challenges:

1. Spacecraft ground simulators (floating platforms): These systems emulate planar space-
craft dynamics using air-bearing platforms constrained to frictionless two-dimensional mo-
tion. The platforms operate by generating a thin cushion of air between the robot base and
the ground, allowing free-floating dynamics akin to microgravity conditions. Such setups
are commonly used for attitude and orbit control prototyping in academic and industrial
research [16, 17, 18]. In simulation, the dynamics are replicated using lightweight physics
engines such as Isaac Gym [7], enabling high-throughput training of controllers under dis-
turbances, actuator dynamics, and realistic sensing models. These platforms serve as valu-

able proxies for validating autonomous control strategies in space-relevant environments.

2. Wheeled mobile robots (Turtlebot2): Differential-drive wheeled robots like the Turtle-
bot2 are widely used in indoor robotic navigation and academic benchmarking. They
exhibit non-holonomic dynamics and are typically equipped with low-cost sensors such as
odometry, inertial measurement units, and monocular or depth cameras. These platforms
enable testing of visual navigation and control policies in real-world cluttered environ-
ments [15, 19]. Their modular hardware and broad software support make them ideal for

evaluating sim-to-real transfer under perception and actuation noise.

3. Unmanned surface vehicles (USVs): Surface vehicles such as the Kingfisher M200 repre-
sent over-actuated aquatic systems subject to complex hydrodynamics. These include drag,
inertia, buoyancy, and environmental disturbances like wind and waves. Accurate simula-
tion of such vehicles requires extending standard planar dynamics with water resistance and
coupling models [20]. USVs offer a testbed for assessing generalization of control policies
to domains with continuous drift and nonlinear damping, distinct from terrestrial or aerial

robotics.

4. Fixed-wing aerial vehicles in ground effect: Fixed-wing vehicles flying close to the ground

4

experience nonlinear aerodynamic phenomena known as ground effect, where increased
liftt and reduced drag alter their dynamics. Simulating these behaviors necessitates special-
ized flight models, sometimes based on semi-empirical data or computational tools such as
XPlane [21] or MATLAB Simulink [22]. Ground-effect vehicles pose unique challenges for
control algorithms due to unstable dynamics and strong coupling—making them ideal for

evaluating both classical and learning-based flight controllers.

Wheeled Robots

Leatherback Jetbot

WIG Vehicle Floating Platform usv

Figure 1.1: Robotic systems considered in this thesis. The five domains include spacecraft plat-
forms (2D/3D), floating platforms (Zero-G Lab), wheeled robots (Turtlebot2), surface vehicles
(USV), and fixed-wing aerial vehicles (WIG). Real-world deployments were performed on systems
marked in green.

1.2 Research Scope and Objectives

This dissertation lies at the intersection of reinforcement learning, robotics, spacecrafts autonomy

and simulation engineering. Its overarching aim is to develop scalable tools, simulation frame-

5

works, and learning pipelines that enable RL-based control of autonomous robots operating in
highly uncertain, dynamic, and partially observable environments. Rather than focusing on the
development of novel RL algorithms, this work emphasizes the design of structured environments
and evaluation protocols that support algorithmic generalization and deployment in real systems.

This choice of focus aligns with what Abel et al. [23] identify as the first foundational dogma
of modern RL: the environment spotlight, depicted in Figure 1.2. This dogma critiques the field’s
traditional emphasis on environments and problem-solving over agents themselves. In this thesis,
we embrace this environment-centric perspective—not as a limitation, but as a deliberate method-
ological stance. By engineering domain-randomized, physically grounded simulators and cross-
domain benchmarks, we aim to construct the “stage” upon which diverse RL agents can be tested,
improved, and transferred into reality. This work acknowledges that progress in RL for robotics
requires not only richer, more representative and well-structured environments, but also smarter
agents and novel algorithms and techniques. This latter topics are presented in the last chapter,

where future work with focus on the Agent block of the RL loop is discussed.

Environment

Figure 1.2: The environment spotlight from [23]: the field of RL has historically focused more
on problem formulations and environments than on agent modeling. This thesis aligns with that
perspective by emphasizing simulation infrastructure and task design.

The core intellectual pursuit of this work is driven by the following three high-level research

questions:

Research Question 1

How can we design simulation frameworks that support scalable, physically realistic,

and task-agnostic RL for autonomous robots?

Research Question 2

To what extent can reinforcement learning policies generalize across tasks, robots, and

environmental conditions?

Research Question 3

Which techniques most effectively bridge the simulation—reality gap in uncertain en-

vironments?

To address these questions, the thesis pursues the following structured research objectives:

Research Objective 1

Develop modular and scalable simulation environments for reinforcement learning in

robotics.

A fundamental objective of this thesis is to design and implement simulation environments
that combine physical fidelity with large-scale computational efficiency. The simulators must sup-
port parallelized training, accurate dynamics modeling, and efficient GPU execution to enable
thousands of environments to run in real time. Particular emphasis is placed on reproducing real-
istic actuation and sensing, incorporating latency, noise, and model uncertainty to better approxi-
mate real-world conditions. Each environment is structured with clear interfaces for observation,
action, and reward functions, adhering to widely adopted standards such as OpenAl Gym [4],
Isaac Gym [7] and Isaac Lab [24]. The resulting platforms provide a modular and extensible foun-
dation for evaluating diverse control algorithms across multiple robotic domains, from spacecraft

to ground and marine systems.

Research Objective 2

Train generalizable and robust policies through domain variation and algorithmic di-

versity.

This objective focuses on the development of learning pipelines that expose agents to struc-
tured variability in their training conditions. By combining techniques such as Domain Random-
ization (DR) [25] and Curriculum Learning [26], policies are trained to withstand uncertainty in
system dynamics, sensory feedback, and environmental perturbations. The study includes com-
parative evaluation of different neural architectures—feedforward, recurrent (PPO-RNN), and
latent world-model approaches (DreamerV3)—to assess how memory, abstraction, and temporal
reasoning contribute to robustness. Training procedures are designed to promote generalization
rather than overfitting to specific initial conditions, thus encouraging the emergence of adaptive

and transferable control behaviors suitable for real-world operation.

Research Objective 3

Establish a unified training and evaluation framework for multi-robot and multi-task

pipelines.

A central contribution of this thesis is the creation of a standardized software framework that
enables systematic comparison of RL algorithms across different robot morphologies and task
types. The framework integrates modular configuration, logging, and evaluation interfaces, en-
suring reproducibility and scalability. It supports multi-robot training setups spanning micro-
gravity platforms, wheeled and surface vehicles, and fixed-wing aircraft, as well as multiple task
families such as point-to-point navigation, trajectory tracking, and pose regulation. By unifying
data collection, training, and evaluation under a common protocol, this benchmark suite facilitates
fair cross-algorithm analysis and accelerates the development of robust, transferable control poli-
cies. Moreover, it contributes to the broader reproducibility effort in reinforcement-learning-based

robotics research.

Research Objective 4

Validate learned policies on real robotic platforms and rigorously assess sim-to-real

transfer.

A last objective of this work is to evaluate the real-world applicability of policies trained in
simulation. Selected control policies are deployed on physical systems introduced in Section 1.1, in-
cluding air-bearing floating platforms and wheeled mobile robots. The validation process examines
policy transferability across sensing noise, actuator delays, and unmodeled disturbances, providing
an empirical measure of robustness. Comparative baselines based on classical control techniques
(e.g., LQR) are used to contextualize the learning performance. This objective ultimately seeks to
identify the conditions under which domain-randomized simulation yields transferable behaviors
and to derive general insights for bridging the gap between synthetic and physical robotic environ-

ments.

1.3 Thesis Contributions

This thesis presents a research program advancing the use of Reinforcement Learning (RL) for
robotic control in uncertain, dynamic, and partially observable environments. Its contributions
span the design of simulation tools, training frameworks, and empirical studies across multiple
robot morphologies and physical domains, rather than proposing new algorithms. Each contri-
bution corresponds to a peer-reviewed publication or submitted manuscript and is unified by the
shared objective of improving the scalability, generalization, and reproducibility of RL-based con-

trol in robotics. A visual overview is presented in Figure 1.3.

1. RANS and DRIFT - Scalable Simulation for Generalizable RL Control of Spacecraft
and Floating Platforms. These works establish a foundation for scalable, domain ran-
domized simulation of robotic systems that approximate space and planar microgravity dy-

namics. RANS introduces a high-performance parallel simulation pipeline for spacecraft

Chapter 3: Simulators & RL Policies for Spacecraft Control Chapter 5: Fixed Wing Aerodynamics and Control Suite

Chapter 4: Unified Learning-Based Navigation Across Diverse Robot Chapter 6: RL-based Visual inspection of space targets &
Platforms in Simulated and Physical Environments excitation-based satellite inertia estimation & Spacecraft

Angular Rate Estimation via Event-Based Camera Sensing
Leatherback

Turtlebot 2 Floating Platform Jetbot Kingfisher

Figure 1.3: Overview of the thesis contributions and their mapping to dissertation chapters. The
work evolves from simulation infrastructure (R ANS, DRIFT [Chapter 3]) to benchmarking and
multi-robot evaluation (RoboR AN, [Chapter 4]), domain-specific benchmarking for aerial vehi-
cles (FALCON-S [Chapter 5]), and complementary sensing and estimation studies (Inertia-ID,
RL-AVIST, Event-Based Inertia Estimation [Chapter 6]).

training, enabling large-scale data generation and multi-scenario evaluation. DRIFT ex-
tends this framework to real-world validation, demonstrating Deep RL control of a physical
air-bearing floating platform under uncertainty and comparing it against optimal control
baselines. Together, these contributions provide the first complete sim-to-real demonstra-
tion of DRL for near-frictionless robotic platforms and constitute a reproducible founda-

tion for subsequent developments in this thesis.

2. RoboRAN - A Unified Robotics Framework for Reinforcement Learning-Based Au-
tonomous Navigation. RoboRAN contributes a modular and extensible benchmarking
suite that unifies training, logging, and evaluation across heterogeneous robots and navi-
gation tasks. It provides standardized configuration, metric tracking, and reproducibility

tools for RL research in robotics, integrating simulation back-ends and real-world interfaces.

10

The framework supports experiments on spacecraft analogs (floating platforms), wheeled
robots, and surface vessels, enabling systematic assessment of robustness, generalization, and

cross-domain transfer.

. FALCON-S - Fixed-Wing Aerodynamics and Learning Control Suite. FALCON-S
introduces the first benchmark suite dedicated to learning-based control of fixed-wing vehi-
cles operating under ground-effect conditions. It integrates multiple simulation back-ends
(Python-CPU, GPU-based Warp, MATLAB, and XPlane) with standardized APIs, making
it possible to compare model-free (PPO), model-based (DreamerV3), and classical (LQR,
MPPI) controllers on consistent aerodynamic models. The benchmark emphasizes repro-
ducibility and extensibility, allowing comparative evaluation of control algorithms across

various flight regimes, disturbances, and aircraft geometries.

. RL-AVIST: Reinforcement Learning for Autonomous Visual Inspection of Space Tar-
gets: introduces a learning-based framework for 6-DOF proximity operations around large
orbital assets. Built on the SpaceRobotics Bench [27], RL-AVIST employs model-based
RL (DreamerV3) and model-free baselines (PPO [28], TD3 [29]) to train inspection
policies under realistic spacecraft dynamics and visual feedback. This work demonstrates
the potential of latent-model RL for efficient trajectory tracking, visual inspection, and
multi-morphology generalization in orbital scenarios, marking a step toward percep-

tion-aware, long-duration autonomy in space operations.

. Complementary Contributions in Sensing and System Identification. To complement
the core simulation and control studies, two auxiliary works have been proposed to increase

the realism and scope of the proposed frameworks:

* Active Excitation-Based Dynamic Inertia Identification in Satellites [30]: develops a
data-driven approach for estimating spacecraft inertia tensors using Least Squares and
EKF filters, supporting simulator fidelity and model validation under realistic torque

inputs.

11

* Event-Based Angular Rate Estimation for Spacecraft [31]: proposes a novel vision
based angular velocity estimation method leveraging neuromorphic cameras observ-

ing star fields, extending sensing capabilities for future attitude-estimation pipelines.
Complete list of publications:

* ’RANS: Highly-Parallelised Simulator for Reinforcement Learning based Autonomous
Navigating Spacecrafts.” Matteo El-Hariry , Antoine Richard, and Miguel A.O Mendez.
17th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA23).
2023.

* "Drift: Deep reinforcement learning for intelligent floating platforms trajectories.” El-
Hariry, Matteo, et al. 2024 IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2024.

* "RoboRAN: A Unified Robotics Framework for Reinforcement Learning-Based Au-
tonomous Navigation.” Matteo El-Hariry and Antoine Richard and Ricard M. Castan and
Luis F. W. Batista and Matthieu Geist and Cedric Pradalier and Miguel Olivares-Mendez.
2025, arXiv, cs.RO. Published in Transactions on Machine Learning Research (TMLR)
(11/2025).

* ”FALCON:-S: Fixed-wing Aerodynamics and Learning Control Suite.”, Matteo El-Hariry,
Pedro Lima, Andrej Orsula, Antoine Richard, Matthieu Geist, Miguel Olivares-Mendez.
Under review at — ICLR 2026 Conference.

* ’RL-AVIST: Reinforcement Learning for Autonomous Visual Inspection of Space Tar-
gets.”. Matteo El-Hariry, Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez.
Internation Astronautical Congress (IAC) 2025, arXiv preprint arXiv:2510.22699 (2025).

* "Towards Active Excitation-Based Dynamic Inertia Identification in Satellites.”. El-Hariry,
Matteo, Vittorio Franzese, and Miguel Olivares-Mendez. Accepted at International Confer-

ence on Space Robotics (iSPaRo) 2025. arXiv preprint arXiv:2510.16738 (2025).

12

* ”Spacecraft Angular Rate Estimation via Event-Based Camera Sensing”, Vittorio Franzese,

Matteo El Hariry. Under review at Advances in Space Research (ASR).

13

Chapter 2

Background and Related Work

This chapter establishes the context for the research conducted in this thesis, which lies at the inter-
section of deep reinforcement learning (DRL), simulation engineering, and robotic autonomy un-
der uncertainty. It begins by introducing the core theoretical principles of reinforcement learning
for continuous control, focusing on policy optimization methods and their extensions for handling
partial observability and temporal dependencies. The chapter then examines the unique challenges
posed by real-world robotic systems, including sample inefficiency, system diversity, sim-to-real
mismatches, and safety-critical constraints. Building on this, we review the primary techniques
used to bridge simulation and physical deployment, with emphasis on domain randomization,
curriculum-based training, and memory-augmented policies.

Subsequently, the chapter surveys the landscape of simulation tools and environments that
underpin DRL research in robotics, contrasting traditional physics engines with recent GPU-
accelerated frameworks, and outlining the requirements that motivated the development of the
custom simulation stacks presented in this thesis. A dedicated section then explores the specific
robotic domains targeted in this work—ranging from floating platforms and spacecraft testbeds
to wheeled robots and fixed-wing aircraft—with a focus on the dynamics, sensing, and control
characteristics that distinguish each. Finally, the chapter discusses recent critiques and emerging

methodological shifts in the RL community, particularly the emphasis on structure and agent

14

design as articulated in the “Three Dogmas of RL”. This synthesis helps situate the thesis con-
tributions within a broader movement toward robust, scalable, and generalizable learning in

robotics.

2.1 Reinforcement Learning for Continuous Control

Reinforcement Learning (RL) provides a mathematical framework for sequential decision-making,
where an agent interacts with an environment in order to maximize cumulative reward. This frame-
work is particularly well suited to robotics, where actions aftect the system state over time, and con-
trol policies must account for delayed, noisy, or partial feedback. However, the application of RL
to continuous control problems in robotics presents specific challenges—chief among them are
high-dimensional state-action spaces, sample inefficiency, and sensitivity to hyperparameters and

initialization.

2.1.1 The Markov Decision Process Formalism

The agent-environment interaction is commonly modeled as a Markov Decision Process (MDP)

defined by the tuple (S, A, P, R,), where:
* Sis the set of possible states,
* Ais the set of actions,
* P(s'|s,a) is the transition probability distribution,
* R(s,a) is the reward function,
* andy € [0, 1) is the discount factor.

At each timestep t, the agent observes state Sy, selects an action a; ~ 7(a¢|s;) according to its

policy 7, and receives a scalar reward r; while transitioning to a new state s (Figure 2.1). The

15

goal is to learn a policy that maximizes the expected cumulative discounted reward:

J(m) =E,

fy] |

t=0

'_| Agent |

state reward action
S, R, A
Rr+1 (
] .
.. | Environment]4—

Figure 2.1: Standard agent—environment interaction loop in reinforcement learning [32].

2.1.2 Policy Optimization for Continuous Actions

Many real-world robotic control tasks require continuous actions—e.g., motor torques, thrust lev-
els, or velocity commands—which cannot be effectively handled by discrete action methods like
Q-learning [33] or Deep Q-Networks (DQN) [34]. As a result, modern deep reinforcement learn-
ing in robotics predominantly relies on policy optimization approaches, where a policy is directly
learned to maximize expected cumulative rewards.

A widely adopted structure for this class of methods is the actor—critic architecture (Fig-
ure 2.2), which decouples the task of selecting actions from that of evaluating them. The acror
is a parameterized policy my(a|s) that outputs an action distribution conditioned on the current
state. The criticis avalue function (e.g., V™ (s) or Q™ (s, a)) trained to estimate the expected return
under the current policy. These two components work in tandem: the critic provides a learning
signal—typically the advantage function or a temporal difference error—that guides the gradient
updates of the actor.

This design has several advantages for robotics:

16

Policy Update l A l

,,’I TD Error‘:
State . o Action
St Critic |- - (it
¥
Reward
Tt

i1
i St+1| Environment]«7

Figure 2.2: Actor—critic reinforcement learning loop. The actor updates its policy using feedback
from the critic, which evaluates actions via the temporal-difference (TD) error derived from envi-

ronment rewards and state transitions.

* Itenables learning stochastic policies directly in continuous action spaces.
* It allows for low-variance updates through the use of bootstrapped value estimates.

* It is compatible with modular policy/value architectures tailored to different sensing and

actuation modalities.

Among actor—critic methods, policy gradient algorithms have proven especially eftective in
continuous control settings. These algorithms compute an estimate of the gradient of the expected

return J (1) with respect to the policy parameters #, and perform stochastic gradient ascent:
VQJ(W@) = Et |:V9 lOgﬂ'g(at|St) : At s

where A; is an estimate of the advantage of action a; in state s; under the current policy. This
formulation enables end-to-end learning of both perception and control from raw or processed

sensory inputs.

17

A widely used policy gradient method is Proximal Policy Optimization (PPO) [28], due toits
ease of implementation, strong empirical performance, and stability across a wide range of domains.
PPO introduces a trust region mechanism by clipping the policy update to prevent large deviations

from the current policy. The surrogate objective function is:
ﬁCLIP(Q) = Et |:m11’1 (rt<0)At7 clip(rt(e), 1-— €, 1 + E)At)] s

where 14(0) = % is the likelihood ratio between the new and old policies, and € is a hyper-
old t
parameter controlling the maximum update step.
PPO forms the algorithmic backbone of all learning experiments in this thesis. It is used in

its standard feedforward form, as well as in its recurrent variant (PPO-RNN), allowing policies to

integrate temporal information across partial observations.

2.1.3 Handling Temporal Dependencies: PPO-RNN

Robotic systems often exhibit partial observability, delayed dynamics, or unmeasured disturbances.
Standard feedforward policies struggle in such settings. To overcome this, recurrent architectures
such as PPO-RNN extend PPO by incorporating memory via recurrent neural networks (RNN,

e.g., GRU or LSTM), enabling the policy to condition on a sequence of past observations:
ay ~ m(aoo.r),

where 0¢.; represents the history of observations. This enhances robustness in real-world tasks,

especially when sensors are noisy or state estimation is imperfect.

2.1.4 Model-Based RL and World Models

Model-based RL (MBRL) introduces, as shown in Figure 2.3 an explicit model of the environ-

ment, enabling planning or simulated rollouts to improve sample efficiency. While promising in

18

theory, traditional MBRL has limited success in robotics due to the challenge of learning accurate
transition models. Recent advances, such as DreamerV3 [35], address this by learning compact

latent dynamics models and training policies entirely in imagination.

Agent ||
State| [Reward Action
St Tt At
i T 0)
S..1 | Environment [«
\. J

..................

: | World Model f¢------- .

Figure 2.3: Model-based reinforcement learning loop. In addition to interacting with the environ-
ment, the agent learns a world model to simulate future states and rewards, supporting planning
and policy optimization through imagined rollouts.

In this thesis, we incorporate Dreamer in the context of fixed-wing flight (FALCON-S bench-
mark), evaluating its performance against model-free baselines. Although still sensitive to hyperpa-
rameters and architecture choices, Dreamer represents a promising direction for efficient learning

in physics-based domains.

2.2 Challenges for Real-World Reinforcement Learning

Despite the promise of deep reinforcement learning (DRL) in simulated domains, deploying such
agents on real-world robotic systems remains a considerable challenge. Several bottlenecks hinder
reliable transfer of learning-based control policies from virtual environments to physical platforms.
This section highlights four critical challenges: (1) data efficiency, (2) simulation-reality mismatch,
(3) task and morphology transferability, and (4) safe exploration, that are particularly relevant to
the robotic domains addressed in this thesis. Each subsection presents the challenge and discusses

practical mitigation strategies adopted throughout the thesis.

19

2.2.1 Data Efficiency and Exploration Costs

In contrast to game-like environments or purely virtual control problems, real-world robotic sys-
tems face hard constraints on the amount and quality of data that can be collected. Physical trials
are slow, expensive, and subject to wear-and-tear. Safety concerns and limited availability of the
hardware further restrict the number of interactions that can be executed. As a result, algorithms
that require millions of environment steps, such as standard model-free DRL methods, are often
infeasible for direct deployment.

Even in simulation, where data is cheap, many robotic environments involve complex dynam-
ics and sparse rewards, exacerbating exploration difficulties. This motivates the use of parallelized
simulation frameworks (e.g., RANS [36]) and curriculum learning strategies to mitigate sample
inefficiency. Techniques such as reward shaping, parameterized initial conditions, and dense aux-

iliary objectives can further reduce training time and improve policy convergence.

Example: Data Bottlenecks in Air-Bearing Platforms

In the Zero-G Lab [16] floating platform testbed, each real-world episode requires physical
setup, safety checks, and actuator reset, taking several minutes per trial. This makes iter-
ative learning in-the-loop impractical and highlights the need for scalable simulation-first

pipelines.

Curriculum Learning for Sample Efficiency. One of the strategies explored in this thesis to
mitigate sample complexity is curriculum learning, gradually increasing task difficulty during train-
ing, as shown in Figure 2.4. This is especially effective in sparse-reward settings or under complex
failure modes. By first training in simplified conditions and progressively introducing variability
(e.g., more noise, tighter targets), convergence is improved and unsafe behavior in early stages is

avoided.

20

Goal @ ,«‘@.

= Disturbances ,’

L @ @
- @ R

E é v e e /

= ’ P I}

o . 4 ’]

= Trajectory ’ e—N I A=

= - / W s

25 - @ / é) l’

|

| ! ’ ! Training time

Agent
)

Episode 1 Episode 2 Episode n

Figure 2.4: Illustrative curriculum progression: training starts in simplified conditions (short goal
distances, no drift) and gradually increases complexity over time by introducing disturbances in
the environment (e.g., actuator noise, wind, tighter tolerances, obstacles).

2.2.2 Simulation—Reality Mismatch and Dynamics Uncertainty

A core obstacle to sim-to-real transfer is the mismatch between modeled and real-world dynamics.
Simulation often fails to capture the full complexity of sensors (e.g., latency, noise, occlusions),
actuators (e.g., backlash, delay, saturation), and environmental interactions (e.g., ground effect,
friction asymmetries). These discrepancies result in policies that overfit to idealized physics and
perform poorly when deployed.

To address this, several strategies have been proposed:

* Domain Randomization (DR): Introduces variability in environment parameters during

training (e.g., mass, damping, latency) to encourage robustness [25].

* Observation Corruptions: Models sensor noise and delay stochastically to simulate de-

graded sensing conditions [37].

21

* Stochastic Actuator Models: Adds delay, saturation, or variability to control inputs, better

matching physical actuators [38].

Despite these measures, there remains no guarantee of successful deployment, and most poli-
cies require careful tuning to bridge the residual sim-to-real gap. In this thesis, we empirically evalu-
ate DRL controllers under various mismatch conditions across floating platforms, aquatic vehicles,

and mobile robots.

2.2.3 Morphology and Task Transferability

RL policies are typically trained for a single robot, task, or domain. However, in practical robotics,
itis often desirable to re-use or fine-tune policies across platforms with different morphologies (e.g.,
from floating to wheeled to aquatic robots) or across related tasks (e.g., point navigation to velocity

tracking). Transfer learning in this context remains difficult due to several factors:
* Inconsistent observation and action spaces across robots.
* Differing control frequencies, delays, and dynamics regimes.
* Divergent reward function definitions and task formulations.

Even when high-level policies or encoders are shared, the inductive biases of each morphology
require significant adaptation. Frameworks like RoboR AN [39] attempt to mitigate this by defin-
ing a common structure and logging interface, enabling modular training pipelines and evaluation

across morphologies. Still, full generalization remains elusive without retraining.

Challenge: Reusing RL Policies Across Robots

Policies trained on the Turtlebot2 may fail when applied to USVs or floating platforms due
to mismatched inertia, drift, and heading dynamics. Despite shared tasks (e.g., point navi-

gation), the control strategies must adapt to morphology-specific disturbances.

22

Architectural Support for Transfer. One approach used in this thesis is to train shared policy
architectures (e.g., PPO with MLP encoders) across robot types using aligned state-action spaces
and task encodings. Additionally, training with morphology-specific domain randomization helps

expose agents to wider dynamics, enabling partial transfer.

2.2.4 Safety and Constraint Encoding

Unlike in simulation, mistakes in real-world RL carry physical risks of damaging hardware, vio-
lating safety constraints, or entering irrecoverable states. Standard RL algorithms do not natively

account for these risks. Instead, safety must be enforced through:

* Reward shaping: Penalizing unsafe behaviors (e.g., high angular velocities or collisions)

during training.
* Action clipping or bounds: Hard constraints on actuation to prevent over-control.
* Control-theoretic prefilters: Adding stability layers outside the learned policy.

* Constrained RL or shields: Explicit incorporation of constraints in the learning objective

(not adopted in this thesis).

A critical difficulty is that many constraints, such as actuator limitations or minimum safety
margins, are discontinuous, hard to model, or not differentiable. While constrained RL [40, 41, 42,
43] is an active research area, the methods used in this thesis rely instead on structured training cur-
ricula, domain randomization, and reward design to indirectly promote safer behaviors. Empirical

tests are performed under realistic disturbances and sensor noise to assess robustness post-training.

Summary: When Does Sim-to-Real Transfer Work?

While sim-to-real transfer remains an open problem, the findings of this thesis suggest that:

23

* Domain randomization and stochastic modeling significantly improve robustness when

properly calibrated.

* Curriculum learning reduces early training instabilities and improves convergence in com-

plex tasks.

* Transferability across robot morphologies remains difficult without re-training, despite

modular architectures.

Robust sim-to-real transfer is achievable when structured training (DR, curriculum), archi-
tectural support, and task-aware simulation design are combined. However, generalization
across robots or tasks still requires significant effort, motivating the need for unified frame-

works like RoboR AN.

2.3 Simulation Frameworks for RL in Robotics

Simulation is a critical enabler for reinforcement learning (RL) in robotics. It allows safe, repro-
ducible, and accelerated training of control policies that would otherwise be impractical or risky to
develop directly on hardware. However, the design of such simulators presents a trade-off between
physical fidelity, computational performance, and scalability. This section reviews the evolution
of simulation tools in robotics and describes the custom frameworks developed in this thesis to

support large-scale, generalizable RL.

2.3.1 ‘Traditional vs GPU-Accelerated Simulators

Early simulators such as Gazebo [44], PyBullet [45], and V-REP [46] prioritized realism and ex-
tensibility for robotic prototyping. However, their CPU-bound architecture limited the number
of concurrent environments that could be simulated, often leading to prohibitively long training

times in DRL applications. While accurate and modular, these tools were not originally designed

24

for thousands of parallel rollouts, making them ill-suited for modern data-hungry policy gradient
methods.

To address this, recent efforts have introduced GPU-accelerated simulators such as Isaac
Gym [7] (now Isaac Lab [24]), Warp [47], Brax [8], and MuJoCo [6] with GPU backends.
These frameworks exploit massively parallel physics kernels to simulate hundreds to thousands
of environments simultaneously, drastically reducing training wall time. In particular, Isaac Lab
and Warp support tensor-based simulation of rigid body dynamics and are tightly integrated with
PyTorch, allowing for seamless GPU-to-GPU data pipelines during RL training.

Nonetheless, GPU-based simulators come with trade-offs: they often require simplified con-
tact models, limited sensor realism, and manual tuning of timestep stability. This is primarily be-
cause high-throughput simulation on GPUs prioritizes vectorized computation and rigid schedul-
ing over detailed physics fidelity. For example, soft contacts, frictional instabilities, and sensor la-
tency are computationally expensive to model accurately in parallelized GPU pipelines, which are
optimized for deterministic, synchronous updates across thousands of environments. This moti-
vates hybrid architectures and modular extensions to better balance realism with speed—e.g., using
simplified GPU simulation for training and switching to CPU-based or high-fidelity simulators

(e.g., Isaac Sim, X-Plane) for validation and fine-tuning.

2.3.2 Custom Simulation Tools Developed in this Thesis

This thesis contributes three modular and scalable simulation tools, each tailored to a specific

robotic class and research objective:

(1) RANS and DRIFT: Parallel Simulation for Floating Platforms and Spacecraft Control

* RANS [36] is a highly-parallelized environment suite for spacecraft-relevant planar motion
(%, y, yaw), designed to support domain-randomized training of DRL agents on floating

platforms.

25

* DRIFT [37] builds on RANS by integrating actuator failure modes, observation corrup-

tions, and curriculum learning for progressive training across difficulty levels.

* Both simulators integrate with Isaac Gym and IsaacLab [24] backends and support transfer

to the physical air-bearing platform used at the Zero-G Lab [16].

(2) RoboR AN: Multi-Robot and Multi-task Sim-to-Real Framework

* RoboRAN [39] enables training and evaluation across heterogeneous robots (floating plat-

form, Turtlebot2, Kingfisher USV) and task types (GoToPose, trajectory following).

* It includes shared configuration schemas, observation/action space adapters, and task-

agnostic logging for reproducible benchmarking.

* The modular design ensures that new robots or tasks can be added with minimal effort, pro-

moting generalization studies across morphologies.

(3) FALCON-S: Fixed-Wing Aerodynamics and Ground Effect Simulator

* FALCON-S [38] is a lightweight, extensible benchmark for multi-aircraft designs and mod-

ular physics simulation. It includes:

— A CPU-based physics core (Python, Warp) for scalable DRL training.
— MATLAB and X-Plane simulators for validation and high-fidelity comparisons.

— PID, LQR, PPO, PPO-RNN, and DreamerV3 controllers for baseline evaluation.

* The suite provides an end-to-end pipeline for evaluating learning and classical control strate-

gies on nonlinear flight dynamics.

26

2.3.3 The Need for Scalable, Structured Benchmarks

As DRL for robotics matures, the field increasingly demands standardized, structured, and scalable
benchmarks that go beyond single-task, single-robot training. Unlike game environments or loco-
motion tasks, real-world robotics involves diverse sensing modalities, control regimes, and failure
modes—requiring modular simulation tools and consistent evaluation pipelines.

Existing efforts such as OpenAI Gym [4], RLBench [48], Habitat [9], and IsaacLab [24] each

offer valuable abstractions, but are limited in their ability to cover:

* Heterogeneous robot morphologies with shared evaluation logic.
¢ Realistic actuator and sensor models for sim-to-real research.

* Multi-task curricula with systematic difficulty variation.

To this end, our frameworks (especially RoboR AN and FALCON-S) address a key research
gap by providing reusable environments, configurable agent wrappers, and cross-domain evalua-
tion tools. They allow benchmarking DRL policies on equal footing with classical controllers and

support structured experiments on generalization, transferability, and robustness.

2.4 Robotic Control Domains Addressed in this Thesis

This thesis investigates reinforcement learning for autonomous control across a diverse set of
robotic platforms. Each domain—spacecraft-inspired floating systems, ground and surface robots,
and fixed-wing aerial vehicles—poses distinct modeling, control, and transfer challenges. The se-
lection of these domains reflects both their practical relevance and their role as structured testbeds

for evaluating DRL generalization under uncertainty.

2.4.1 Spacecraft Simulators and Floating Platforms

Simulating spacecraft dynamics for learning-based control presents a unique opportunity: the dy-

namics are relatively clean (few contact discontinuities), yet highly sensitive to model uncertainty,

27

actuator delays, and observation noise. Real-world testing is infeasible in microgravity, but planar
analogues can emulate key aspects.

In this thesis, we use floating platforms—air-bearing systems that move frictionlessly on a pla-
nar surface—to replicate 2D spacecraft dynamics. These platforms exhibit near-inertial motion,
are actuated by discrete on-off thrusters, and feature drift-dominant behavior with minimal passive
damping. Control must account for long time constants, slow convergence, and frequent actuator
saturation.

Simulation is performed using custom rigid-body dynamics integrated into Isaac Gym and

later IsaacLab, with extensions to support:
* Binary and low-thrust actuation models with time delay and saturation.
* Noisy sensing for pose, velocity, and angular rates.
* Task variability, including point-to-point, pose alignment, and trajectory following.

Real-world experiments are conducted on the Zero-G Lab air-bearing platform [16], validating
PPO and LQR controllers trained entirely in simulation. These experiments demonstrate success-

ful transfer under actuator faults, drift, and delayed sensing.

2.4.2 Ground and Surface Robots (Wheeled and USV)

Terrestrial and marine robots present a complementary challenge: although easier to deploy and
instrument, they feature heterogeneous dynamics, noisy proprioception, and varying actuation

strategies. In this work, two types of robots are considered:

Wheeled Robots. We use the Turtlebot2 as a representative differential-drive robot with non-
holonomic constraints and odometry-based sensing. Policies are trained in simulation and exe-
cuted onboard the physical robot using the RoboR AN framework. Additional wheeled robots
(JetBot, Leatherback) are tested in sim to verify morphology generalization. Navigation tasks in-

clude:

28

Figure 2.5: Photo of the floating platform system: 8 binary thrusters enable planar maneuvering
under drag and inertia.

* Go-To-Pose: Reaching a specific target position and orientation.

* Trajectory Tracking: Following a predefined path in clutter-free environments.

Unmanned Surface Vehicles (USV). The Kingfisher USV is a twin-hull vessel with high iner-
tia and hydrodynamic coupling. It is simulated using custom planar dynamics with added buoy-
ancy, damping, and wind-like perturbations. Control tasks include waypoint tracking under dis-

turbance and drift.

29

Cross-Robot Policy Evaluation

The RoboRAN framework enables training policies that are portable across floating,
wheeled, and aquatic platforms by standardizing task interfaces and logging. However, sig-

nificant domain-specific tuning remains necessary to achieve robust generalization.

2.4.3 Fixed-Wing Vehicles in Ground-Effect

Fixed-wing aerial vehicles operating near the ground exhibit highly nonlinear, coupled dynamics
due to the ground effect phenomenon, which modifies lift and drag characteristics. These effects
are hard to model and pose challenges for both classical and learning-based control.

The FALCON-S benchmark introduced in this thesis provides the first structured suite for RL

in ground-effect flight. It supports multiple simulation backends:
* Python and Warp-based rigid body dynamics for fast training.
* MATLAB Simulink and XPlane for high-fidelity validation.
Control policies are evaluated on:
* Altitude keeping near the ground plane.
* Go-to-position tasks under wind perturbations.
* Flight path stabilization across vehicle geometries.

Both model-free (PPO, PPO-RNN, Dreamer) and model-based (LQR, MPPI) controllers are
tested. Ground-effect interaction is randomized to promote robustness. This domain showcases
the challenge of partial observability and the benefit of recurrent policies and domain randomiza-

tion.

30

2.5 Trends and Critiques in RL for Robotics

The field of reinforcement learning (RL) has undergone a significant shift in recent years, moving
from purely theoretical formulations toward large-scale experimentation, real-world deployment,
and critical introspection. In the context of robotics, this has led to several emerging themes: a
rethinking of agent-environment abstraction, a focus on structure and priors over brute-force op-

timization, and a broader reflection on the scientific framing of RL.

2.5.1 The “Three Dogmas” and Environment-Centric Design

In their influential position paper, de Masi et al. [23] identify three "dogmas” that have constrained

progress in RL:

1. Tabula Rasa Learning: Agents are expected to learn from scratch in each environment,

ignoring past experience or structure.

2. Scalar Reward Maximization: Learning is driven by a single reward signal, often sparse or

misaligned with the task.

3. Episodic Learning: The MDP formulation assumes well-defined resets and episodic re-

turns, which do not reflect real-world operation.

A central theme in this critique is the overemphasis on the environment, which has led to what
the authors term the environment spotlight. Most RL systems are designed around a fixed en-
vironment structure, treating the agent as a passive optimizer rather than a grounded, adaptive
entity.

This thesis embraces this critique by shifting focus toward the design of environments, simula-

ors, and evaluation suites. Rather than proposing new algorithms, we emphasize:
t d evaluat tes. Rather than proposing RL algorith ph

* Carefully constructed simulation pipelines.

* Realistic physical modeling and sensor/actuator noise.

31

* Transferable training curricula.
* Modular task-agent interfaces.
These decisions aim to support generalizable policy learning under realistic constraints,

grounded in the actual needs of robotic deployment.

2.5.2 Structure, Priors, and Generalization over Optimization

As RL systems scale up, purely reward-driven optimization becomes less practical. In robotics,
rewards are often sparse, safety constraints are hard to encode, and environment resets are infeasible.

Recent research trends reflect a growing emphasis on structure and inductive priors, including:

* Architectural priors: Using recurrent networks [49], residual policies [50], or world mod-

els [35] to bias the learning process.

* Curriculum and task design: Structuring the learning process with gradually increasing

complexity [26].

* Multi-task and transfer setups: Sharing representations or policies across tasks and mor-

phologies [1].

These methods often outperform ”pure” optimization when generalization is required. In this

thesis, these insights are adopted in the form of:
* Domain-randomized simulation environments.
* Recurrent policy architectures (e.g., PPO-RNN).
* Multi-robot benchmarking frameworks (e.g., RoboR AN).

Rather than optimizing each agent-environment pair in isolation, we prioritize designing sys-

tems that generalize across settings: a goal that aligns with the broader shift in RL research.

32

2.5.3 Positioning This Thesis in the Evolving Landscape

This dissertation responds to the field’s current challenges not by contributing a new RL algo-
rithm, but by structuring the conditions under which existing algorithms can succeed in robotics.

Specifically, it addresses the need for:

* Structured simulation to support efficient and robust learning pipelines.
* Unified benchmarks for evaluation across robot morphologies and tasks.

* Physical deployment as a validation step for real-world applicability.

The systems studied span spacecraft emulators, surface and ground robots, and fixed-wing
aerial vehicles—each serving as a testbed for evaluating generalization, robustness, and transferabil-
ity. Across all domains, the thesis emphasizes robust agent-environment co-design and realistic

training signals, reflecting a pragmatic and grounded response to the theoretical critiques of RL.

2.6 Summary

This chapter has surveyed the theoretical foundations, practical challenges, and recent critiques of
reinforcement learning for real-world robotics. We began by introducing the policy optimization
framework for continuous control and discussed the limitations of current DRL methods when
applied to physical systems. The chapter then addressed the key bottlenecks—data inefficiency,
simulation mismatch, transferability, and safety—and reviewed strategies to mitigate them, such
as domain randomization and curriculum design.

We also introduced the simulation tools developed in this thesis and outlined the three robotic
control domains investigated. Finally, we positioned this work in the broader RL discourse, draw-
ing from recent critiques such as the Three Dogmas of RL to argue for environment- and structure-

aware learning systems.

33

The next chapters present the core contributions of the thesis, detailing simulation frame-

works, benchmark design, and empirical results across multiple robotic platforms.

34

Chapter 3

Generalizable RL for spacecrafts ground

simulators

3.1 Motivation and Scope

Autonomous navigation and control systems are essential for the success and resilience of future
space missions. As spacecraft become increasingly compact, distributed, and autonomous, the
need for robust guidance, navigation, and control (GNC) algorithms grows accordingly. This
trend is particularly evident in the rise of nano- and micro-satellites [51, 52], which impose strin-
gent constraints on onboard power, actuation, and computation [53]. These platforms must be
able to make independent decisions under uncertainty, without human oversight, especially in re-
mote or delay-sensitive space scenarios.

The traditional approaches to spacecraft control typically rely on optimal control and model-
based schemes [53], which, while powerful, often assume idealized conditions and require accurate
modeling of the system dynamics. Moreover, these techniques tend to operate in open-loop or as-
sume predefined flight trajectories, which limits their ability to adapt to changing mission require-
ments or external disturbances. When applied to real-world space robotics applications—where

sensing noise, actuator faults, and partial observability are common—these limitations hinder reli-

35

ability and performance.

Meanwhile, the recent rise of artificial intelligence (AI), deep learning (DL), and reinforce-
ment learning (RL) in terrestrial robotics has opened promising avenues for space applications as
well [54]. Reinforcement learning, in particular, has demonstrated the potential to autonomously
learn complex control policies through interaction, without requiring hand-crafted models. Rele-
vant applications include planetary landing [5S5], spacecraft trajectory planning in unknown gravi-
tational fields [56], terrain navigation [57], and mapping during orbital operations [58].

Despite these advances, the deployment of RL in space systems presents substantial challenges:

* RL policies require extensive training data—unavailable on physical spacecraft—and are dif-

ficult to test safely.

* Existing simulation tools for space applications (e.g., GMAT [59], SPICE [60], Trajectory

Browser [61]) are not designed to support RL-style training.

* Modern physics simulators for robotics (e.g., Gazebo [62], MuJoCo [6], Webots [63], Isaac
Sim [24]) often focus on ground-based or articulated robots and lack support for thrust-

based spacecraft dynamics.

To address these gaps, this thesis presents two core contributions:

1. RANS [36],an open-source GPU-parallel simulator for reinforcement learning-based space-
craft control. RANS allows fast training of RL agents for 2D and 3D free-floating vehicles

using realistic force-based dynamics, fault profiles, and domain randomization.

2. DRIFT [37], a structured extension of RANS enabling real-world policy deployment on
floating air-bearing platforms. DRIFT introduces more complex evaluation scenarios, sup-
ports real-world sensing and actuation profiles, and allows benchmarking of RL versus clas-

sical optimal control methods (e.g., LQR).

36

Figure 3.1: Floating platform testbed used in this thesis, located at the Zero-G Lab. It enables
validation of RL policies in real-world microgravity-like environments using 3DoF thrust-actuated
planar motion.

Together, RANS and DRIFT form a two-stage simulation-and-deployment pipeline for
spacecraft-like platforms. While RANS focuses on fast, scalable training with generalization
across domains, DRIFT targets physical deployment with realistic system modeling and policy
robustness under uncertainty. Figure 3.1 shows the floating platform used for the sim-to-real
validation.

This chapter presents both frameworks and their validation across multiple tasks: pose-
reaching, velocity tracking, fault recovery, and robustness testing. We compare DRL policies
with classical baselines and highlight key factors influencing sim-to-real transfer performance.
These contributions aim to bridge the current gap between RL research and the development of

practical autonomous mobility systems in space.

37

3.2 Related Work

3.2.1 Simulation Tools for Space Robotics

Several general-purpose mission planning and simulation tools have been developed to support

spacecraft navigation. These include:

* GMAT [59], an open-source tool for orbit dynamics and trajectory planning.
* SPICE [60], used for science data analysis and spacecraft ephemeris management.

* Trajectory Browser [61], which allows multi-body trajectory optimization.

However, none of these frameworks are designed for RL-based control or interactive learn-
ing. They assume predefined system models and are not compatible with modern deep learning
pipelines.

On the other hand, popular physics simulators for terrestrial robotics—such as Gazebo [62],
MuJoCo [6], PyBullet [45], and Isaac Sim [24]—ofter plug-and-play tools for RL experimentation.
Notably, Isaac Sim supports GPU acceleration and universal scene description (USD) files, making
it highly extensible. Still, most existing environments target manipulation or ground robots. None
of them extends to thrust-based control or spacecraft analogs.

RANS and DRIFT address this gap by providing fully parallelized and spacecraft-specific
RL simulation tools, integrating domain randomization, fault injection, and real-world transfer

pipelines.

3.2.2 Floating Platforms and Air-Bearing Systems

Floating platforms provide a practical way to emulate microgravity conditions on Earth. Air bear-
ings reduce planar friction and allow free-floating 3DoF motion [64]. These systems have been

widely adopted for rendezvous, docking, and spacecraft servicing research [65, 66, 67].

38

Recent innovations have introduced vision-based sensing [65], dual-arm manipulation [68],
and more robust thruster actuation [69]. However, most control approaches remain grounded in

trajectory optimization or PID-like strategies. Few works explore fully learned policies.

3.2.3 RL for Spacecraft and Floating Platform Control

The use of RL for spacecraft control remains limited, especially in real-world settings. Most works
report simulation-only results [55, 70, 56]. The few real-world studies—e.g., [71, 72] —use hybrid

setups, where RL provides a reference signal to a classical controller. Our work differs in two ways:

* We deploy a fully learned RL policy that directly produces low-level control commands.

¢ We introduce a structured evaluation methodology for comparing learned vs classical con-

trol across both simulation and real-world trials.

To the best of our knowledge, this is the first open-source framework to systematically train,

deploy, and benchmark RL spacecraft controllers on a floating platform in real-world experiments.

3.3 RANS: Highly-Parallelised Simulator for Reinforcement
learning based Autonomous Navigating Spacecrafts

To enable the training and validation of RL-based guidance and control policies for free-flying
spacecraft systems, we introduce RANS—a GPU-accelerated simulator built on Isaac Gym [7]
designed specifically for thrust-based spacecraft dynamics. RANS is developed to bridge the gap
between existing space mission design tools and modern deep reinforcement learning frameworks,
providing a scalable and modular environment for training RL agents on planar and 3D navigation
tasks.

Unlike traditional mission simulators such as GMAT [59] or SPICE [60], RANS supports

direct control of low-level thrust vectors, realistic force dynamics, and randomized physical param-

39

Figure 3.2: Sample renders of RANS tasks in 3DoF (top) and 6DoF (bottom) settings. The simu-
lated agents (cylindrical or spherical) must reach targetlocations and orientations marked by arrows
or pins. Tasks vary in translational and rotational complexity.

eters. It is fully compatible with popular RL libraries (e.g., RL-Games [14]), and includes both

headless and GUI-rendered modes. Figure 3.2 illustrates the visual interface for task visualization.

3.3.1 Parallelism and GPU Efficiency

R ANS s built on NVIDIA Isaac Gym and utilizes its GPU-native physics engine (PhysX) to enable
highly parallelized simulation. This design allows for training thousands of independent agents
simultaneously, drastically reducing wall-clock time for policy optimization. Such efficiency is
particularly valuable for spacecraft control tasks, where long horizons and sparse rewards increase
training time. Figure 3.3 summarizes community feedback on Isaac Sim, the broader ecosystem

from which Isaac Gym originates. Practitioners highlight its GPU performance and extensibility

40

[l strongly Agree [l Agree [l Neutral Disagree [l Strongly Disagree [l 1 don't know

It supports different kinds ofsensor simulations

N
2
N
®

3

The integration with USD helps develop one's own scene and robots
13%

&3

The simulation pipeline is easy to adjust and accelerate the controller development
33%

The official and community support is rich and responsive
20% 33%

Certain types of simulation (e.g. soft/deformable objects) is not well developed
38%

The connection with ROS/ROS2 is easy to use
13%

3
K

K
?
@
i
; i

N
S

(a) Isaac Sim for developing general robotics simulation

M strongly Agree [l Agree [Neutral © Disagree Ml Strongly Disagree [l 1 don't know
Itis not easy to develop and test new DRL algorithms
13%
The API documentation lacks of explanation
20%
The community, e.g., the forum,is not active enough

§

%

§ |
3
§

7%
Itis difficult to debug if the training program is buggy
33%

e

(b) Isaac Sim for developing DRL modules

[strongly Agree [l Agree [l Neutral Disagree [l Strongly Disagree [l don't know
It is easier to train multiple DRL agents in Omniverse Isaac-Sim

43%
The training speed is faster

57%

The physical simulation is more accurate

Itis easier to create diverse scenes

14% 14%
The community and document support is worse

7%

There are more robot/object models in the provided library

B
Bl
E 2

(c) Comparison to other platforms

M strongly Agree [l Agree [Neutral | Disagree [Strongly Disagree [l I don't know

Do you perform testing after the development of robotics tasks?

e
e

Do you think Omniverse Isaac Sim is easy to set up and run tests for robotics tasks?

Have you ever performed testing for robotics tasks in Omniverse Isaac Sim?

Do you think it is a good idea to provide additional testing support for robotics tasks in Omniverse Isaac Sim?
43%

(d) Testing robotics tasks in Isaac Sim

Figure 3.3: Isaac Sim survey on DRL suitability [73]. Although Isaac Gym ofters high parallelism
and flexibility, challenges remain in documentation and community support. RANS builds on
this foundation with domain-specific extensions for spacecraft control.

as key strengths, yet note gaps in documentation and community support [73]. RANS builds
on this foundation by providing domain-specific extensions for spacecraft and floating-platform
dynamics, tailored observation/action spaces, and ready-to-use PPO interfaces.

Unlike traditional CPU-based simulators like PyBullet [45] or Gazebo [62], which simulate
agents sequentially or with limited multi-threading, RANS exploits the GPU’s parallel compute

architecture to run up to 16000 environments concurrently. This facilitates:
* Fast policy iteration and hyperparameter tuning.
* Scalable evaluation over randomized initial states.
* Real-time observation of learned behaviors across task variants.

Combined with the efficient PPO implementation from the r1-games library [14], RANS

enables simulation-to-training cycles at a scale suitable for robust control under uncertainty.

41

Parallel Training Efficiency

R ANS supports running as many as 16,000 environments concurrently on a single GeForce
RTX 4090 GPU. A PPO agent can solve the GoToXY and GoToPose tasks to high accuracy

within 15 minutes of training time, demonstrating the advantage of GPU-accelerated RL

workflows.

3.3.2 Simulator Design and Task Suite

The RANS simulator provides a flexible and high-performance environment tailored for thrust-
based control of spacecraft and floating platforms in 3DoF and 6DoF. The simulation is imple-
mented using NVIDIA Isaac Gym’s PhysX backend, enabling massive GPU-parallel simulations
across thousands of agents. This allows reinforcement learning (RL) policies to be trained efhi-

ciently in domains with complex, continuous dynamics.

Simulation Physics. The simulation timestep is typically set to 10-20 ms, with substepping
used to maintain numerical stability. Agent policies actuate at 5-10 Hz, while the physics engine
runs at 10x higher frequency to avoid instability. Gravity is disabled in 3DoF scenarios to emulate
planar floating motion, while in 6DoF tasks, free-space motion is fully unconstrained.

For thrust application, multiple rigid bodies are created and forces applied at the relative po-
sitions of the thrusters. This circumvents limitations in OmnilsaacGym where consecutive force

applications would overwrite previous inputs.

Environment Definition as an MDP. Each task in RANS is formalized as a Markov Decision

Process (S, A, r,T,7):

* §: State space includes orientation (e.g., 2D angle or 6D rotation representation), linear and

angular velocities, task flags, and target deltas.

 A: Discrete thrust activation vector (binary action per thruster), either 8 (3DoF) or 16

(6DoF) dimensions.

42

* 7: Dense reward function penalizing distance to target, angular deviation, and control effort.
* T: Transition dynamics based on PhysX physics.

* : Discount factor, typically 0.99.

Tasks and Configurations. RANS supports multiple control tasks: In the 3 DoF scenarios, the
simulator includes a default system configuration with 8 thrusters (Fig. 3.4 (a)) and allows users to
customize various parameters, such as mass and thruster positions, via conﬁguration files. Similarly,
in the 6 DoF scenario, the simulators comes with a default 16 thrusters configuration (Fig. 3.4 (b)).

The tasks defined for position control and position-attitude control are:
* GoToXY / GoToPose (3DoF): Reach a target (, y) and optionally a heading angle 6.
* TrackXYVel / TrackXYOVel (3DoF): Match linear or angular velocity commands.

* GoToXYZ / GoToPose-3D (6DoF): Reach a 3D target position and orientation using full

control of all degrees of freedom.

The observation space varies between 10 and 22 dimensions depending on the task, and in-
cludes terms such as: cos(6), sin(6), vy, w;, target deltas, and task-specific identifiers. Table 3.1

summarizes the task-dependent observations.

Table 3.1: Task-specific deltas appended to the observation vector.

Task Observations td Target Types
GoToXY Ax, Ay Position
GoToPose-2D Ax, Ay, A Position + Angle
TrackXYVel Av,, Av, 2D Velocity
TrackXYZVel Av,, Avy, Av, 3D Velocity
GoToXYZ Az, Ay, Az Position 3D

GoToPose-3D Ax,y, z + AR (rotation matrix) Full 6D pose

43

0.4

03
021 0.2
0.0
0.0 o1
-0.2
-0.3

—0.29 0.3

\ -0.3 00
—041 “ 01 —01

-0.2
-0.4 -0.2 0.0 0.2 0.4 03 03

(a) 3DoF (b) 6DoF

Figure 3.4: Arrows indicate the directions of the forces applied by the thrusters mounted on the
system. The center of mass is located at (0, 0, 0).

3.3.3 Baseline Agents and Experimental Results

AllRL agents are trained using PPO [28] with binary action heads corresponding to each thruster.
The policies are implemented as feedforward neural networks with either two or three hidden lay-
ers (128 or 256 units), depending on the dimensionality of the control problem (3DoF or 6DoF).
Training is performed for 2000 epochs using 1024 parallel environments, leveraging GPU acceler-

ation for fast convergence.

44

T oo_—.—|
T2 BN GHINI S d—.—| .
T3 M—.—h» -
E
T4 - " we mnu_—.—k g
s
75 | + won 00-0_—.—| a
T6 | od—.—bo
T7 A ‘" oood—.—|
T8 4 u-.-u-—.—| =
T T T T T 200 300 400 500
50 100 150 200 250 Time steps
(a) Actions count (b) Position distances
T 2.0 - =
— mean | A — mean
—— best 15 I —— best |
—— worst | —— worst
= 1-std | = 1-std
2-std | Lo | 2-std |
—_ E 0.5
E = _ -
8 3
= g 0.0
z a o
o 3 —0.51
2
=T
-1.0 ’
-1.5
-2.0
0 160 200 300 400 500 (4] 100 200 300 400 500
Time steps Time steps
(c) Position distances summary (d) Angular velocities summary
4]
34
21
11 =
s
E o g e R R
> g
-1 g
2
_3]
4]
4 2 0 2 2 200 300 400 500
X [m] Time steps
(e) Trajectories (f) Angle distances
— mealn
3 I —— best |
—— waorst
) = 1std |
2-std
T o
I L ©
o 0
5 g
& 1
- 4S —
_3 e 1-std
2-std
o5 d]
o 100 200 300 400 500 o 100 200 300 400 500
Time steps Time steps
(g) Angle distances summary (h) Rewards summary

Figure 3.5: Evaluation for the “go to pose” task, with 1024 parallel agents running for 500 steps

(25s), each with randomized initial conditions.

3.3.4 3 DoF Pose Evaluation results

The evaluation encompassed spawning a trained policy in random poses around the target, within
distances of 3 to 4 meters. Evaluation metrics, including distance-to-target over time and equiv-
alent planar trajectories, were utilized to quantify and visualize the performance of the trained
agents. Figure 3.5 shows the results of the evaluation of an agent trained for the GoToPose task
over 1024 runs under nominal conditions. In (a) the average number of thrusts activation per
episode shows a high energy demand, needed to achieve both position and orientation control,
which can need constant compensation as there is distinguished actuator for that (e.g. reaction
wheels). (b) and (c) illustrate the fast and stable convergence to the target position through the
distance lines starting from a random position between 3 and 4 meters. Similarly, the plots (f)
and (g) demonstrates the convergence to the target orientation. In (d) the mean and standard
deviation of the angular velocity show the rotation ranges, after an initial spike, tend to quickly
converge to zero, or oscillate around 0.3 radians in the worst case. All the trajectories can be seen
in the 2D plane (e), where starting from a random position they all converge to the center. Finally,
the reward best, mean and worst cases in (h) interestingly display the agents learned behavior to
first collect the orientation rewards by adjusting the attitude, then moving to the target position.

Robustness

3.3.5 3 DoF Linear Velocity Tracker results

The results of the linear velocity tracking policy trained with PPO are demonstrated through a set
of trajectory following examples. To make the agent follow the trajectories, we use a simple look-
ahead planner. In these examples, showed in Fig. 3.6, the RL agents exhibit the ability to accurately
track target velocities, enabling them to follow both simple and more complicated predefined tra-
jectories with precision. This planner acquires the farthest point of the trajectory within a 25cm
radius, or if there are no points within 25cm, the closest point to the system. Using the position
of this point and the position of the system, we compute vector between these two points, nor-

malize it, multiply it by the desired system velocity (0.25m/s) and the resulting vector is given to

46

the agent as the velocity to be tracked. Three distinct trajectories are showcased, including circle,
a spiral, and a square. On the circle trajectory, we can see that the agent can easily track sinusoidal
velocity commands, though the measured velocities are noisy. Similarly, the spiral shows the agent
successfully tracking sinusoidal velocities with different frequencies. The most challenging trajec-
tory to track is the square, this results in step-like velocity commands which the agents match fairly
well. However, we can see that the positive and negative velocities have less overshoot than the null

velocities. This could be linked to the reward design.

47

Trajectory in xy plane

— trajectory

0.5

0.0

y (meters)

~—— system position

-15 -1.0 -0.5 0.0 0.5 1.0
x (meters)

Trajectory in xy plane

0.5

0.0

y (meters)

—— trajectory
—— system position

-15 -1.0 -05 0.0 05 10 15
x (meters)

Linear velocity tracking

—— system velocities
——— system velocities
—— system velocities
—— target velocities
02 —— target velocities
0.1
%
E
"
2
'g 0.0
°
s
5
131
£
S
-0.1
-0.2
-03 v T v T T T

20 40 60 80 100 120 140
time (seconds)

o4

48

Linear velocities (m/s)

Linear velocities (m/s)

Trajectory in xy plane

—— trajectory
~—— system position
15
1.0
0.5
T)
3 00
]
£
IS
-05 /
-1.0
-15
-2.0
-2.0 -15 -1.0 -0.5 0.0 05 1.0 15
X (meters)
Linear velocity tracking
0.2
0.1
0.0 U
-0.1
—— system velocities
021 system velocities
—— system velocities
—— target velocities
—— target velocities
o 20 40 60 80 100 120 140
time (seconds)
Linear velocity tracking
—— system velocities
—— system velocities
—— system velocities
024 — target velocities
: —— target velocities
0.1
0.0
-0.1
-0.2
-03 . .

0 20 40

60 80 100 120 140
time (seconds)

Figure 3.6: Example of trajectory following using agents trained to track velocities. The first three
plots show circular, spiral, and square trajectories executed with a simple look-ahead controller that
provides target velocities to the RL agents. The last three plots show the policy tracking sinusoidal

and square continuous reference signals.

3.3.6 6 DoF GoToXYZ Evaluation results

Presented here is an illustrative demonstration of the policy’s behavior trained for the 6DoF Go-
ToXYZ task. The agent’s initialization occurs on a spherical surface centered around the target,
randomly positioned within a radius of 1 to 5 meters and an angle ¢ ranging from —m to 7. Dur-
ing the evaluation episode, a set of 1024 parallel agents is spawned for the task, converging swiftly
towards the target. Occasionally, some agents display small overshooting or high angular speeds.
Overall, the PPO agent’s performance is acceptable, exemplified by a rendered trajectory illustrated

in Figure 3.7.

Figure 3.7: Visualization of a 10-frame sequence from a rendered episode depicting the 6-DoF
GoToXYZ task. Progressing from top-left to bottom-right, the sequence shows one of the 1024
agents approaching and stabilizing at the designated target location.

3.4 Discussion and Summary

The RANS simulator constitutes a foundational component of this thesis, enabling the develop-
ment, evaluation, and benchmarking of reinforcement learning agents for spacecraft control tasks
in both 3DoF and 6DoF settings. Through extensive experiments, we demonstrated the ability
of PPO-based agents to solve complex pose and velocity control tasks with high accuracy across
thousands of parallel simulated environments.

Built on Isaac Gym, RANS leverages GPU-parallelism to drastically reduce training times and

support systematic experimentation over randomized dynamics, actuator faults, and noise profiles.

49

The simulation framework is explicitly tailored to thrust-based control scenarios, allowing agents
to learn low-level motor policies through binary action heads per thruster. This design supports

fine-grained investigation of actuator interactions and fault resilience.

Key Features of RANS

* GPU-accelerated physics with support for 3DoF and 6DoF spacecraft models.
* Modular task suite with structured observations and actions.
* Compatible with modern DRL libraries and scalable to 6000+ agents.

* Built-in support for custom dynamics, actuator topologies, and logging tools.

While RANS already enables meaningful experimentation, the results obtained are still lim-
ited to simulation and focus primarily on nominal conditions. Future development will extend
the simulator with richer failure modes (e.g., partial thrust loss, sensor degradation), multi-task
training support, and seamless integration with real-world testbeds. This work sets the stage for
the DRIFT platform, which builds on RANS to evaluate policies in a physical floating platform

environment, closing the sim-to-real loop.

3.5 DRIFT: Deep Reinforcement Learning for Intelligent
Floating Platforms

DRIFT builds upon the RANS simulator and extends it to support complex control tasks, realistic
simulation disturbances, and direct deployment on physical air-bearing platforms. This section
details the DRIFT methodology, simulator architecture, task formulation, reinforcement learning

training, and a comparison with optimal control baselines in both simulation and hardware.

50

3.5.1 Problem Formulation

P (Floating Platform Frame)

Xe» %)
T (Target Frame)

0.

W (World Frame)

Figure 3.8: Floating platform and target in the global reference frame.

Similarly to RANS, in DRIFT the task of guiding a FP’s maneuvers is modelled as a sequential
decision-making problem. To facilitate and demonstrate the practical applicability of RL from
sim to real-world scenarios, the complex orbital dynamics is simplified into a two-dimensional kine-
matic model. Asillustrated in Figure 3.8, a global reference frame (denoted W) is used. This allows
for consistent and absolute measurements of the position and heading errors. The framework also
allows for the use of local coordinates whenever considered convenient.

Within this framework the control policy must learn the optimal sequence of actions by ob-
serving state transitions, thereby minimizing the task-specific error. We define the different tasks
as: () Go to pose, starting from a random initial position in the plane, reach the given pose (position
and orientation 0); (2z) Track velocity, track the given velocity vector, which can in turn be used to
follow a trajectory.

For both tasks the control policy is required to minimize the error metrics derived from the
current state observations of the floating platform and the target. Regarding the “go to pose”
task, the positional error is defined as the Euclidean distance between the FP’s current position,
Prp = (Tfp, Ygp), and the target position, pr = (2+,y:), Eq. (3.1), while the heading error is

calculated based on the difference between the platform’s current orientation /4, and the target

51

heading 0;, Eq. (3.2):

ep = |lpc — Poll> (3.1)
eg = arctan 2 (sin(9t — 0, cos(, — ng)) (3.2)

For the “track velocity” task the angular and linear velocity errors (e, €,,) are determined by

subtracting the FP’s current velocities (vy,) from the target velocities (v;), Eq. (3.3) and (3.4).

€ = Vi — Vg (3.3)

The floating platform system [74] system is defined by a 10-dimensional state space, Eq. 3.5. At
each discrete time step ¢, the state variables include the FP’s heading (0), its linear velocities (v, and
vy), angular velocity (w.), a task flag (f) indicating the current task, and four additional variables

(d1—4) representing task-specific data such as distances to the target position and heading:
sy = (cos(B), sin(8), vy, vy, w,, £, dq, da, ds, d4)T. (3.5)

Task-specific data, written d;_4, is detailed in Table 3.1, where A denotes the vector norm
distance between the variables (such as position, velocity, or angle) and their respective target
values. This configuration of the observation space is intentionally designed to facilitate the future
extension of this work to learn policies capable of handling multiple tasks simultaneously.

For the control of the platform, our agents use an 8-dimensional action space that corresponds
to a binary activation of 8 “on-oft thrusters”. These share the same pressure line, such that, at
every step of the control loop, the maximum force generated by each thruster is + N where n is the
number of active thrusters. Simply put, if only one thruster is turned on, it will output 1 Newton,
if 2 thrusters are activated they generate 0.5 N each, etc.

To guide the optimization process for the control policies, aas shown in Figure 3.9, an expo-

52

Table 3.2: State task-specific data.

Task f d; ds ds d,

Gotopose 1 Az Ay cos(Af) sin(Af)
Track velocity 2 Av, Av, -

nential reward structure was adopted, as after empirical evaluation it was found to yield faster and

more accurate convergence. In particular, Eq. (3.6) for the “go to pose” task and Eq. (3.7) for the

“track velocity” task were used:

Ryo = exp (—0f§5) .S, + exp (—06—95) Sy —p (3.6)
Hy = exp (_035) Syt exp <_0€L205> 50— p (3.7)

Reward Function for Go to Pose (R;) Reward Function for Track Velocity (R,)

Reward

Figure 3.9: Reward functions represented in a 3D plot, showing the shape of the scalar exponential
signal provided to the agent for the GoToPose (left) and TrackVelocity (right) tasks.

53

Penalty for Thruster Activation (psct) Penalty for Linear Velocity (p,) Penalty for Angular Velocity (p,,)

Penalty

o 20 40 60 80 100 -20 -15 -1.0 -0.5 00 0.5 10 15 20 -20 -15 -10 -05 00 0.5 1.0 15 2.0
Sample Linear Velocity (|v|) Angular Velocity (|e:])

Figure 3.10: Penalty signals represented in 2D plots: thruster activation (left), linear velocity (cen-
ter), and angular velocity (right) penalties.

In this context, errors are quantified as the norm distance from the specified targets, with e,
denoting the linear velocity error, and e, and eg representing the errors in position and orientation,
respectively. Scaling coefficients .S, and Sy, which adjust the impact of position and orientation
errors, were both set to 0.5 in our experiments. Additionally, p sums up to three penalties (pgct,
Puel> D) designed to discourage excessive thruster activation or reaching states with elevated linear
and angular velocities. A representation of the penalties is displayed in Figure 3.10. Our exper-
imentation with various penalty configurations led us to adopt a penalty for thruster activation,
Eq. (3.8) as well as excessive angular velocities, Eq. (3.9). Here, T" stands for an indicator function

reflecting the on-off states of the thrusters.

8
Pact = 0327—; (38)
i=1
P = 0.15 max(0, |w,| — 1) (3.9)

3.5.2 Simulation

In the original RANS framework, only nominal system and environmental conditions were
present. This hindered the ability of the agents to adapt to non-ideal conditions, which are

usually common when using the real FP systems. To mitigate this gap, we introduce RANS v2.0

S4

which includes the following extensions: (1) parameterized rewards and penalties, to allow easy
fine-tuning of the control policies; (2) analogue kinematic model in Mujoco [6], to allow easy
evaluation of both traditional and RL-based controllers in a non-Torch depended environment;
(3) disturbance generation module, that allows the injection of: (a) Action Noise (AN): a random
disturbance force of £+ an N applied to every thruster; (b) Velocity Noise (VN): £ vn m/s
added to the state velocities; (c) Uneven Floor (UF): uf N of force, added to simulate the floor
unevenness, applied to the FP body throughout the episode, either with a constant direction or
through a sinusoidal generated direction; (d) Torque Disturbance (TD): ¢d Nm of torque applied
to the body’s center of mass; (¢) Random Thrusters Failure (RTF): a zeroing mask over the output
actions to simulate one or multiple thruster failures which remains the same throughout the

episode. Some disturbance are illustrated in Figure 3.11 for better clarity.

55

-4

_:1 _-2 [I) é -:I _Iq -2 [1] ZI ‘I‘
Force Disturbance (FD) Force Disturbance (FD)
Sinusoidal Constant attractor

i o) 0.40

Ts Ta

a2

Y-axls
o
e
I

]
h
-]

Torigie Magnitude

T2 a1

T, N

- - v : =0.3 -0.2 -0.1 0.0 a1 0.2 0.3

Random Thrusters Failure (RTF) Torque Disturbance (TD)

Figure 3.11: Visualizations of the disturbance models used in simulation: (top-left) sinusoidal
force field (FD) introducing position-dependent perturbations; (top-right) constant force field
pulling the agent toward the origin; (bottom-left) Random Thruster Failure (RTF) where a subset
of actuators is disabled during training; (bottom-right) torque disturbance (TD) field inducing ro-
tational drift around the center of mass.

RANS v2.0, requires 30 minutes to train an agent on an RTX 4090. Achieving a through-
put of more than 40,000 steps per second with all disturbances enabled, which is very close to its
previous version. Furthermore, it enables large-scale testing by swiftly evaluating thousands of ini-
tial conditions in seconds. It offers rich visualization options, including metric tracking during
training through the WandB API [75], and comprehensive evaluation metrics presented through

tables and plots. The library uses the Open AI Gym [4] format to define the RLloop, including the

56

standard normalization of the observation space. Additionally, the integration of a ROS interface
enhances the versatility of our framework, allowing easy integration and deployment of the control

policies within real-world robotic systems.

3.5.3 Training Procedure

We reworked the PPO implementation from the RL Games library [14] as the foundation of our
training procedure. This implementation utilizes GPU acceleration to vectorize observations and
actions, enabling parallelization within the simulator by having both the simulation and the policy
training residing on GPU. Our agents are designed as actor-critic networks with two hidden layers,
each consisting of 128 units. This makes them light and fast enough to be ran at high frequency on
embedded devices. The hyper-parameters arelisted in Table 3.3 in the appendix. The agents train in
their respective environments for 2000 epochs (approximately 130M steps). Table 3.3 outlines the
key parameters used in the adapted version of the Proximal Policy Optimization (PPO) algorithm

for training our models.

3.5.4 Benchmark comparison with an Optimal Controller

DRIFT aims to provide a benchmark comparison between deep reinforcement learning and op-
timal control approaches, LQR in particular, for addressing the control problem of the floating
platform in various scenarios. The objective is not to establish the superiority of one method over
the other, but rather to gain insights into the strengths and weaknesses of each approach under
different environmental conditions and task requirements.

An infinite horizon discrete-time LQR controller [76] is used as a preliminary comparison
with the DRL algorithm to control the FP. The LQR technique utilizes linearized dynamics to
comprehensively model system behavior, providing optimal solutions with long-term stability
while handling minor disturbances [77]. Their adaptability and relatively straightforward imple-
mentation have resulted in their adoption for numerous space applications [78, 79, 80]. In the

case of a FP, the position, linear velocities, orientation quaternions, and angular velocities in the

57

Parameter Value

Algorithm PPO
Network Type Actor-Critic MLP
Separate Networks True
MLP Units [128, 128]
Activation Function tanh
Initializer Identity
Regularizer None
Learning Rate le—4
Gamma () 0.99
Tau (1) 0.95
Entropy Coefhcient 0.0
Horizon Length 16
Minibatch Size 8192
Mini Epochs 8
Critic Coefhicient 0.5
Gradient Clipping Norm 1.0
KL Threshold 0.016
Critic Coefficient 0.5

Table 3.3: PPO training parameters.

2D plane are considered state variables of the system, X;. Since a FP operates at a relatively high

frequency, a linearized system dynamics, defined as (3.10)

X1 = AX;, + BU, (3.10)

is sufficient to predict the control output for incremental steps. The linearized system matrices,
represented by A and B, are the partial derivatives of the state vector at the final time step, denoted
as Xj,+1, with respect to the current time step, X, and the control input Uy, respectively. This
computation leverages the central differencing technique, where the effects on the final states are
evaluated in response to deliberate and minor perturbations applied to both the states and control
inputs within the kinematic model simulated in Mujoco. To better account for the disturbances

endured by the FP, the system matrices are updated at regular intervals. The LQR controller

58

minimizes the cost function:
J =Y X;QX; + U;RU;
k=0

where Q and R are weighting matrices that penalize state errors and control outputs. Minimizing

the aforementioned cost function delivers an optimal control sequence given by:
U, = - KX,
where K is the control feedback gain matrix defined by:
K = (R +B'PB)"'B"PA
such that P is a positive definite matrix that is a solution for the Algebraic Riccati equation, as in:
P=Q+A"PA - ATPBK.

The optimal control output, Uy, is an eight-dimensional array with real numbers. Note that the
control outputs correspond to the actuation of the eight thrusters on the FP, hence an alternate

vector B}, is implemented that is a least squares solution to:
i B, -U_,|J?
min || B — U} ||

where U], is the normalized vector of Uy, with values between 0 and 1. Moreover, for 8, =
[uy, Uz, ..., us], each w; for i € {1,2,...,8} represents a binary variable, ie., u; € {0,1}
signifying the actuation state of each thruster as either “on” or “off”.

Table 3.4 summarizes the parameters of the Discrete LQR Controller used. The controller is

made planar compatible, indicating a restriction to the 2D plane.

59

Parameter Value

Name LOR

Q (State cost matrix) [0.0001, 1e-05, 100, 100, 1e-06, 1e-06, 1]

R (Control cost matrix) [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
W (Disturbance weight matrix) [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

Make planar compatible Yes

Control type LQR

Table 3.4: Parameters for the Discrete LQR Controller

‘ ZeroG Laboratory

Learning PPO Agent Computer : ROS Master Optitrack MCS

State (cos(8), sin(0), vy, Vy, 0y, f, dy, d, d3, ds)

200Hz

T Pose Acquisition
State
State

Trained
Policy

Simulation Environments

State Noise

Random
Thruster Q00
| S ‘|| Failures Disturbance %ACTOR
2 Generator 1 Transfer
o N i

. 000
' Torque # h J Actions
- Force

NVIDIA Disturbances Actions Conversions

o OMNIVERSE

Action Noise

Actions Ty_g € [0,1]

1
| 200Hz
H

2
. Active Marker

1 o

A

Floating Platform : ROS Slave

Figure 3.12: Framework employed for training and evaluation. Left: agent interaction during
training and evaluation in simulation, including disturbance injection. Right: deployment of the
trained policy performing open-loop control on the real floating-platform system.

3.5.5 Laboratory Experiment Setup

To validate our approach in a real-world scenario, we conducted experiments using the physical
air bearings platform [74] located within the ZeroG Laboratory at the University of Luxembourg.
This specific platform floats on an epoxy floor, weighs 5.32 kg and measures 31 cm in radius and
45 cm in height, a detailed representation is shown in Figure 3.13. It is equipped with a Raspberry
Pi 4 for onboard control and communication. The ZeroG Lab contains an Optitrack Motion Cap-

ture System (MCS) that precisely tracks the platform’s pose at a frequency of 200 Hz. We derive

60

linear and angular velocities through simple forward differencing, that estimate the rate of change
of positions and orientations over consecutive time-steps. Thanks to the relatively high accuracy of
the MCS, and a reasonable averaging window, concerns about noise sensitivity are negligible. Our
experimental setup maintains a connection between a laptop, the MCS, and the FP through alocal
network. The laptop serves as the ROS (Robot Operating System) master node on the network,
subscribing to the Optitrack node to acquire pose data and publishing the actions of the trained
agents at a rate of 5 Hz. This action frequency is deliberately constrained to prevent damage to
the solenoid valves controlling the thrusters on the floating platform. Figure 3.12 illustrates the
key components interacting during the simulated training and validation phase (on the left), and

those interacting during the closed-loop control tests of the real FP system in the Lab (on the right).

OptiTrack
Marker

IMLI ’
’
/ .
/ ball stud mounting
’
’ s cail
, porous carbon
4
- - air supply
Nozzle Pl]I o 5 15
p 5-15
// / air film (S um)
-7 T, — eviding surface
Airbearing _ - -~

source: https://doi.org/10.1016/j.actaastro.2018.12.004

Figure 3.13: Rendered floating platform used for the experiments, showing detailed positioning
and zoomed views of the air bearings (blue boxes) and thrusters (green boxes).

3.5.6 Experimental Setup

Our experiments encompass both numerical simulation-based evaluations and real-world valida-
tions. For the evaluation, each trained policy was tested across a diverse set of scenarios defined by

various environmental conditions.

61

Performance Metrics

To evaluate the performance of the pose task in numerical simulations, we record 9 metrics: The
percentage of time the agent spends under a given distance threshold during a single trajectory. This
measure is then averaged across all experiments. For instance, PT5 denotes the percentage of time
spentunder 5 cm, we also record this for 2 cm (PT3) and 1 cm (PT4). This measure s also applied to
the heading of the agents when performing the pose task. In this case, OT5 is the percentage of time
spent under 5 degrees, this measure is also done for 2 degrees (OT3), and 1 degrees (OT}). Finally,
we also record the absolute average linear velocity (ALV) and absolute average angular velocities
(AAV). These metrics are compiled per trajectory, and averaged on the whole of them. This enables
us to estimate how dynamic the agent’s movements are. Furthermore, we monitor the average
number of actions used per step (AAS), to evaluate the efficiency of the policy.

To evaluate the pose task in the lab, we only use the position and orientation error, since we
do not have enough experiments to compile more complete statistics. However, we do provide
complete trajectories to better understand the behavior of the RL agent and LQR controller.

Finally, for the velocity tracking, we chose to apply the controllers on a trajectory tracking task.
For that, we wrote a simple trajectory tracker, that generates a velocity vector to track, based on
a sequence of points to follow. This vector is computed by taking the closest point that intersect
with a circle of radius r centered around the system. This radius, is a look-ahead-distance which
can be tuned to adjust the speed of the tracker. The velocity is considered fixed for the whole of
the trajectory, meaning that the instructed velocity is not reduced even if there are sharp corners.
This controller is then applied on 3 shapes, a circle, a square and a infinite. For these trajectories,

we measure the error in velocity, and the averaged trajectory tracking error.

Real-World Experimental Validations

To validate the real-world applicability of our simulation-trained control policies, we used the phys-
ical floating platform with the laboratory setup described in section 3.5.5 to perform a series of

experiments. Each test run, for the same policy, initiated the FP from different initial conditions,

62

Table 3.5: Benchmark of the RL model and LQR controller under disturbances. For PT and OT,
higher values indicate better performance; for ALV, AAV, and AAS, lower is better. Colors in the
table indicate the drop in performance relative to each method’s ideal (no-disturbance) conditions:
blue (0-20%), green (20-40%), , red (60-80%), purple (80-100%). LQR dynam-
ics parameters are tuned without noise or disturbances enabled.

Conditions Controllers Disturbances Metrics
VN UF TD RIF | PTS PT2 PT1 OTS OT2 OT1 ALV AAV AAS
(m/s) (N) (N'm) () | (%) (%) (%) (%) (%) (%) (m/s) (radfs) ()
Ideal RL - - - - 64 34 6 94 89 73 0.08 0.12 0.29
LQR - - - - 73 41 17 27 11 5 0.07 0.16 0.10
RL 0.02 - - - 64 30 7 94 90 72 0.08 0.12 0.31
Velocity Noise RL 0.04 - - - 61 21 6 94 89 66 0.09 0.13 0.31
LQR 0.02 - - - 53 6 4 1 0 0.09 0.49 0.23
LQR 0.04 - - - 14 3 0 1 0 0.15 0.56 0.29
Constant Torque RL - - 0.05 - 63 24 94 86 61 0.08 0.12 0.35
LQR - - 0.05 - 57 6 3 1 0 0.07 0.43 0.35
RL - 0.20 - - 63 29 7 94 920 74 0.09 0.12 0.30
Constant Force RL - 0.40 - - 52 5 94 89 72 0.09 0.12 0.31
LQR - 0.20 - - 66 4 28 12 6 0.07 0.15 0.12
LQR - 0.40 - - 23 0 0 30 13 6 0.08 0.16 0.15
Constant Force & Torque RL - 0.20 0.05 - 62 24 5 94 86 61 0.08 0.12 0.35
LQR - 0.20 0.05 - 13 2 0 3 1 0 0.07 0.44 0.32
RL - - - 1 6 70 SS 0.10 0.12 0.28
Thruster Failures RL - - - 2 15 6 2 31 20 0.16 0.15 0.25
LQR - - - 1 5 20 8 4 0.10 0.21 0.16
LQR - - - 2 12 4 1 4 0.14 0.28 0.22

namely position and orientation within the lab.

3.5.7 Results

Simulation-based experiments demonstrate the efficacy of the PPO-based approach in achieving
the defined tasks. The agent exhibits rapid task completion, stability in control, and adaptation
to various scenarios. Quantitative metrics and qualitative visualizations substantiate the agent’s

high-performance capabilities.

Numerical Simulation RL & LQR

In this section, we explore the behaviour of an RL agent trained to perform the “go to pose” task,
and compare it to the LQR controller. We chose the “go to pose” task as it is a representative exam-

ple, allowing us to assess the behaviour of different policies while controlling both the position and

63

the orientation of the FP. To characterize the controllers’ behaviors we expose them to a range of
disturbances. Neither the RL agents nor the LQR are specifically adapted to incorporate methods
from robust RL or robust optimal control theory. Yet, it is important to acknowledge that the RL
agent was trained with some domain randomization to learn how to deal with force disturbances
up to 0.25 N. Both of them are evaluated in MuJoCo, with similarly randomized initial conditions.
In Table 3.5, each line corresponds to an experiment, with various disturbances applied, and was
compiled using 256 trajectories of 250 steps each.

First, the two test models are analyzed under ideal conditions with no disturbances. From the
PT metrics, it is evident that the LQR controller converges faster in position with better accuracy
than the RL, owing to substantially longer durations where the LQR maintains a position error
under 1 cm. We can also see that the RL controller first aligns its heading with the goal, as it spends
almost all its time under the 5° threshold. This is a byproduct of its reward shaping, which incen-
tivizes the convergence of the heading as much as the position. Hence, to score the maximum of
points, aligning the heading first is a sound strategy as it is the easiest under ideal conditions. Fi-
nally, AAS values show that the LQR is a lot more fuel efficient in these conditions, with 66% less
fuel used than the RL agent.

When considering the Velocity Noise (VN)), it is observed that with the lowest noise level,
the RL performances remain unchanged, while the LQR struggles, in particular with attitude
control. With 0.04 m/s of noise, the performance of both controllers decreases. However, the RL
controller is more resilient than the LQR controller to this kind of disturbance, even though it
was not trained for it. In the interest of brevity, we do not report action noise value in the table, as
we found their effect to be negligible on both controllers.

Furthermore, when examining the Torque Disturbance (TD) of 0.05 N-m, equivalent to 1/6-
th of the total torque capacity of the platform, the performance of both controllers experiences a
noticeable reduction, particularly for the LQR controller. A similar pattern is observed with the
force disturbance (UF), which would be equivalent to an uneven floor in the lab. In this case, start-

ing by applying 0.2N of force on the platform (equivalent to 1/5th of its maximum thrust), results

64

in the performance of both controllers being close to the ideal conditions, with a small performance
drop of the LQR in fine positioning. When doubling it (0.4 N), the RL policy remains close to
its baseline, but the LQR performance decreases, making it unable to maintain positions under
the 2.5 cm threshold. Similar behaviours are observed upon the addition of both force and torque
disturbances.

Finally, the thruster failures impact the performance of both controllers in the same manner.
With a single failed thruster, both controllers perform relatively well, but the addition of a second
thruster failure impedes the controller’s ability to drive the FP to its defined goals.

Overall, while the LQR controller demonstrates greater efficiency and precision in position
control with our current tuning, it encounters challenges when subjected to the selected range of
disturbances. In contrast, RL exhibits a lower degree of energy conservation but offers stronger
resilience when subject to a wide range of disturbances. It is possible that with a different cost
function, better tuning of its weights, and a robust optimal control approach, the LQR becomes
adept with these disturbances. Similarly, the RL agent could be induced to learn more conservative
policy that uses less actions throughout the episodes, via adequate reward shaping. However, the
RL agent is not using a robust RL approach either, and domain randomization was only applied

on force disturbances up to 0.25N, which is less than the disturbances it can overcome.

ZeroG Laboratory

For experiments with the real FP system, we report tests using both the RL and LQR methods for

the “go to pose” task, and tests using the RL agent only for the “track velocity” task.

Go to pose The controllers are run on the FP, which is connected to a constant air supply
through a tether. This tether applies some light unknown disturbances such as a small torque and
force to the platform. Moreover, the system velocities are derived from the optitrack system. The
observed velocities include minor noise and small delays due to network communication.

Figure 3.14 illustrates the performance of each controller. The first row shows the trajectories

65

of the FP, and the second row shows the distance to the goal in position and orientation. The first
two columns have the rough same initial pose: Init1, while the two last share the same initial pose:
Init2.

From the last row, it is evident that the LQR controller converges faster in position than the
RL controller. This aligns well with the behaviours observed in the simulation benchmark, with
an LQR controller converging faster. However, it is also apparent that the LQR solution exhibits a
minor overshoot. Such an observation is also in line with the simulation benchmark, as the uneven
floor in the lab likely disrupts the LQR controller by applying a subtle constant force, preventing
it from reaching its simulation baseline performance. Looking at the top row, we can see that the
LQR is also overshooting a bit. Of course, the behaviour can be adjusted by modifying the weights
associated with the importance of the error in position in the cost matrix. It is also worth noting
that if these weights are not large enough, the LQR controller struggles to converge toward the
goal. It is also worth noting that the LQR controller is sensitive to the weights; smaller weights do
not incentivize the FP motion toward the goal. Compared to the simulation, we had to adjust these
weights to make the controller more aggressive in order to have satisfactory performances. In com-
parison to the simulation, it was deemed necessary to alter the weights of the LQR controller to
yield a more aggressive approach to achieve satisfying performances. As for the RL agent, it can be
seen that it is first aligning its heading and then slowly converging towards the goal. As for the RL
agent, it is noticeable that the FP initially aligns its heading and then gradually converges toward
the goal. Consistently with the results from the simulation, the RL controller is significantly more
accurate in terms of heading while achieving a position accuracy similar to that of the LQR con-

troller. Overall, both controllers performed well in the lab, reaching their expected performances.

66

Init 1 - RL trajectory Init 1 - LQR trajectory Init 2 - RL trajectory Init 2 - LQR trajectory

3.0
10 N N N
2.5
05 1 1 1 20 K
E Ty
e g
= <
S s
Z 00 B B B \(]
2 15 2
S 2
> £
05 1 1 1 103
- @
2
0.5
-1.0
-20 -15 -10 -05 00 -2.0 -15 -10 -05 00 -20 -15 -10 -05 00 -20 -15 -1.0 -05 00
x_position (m) x_position (m) x_position (m) x_position (m)
Init 1 - Position distance (m) Init 1 - Attitude distance (rad) Init 2 - Position distance (m) Init 2 - Attitude distance (rad)
— RL
. — LR
10 —-- 5em
— —-- 2.5cm
5
e
]
E
= 107! ==
]
3
&
2 \\/\
[T S — A
o
c
el
7
o 1072
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0o 5 10 15 20 25 30 35 0 5 10 15 20 25
time (s) time (s) time (s) time (s)

Figure 3.14: Comparison of the RL and LQR controllers on two difterent initial poses in the Zero-
G Lab. Init 1 denotes the first initial pose and Init 2 the second. For the trajectory plots, the y-axis
is shown on a logarithmic scale for improved visualization.

67

Circle Trajectory Infinite Trajectory Square Trajectory

1.00 4 1.04
0754 0.4 (\r,—\
] 0.5 4
050 0.2
0.25
>~ 0.00 = lab Actual N 0.01 . 004 = |ab Actual
N lab Target lab Target
-0.251 |\ —0.2
—0.501 =031
—0.44
—0.754
= |ab Actual
_10,
—=1.001 —0.6 1 lab Target N o
-10 -05 00 05 10 -1 0 1 -10 -05 00 05 10
X X X
Circle Trajectory Infinite Trajectory Square Trajectory
157 - = sim Actual 154 o= —
-~ sim Target
0.4
1.0 104
054 f 0.2 0.5
= sim Actual = sim Actual
0.04
> 00 sim Target > 00 s sim Target
-0.51 —02 =0.37 ‘
-1.04 |
-1.01
_04,
=1.51
-1.51
-1 0 1 -1 0 1 -1 0 1
X X X

Figure 3.15: RL agent performing velocity tracking in simulated (bottom) and lab (top) environ-
ments. From left to right, circular, lemniscate, and square trajectories are used as references.

Track velocity

In the tests performed for this task in the lab, the objective is to assess the simulation-trained policy
ability to adhere to a set of predetermined target velocities. Since the LQR model relies on both
position and velocity states as input, while the RL agent only requires velocity, we opted to present
the RL policy results for this specific task. Both numerical-simulation and lab tests are displayed
to validate the sim-to-real transfer.

Similar to the “go to pose” experiments, the FP was subjected to un-modeled disturbances
affecting both linear and angular motion. An additional challenge in these tests was the accurate
estimation of velocities, affected by slight measurement noise and communication delays. The pre-

generated trajectories to be tracked by the policy were designed to test the FP’s response accuracy

68

Shape Lab Error (1 = o) [m/s] Sim Error (i1 £ o) [m/s]

circle 0.03 & 0.02 0.01 +0.01
infinite 0.04 £ 0.03 0.01£0.01
square 0.07 = 0.05 0.05 +0.08

Table 3.6: Comparison of velocity errors between lab and simulation environments for the Track-
Velocity task. All trajectories are tracked at 0.2 m/s.

and agility.

Figure 3.15 illustrates the target trajectory and the FP’s position for the circle, square and infi-
nite shapes. It is clearly visible that the hardest task was to follow a squared-shaped trajectory. This
is due to the sharp turns that require precise maneuvering and acceleration adjustments, which
could be induced by reducing the look-ahead-distance and target velocity of the tracking when
close to corners. The performance metric used is the linear velocity error e, expressed as u £ o,
where 1 is the mean and o is the standard deviation during the test duration. Table 3.6 reveals that
the lab environment generally presents higher velocity errors compared to the simulation environ-
ment, particularly notable in the square shape with a lab error of 0.07 & 0.05 m/s versus a sim error
of 0.05 £ 0.08 m/s, the difficulty of real-world transfer. For the infinite trajectory, we observed a
slight overshoot in the path’s lower regions, caused by the irregularities in the epoxy floor, which
are significant in that area of the laboratory, affecting the FP’s motion. This can also be seen on the
square, and to less of a degree on the circle. In our case, there is a slope pulling free-floating objects

towards negative y.

3.6 Discussion and Summary

This chapter presented DRIFT, an experimental framework and physical testbed enabling the vali-
dation of DRL-based control policies on air-bearing floating platforms. Building upon the RANS
simulator, DRIFT introduced a sim-to-real pipeline that supports both position—orientation con-
trol and velocity tracking in a 2D planar space, emulating the drag-free conditions of microgravity.

We demonstrated that PPO-based agents trained entirely in simulation could be successfully

69

transferred to the physical floating platform with minimal degradation in performance. Compar-
ative experiments against optimal control techniques such as LQR revealed that while traditional
methods remain effective under nominal conditions, DRL policies exhibit greater robustness in
the presence of stochastic force fields, actuator delays, and model mismatch. This confirms the po-
tential of DRL for real-world space autonomy, particularly when accurate modeling is infeasible

or when onboard adaptability is required.

Key Contributions of DRIFT

* Introduced a sim-to-real pipeline for 2D floating platform control.
* Demonstrated task transfer of PPO policies under domain uncertainties.

* Compared DRL with LQR under force disturbances, showing better adaptability of

learning-based policies.

* Released an extended simulation framework with richer dynamics, visual tools, and

task diversity.

Despite the encouraging results, limitations remain. The current DRL agents use feedforward
policies, which may underperform in highly delayed or partially observable settings. In future work,
we plan to investigate memory-based architectures (e.g., LSTMs or Transformers) and augment the
simulation with additional sensors and disturbances. Moreover, extending the platform to sup-
port articulated morphologies—such as legged robots with reaction thrusters—could open new
avenues for microgravity locomotion and hopping-based mobility.

Together, RANS and DRIFT lay the groundwork for reproducible research in space-relevant
RL control, from scalable simulation to real-world deployment. These efforts inform the unified
training and evaluation frameworks described in the next chapters, where we extend from space-

craft scenarios to multi-robot navigation and aerial-ground control.

70

Chapter 4

Unified Learning-Based Navigation Across
Diverse Robot Platforms in Simulated and

Physical Environments

4.1 Introduction and Motivation

The previous chapters have highlighted the growing role of simulation frameworks in advancing
reinforcement learning (RL) methods for robot navigation. While task-specific environments like
RANS and DRIFT provided efficient training grounds for spacecraft and microgravity platforms,
the broader robotics field still lacks standardized frameworks to develop, compare, and deploy RL
agents across heterogeneous platforms and environments.

This chapter introduces RoboRAN, a multi-domain simulation and evaluation framework
designed to scale up RL-based navigation research across diverse robotic systems. The work builds
on the IsaacLab [24] ecosystem and extends it with modular abstractions for tasks, robots, eval-
uation protocols, and deployment pipelines. RoboR AN is a direct response to the limitations
of isolated, domain-specific benchmarks that hinder generalization and reproducibility in robot

learning research.

71

Unlike previous chapters, which focused on single-domain systems (e.g., spacecraft, floating
platforms), RoboR AN targets cross-medium extensibility—supporting thruster-based, wheeled,
and aquatic robots under a unified RL stack. It enables flexible robot-task combinations, allow-

ing RL practitioners to train and evaluate one policy per pair under standardized configurations,

reward structures, and performance metrics.

Figure 4.1: RoboR AN supports RL-based navigation tasks across a variety of robotic platforms,
including the Kingfisher USV, Floating Platform, Turtlebot2, Leatherback, and JetBot. The first
three were also evaluated in real-world conditions.

Acknowledgments. This framework was developed as part of a collaborative effort. While I
led the design, implementation, and testing of the simulation stack—including all robot and task
abstractions and domain-randomized training—I contributed only marginally to the real-world
deployment of trained policies. These hardware experiments were conducted by my co-authors,
who also developed the ROS 2-based deployment infrastructure and supervised the physical tests

on the Floating Platform, USV, and Turtlebot2 robots.

72

Main Contributions

This chapter presents four key contributions, structured around design, training, deployment, and

evaluation:

1. A modular and scalable RL framework that enables robot—task interchangeability through
standardized APIs. This supports the seamless integration of new tasks and robotic platforms

with minimal code duplication or structural changes.

2. Sim-to-real transfer across three distinct physical robots, leveraging a shared training
pipeline with domain randomization and physically plausible noise models. Experiments
span microgravity emulation (floating platform), aquatic (Kingfisher USV), and terrestrial

(Turtlebot2) systems.

3. The first open-source deployment interface for IsaacLab-trained policies, bridging the
gap between simulation and physical execution. The interface supports models trained with
rl_games [14] and skrl [81], includes lightweight inference routines, and integrates with

Docker [82] and ROS 2 [83] for field deployment.

4. A unified evaluation suite for navigation tasks across different domains, using consistent
metrics (e.g., distance-to-goal, heading error, constraint violation rates). This allows repro-

ducible comparisons and cross-domain policy benchmarking.

4.2 Related Work

Reinforcement Learning (RL) has emerged as a powerful paradigm for control tasks, demonstrat-
ing its ability to learn complex policies directly from sensorimotor data. This has led to significant
advancements across various domains, including robotic manipulation [84], humanoid locomo-
tion [85], and the control of legged robots [86]. While benchmark development has primarily
centered on manipulation [87, 88, 89, 90], navigation remains a fundamental aspect of embodied

intelligence that has gained increasing attention [91, 36].

73

Table 4.1: Comparison of RoboR AN with existing RL frameworks.

Benchmark Domain Diversity Task Types Sim-to-Real Robustness Sensor / Env. Realism Modularity Backend
RoboRAN (Ours) Land / Water / Orbital Navigation (4+) V(3 robots) Partial Moderate (realistic physics) v IsaacLab
RL-Nav (Xu etal., 2023) [98] Ground Navigation (1) (1 robot) Partial Moderate (realistic physics) Partial Gazebo
Habitat 2.0 [93] Indoor Rearrangement / Manipulation — Limited High (photorealism, articulation) Partial Bullet
RRLS [99] Sim (MuJoCo) Continuous control — V' (worst-case) Low Moderate MuJoCo
Robust Gymnasium [100] Sim (varied tasks) Control / Safe RL / Multi-agent — v (disruptions) Medium v Gymnasium
FlightBench [95] Aerial (quadrotors) Ego-vision navigation V(1 robot) Partial High (occlusion, motion blur) — Custom
BARN [94] Ground Reactive / Safe navigation V/(Lrobot) v (safety/uncertainty) Medium / Low Partial ROS/Gym
iGibson 0.5 [97] Indoor Interactive navigation — Limited High (realistic sensors) Partial Gibson + PyBullet
Aquatic Benchmark [96] Wiater (aquatic) Point-to-point navigation — Partial Moderate (hydrodynamics, drift) — Unity3D

To facilitate learning-based navigation, numerous simulation environments and physics en-
gines have been developed. Frameworks such as MuJoCo [6], PyBullet [45], Webots [63], and
Isaac Gym [7] provide efficient and scalable platforms for RL training, but are often constrained
to single-domain settings or specific robot morphologies. IsaacLab [24] extends Isaac Gym by
supporting diverse robotic platforms, though it lacks both a structured evaluation suite for bench-
marking RL policies across tasks and domains and the flexibility for interchangeable training of
multiple tasks across multiple robots. Several recent benchmarks have addressed learning-based
navigation under specific environmental and sensory constraints. Habitat [92, 93] targets high-
level planning and mobile manipulation in photorealistic indoor environments. The BARN chal-
lenge [94] focuses on low-level control in cluttered scenes, while FlightBench [95] benchmarks
ego-vision-based navigation for agile quadrotors. Aquatic navigation tasks are considered in [96],
and iGibson 0.5 [97] provides an interactive benchmark in household environments. These ef-
forts, however, are typically domain-specific and lack support for robot—task interchangeability or
sim-to-real evaluation.

Robustness and generalization have become important in recent benchmark development.
RRLS [99] introduces worst-case robust control evaluation using adversarial domains in Mu-
JoCo, while Robust Gymnasium [100] defines modular disruption models across 60+ tasks.
Although these environments are well-suited to studying resilience in policy learning, they remain
simulation-bound and are limited in the diversity of robotic embodiments.

Prior work such as [98] identifies four key desiderata for RL in robotics (uncertainty handling,
safety guarantees, data efficiency, and generalization) and provides valuable evaluation metrics and

insights. The Gazebo-based simulation environment used in this work supports algorithm compar-

74

isons, butislimited to a single navigation task and robot. In contrast, RoboR AN emphasizes multi-
robot, multi-domain flexibility within a high-throughput, GPU-accelerated simulation stack. Its
modular design and extensibility enable future integration of safety-focused features such as policy
and environment constraints.

While robustness and safety-centric studies like RRLS [99], Robust Gymnasium [100],
and [98] focus on domain shifts or guarantees, RoboR AN provides complementary value by sup-
porting simple real-world deployment and modular task-robot definitions, allowing practitioners
to easily integrate different robot morphologies and new navigation tasks across diverse physical
environments. Table 4.1 compares RoboR AN with existing RL benchmarks along axes such as
domain diversity, task types, sim-to-real validation, robustness testing, realism, and modularity.
We highlight our benchmark’s cross-domain reach, support for real-world deployment, and

modular structure enabling extensibility.

4.3 RoboRAN Overview

Common Environment Manager

Custom Fhysics
ion
Train Deploy
Robot APT
ROS2 APL

Task API

Extensible
Set of Robots

Evaluate

Performance Metrics Y.

RL Model

w
[}
=%
— [©
»n =
g B RL Library & ;
5 k) = S| Turtlebot 2 Floating Platform
w A =
Go,To Pose % Go To Position
- y, Direct Environment

RoboRAN Isaac Lab Real Robots

Figure 4.2: RoboRAN framework: the Navigation Tasks and Simulation Robots modules, to-
gether with a chosen RL library, are the only inputs required by the Environment Manager to
train a policy in simulation, producing a ready-to-deploy network for the real robot counterpart.

RoboR AN is designed to train and evaluate robotic navigation tasks across a variety of opera-

tional settings. We introduce a unified structure where diverse robots can be evaluated on a shared

75

set of tasks, using consistent interfaces and metrics. This design uniquely enables seamless inter-
changeability between agents and environments across different physical domains.

Our environment, formulated as a standard Markov Decision Process (MDP) [101], is defined
by the tuple (S, A, P, r,7), where S is the set of states, A is the set of actions, P(s" | s,a) is
the transition probability function, 7(s, a) is the scalar reward function, and v € [0, 1] is the
discount factor. At each time step ¢, an agent observes a state 5; € S, selects an action a; € A
according to its policy 7(a; | s;), receives a reward r, = (s, a;), and transitions to a new state
St41 ~ P(- | st, at). The environment thus provides at each step an observation o; € O, areward
71, and a done signal d; € {0, 1} indicating termination. The goal of the agent is to maximize the
expected return J () = B, [327 7' (ss, a;)| over episodes of length 7.

Figure 4.2 depicts the main components of our framework:

The Common Environment Manager instantiates a specified task-robot pair, dynamically
configuring the simulation assets, physics parameters, and task constraints based on the robot’s
specific characteristics and operational medium. This modular design is a key contribution of
our framework, as it enables full interchangeability between tasks and robots, and sub-module
addresses a distinct aspect of this flexibility.

The Custom Physics module computes custom dynamics and actuation forces through parame-
terized thruster/propeller models. For instance, it applies hydrodynamic and propeller models for
surface vessels, or microgravity and frictionless dynamics for the floating platform. It also enables
flexible rewards to platform-specific constraints, such as penalizing rapid thruster actuation.

The Custom Domain Randomization module implements the disturbances detailed in subsec-
tion 4.3.4 which are required to achieve sim-to-real transferability.

During training or evaluation, the Performance Metrics layer attach task-specific logging hooks en-
abling both on-line navigation metric updates and uniform post-hoc evaluation.

The ROS2 API simplifies policy deployment by using a ready-to-use inference node that exposes
standard ROS2 interfaces, eliminating manual policy export steps that differ across RL libraries.

Together, these sub-modules enables flexibility and streamline the pipeline that shortens the

76

loop between Training, Deployment and Simulation for diverse types of robots.

4.3.1 Robots

RoboR AN supports all robots presented in Figure 4.1. Among them, we selected three represen-
tative robots for further evaluation and field tests. Their characteristics and control properties are

summarized in Table 4.2.

Land

We selected the Turtlebot2, an open source platform with differential drive system with non-
holonomic dynamics. To demonstrate the extensibility of our stack, two more wheeled robots

(Leatherback and JetBot) are supported and tested in simulation.

Water

We use the Kingfisher M200', a surface vessel with high inertial properties featuring a catamaran
hull configuration and is driven by two fixed propellers, one on each hull. To simulate aquatic
dynamics, we override IsaacLab’s default planar physics with custom hydrodynamics and hydro-

statics models, enabling more accurate motion behaviors influenced by water resistance.

Space

We implement a floating platform, a thruster-actuated system constrained to planar movement,
mimicking spacecraft-like motion with force-based control. This robot, through air bearings
mounted on its base, generates a microgravity effect by pushing a constant airflow against the floor
to lift and levitate in a free-floating fashion. To simulate this effect, we implement a custom fric-

tionless dynamics to approximate free-floating orbital behavior, which is not natively supported

by IsaacLab.

1https:/ /clearpathrobotics.com/

77

Table 4.2: Comparison of robot properties in RL navigation tasks. Control inputs are expressed
as mathematical spaces.

Robot Actuation Type Degrees of Freedom Control Input Space Motion Constraints

Floating Platform Thruster-based (binary) 3 (x, y, yaw) {0,1}8 No rolling/pitching, planar motion
Kingfisher Water-based thrusters 3 (x, y, yaw) R? (left/right thrust) Drag and inertia effects, smooth but slow
Turtlebot2 Differential drive 3 (x, y, yaw) R2? (v, w) No lateral movement, limited turn speed

Table 4.3: Summary of navigation tasks, objectives, and observation space.

Task Objective Obs Obs Components Obs Variables
Dim
GoToPosition Reach a target position | 6 Base Velocities, Target | [v,, vy, w], [d, cos(f), sin(0)]
Info
xy Uy, W] d7 0) in(¢ >
GoToPose Reach a target 3DoF | 8 Base Velocities, Target [vz, vy w]. [d; cos(8). sin(6)]
pose Info, Target Heading [cos(¥), sin(v))]

[V, vy, w], [d, cos(B), sin(0)],

GoThroughPositions | Follow a sequence of | 6 4 3n | Base Velocities, Target
[d;, cos(6;),sin(6;)]

waypoints Info, Future Goals

TrackVelocities Maintain a set velocity | 6 Error Terms, State [€v; €1, 0], [Vn, Uy, W]

These three representative robots (FloatingPlatform, Kingfisher, Turtlebot2) are described in

the main evaluation; additional wheeled platforms supported by RoboR AN are summarized next.

Additional wheeled platforms

In addition to the TurtleBot2 (used for real-world deployment and sim-to-real evaluation), Robo-
R AN supports two further wheeled platforms in simulation: the Leatherback (NVIDIA research
platform) and the JetBot (open-source educational robot). Including multiple wheeled platforms
highlights RoboR AN’s modular robot API and allows us to evaluate how learned navigation con-
trollers generalize across differential- and Ackermann-style locomotion without modifying the task

definitions or training pipeline.

4.3.2 ‘Tasks

While IsaacLab designs tasks around fixed robot models, RoboR AN decouples robot and task

definitions, allowing consistent training and evaluation pipelines for any supported robot across all

78

tasks. Our framework includes a suite of four navigation tasks designed to evaluate robotic motion
in different environments and actuation methods. Each task leverages a structured observation
space, detailed in Table 4.3, providing essential state information such as base velocities [v,, vy, w],
which capture the linear and angular velocity of the agent. To enhance temporal reasoning, we
augment the observation vector with the previous action a;_1, enabling the policy to infer dynamic
transitions and improve stability in control. In all tasks, the observations are provided in the robot’s
own frame and apply Domain Randomization that mimics the noise of real sensors commonly
used for state estimation.

GoToPosition task requires the agent to reach a randomly initialized 2D position using the
target information [d, cos(0), sin(6)], representing the Euclidean distance and bearing to the goal.
The relative angular position of the goal, is provided as a cos and sin of the angle to ensure the ob-
servations are continuous [102].

GoToPose task is similar to GoToPosition, but also requires orientation alignment. Therefore, the
observation space incorporates the target heading as [cos(1)), sin(¢))] to provide the angular dis-
tance to the desired final orientation.

GoThroughPositions task involves sequential navigation through a series of n waypoints, intro-
ducing future goals [d;, cos(0;), sin(6;)] in the observation space to ensure smooth trajectory plan-
ning.

TrackVelocities task requires the agent to follow a time-varying velocity reference in both linear
and angular components. The observation space includes velocity error terms ey, e;, €,,] capturing
deviations from the desired forward, lateral, and angular velocities. While no explicit path planner
is embedded in the control policy, the velocity references can be derived from any arbitrary tra-
jectory generator, including spline interpolators or MPC-based local planners. In this sense, the
generator acts as a lightweight path planner, and the learned policy serves as a robust low-level con-
troller that tracks planned motion commands across diverse robot morphologies and terrains.

These tasks provide a flexible evaluation suite for RL-based navigation, adaptable to use-cases

such as autonomous docking, inspection, formation control, and trajectory tracking. While the

79

core experiments in this paper focus on fundamental control-oriented tasks without obstacles or
perceptual inputs, the framework is designed to support more complex scenarios. Thanks to its
modular architecture, features such as obstacle avoidance, moving targets, and real-world sensing

modalities can be integrated with minimal code changes.

4.3.3 Reward Formulation

The reward function combines task-specific objectives with general regularization terms to ensure

consistent goal-directed behavior and control smoothness across robot types. Its unified form is

shown in Eq. 4.1, where d,,, dj, and d}, denote the distance to the goal position, heading misalign-

ment, and boundary proximity respectively. The terms v; represent linear and angular velocities

clipped to task-defined ranges, Ad,, is the signed progress along the goal direction, and ¥ g0l pro-
robot

vides a terminal bonus when the goal is reached. The term 7;°>°" adds optional robot-specific shap-

ing such as control regularization.

e = Z wie_di/)\i + Z Wy Clip(vja Unmin; Umax) + ngAdp + Whns * J’lébonus + TIE,ObOt
ie{p,h,b} je{v,w}
(4.1)

The weights w;, w;, Wy, and Wy vary by task, and are denoted in Table 4.4 as c; for GoTo.Po-
sition, (3; for GoToPose, ¢; for GoThroughPositions, and y; for Track Velocities with decay constants
Ai shared across tasks. For example, o e~dn/M encourages position convergence in GoZoPosition,
while B~/ A g=dn/Aa jointly rewards alignment in GoToPose. Similarly, progress is captured by

—ei/As

$1Ad,, in GoThroughPositions, and Track Velocities uses ;e to penalize velocity tracking er-

rors. All coefficients were tuned for balance and stability across robots, and are reported in Table 4.4

for full reproducibility.

4.3.4 Domain Randomization

To support sim-to-real transfer, we apply domain randomization in three key areas: (i) robot mass

properties (mass, center of mass location, inertia tensor), (ii) actuation noise via Gaussian perturba-

80

Table 4.4: Reward parameters for PPO training. Task-specific coefficients and decay values used in
Equation 4.1.

GoToPosition ‘ GoToPose ‘ GoThroughPos. ‘ TrackVelocities
a1 (pos) 1.0 | Bi1 (pose align) 1.0 | ¢4 (progress) 1.0 | 7 (lin vel err) -1.0
@z (head) 0.25 | Bj1 (lin vel) —0.05 | ¢y (head) 0.05 | 7i2 (ang vel err) —0.5
a1 (lin vel) —0.05 | Bj2 (ang vel) —0.05 | ¢;1 (lin vel) 0.0 | ;3 (bonus) 0.0

aj2 (ang vel) —0.1 | Bpns1 (boundary) —10.0 | ¢jo (angvel) —0.05 | Ypns1 (boundary) —10.0
Qpns1 (bonus) —10.0 | 5,41 (progress) 0.2 | Ppnst (bonus) —10.0 | — —

A1 = 1.0 (dist) ‘ A2 = 0.25 (head) ‘ A3 = 1.0 (bnd) ‘ Ay = 1.0 (vel err)

tions to commanded actions, and (iii) external disturbances modeled as random wrenches applied
to the robot’s base. The amount of randomization is chosen at random at every reset. We ensure
reproducibility through a per-environment seed-controlled random number generation (RNG)
using Warp [47], allowing fine-grained domain randomization across parallel training environ-
ments. We apply moderate randomizations to simulate real-world uncertainties. For the Turtle-
bot2, we vary its mass by +0.1kg and CoM by +0.05m (std = 0.01), reflecting typical manu-
facturing variances. For the Kingfisher, which operates in a fluid environment, we use broader
mass (£2.0kg) and CoM (£0.05 m) perturbations, and apply random body wrenches (forces
€ [0,0.25] N, torques € [0, 0.05] Nm) to account for water currents. For the Floating Platform,
we use intermediate mass (£0.25 kg) and similar CoM and wrench ranges to model small-scale

system variations and external disturbances.

4.3.5 Training

We train RL algorithms using the skrl [81] library, with PPO [28] as the training algorithm. PPO
was selected due to its stability in high-dimensional continuous control and its widespread use
in RL robotics settings. Rather than comparing algorithms, our focus is on demonstrating the
decoupling of robot-task development within a unified framework. All experiments were run on
asingle NVIDIA RTX 4090. PPO was trained with default hyperparameters, and each robot-task

pair converged in ~ 15 minutes on average. The final set of policies trained and used for evaluation

81

Table 4.5: Task success criteria and thresholds. Each task defines success based on reaching posi-
tion, orientation, velocity, or time-based constraints.

Task Success Condition Threshold
GoToPosition Final position error < ¢, e, = 0.1m
GoToPose €p and orientation error < €y ep = 0.1m, ¢g = 10°
GoThroughPositions Waypoints reached within €, €rp = 0.2m
TrackVelocities Maintain €, €, € = 0.2m/s, e, = 10°/s

are 12 (3 robots and 4 tasks).

4.3.6 Deployment (summary)

While I did not contribute directly to the real-robot deployment, our co-authors developed and
tested a ROS2-based deployment stack enabling policies trained in IsaacLab to control the Float-
ing Platform, Turtlebot2, and Kingfisher in the field. The architecture includes state abstraction,
policy inference, and goal interface modules, integrated with Docker and ROS 2. Detailed deploy-

ment and system integration are available in the original publication and appendix.

4.4 Simulation Results

We evaluate our RL-trained policies in simulation across representative robot—task pairs, reporting
results for three multi-domain robots: Floating Platform, Kingfisher, and Turtlebor2. These cover

a diverse range of actuation models and navigation challenges, ensuring a broad evaluation scope.

4.4.1 Experimental Setup

Each policy is trained for 3200 epochs using PPO, over 5 random seeds per robot-task pair. Dur-
ing evaluation, we use GPU-accelerated IsaacLab rollouts with parallel environments to collect
performance data from 4096 evaluation episodes per run. All results are reported as mean * std

across environments. We define task-specific success as percentage of trajectories that satisfy the

82

task specific metrics. Each metric is associated to a set of thresholds (€, €, €p, €,, and €,,) that are
listed in Table 4.5):

GoToPosition: distance to goal < €, within a fixed time budget.

GoToPose: both distance < ¢, and heading error < €y must be satisfied.

GoThroughPositions: count of waypoints reached in sequence within €, tolerance before time-
out.

TrackVelocities: mean absolute tracking error for linear and angular velocity must stay below €,

and €,,.

In addition to success rate (defined as the percentage of episodes that meet task-specific thresh-
olds), we report continuous evaluation metrics to capture control precision and stability:

Final Distance Error (m): Euclidean distance to the goal at the end of the episode.
Heading Error (°): Absolute orientation difference at the final timestep (GoToPose only).
Time to Target (s): Duration required to reach the target precision threshold. Lower values
reflect faster convergence.
Velocity Tracking Error (m/s): Mean absolute error between target and actual linear/angular
velocities (TrackVelocities only).
Control Signal Variation (unitless): Standard deviation of control signals over the episode,
reflecting smoothness or abruptness of control.
Goals Reached: Total number of intermediate targets successfully reached during sequential

waypoint tasks (GoThroughPositions).

All these metrics are aggregated in Table 4.7, enabling a multi-dimensional comparison across

tasks and robots.

83

Training Performance Comparison: GoToPosition Task Training Performance Comparison: GoToPose Task
150
125

100

Mean Reward
Mean Reward

Robots Robots

o —— floatingplatform -0 — turtlebot2
s —— kingfisher —— floatingplatform

—— turtlebot2 —— kingfisher

-100
0 20 40 60 80 100 0 20 40 60 80 100
Training Steps Training Steps
Training Performance Comparison: GoThroughPositions Task Training Performance Comparison: TrackVelocities Task

T 1 °
© @ 140
E SN H
& &
c
& -10 S 120
i} 9]
= =
-20 100
Robots Robots
_30 —— turtlebot2 —— kingfisher
—— floatingplatform 80 —— floatingplatform
—40 —— kingfisher —— turtlebot2
0 20 40 60 80 100 0 20 a0 60 80 100
Training Steps Training Steps

Figure 4.3: Learning curves showing rewards (mean = std) over 5 seeds per robot, compared by
task.

4.4.2 Training Efficiency and Learning Trends

Figure 4.3 shows the training reward across 5 seeds, highlighting learning speed and convergence
per robot. The FloatingPlatform achieves the highest asymptotic rewards, benefiting from direct
actuation despite its discrete thrust model. Turtlebot2 converges reliably with moderate final re-
turns, aided by low-dimensional control. Kingfisher shows slower and less stable learning, likely
due to its hydrodynamic complexity and inertia. Table 4.6 reports average wall-clock time per train-
ing run. The Kingfisher requires the longest training time, consistent with its complex dynamics.
Turtlebot2 trains fastest among wheeled platforms. The unexpectedly short time for the Floating-
Platform suggests beneficial interaction between its discrete control structure and IsaacLab’s GPU-
based parallelization. These differences motivate further study into simulation efficiency under

varying robot dynamics.

84

Table 4.6: Wall-clock time per robot—task pair (mean =+ std over 5 seeds) in minutes [m].

Task Floating Platform Kingfisher Turtlebot2

GoToPosition 7.35 £ 0.02m 1391 +0.19m 11.554+0.14m
GoToPose 5.46 £+ 0.00m — 11.53 £ 0.16m
TrackVelocities 5.08 £0.18m 13.47 £+ 0.07m 11.28 =0.02m

GoThroughPositions 59.51 £0.13m 13.47£0.35m 11.20 £ 0.03m

Table 4.7: Simulation evaluation metrics per task and robot (mean =+ std across 4096 envs,
PPO-skrl). Metrics include: success rate (%), final distance error (m), heading error (°), time to
target (s), velocity tracking error (m/s), control signal variation (unitless), and number of goals
reached. “—” indicates non-applicable metrics.

Task Robot Success Rate? Dist Err | Heading Err | Timeto Target | Lin Vel Err| AngVelErr| CtrlVar| Goals Reached 1
GoToPosition FloatingPlatform 0.94 = 0.04 0.05 £ 0.01 — 87.05+3.38 — — 0.62 £ 0.04 —
Kingfisher 0.59+0.29 1.06£0.73 — 176.11 £ 60.86 — —_ 0.75 £ 0.45 —
Turtlebot2 0.99+0.01 0.07 £ 0.00 — 92.60 + 4.67 — — 0.43 +£0.26 —
GoToPose FloatingPlatform 0.99 £ 0.01 0.02+0.01 0.78 £ 0.01 92.38 £2.59 — — 0.69+0.05 —
Kingfisher 0.66+0.09 0.23 £ 0.06 7.07£3.08 126.80 £ 31.29 — — 0.48 £0.29 —
Turtlebot2 0.84+0.04 0.14+0.01 439+ 1.56 131.49£2.16 — — 0.63+0.38 —
GoThroughPositions FloatingPlatform 1.00 £ 0.00 235+0.25 — 65.18£1.03 — — 0.32+0.04 13.57+£0.33
Kingfisher 1.00 £ 0.00 2.41+0.79 — 93.29 £18.56 — — 0.43 +£0.24 10.70 + 2.84
Turtlebot2 1.00 £ 0.00 1.79+0.05 - 101.50 £ 12.25 - — 0.13£0.06 11.01+£0.12
TrackVelocities FloatingPlatform 0.93+£0.18 — — — 0.05£0.07 0.03+£0.01 0.45+0.04 —
Kingfisher 0.48 £ 0.03 — — — 0.03 £ 0.00 0.24+0.02 0.62+0.37 —
Turtlebot2 0.77+£0.01 — — — 0.02+0.01 0.11£0.01 0.15+0.09 —

4.4.3 Task Success and Performance Analysis

To complement the reward learning curves shown in Figure 4.3, we conduct a detailed quantitative
evaluation across all robot-task pairs. This evaluation uses standardized success metrics and control
efficiency indicators (Table 4.7) collected over 4096 parallel trajectories per setting.

Figure 4.4 presents the convergence curves for each robot-task pair. Shared tasks (GoZoPosi-
tion, GoThroughPositions, and Track Velocities) are plotted together for comparison, while special-

ized tasks (GoToPose) are shown separately.

GoToPosition and GoToPose The Turtlebot2 achieves the highest success rate in GoToPosition
with 0.99 £ 0.01, benefiting from its differential-drive system and precise low-speed control. The
FloatingPlatform follows with 0.94 + 0.04, while the Kingfisher lags at 0.59 + 0.29 due to inertia

and limited turning agility. These trends are confirmed in Figure 4.4a, where Turtlebot2 reaches

85

rrrrrrrrrr

(a) GoToPosition: all robots. (b) GoToPose (distance): Floating- (c) GoToPose (heading): Floating-
Platform, Turtlebot2. Platform, Turtlebot2.

&0

Total Goals Reached

(d) GoThroughPositions: goals (e) GoThroughPositions: goals (f) TrackVelocities: linear (black)
achieved (all robots). distribution (4096 evaluation and angular (orange) velocity er-
envs, all robots). rors (all robots).

Figure 4.4: Simulation results across robots and tasks. Performance comparisons for Go70.Po-
sition, GoloPose, GoThroughPositions, and Track Velocities. (a) All robots for GoToPosition. (b, c)
FloatingPlatform and Turtlebot2 on GoToPose (distance, heading). (d) Number of goals achieved
in GoThroughPositions (all robots). () Goals distribution over 4096 parallel evaluation environ-
ments (all robots). (f) Linear velocity error in TrackVelocities (all robots).

the goal region fastest, followed by FloatingPlatform and Kingfisher. In the GoZoPose task, both
FloatingPlatform and Turtlebot2 succeed in reaching the target, with success rates of 0.99 + 0.01
and 0.84 * 0.04, respectively. Kingfisher is not evaluated due to its lack of heading control. Float-
ingPlatform achieves superior orientation control, with aheading error of 0.78°+ 0.01°, compared
to Turtlebot2’s 4.39° £ 1.56°, as shown in Figure 4.4c. Distance convergence is also faster and more

precise for FloatingPlatform (0.02 £ 0.01 m vs 0.14 + 0.01 m, Fig. 4.4b).

GoThroughPositions All three robots successfully complete partial trajectories (100% success
rate), but differ in the number of goals reached. FloatingPlatform achieves the highest average
at 13.57 + 0.33, while Turtlebot2 and Kingfisher reach 11.01 + 0.12 and 10.70 * 2.84 respec-

tively. These differences are reflected in Figure 4.4d (cumulative goals) and Figure 4.4e (distri-

86

bution), where FloatingPlatform’s performance is both higher and more consistent. Turtlebot2
shows smoother trajectories but fails to reach all waypoints within the time constraints, while King-

fisher’s performance is more variable due to inertia limiting sharp turns.

TrackVelocities FloatingPlatform demonstrates moderate success in tracking target velocities.
Its linear velocity error is 0.05 £ 0.07, and angular velocity error is 0.03 £ 0.01, better than both
Turtlebot2 (0.02 £ 0.01, 0.11 * 0.01) and Kingfisher (0.03 + 0.00, 0.24 * 0.02), as detailed in
Table 4.7 and shown in Figure 4.4f. The high angular error for Kingfisher highlights the difficulty

of fast heading corrections in water due to drag and momentum.

Success Rate Summary Table 4.7 confirms these observations across tasks. Turtlebot2 dom-
inates in GoZoPosition, FloatingPlatform leads in GoThroughPositions, and both Turtlebot2 and
FloatingPlatform perform comparably in GoToPose. In TrackVelocities, all robots achieve reason-
able success, but Kingfisher exhibits the highest angular tracking errors, limiting its overall preci-
sion. These trends are visible in Figure 4.4, supporting our conclusion that control effectiveness

varies not only across robots but also across tasks.

Additional results Figure 4.5 shows the other wheeled robots available in the simulation stack,
while they solve the the available tasks GoToPosition, TrackVelocities, GoThroughPositions, and

GoToPositionWithObstacles.

Extended Environments and Task Variations RoboRAN supports more complex environ-
ments and objectives. Its modular task interface allows users to easily introduce obstacles, moving
targets, or perception-driven goals without altering the robot implementation or training pipeline.

To demonstrate flexibility under environmental constraints, we evaluate the GoZoPosition task
with static obstacles placed between the robot and its sequence of goals. Using the same reward
structure and PPO hyperparameters as in the base task, without task-specific tuning, all three

robots (FloatingPlatform, Kingfisher, Turtlebot2) successfully learn to navigate around obstacles

87

(b) JetBot — TrackVelocities

(c) JetBot — GoThroughPositions

(e) Leatherback — GoToPositionWithObstacles (f) Leatherback — GoToPose

Figure 4.5: Examples of JetBot and Leatherback in simulated tasks.

(Fig. 4.7). Training curves (Fig. 4.6) show rapid improvement followed by stable convergence,
with final mean rewards over the last 50 steps of ~ 93.4 (Kingfisher), ~ 75.4 (Turtlebot2), and
~ 73.0 (FloatingPlatform). The observation space is extended from the base task by appending
the positions of the three closest objects in addition to the original six dimensions.

Additional complex scenarios, such as manipulation-inspired tasks (e.g., push-block for

88

Training Performance Comparison: GoToPosition Task (Obstacles)

100

-100

Mean Reward

—200

Robots
— turtlebot2
—— floatingplatform
—— kingfisher
0 200 400 600 800 1000
Training Steps

-300

Figure 4.6: Training performance on GoToPosition with static obstacles for three robots. Curves
show mean and std reward over 10 seeds. All robots learn stable obstacle-avoiding behaviors; the
final-50-step mean rewards are Kingfisher ~ 93.4, Turtlebot2 ~ 75.4, and FloatingPlatform
~73.0.

wheeled robots), are also supported but are left out of the main scope. These can be integrated

with minimal code changes and will be shared in future iterations of the framework.

Figure 4.7: FloatingPlatform, Kingfisher, and Turtlebot2 in GoToPosition WithObstacles

4.4.4 Discussions

While RL policies achieve high success rates, several robot-specific failure cases were observed. The
FloatingPlatform experiences oscillations near target positions due to force-based control lag. The
Kingfisher struggles with understeering in tight waypoint sequences, making sharp turns difficult.
The Turtlebot2, despite overall fast learning, exhibits difficulty in precise in-place rotations, leading
to longer turning maneuvers in the Go7oPose task. These challenges highlight the need for refined

reward shaping and constraint definitions to improve task execution. Overall, the successful train-

89

FloatingPlatform - GoToPose Field Test Performance

—— Mean Distance Error
~=- Distance Threshold (0.1m)
Mean Heading Error
Heading Threshold (10°) -

Distance Error (m)
Distance Error (m)

125 150

0 2 50 75 100 175 200

Timesteps

(a) GoToPose: FloatingPlatform.

GoToPosition: Comparison Across Robots
— FloatingPlatform
— Kingfisher
— Turtlebotz
4 ~== Distance Threshold (0.1m)

Distance to Goal (m)

Cumulative Goals Reached

150
Timesteps

200 250 300

(c) GoToPosition: all robots.

Figure 4.8: Field test results for navigation tasks.

Turtlebot2 - GoToPose Field Test Performance

—— Mean Distance Error
~=- Distance Threshold (0.1m)
Mean Heading Error
Heading Threshold (10°) =

100 150

Timesteps

(b) GoToPose: Turtlebot2.

250 300

ive Goals

GoThroug! Field Tests Ci

— FloatingPlatform
— Kingfisher
— Turtlebot2

80
Timesteps

40 60 120 140 160

(d) GoThroughPositions: all robots.

Performance evaluation for GoToPose (Float-
ingPlatform, Turtlebot2), GoToPosition (all robots), and GoThroughPositions (all robots).

ing of diverse robots on shared tasks, despite their differing actuation and mobility constraints,

demonstrates the viability of unified cross-medium pipeline. The Turtlebot2’s rapid convergence,

the FloatingPlatform’s discrete thrust limitations, and the Kingfisher’s inertia-driven control diffi-

culties highlight the importance of evaluating RL policies across heterogeneous platforms.

4.5 Sim-to-Real Results (Summary)

The deployment of RoboR AN policies on physical robots (FloatingPlatform, Kingfisher, and

Turtlebot2) was led by collaborators and is described in detail in the original paper. While I con-

tributed to the simulator side and overall benchmarking structure, the real-world integration and

tests were outside the main scope of my thesis contribution. Nonetheless, their results confirm the

90

effectiveness of domain-randomized training and structured evaluation pipelines for policy trans-

fer.

4.6 Conclusions

This chapter presented RoboRAN, a unified and scalable reinforcement learning framework de-
signed to benchmark and compare navigation policies across robots with different locomotion
modalities—wheeled, aquatic, and air-bearing systems. By decoupling robot and task definitions
through standardized interfaces and modular simulation backends, RoboR AN enables consistent
training, evaluation, and deployment pipelines, addressing the long-standing fragmentation in RL
for robotics.

The chapter demonstrated the effectiveness of this modular design across four core navigation
tasks—GoToPosition, GoToPose, TrackVelocity, and GoThroughPositions—and three heteroge-
neous robotic platforms: the Turtlebot2 (wheeled), the Kingfisher USV (aquatic), and the Float-
ing Platform (microgravity emulator). Policies trained entirely in simulation were evaluated us-
ing uniform metrics and thresholds, enabling side-by-side comparisons across embodiments. The
resulting policies achieve high success rates and centimeter-level accuracy in both simulated and
real-world conditions, showcasing the framework’s potential for sim-to-real generalization.

While real-world deployment of the policies revealed strong qualitative transfer, residual
performance gaps—especially in heading alignment and failure recovery under high-momentum
transitions—highlighted the importance of dynamics fidelity and morphology-aware domain
randomization. These observations reinforce the thesis’ broader theme: robust real-world general-
ization depends not only on algorithmic strength but also on the structured design of simulation
environments and training protocols.

Importantly, this work also underscores a key methodological insight: policy benchmarking
across modalities is not merely a matter of comparing numerical metrics, but requires a carefully

structured simulation and evaluation interface. RoboR AN addresses this need and provides a prin-

91

cipled foundation for future research in generalization, transfer learning, and multitask control.
Looking forward, RoboR AN’s modularity opens the door to several extensions: support for
new robots (e.g., aerial or articulated systems), richer observation modalities (e.g., vision-based in-
puts), and more complex navigation tasks involving obstacle avoidance, constrained motion, or
adversarial environments. Moreover, RoboR AN provides a fertile testing ground for algorithmic
innovations such as curriculum learning, policy distillation, or learning-to-learn approaches. In
this sense, RoboR AN represents a convergence point between robust engineering practices and
scalable RL research, and contributes directly to the thesis’ broader goal of enabling reliable deep

reinforcement learning for autonomous robotics across real-world domains.

92

Chapter 5

FALCON-S — Fixed Wing Aerodynamics

And Control Suite

5.1 Introduction

The previous chapters introduced modular frameworks for reinforcement learning (RL) in robotic
navigation, spanning floating platforms, ground vehicles, and water-surface vessels. These contri-
butions emphasized sim-to-real transfer, scalable multi-robot pipelines, and modularity in simula-
tion and control. In this chapter, we expand the scope of autonomous control to fixed-wing aerial
vehicles operating in ground effect—a particularly challenging and underexplored domain for deep
reinforcement learning.

The motivation behind this work stems from the observation that most existing simulators
either oversimplify aerial vehicle dynamics or are tailored to pilot training and do not provide the
flexibility and scalability required for modern RL-based control. For instance, while tools like JSB-
Sim [103], X-Plane [21], and Flightmare [104] offer partial realism, they lack essential features such
as GPU-accelerated simulation, modular controller integration, or fine-grained modeling of aero-
dynamic phenomena like ground effect. As a result, deploying RL policies to real aerial platforms

remains limited by the fidelity gap between simulation and real-world dynamics.

93

To address these limitations, we introduce FALCON-S (Fixed-wing Aerial Learning and Con-
trol with Open-Source Newtonian Simulation), a modular, physics-rich simulation framework
designed for training and benchmarking both learning-based and classical control algorithms on

fixed-wing aircraft in low-altitude flight scenarios. The key features of FALCON-S include:

* High-throughput dual-backend simulation: A GPU-accelerated physics engine built on
NVIDIA Warp and a CPU fallback, allowing efficient training and evaluation at scale—with

support for millions of parallel environments at real-time step rates.

* Modular control stack: Support for interchangeable controllers including Proximal Pol-
icy Optimization (PPO), DreamerV3, LQR, and MPPI, enabling controlled benchmarking

across control paradigms.

* Physically-grounded dynamics: Accurate modeling of aerodynamic forces (including
ground effect), actuator and sensor dynamics, and environmental disturbances such as

wind and noise.

* Cross-platform validation: Interfaces to MATLAB/Simulink and X-Plane for co-

simulation and validation in commercial-grade high-fidelity environments.

FALCON-S builds upon the prior contributions of this thesis—namely the emphasis on simu-
lation fidelity, control generalization, and benchmarkability—but shifts the focus to aerial vehicles,
which pose new challenges in terms of high-speed dynamics, actuator constraints, and sensitivity
to environmental effects. The framework serves both as a scientific tool for controlled experimen-
tation and as an engineering platform for RL deployment pipelines.

By offering fully open and customizable infrastructure, FALCON-S aims to bridge the gap
between traditional flight control and modern machine learning, supporting the development of
robust controllers for aerial autonomy. The remainder of this chapter details the simulator design,
flight tasks, physics modeling, and experimental benchmarking, concluding with a discussion of

limitations and directions for future aerial learning research.

94

Acknowledgments. The work presented in this chapter is the result of collaborative efforts.
While the simulation architecture and reinforcement learning experiments were primarily con-
ducted by the author, key contributions to the development of classical control algorithms and
the integration with MATLAB/Simulink backends were carried out in close collaboration with
co-authors. In particular, we acknowledge the substantial technical support and insight provided
by Pedro Lima, whose work was instrumental in enabling the comparative evaluation between

traditional and learning-based controllers.

5.2 Related Work

Simulation of fixed-wing flight dynamics.

Simulators such as [SBSim, FlightGear, and X-Plane have long supported fixed-wing aircraft
modeling, but are primarily designed for pilot training or certification, and lack native support
for reinforcement learning or scalable training. Recent research platforms such as QPlane [105]
and NeuralPlane [106] address this limitation by exposing lightweight and configurable interfaces
suitable for policy learning. QPlane wraps JSBSim for Gym-based RL experiments, while Neu-
ralPlane introduces a parallel GPU-based pipeline for efficient large-scale simulation. However,
both frameworks simplify critical aspects of flight dynamics, often using 3DoF or attitude-only

models, with limited actuator fidelity and minimal environmental realism.

Flight control benchmarks and learning environments.

While platforms like AirSim [107], Flightmare [104], and RotorS [108] have successfully advanced
learning-based control for multirotor drones, fixed-wing benchmarks remain scarce due to the in-
creased complexity of forward-flight dynamics, non-holonomic constraints, and sensitivity to ex-
ternal disturbances. Most existing learning environments focus on hover-capable vehicles, leaving

limited support for lift-based platforms. Our work addresses this gap by introducing a unified sim-

95

ulation suite tailored to fixed-wing aircraft operating near the ground, combining realistic 6DoF
dynamics with actuator and sensor models, ground effect, and wind disturbances. It supports
both classical and learning-based controllers and achieves millisecond-scale single-step performance

through GPU acceleration, enabling rigorous, scalable, and physically grounded benchmarking.

Combining classical control with deep learning.

There is increasing interest in combining optimal control methods with reinforcement learn-
ing [109, 110]. Works like Basescu et al. [111] show how model predictive control can be extended
with learned aerodynamic models to achieve aggressive post-stall landings. Similarly, residual RL
and hybrid policy architectures have been used to improve control generalization while retaining
safety guarantees. Our environment supports both classical baselines and learning-based con-

trollers, enabling direct comparisons and hybrid control studies under consistent dynamics.

Modular, accelerated simulators for RL.

Efficient learning requires simulators that are both fast and customizable. GPU-accelerated simula-
tors like WarpDrive [112] and IsaacGym [7] have become increasingly popular in robotics research,
but few have targeted flight vehicles. Flightmare [104] provides GPU acceleration via Unity, yet
focuses on quadrotor dynamics. Our Warp-based simulator offers domain-specific GPU acceler-
ation for fixed-wing vehicles with detailed aerodynamics, supporting large-scale training without
compromising physical realism.

To contextualize our contribution, Table 5.1 presents a detailed comparison between our simula-
tion platform and several prominent aircraft simulation frameworks, including NeuralPlane [106],
QPlane [105], JSBSim [103] and XPlane [21]. While prior systems offer valuable capabilities, such
as high-fidelity physics engines, Gym-compatible RL integration, or large-scale parallelism, most
fall short in supporting near-ground aerodynamic effects or unified, extensible control pipelines.

In contrast, our platform combines realistic 6-DoF flight dynamics with explicit ground effect

96

Table 5.1: Comparison of our platform with existing aircraft simulation frameworks. Our system
combines realistic near-ground fixed-wing aerodynamics with modular flight tasks and supports
advanced controllers in a reinforcement learning context, with rich sensor and actuator modeling,
while enabling expandability for sim-to-real transfer. [v'] fully supported, [*] partially or optionally
supported, [-] not supported.

Feature Ours NeuralPlane QPlane JSBSim XPlane
Open-source v v v v -
Physics-based FDM v (WIG, 6DoF) V(fixed-wingonly) v/(JSBSim/XPlane) v v
Ground Effect Model v'(semi-empirical) - * (depends on JSBSim) * v
GPU Acceleration v (Warp) v (PyTorch) - - -
Multi-agent Support - v v * *(via UDP)
Multiple Flight Tasks v v v * *
Controller Support v v v * *
Realism High Medium High (if X-Plane) High High
Visualization Tools v * * * (via FlightGear) v
Sim-to-Real Ready * * * v v

modeling, modular control integration (classical and learning-based), precise actuator and sensors
modeling and support for advanced aerodynamic modeling and realistic disturbance injection, like
wind turbulence, atmospheric pressure (for high altitude flight conditions) and simplified compu-

tation of aecrodynamics coeflicients with OpenVSP [113].

5.3 DPreliminaries

We consider the control of a rigid fixed-wing vehicle flying in proximity to the ground, modeled as
a six-degrees-of-freedom (6DoF) system with coupled translational and rotational dynamics. The
vehicle is subject to forces from gravity, acrodynamics, and propulsion, and its motion is described
in the body frame. The state vector x € R? x $® (or x € R'?) comprises the position p € R?,
orientation (represented as an unit quaternion q € S* = {q € H: ||q|| = 1} or Euler angles
(¢,0,¢) € R?), linear velocity v € R3, and angular velocity w € R®. Control inputs include

throttle and actuator deflections for the elevator, rudder, and ailerons. The equations of motion

97

follow Newton-Euler rigid body dynamics:

mv=F, +F, + F, —w x mv, (5.1)

Jo=1,+7T —w X Jw, (5.2)

where m is the vehicle mass, J is the inertia tensor, F, is the gravitational force, F, and 7, are aero-
dynamic forces and moments, and F; and 7; are thrust-generated force and moment vectors. We
assume constant mass and neglect gyroscopic effects. Each vehicle is modeled as a rigid body with
abody-fixed frame {b} rigidly attached at the centre of mass, and motion is described relative to an
inertial north—east-down (NED) frame {/}.

Aerodynamic forces and moments are computed using semi-empirical models based on the vehi-
cle’s angle of attack o, sideslip 3, Reynolds number RRe and control surface deflections. Lift, drag,
and side force coefficients are computed from look-up tables or parametric expressions derived
from geometric tools such as OpenVSP [113]. The effect of actuator dynamics is captured using
first- or second-order response models, governed by user-defined time constants and damping ra-
tios. This introduces realistic response delays and rate limits to control surface inputs. Thrust is
generated by propellers whose outputs are mapped from normalized throttle commands via first-
order response curves. In asymmetric thrust configurations, this can introduce differential yaw
moments. Our simulator also supports ground effect modeling, which alters the lift and drag char-
acteristics of the vehicle when flying close to the surface. This effect is modeled through empirical
corrections [114] to the aecrodynamic coefhicients as a function of height-over-span ratio, tamper
ration and aspect ratio.

The detailed derivation and parameterizations for the physical model are presented next.

5.3.1 Physical Modeling Details

This appendix provides the mathematical details behind the simulation environment used in the

main paper. The simulator integrates a high-fidelity 6DoF flight model with realistic actuator dy-

98

namics, wind turbulence (Dryden), and optional ground-effect modeling. These models are con-
figured via a modular system that supports controlled ablation studies and toggling of physical

phenomena.

Aerodynamic Coefficients and Ground Effect

The aerodynamic forces and moments are computed from lookup tables or polynomial fits, using

the local flow conditions:

—Chp bC;
Faero = qS CY) Maero = qS CCm ’ (53)
(' bC,,

where ¢ = % pr is the dynamic pressure, S is the reference wing area, b and c are the wingspan
and chord, and Cj; are the acrodynamic coefficients dependent on angle of attack «, sideslip /3, and
control surfaces d, (ailerons), d. (elevator) and 9, (rudder).

To model ground effect, the lift and drag coefficients C', and Cp are corrected via empirical

terms, following [114]:

Cr=C (1+ ur(h/b)). (5.4)
Cp = CF (1 pp(h/b)), (5.5)

where fiy,, pup are ground effect modifiers parameterized as functions of the height ratio 4 /b, and
C7°, O3 denotes the out-of-ground-effect coefficients. These modifiers can be toggled to assess
the effect of WIG-specific dynamics.

Table 5.2 presents the influence of ground effect on the performance of the LQR controller.
As expected, operating close to the ground leads to a noticeable reduction in overall commanded
thrust. Theincrease in C'f, reduces the required angle of attack («v) for the same airspeed to maintain

steady flight. Together with the higher /1 in ground effect, this results in a substantial decrease in

99

Cp, which lowers the overall drag and, consequently, the thrust required to sustain steady flight.

These effect quickly become negligible once (h/b) > 1 (figure 5.1).

0.6
2 —— CLOGE o —— CLOGE
CD OGE 2 —— CD OGE
— CLIGE £ —— CLIGE

Toa
8 — CDIGE S04 — CDIGE

02 0.2

0.0 0.0 1 : 1 1 :
[20 40 60 80 100 0 20 40 60 80 100
Time [s] Time [s]

(2) 1.0 m constant altitude (b) 2.5 m constant altitude

£ — CLOGE 2 — CLOGE
o —— CD OGE o —— CD OGE
£ — CLIGE £ — CLIGE
Soal — CDIGE Soa- — CDIGE

0 20 40 60 80 100 [20 40 60 80 100
Time [s] Time [s]

(c) 5.0 m constant altitude (d) 10.0 m constant altitude

Figure 5.1: Variation of C';, and Cp with altitude due to ground effect, using the airship with the
LQR controller.

Table 5.2: LQR performance metrics (RMSE, settling time, overshoot, error mean + std, and en-
ergy utilization) for the Airship vehicle at various altitudes.

Altitude (m) RMSE (m) Settling Time (s) Overshoot (m) Error (mean =+ std) (m) Energy Utilization

1.0 0.008 0.01 0.187 0.002 £ 0.014 0.303
2.5 0.011 0.01 0.247 0.002 £ 0.020 0.590
5.0 0.012 0.01 0.265 0.003 £ 0.021 0.689
10.0 0.013 0.01 0.271 0.003 £ 0.022 0.723
100.0 0.013 0.01 0.280 0.003 £ 0.022 0.743

100

Actuator Dynamics

Actuator systems (control surfaces and motors) are modeled via first- or second-order transfer func-

tions with configurable time constants and damping ratios:

2
w
H(s) — n 2nd- .
(s) R TR (2nd-order), (5.6)
or
1
H(s) = ST (1st-order), (5.7)

where w;, is the natural frequency, € is the damping ratio, and 7 is the time constant. Each actuator

group (e.g., elevator, ailerons, motors) can use a different response model based on configuration.

rrrrrrr Time (s)

(a) Control surfaces step response (b) Motor step response

Figure 5.2: Control surfaces and motor unit step responses for the Airship.

Wind and Turbulence Modeling

Environmental disturbances include: - Constant wind in the inertial frame (NED), rotated to the
body frame. - Dryden turbulence [115], implemented via the MIL-F-8785C model using band-
limited white noise through forming low-pass filters (see table 5.4).

For low altitude flights (A < 1000 ft), the turbulence scale lengths and intensities are defined

as

h
(0.177 4+ 0.000823h) "’

Ly=1L,= Ly=h (5.8)

101

Table 5.3: Dryden turbulence velocity spectral filters.

Table 5.4: Dryden turbulence velocity spectral filters.

Longitudinal Lateral Vertical
Wy UKU 1+ ST‘U wKw 1+ 3Tw
Filter Guls) = —Tulte Go(s) = C (1+V3T,s) Guls) = 7 (14+V3T,s)
(14 Tys)? (14 T,s)? (14 Tys)?
2L, L, L, L, | Ly, Ly
C K, = ’Tuzi K, = 7Tv:7 K, = ,Twzi
onstants i i — T T i
and
Ow
Ou = 0p = 0w = 0.1Wsg, (5.9)

(0.177 + 0.000823h)**
where h represents the altitude in feet, and Wy is the chosen wind speed at 20 meters, which

defines the intensity of the turbulence.

(a) Light Dryden turbulence (b) Moderate Dryden turbulence (c) Severe Dryden turbulence

Figure 5.3: Longitudinal, lateral, and vertical effects of different Dryden turbulence intensities at
2.5 m altitude and 28 m/s airspeed, using the same random seed.

Sensor Realism and Noise

To simulate realistic perception pipelines, our framework includes configurable sensor models af-
fected by various imperfections: additive noise, constant bias, scaling errors, clipping (limits), quan-
tization (resolution), reduced sampling rates, and delay. Figure 5.4 illustrates these effects on sensor
outputs compared to the ground truth signal. Each disturbance can be toggled or combined for
robustness testing and sim-to-real transfer studies.

Overall, the simulator produces time-continuous dynamics that are discretized using a config-

102

(c) Sensor bias (d) Sensor scaling factor

(e) Sensor limits (f) Sensor resolution (g) Sensor sampling rate (h) Sensor delay

Figure 5.4: Illustration of different sensor effects implemented in the simulator.

urable integration scheme (e.g., Euler or RK4) and exposed through a modular interface support-
ing both CPU and GPU implementations. These dynamics form the basis for the environments

used in training classical and learning-based controllers.

5.4 FALCON-S Framework

Our simulation platform is designed to support the development, training, and evaluation of flight
control strategies for fixed-wing aircraft operating in near-ground environments. The architecture,

illustrated in Figure 5.5, consists of two primary modules: the agent and the environment.

5.4.1 Agent module

The agent module supports a wide range of control models, including classical approaches such as
Linear Quadratic Regulator (LQR) and Model Predictive Path Integral (MPPI), as well as modern
learning-based controllers such as PPO, LSTM-based PPO, and DreamerV3. These controllers
can be executed on either CPU or GPU for both evaluation and large-scale training, enabling
both quick debugging of simulated flight conditions and heavy-duty batched experiments, where

millions of trajectories can be collected to train and evaluate control performance.

103

Agent

Flight Control Models
LQR
MPPI

Dreamer V3
PPO / [Istm]

Env
instance

State

CcPU §
- reward
s
Metrics Validation
RMSE (total) Aerodynamics
Mean Error Trajectories
Overshoot States & actions

Settling Time

Energy Utilisation

g Flight Tasks)

| Fixed altitude keeping |

| Dyn altitude keeping |

| Follow trajectory 2D |

\J Follow trajectory 3D |/

/ Core Physics \

‘\ Libraries

MgAR

o SciPy
a (s

Languages

Control surfaces

Thrusters
IMU

Sensors

Ground Effect
‘Wind/Turbulence

Atmospheric pressure

Aerodynamics

|
i
|
i
|
|
1
|
|
1
|
|
|
|
|
|
|
|
i
|
! Actuators
|
i
|
|
|
|
|
|
|
|
i
|
|
i
|
|
i
|
|
i
|
\

Aerodynamic
Coefficients

Gyroscope
GPS

Aircraft 3D model

Navion !
Airship |
. Cirrus SR22 !

Figure 5.5: Overview of our FALCON-S simulation platform architecture. The environment
module includes aerodynamic modeling, actuator dynamics, environmental effects such as ground
effect and turbulence, and configurable sensor suites. The agent module supports both classical
and learning-based controllers. Tasks, metrics, and visualization tools are modular and extensible,
enabling robust benchmarking and policy training across single- and multi-agent setups.

LQR with Integral action

The LQR controller is implemented in closed form using discrete-time linearization of the vehicle
dynamics around a steady trim condition. The gain matrix K is precomputed using the Riccati
equation solution, and the resulting control law u = — K is applied at each simulation step.
The linearization matrices (A, B) are precomputed and approximated using numerical Jacobians
based on the simulator’s physics model. For LQRI (LQR with integral action) the state vector
is augmented with integrator states (e.g. integrated altitude error) before forming (A4, By) and

solving the Ricatti equation 5.10.

The Linear Quadratic Regulator (LQR) controller was tuned using state and input weighting

104

matrices selected to balance tracking accuracy and control effort. The state weighting matrix Qror

was defined as

Qror = diag(14.6, 8.2, 14.6, 8.2, 14.6, 8.2, 1, 1,
0.25, 0.25, 0.25, 18.2, 18.2, 18.2, (5.10)
107°,107°, 1072, 107, 1, 400),

where the first six entries correspond to actuator states, followed by velocity, angular velocity,
imaginary quaternion components, and position. The very small weights on the quaternion error
terms (10~°) were introduced to avoid biasing the controller towards any one given attitude, while
still ensuring stability.

To incorporate integral action, the augmented weighting matrix was defined as

Qrqr = diag (QLQRa QLQR(18:20)) ; (5.11)

.
and the integral gains were set to K; = [O -1 —1,5})

The control effort weighting matrix was chosen as
Riqr = diag(1, 1, 800, 800, 800),

assigning higher penalties to thrust-related control inputs in order to limit excessive propulsive
effort and improve efficiency.

The complete state-feedback gain matrix K (including integral augmentation where applica-
ble) was computed in MATLAB using the built-in 1qr function. The state-space matrices (A4, B)
required by 1qr were obtained from the system linearization tool (linearization around the chosen
trim condition). Full implementation and resulting K matrices for each aircraft can be seen in the

open source repository.

105

MPPI

The Model Predictive Path Integral controller follows a sampling-based trajectory optimization ap-
proach. At each control step, the algorithm samples multiple control sequences sampled from a
Gaussian distribution centred on the previous action sequence, propagates each action through
the dynamics model, and computes an optimal control output from the weighted average of trajec-
tories based on their cumulative cost. The implementation supports GPU-based sampling for par-
allelized inference, using a Warp backend. The cost function is task-specific and includes weighted
penalties on tracking error, control effort, and constraint violations.

For all experiments the MPPI controller was initialized the following settings: number of sam-
pled trajectories N = 103, planning horizon 7" = 100 time steps, temperature A = 3.0, and
control perturbation covariance X = diag(c?, 02,02, 0%) = diag(0.10, 0.08, 0.08, 0.10), for
elevator, aileron, rudder and throttle respectively.

The cost function employed in the planner is the sum of weighted penalties for: (i) altitude
tracking, (ii) lateral (cross-track) tracking, (iii) ground-collision/proximity avoidance, (iv) angular-
rate intensity, (v) airspeed keeping, (vi) penalization of excessive altitude, (vii) excessive angle-of-
attack («v), and (viii) excessive sideslip (/).

MPPI trajectory sampling and propagation were implemented using NVIDIA Warp to JIT-
compile the simulation kernels and execute large numbers of trajectories in parallel on the GPU.

The formulation and implementation follow the approach described in [116]. Exact numeric

weights, cost functions and process are also available in the open-source repository.

Gymnasium interface

The environment exposes a compliant Gymnasium [117] interface through the CoreAirshipEnv
class and its wrappers. It supports reset (), step(action), and render () methods, and op-
tionally includes info dictionaries with task-specific diagnostics. Observations are exposed as flat
NumPy arrays and can be extended with sensor noise or delays via wrapper classes. The action

space is continuous (bounded) and directly maps to control surface deflections and throttle values.

106

For high-performance training and evaluation, a parallelized variant of the environment is available
through the Warp backend. This wrapper implements the same Gymnasium API but executes
dynamics in batched form on the GPU, leveraging Warp’s kernel-level integration and memory

model.

Stable-Baselines3 and DreamerV3 support

We provide out-of-the-box integration with Stable Baselines3 (SB3), enabling rapid experimenta-
tion with off-the-shelf RL algorithms like PPO and SAC. Model-based RL agents are supported
via a DreamerV3 [35] pipeline that wraps the simulation environment in a recurrent state-space
model (RSSM). The implementation reuses the ‘dreamerv3‘ codebase, adapted for continuous-
control fixed-wing tasks. The world model is trained jointly with a policy and value network using
imagined rollouts. Action sequences are optimized through learned latent trajectories. GPU accel-

eration is used for both training and inference.

5.4.2 Environment module

Our environment module supports multiple simulation backends and interoperation with exter-
nal tools, allowing flexibility in simulation fidelity, performance, and controller design workflows.
Specifically, we offer two primary physics engines in Python: one based on SciPy’s numerical
integration for rapid prototyping, and another leveraging NVIDIA Warp for large-scale GPU-
accelerated simulation. In addition, MATLAB and Simulink can be used for validation or control
design tasks, such as symbolic derivation of system matrices for LQR or linearized model identifi-
cation. This dual-language and dual-backend setup enables practitioners to prototype quickly in

Python and validate or deploy controllers using industry-standard tools when necessary.

107

Core Physics

The environment simulates full six-degree-of-freedom (6DoF) rigid-body aircraft dynamics, focus-
ing on low-altitude scenarios where physical effects such as ground proximity and turbulence dom-
inate. The physics module is structured around five interconnected components:
Aerodynamics: Uses precomputed acrodynamic coefficients from OpenVSP or analytical approx-
imations. Aerodynamic forces and moment forces are adjusted dynamically based on airspeed, an-
gle of attack, sideslip angle, height above ground and control surface deflection. Ground effect
corrections are applied using semi-empirical models 5.3.1.
Actuators: Control surface deflections and thrust values are passed through first- or second-order
actuator dynamics 5.3.1, allowing simulation of latency, saturation, and rate-limited responses.
The actuator module outputs net forces and moments in the body frame.
Environmental Effects: Wind gusts, turbulence fields, and pressure gradients are injected into the
dynamics via different noise models 5.3.1, enabling robustness testing under realistic conditions.
Sensors: An onboard sensor model simulates IMU measurements (accelerometer, gyroscope),
GPS, and optional encoders 5.3.1. Sensor noise, sampling rate, resolution, or delay can be added
to evaluate performance under degraded sensing.
Flight Tasks: The agent interacts with the environment through a set of modular task definitions,
such as fixed-altitude keeping, dynamic climbing/descending, 2D path following, and full 3D tra-
jectory tracking. These are defined as reward functions and success conditions on top of the raw
physics simulation.

Each of these components interacts through the environment interface, which passes state
transitions, sampled observations, and reward signals to the agent. Each physics component can
be independently toggled or simplified, enabling ablation studies and comparative benchmarking

under controlled settings.

108

Aircraft 3D model

Our framework supports rapid prototyping of different airframes via JSON-based configuration
files. Each aircraft model (e.g., Navion, Cessna, or Airship) is described by its geometry, mass,
inertia, control surface layout, propulsion system parameters, sensor conﬁguration and environ-
mental settings. Given the aircraft OpenVSP 3D model, using its python API, the acrodynamic
coefficients can be computed as a luck-up table and then fitted to a Nth order polynomial. These
models are then used for both simulation and visualization. The modular setup makes it easy
to switch between vehicles and test control policies across different configurations, improving

generalization and robustness.

Validation with X-Plane

To improve validation and high-fidelity visualization, FALCON-S includes an interface to the X-
Plane using the Python XPlaneConnect API [118] developed by NASA. Given the same aircraft
configuration (geometry and flight initial conditions), trajectories generated in our simulator can
be replayed or compared within X-Plane’s high-resolution rendering engine. This allows cross-
verification of dynamics between our model and an industry-standard closed-source simulator.
Additionally, X-Plane can be used to test the different controllers and scenarios in an different
simulation environment, providing a practical robustness and check for controller performance
under a different modeling physics engine. Lastly, it can be used to capture high-quality video
demonstrations of trained agents flying over varied terrain.

To support high-quality visualization and cross-simulator validation, FALCON-S includes a
Python interface to X-Plane. This allows us to reproduce the same control task shown in previ-
ous experiments—such as dynamic altitude keeping—within X-Plane’s rendering engine using the
same aircraft configuration and reference trajectory. This enables visual inspection, qualitative val-

idation, and future extensions toward sim-to-real transfer.

109

Figure 5.6: Rendered views of the Airship performing a dynamic altitude-keeping task in X-Plane,
aligned with the same reference trajectory used in FALCON-S.

5.5 Experiments & Results

Our experiments are designed to highlight the flexibility and realism of the FALCON-S framework,
rather than to optimize or compare specific learning or control algorithms. The primary objective is
to demonstrate how the simulator supports a wide variety of use cases and provides structured tools
to evaluate control performance under diverse settings. To this end, we present a set of illustrative

results covering four key aspects:

* (1) Algorithm performance illustration: We demonstrate how FALCON-S supports
consistent benchmarking by applying both classical (e.g., LQR) and learning-based (e.g.,

DreamerV3) controllers to standard tasks like altitude keeping.

* (2) Multi-task generalization: We test a single controller (e.g., MPPI or LQR) on multi-
ple tasks (e.g., altitude regulation, 2D path tracking, 3D trajectory tracking) to show how

FALCON-S supports task variation and behavioral analysis with minimal reconfiguration.

110

* (3) Cross-vehicle testing: Using the same control policy, we evaluate performance across
different aircraft models (e.g., Cessna, Navion, Airship) to highlight how simulation fidelity

and control difficulty change across morphologies and configurations.

* (4) Environmental sensitivity: We analyze the impact of physical realism features, such as
wind disturbance, ground effect, sensor noise, or actuator delay, by toggling them indepen-

dently and observing the effect on controller robustness and behavior.

Metrics

To evaluate controller performance, we compute a set of standard metrics from each simulated
trajectory, including root mean square error (RMSE), settling time, overshoot, energy utilization,
and mean error. RMSE and mean error quantify overall tracking accuracy; settling time measures
how quickly the agent enters and remains within a defined error band (1m); overshoot reflects the
maximum deviation from the reference; and energy utilization serves as a proxy for control effort,
computed from the squared motor actions over time. These metrics, together with full trajectory
and actionlogs, allow structured comparisons across algorithms, tasks, vehicle models, and environ-
mental settings. Table 5.5 summarizes the performance metrics used to evaluate control strategies
in FALCON-S. Each metric is computed from logged trajectories and actions, capturing accuracy,
responsiveness, and control efficiency.

For interpretation, lower values of tracking error and overshoot indicate higher accuracy, while
shorter settling times reflect faster convergence. Control smoothness metrics (e.g., input rate penal-
ties) capture responsiveness without excessive actuator usage. Energy consumption is evaluated
from integrated thrust and control surface activity (range [0-1]): lower values indicate more efhi-
cient control. Conversely, excessively high energy consumption may reflect oscillatory or unstable
control behavior.

Trajectories: The trajectories (a)—(f) correspond to: (a) altitude sine wave, (b) altitude ramps,
(c) altitude and lateral ramps, (d) lateral sine wave, (e) altitude and lateral sine wave, and (f) spiral

wave.

111

Table 5.5: Summary of evaluation metrics computed from trajectory and control logs.

Metric Formula / Description
— /LN 2
RMSE (Total) RMSE = /% > i lle]]
Where e, is the position error at timestep ¢
_ 1\
Mean Error Mean = % > °,0 |le|
Overshoot Overshoot = max; ||e|
Settling Time Minimum time ¢ such that ||e;|| < § and remains within the

band Vt' > t for at least 10% of the episode length. Default
threshold: § = 1m

e T
Energy Utilization Energy = 7 [[[tmocors(£)||* dt
Where toors are normalized motor inputs and 7' is total time

Each subsection below presents a brief experiment showcasing these capabilities. We leave de-

tailed quantitative benchmarking and algorithm tuning to future work.

5.5.1 Demonstrating Learning-Based Control with Dreamer

To illustrate how FALCON-S supports modern reinforcement learning pipelines, we trained a
DreamerV3 agent to perform altitude regulation. The task consists of maintaining flight along a
forward trajectory while matching a time-varying altitude reference. Figure 5.7 shows the learned
behavior over multiple rollouts, with 3D trajectory tracking, orientation stabilization, position evo-
lution, and linear velocity regulation. The results indicate stable control behavior and successful
learning of the target altitude profile, albeit with slight oscillations due to limited policy tuning.
Performance metrics across representative environments are summarized in Table 5.6, demonstrat-

ing tracking accuracy in the sub-meter range with energy usage that can be improved.

Table 5.6: Mean =+ standard deviation across five DreamerV3 runs for dynamic altitude tracking.

RMSE (m) Alt. RMSE (m) Overshoot (m) Error (mean * std) (m) Energy Util.
0.756£0.763 1.309£1.231 1.540 £ 1.246 1.270 £ 1.369 0.743 £ 0.066

112

3D Trajectory

States: Orientation

0 20 40 60 80 100
3000 Time (s)

States: Position States: Linear Vel

yumy
°
8

v (m/s)
g
3

[20 a0 60 80 100)
Time (s) Time (s)

Figure 5.7: DreamerV3 agent controlling the airship along a dynamic altitude-keeping trajectory.
Top-left: 3D trajectory tracking. Top-right: orientation convergence. Bottom-left: position over
time. Bottom-right: body-frame velocity components.

5.5.2 Single Controller Across Multiple Tasks

We evaluate the LQR controller on six trajectory tracking tasks of increasing complexity using the
same airship model. Asshown in Figure 5.8 and Table 5.8, the controller maintains low RMSE and
smooth behavior on simpler tasks such as single-axis sine waves (a, d) and low-frequency ramps (b,
e), with minimal overshoot and low energy usage. Performance degrades in more challenging 3D

or fast-changing trajectories (c, f), where the controller exhibits larger errors and reduced stability.

113

These results demonstrate the ability of our framework to highlight task-dependent control limi-
tations and enable fine-grained benchmarking across diverse reference profiles.
Performance metrics for the MPPI controller can be seen in table 5.7.

Table 5.7: Performance metrics (RMSE, settling time, o, overshoot, mean error, and energy utiliza-
tion) for the Airship vehicle for constant altitude and tasks (a)—(f) with the MPPI controller. Runs
marked with “’ indicate simulations that terminated prematurely due to instability (crash or stall).

Task RMSE (m) Settling Time (s) Overshoot (m) Error (mean =+ std) (m) Energy Utilization
2.5 m altitude 0.010 0.84 0.119 0.013 £ 0.010 0.787
60.0 m altitude 0.013 1.08 0.158 0.017 £ 0.013 0.786
(a) 0.012 0.01 0.070 0.017 £ 0.011 0.780
(b)* 1.075 - 3.836 1.330 £ 1.303 0.367
(c)* 3.046 - 11.256 3.837 + 3.621 0.340
(d) 0.008 0.01 0.081 0.011 £+ 0.009 0.525
(e) 0.010 0.01 0.088 0.014 + 0.010 0.757
(f)* 0.814 - 4.581 0.971 +£1.023 0.419

Table 5.8: Performance metrics (RMSE, settling time, o, overshoot, mean error, and energy utiliza-
tion) for the Airship vehicle in tasks (a)—(f) with the LQR controller.

Task RMSE (m) Settling Time (s) Overshoot (m) Error (mean =+ std) (m) Energy Utilization

(a) 0.025 1.48 0.211 0.037 £ 0.024 0.663
(b) 0.052 41.55 0.671 0.025 =+ 0.087 0.370
() 0.213 44.06 1.708 0.144 + 0.339 0.379
(d) 0.017 2.94 0.213 0.014 =+ 0.026 0.303
(e) 0.019 2.40 0.209 0.024 + 0.021 0.583
(f) 0.149 - 0.704 0.231 £ 0.114 0.565

5.5.3 Cross-Aircraft Evaluation

To evaluate generalization across vehicle morphologies, we test the same LQR controller on three
aircraft models, Airship (A), Cirrus SR22 (B), and Navion (C), across all six trajectory tracking
tasks. As shown in Table 5.9, performance varies significantly with aircraft dynamics. The Airship
(A), for which the controller was tuned, consistently achieves the lowest RMSE and overshoot,
indicating good stability and responsiveness. In contrast, the Cirrus (B) and Navion (C) exhibit

higher errors and settling times, especially in dynamic or multi-axis tasks (e.g., tasks ¢ and f), due

114

—— Actual Trajectory
Reference Trajectory
® Start Position
@ End Position

—— Actual Trajectory —— Actual Trajectory
Reference Trajectory Reference Trajectory
® Start Position ® Start Position
End Position @ End Position Y

2 / ‘Ho
= Pl / e -
= Pl 17 fe &

| f t / ra
g (7 / L,
L 4 0
/ 12
~ ay C £ 810
500 e © s 500 — o
1000 1500 1000 150N0~ 1000 150&0\3\ ~e 4§
*Imy Xlm; 2000 25‘5‘ Xlm; 2000 ;5811\ A 2
(a) Altitude sine wave (b) Altitude ramps (c) Altitude and lateral ramps
—— Actual Trajectory —— Actual Trajectory —— Actual Trajectory
Reference Trajectory Reference Trajectory Reference Trajectory
® Start Position & Start Position ® Start Position
® End Position e End Position @ End Position
N |
v fo /9
r 1 los E / i E £
4 loa { /) "
| / ;/
f0.2 /
\0‘0 ',,'
5 7
& 4 4 b4 L
° @ ° o ° o
0 L /2 8 ~)
10)0{0[1500;&60\\\ //1 3 102(; 1500 N Oi(; 500 %
1 2500 m 2000 e m 2000 e 3
(d) Lateral sine wave (e) Altitude and lateral sine wave (f) Spiral wave

Figure 5.8: LQR-controlled airship response while tracking different trajectories.

to differences in actuation and inertia properties. These results illustrate how the framework en-
ables structured comparisons across vehicle configurations and supports benchmarking controller

robustness to morphology changes.

Table 5.9: Performance metrics for scenarios (a)—(f). Columns (A), (B), and (C) correspond to the
Airship, Cirrus SR22, and Navion, respectively.

RMSE Settling Time (s) Overshoot Error (mean £ std) (m) Energy Utilization
Task (o) (B) () (4 @) () @A) @B (© (A) (B) (C) 4) B (©
(a) 0.025 0.024 0.055 1.48 1.63 1.51 0211 0419 1.227 0.03740.024 0.028 £0.031 0.034 + 0.089 0.663 0.372 0.362
(b) 0.052 0.045 0.049 41.55 41.27 4127 0.671 0.787 0.854 0.025=+0.087 0.0194+0.076 0.019+0.082 0.370 0.322 0.315
(c) 0.213 0.223 0.208 44.06 46.20 46.00 1.708 1.709 1.877 0.144+0.339 0.158 £0.352 0.148£0.328 0.379 0.322 0.315
(d) 0.017 0.023 0.056 2.94 322 270 0213 0412 1250 0.014+0.026 0.017+0.037 0.022+0.094 0.303 0.290 0.289
(e) 0.019 0.022 0.055 240 259 195 0209 0416 1237 0.024+0.021 0.021+0.032 0.027£0.091 0.583 0.345 0.338
(f) 0.149 0.161 0.163 - - - 0.704 0.739 1290 0.231+0.114 0.2484+-0.126 0.243 £0.143 0.565 0.340 0.335

115

—— Actual Trajectory —— Actual Trajectory —— Actual Trajectory
Reference Trajectory Reference Trajectory Reference Trajectory
® Start Position @ Start Position @ Start Position
© End Position @ End Position @ End Position

[/
7/ L/"
v
s00 < = 107)%303‘ -
1000 e 000, o
"[mljsou 2000 2;;0\ *[/:?0050006000;050\
(a) Airship trajectory (c) Navion trajectory

(d) Airship actuator actions (e) Cirrus SR22 actuator actions (f) Navion actuator actions

Figure 5.9: LQR-controlled Airship, Cirrus SR22, and Navion responses to altitude and lateral
sine-wave trajectory tracking.

5.5.4 Robustness Under Environmental Variations

We assess the robustness of the LQR controller under different sources of environmental uncer-
tainty: sensor noise (A), wind disturbances (B), and sensor delay (C). Table 5.10 shows that all
three perturbations impact performance to varying degrees, with wind disturbances generally in-
ducing the highest errors, overshoot, and energy usage, especially in fast-changing tasks such as (c)
and (f). Sensor noise introduces more variability (e.g., increased RMSE and error variance), while
sensor delay has a relatively smaller effect in most scenarios, though certain tasks (e.g., (b), (f)) re-
main sensitive. These results demonstrate FALCON-S’s capacity to simulate realistic disturbances

and evaluate controller sensitivity in a structured and reproducible way.

116

—— Actual Trajectory
Reference Trajectory
@ Start Position
—— Actual Trajectory @ End Position —— Actual Trajectory
Reference Trajectory Reference Trajectory

® Start Position @ Start Position

® End Position @ End Position

z[m]

z[m]
z[m]

/
/
j ‘i
v L 4
0 T 0 T
500 T 500 T
1000 15(;0 1000 1;;0\ Ny
XImy Xlmy 2000 7

(b) Trajectory with light Dryden

turbulence

(d) Actuator actions with sensor (e) Actuator actions with light (f) Actuator actions with sensor
noise Dryden turbulence delay

Figure 5.10: LQR-controlled Airship response to altitude and lateral sine-wave trajectory tracking
under sensor noise, light Dryden turbulence, or a 20 ms sensor delay.

Table 5.10: Performance metrics for scenarios (a)—(f). Columns (A), (B), and (C) correspond to
the Airship under sensor noise, wind disturbances, and sensor delay, respectively.

RMSE Settling Time (s) Overshoot Error (mean =+ std) (m) Energy Utilization
Scemario (A) (B) () (4 (®B) () (A (B (O (A) (B) (C) @A) B (©
(a) 0.091 0.220 0.024 64.43 - 0.01 0.619 1.155 0215 0.1314+0.089 0.312+0.218 0.036£0.023 0.760 0.741 0.663
(b) 0.087 0.141 0.051 31.00 4224 30.70 0.689 0.783 0.663 0.118£0.093 0.178 £0.168 0.024+0.084 0.464 0.476 0.371
(c) 0.394* 0.250 0.210 —* 4337 43.20 1.732* 1.753 1.686 0.473 +0.492* 0.2494+0.354 0.142+0.335 0.799* 0.474 0.380
(d) 0.066 0.076 0.017 0.01 0.01 0.01 0.356 0.382 0.217 0.099£0.057 0.11440.065 0.014+0.026 0.425 0.430 0.303
(e) 0.068 0.194 0.018 0.01 - 0.01 0.438 1.167 0214 0.1024+0.060 0.253+0.220 0.023 £0.021 0.669 0.668 0.583
(f) 0.163 0.238 0.147 234 8728 248 0.766 1401 0.691 0.260+0.112 0.3274+0.249 0.228+0.113 0.649 0.665 0.565

5.6 Discussion and Conclusions

This chapter introduced FALCON-S, a simulation benchmark for learning and control of fixed-
wing aerial vehicles operating in ground effect. The contribution builds upon the central themes
of this thesis—modular simulation, physically grounded modeling, and scalable reinforcement

learning—while extending them to a more acrodynamically complex domain.

117

FALCON:-S was designed in response to the limitations of existing flight simulators in terms of
modularity, aerodynamic realism, and compatibility with modern learning algorithms. Through
a dual CPU-GPU architecture and a clean modular design, the framework supports both high-
throughput training and physically plausible evaluation. Notably, it incorporates detailed models
for six-degree-of-freedom dynamics, actuator and sensor response, and ground-eftect aerodynam-
ics, enabling systematic experimentation across a range of low-altitude flight scenarios.

From a research perspective, FALCON-S serves two complementary goals. First, it provides
a robust testbed for evaluating classical and learning-based control methods under realistic flight
conditions, bridging the gap between control theory and deep reinforcement learning. Second, it
enables ablation studies on model fidelity, observation corruption, and dynamics variation, which
are critical for understanding the limits of sim-to-real generalization.

By supporting classical controllers (e.g., LQR, MPPI) alongside state-of-the-art learning algo-
rithms (e.g., PPO, DreamerV3), FALCON-S encourages structured comparisons and opens the
door to hybrid approaches that combine model-based and model-free reasoning. This aligns with

the broader thesis direction of integrating domain knowledge, structure, and data-driven learning.

Limitations and Outlook. While FALCON-S offers high simulation fidelity and control flexi-
bility, the current framework operates entirely in simulation and assumes accurate aecrodynamic pa-
rameters and actuator models. Real-world transfer remains an open challenge, particularly under
actuator faults, sensor drift, and uncertain aerodynamic regimes (e.g., post-stall behavior). Future

work will focus on:

* Extending the library of tasks and vehicle models, including path following, obstacle

avoidance, and energy-efficient cruise.

* Sim-to-real validation, including interfaces with onboard hardware, sensors, and embed-

ded controllers for real-world experiments.

* Policy adaptation and generalization, incorporating online learning, residual control, and

memory-based architectures for robustness across conditions.

118

In the broader context of this thesis, FALCON-S complements previous chapters by tackling
one of the most dynamic and unstable robotic platforms—fixed-wing aircraft—and by showing
that structured, high-fidelity simulation can enable progress toward generalizable and interpretable
control. It serves as a foundation for future research in aerial robotics, where data-driven meth-
ods and physical modeling must go hand-in-hand to support robust autonomy in complex, low-

altitude flight regimes.

119

Chapter 6

Additional Studies

6.1 Introduction

While the core of this thesis revolves around the design of high-performance simulation frame-
works (RANS, RoboRAN, FALCON-S) and their application to deep reinforcement learning
(DRL) control in multi-modal robotic platforms, several additional studies were carried out in
parallel to explore adjacent challenges in spacecraft autonomy. These works, although not fully
integrated into the main simulation stack presented so far, provide complementary insights into
two critical dimensions of autonomous space robotics: (i) learning-based visual inspection in com-
plex orbital scenarios, and (ii) estimation of angular velocity and inertia properties for spacecraft
operating under partial observability and limited sensing.

The first study, RL-AVIST (Reinforcement Learning for Autonomous Visual Inspection
of Space Targets), investigates model-based DRL for proximity operations around large orbital
structures such as the Lunar Gateway and the ISS. Implemented using the Space Robotics
Bench (SRB) framework rather than the IsaacLab-based environments developed in this thesis,
RL-AVIST demonstrates the potential of DreamerV3 and other RL algorithms for training
generalist and specialist policies in 6-DoF continuous-thrust settings. Although developed in-

dependently from the RANS and DRIFT pipelines, this work shares many motivations with

120

previous chapters—particularly the need for adaptability, robustness, and scalable learning in
uncertain space environments.

The second and third studies shift focus to a more classical control domain, aiming to recover
inertial properties or angular velocity from minimal on-board sensing. The Excitation-Based An-
gular Rate Estimation work explores a novel method to estimate angular velocity using injected
torque profiles and observed attitude changes, oftering a lightweight and interpretable alternative
to learning-based estimators. A related work, currently under review and conducted in collabora-
tion, proposes an event-camera-based approach to recover angular velocity by tracking stars in the
spacecraft’s visual field. Though these contributions difter in methodology from the DRL-centric
core of the thesis, they remain aligned with the overarching theme of enabling autonomy under
uncertainty and hardware limitations.

Taken together, these works expand the scope of this thesis toward enabling autonomy not just
through control policies, but also through improved sensing, estimation, and inspection capabili-
ties. The remainder of this chapter is organized as follows: - Section 6.2 presents the RL-AVIST
framework and experimental results; - Section 6.3 introduces the torque-based angular rate estima-
tion pipeline; - Section 6.4 provides an overview of the event-camera angular velocity estimation
work.

Each section includes a summary of the problem formulation, key methodological innovations,
and main findings. Throughout, we clarify the boundaries of the author’s contribution and discuss

how these studies relate to the broader thesis narrative.

6.2 RL-AVIST: Visual Inspection of Space Assets via Model-
Based RL

While the previous chapters focused on training generalizable RL policies for terrestrial and or-
bital robots using unified simulation frameworks (RANS, RoboR AN, FALCON-S), this section

explores a complementary but independent line of work on intelligent visual inspection in orbit.

121

Specifically, we present RL-AVIST (Reinforcement Learning for Autonomous Visual Inspection
of Space Targets), a study leveraging the Space Robotics Bench (SRB) [119] to train spacecraft
agents to maneuver around complex space structures using 6-DoF control.

This work diverges from the simulator stack used in earlier chapters, operating instead within
SRB — a physics- and rendering-capable platform designed for diverse space and planetary robotics
tasks. The focus here lies in benchmarking RL methods under continuous-thrust dynamics, space-
craft morphology variation, and mission trajectory complexity. Despite this deviation, RL-AVIST
remains aligned with the thesis’ broader goal: investigating scalable and robust RL strategies for

robot control in highly uncertain environments.

6.2.1 Problem Setting and Environment

In RL-AVIST, agents learn 6-DoF control policies to autonomously perform close-range visual
inspections of static orbital targets (e.g., Lunar Gateway, ISS, Venus Express). The spacecraft is
equipped with 8 fixed-direction thrusters and is modeled as a free-floating rigid body initialized at
a random position and orientation relative to the target.

The state space includes previous actions, body-frame velocities, and relative pose to the target.
The continuous action space 4 C R® corresponds to normalized thrust levels for each actuator.
The dynamics are fully simulated, including control latency, inertia variations, and randomized
initial conditions.

Reward functions are shaped to encourage smooth, efficient, and accurate tracking of desired
poses around the target. Components include position convergence, orientation alignment, action

smoothness, and actuation penalties — weighted to balance fuel efficiency with task success.

6.2.2 Model-Based vs Model-Free Learning

The study compares the performance of three RL algorithms:

* DreamerV3 [35] - A model-based algorithm learning compact latent dynamics for long-

122

Figure 6.1: Training of multiple CubeSat morphologies to follow randomized velocity commands
around the Lunar Gateway. Agents learn generalist policies by experiencing a wide variety of sce-
narios within SRB [119].

horizon planning.
* PPO [28] - A widely used model-free policy gradient baseline.
* TD3 [29] — An off-policy model-free algorithm suitable for continuous actions.

All agents are trained in SRB using randomized spacecraft geometries and initial conditions.
Figure 6.2 shows that DreamerV3 achieves faster convergence and better performance, highlighting

the benefit of planning in latent space for complex, long-horizon control.

6.2.3 Trajectory Tracking and Generalization

Using DreamerV 3, agents are deployed on structured inspection trajectories: circle, spiral, capsule,
rectangle, lemniscate, and Lissajous patterns. Figure 6.3 illustrates accurate tracking in all scenarios,

showcasing DreamerV3’s adaptability and precision.

123

X 104

Return

PPO

1.0 — TD3
—— DreamerV3
-1.5
0 10M 20M 30M

Environment Steps

Figure 6.2: Training curves (mean = std over 3 seeds) for different RL algorithms on generalized
velocity-tracking tasks. DreamerV3 achieves higher returns and faster convergence than model-free

baselines.

6.2.4 Deployment on Realistic Orbital Targets

To simulate realistic mission settings, the trained agent is tested on inspection tasks around high-

fidelity space assets. These include:
* Lunar Gateway, Fig. 6.4
* Venus Express, Fig. 6.5
* International Space Station (ISS), Fig. 6.6

Each deployment includes RGB, depth, and semantic renderings for visual inspection, emu-

lating the outputs of an onboard perception system.

6.2.5 Summary and Discussion

RL-AVIST provides a compelling case for applying model-based reinforcement learning in orbital

visual inspection. Despite using a separate simulation stack (SRB), the work aligns with this the-

124

-~ Target Path --- Target Path -~ ‘Target Path
— Robot Path

o Robot

o Target

—— Robot Path —— Robot Path
o Robot o Robot
o Target o ‘Target

T4 T4 T4

T2 T2 A T2
g g E
AN TO0N N
—2 —2 =2
—4 -4 -4
o2 4 2
- 1 . -2 <1
-6 _,) <0 -4 08 L e ° %
- g -1 - v =2 0 - /-
"'(g) 2 4 7) "’/rgj 2 g 4 Xim) 2 - 2
6 4 4
(a) Capsule (b) Circle (c) Rectangle
~~ Target Path - Target Path —-- Target Path
—— Robot Path —— Robot Path = Robot Path
e Robot e Robot e Robot
o Target o Target o Target
4 T4 4
T2 T2 2
e g B
[UIN] ToN TO0N
-2 —2 —2
—4 —4 —4
p y P
2 - ~ 4
1 < 2 2
-6 < 0 —4 - 0 _ / &
e -0 R L0 4 -,
0 = o 0 . 2 0 - v,
Yy 2 g =2 X () 2 L~ Xy 2 ’ —4
6 -2 Y 4
(d) Lemniscate (e) Lissajous (f) Spiral

Figure 6.3: DreamerV3 agent tracking various inspection trajectories. The policy demonstrates
strong generalization across geometrically diverse 3D paths.

sis by targeting intelligent control under uncertainty and using task-specific RL reward shaping,

morphologically diverse training, and rigorous trajectory evaluation.

Scope and Integration Note

While RL-AVIST was developed independently of the core simulator stack used in this
thesis, its methodology—task-driven RL with high-fidelity dynamics—complements our
broader investigation into scalable control in uncertain environments. This study validates

DreamerV3 as a sample-efficient baseline in complex orbital contexts.

Future work includes integrating perception-based policy learning and bridging the sim-to-real

125

Figure 6.5: Visual inspection simulation near Venus Express.

126

Semantics

Figure 6.6: Close-proximity maneuvering around the ISS structure.

gap via hardware-in-the-loop validation or docking demonstration platforms.

6.3 Inertia Estimation via Active Excitation in Satellites

6.3.1 Motivation and Context

Accurate knowledge of a spacecraft’s inertia tensor is critical for safe and precise attitude control,
especially in long-duration missions or modular systems where mass distribution evolves over time.
While pre-launch models are available, post-deployment changes—due to fuel consumption, pay-
load deployment, or environmental degradation—can cause mismatches that degrade control per-
formance. This motivates autonomous on-board identification methods based solely on available
actuation and sensing.

This study investigates the use of excitation-based estimation pipelines for on-orbit inertia iden-
tification, comparing the effectiveness of two estimators—a batch Least Squares (LS) method and

an Extended Kalman Filter (EKF)—under different excitation designs and satellite configurations.

127

The work is published in [30] and complements the thesis’ broader focus on intelligent autonomy

under uncertainty by addressing parameter estimation as a prerequisite to robust control.

6.3.2 Simulation Framework

The system simulates a 6-DoF rigid-body satellite equipped with orthogonal reaction wheels (RWs),
modeling nonlinear attitude dynamics, RW coupling, actuator saturation, and simplified external
disturbances (e.g., gravity gradient). Three spacecraft configurations are considered: a CubeSat
(24kg), a Microsatellite (95kg), and a SmallSat (118kg), each with distinct RW specifications (Ta-
ble 6.1). Estimation is performed over 300s episodes under varying conditions: static inertia, and
three dynamic profiles—step, linear drift, and periodic variation.

Eight normalized torque excitation profiles are used to induce system observability (Figure 6.7).
These range from smooth (sine, chirp) to discontinuous (multi-step, PRBS), targeting different

spectral and temporal excitation characteristics.

One step

Multi step

_____——— ———___

Sawtooth

""1f/""’/L—"""1—/"f’f’L/”’}”W——””"lff”
Sine

TN N N N N

Multi sine

Sine-3axis
NN Y RN ARANDYARANO AN WY
0 100 200 300 400 500 600
Time (s)

Figure 6.7: Overview of excitation profiles used to stimulate satellite dynamics for estimation.

128

Table 6.1: Satellite physical and reaction wheel parameters [30].

Model Mass [kg] Inertia [kg-m?] RW Max Torque [Nm]

CubeSat 240 [0.26,0.26,0.16] 0.01
Microsat 950 [6.53,5.96, 4.53] 0.1
SmallSat 118.0 [10.6,14.2,15.3] 0.1

6.3.3 Estimation Methods

The LS method assumes static inertia and reconstructs angular accelerations using finite differences
from gyro readings, minimizing residual errors over time. The EKF tracks angular velocity, reaction
wheel speeds, and the diagonal inertia vector jointly, allowing it to handle dynamic changes by
modeling inertia as a random walk state variable. Both estimators are implemented without hard

physical constraints (e.g., triangle inequality), yet remain physically valid across seeds.

6.3.4 Results and Insights

Static Inertia Estimation: Figure 6.8 shows the relative error for all estimators and profiles. LS
performs best under spectrally rich, smooth excitations (e.g., chirp, multi-sine), which im-
prove regression conditioning. EKF shows better performance for high-inertia systems and tempo-

rally rich inputs (e.g., multi-step, sine-3axis) due to frequent state updates.

Time-Varying Inertia Tracking: Figure 6.9 summarizes estimation errors under step, drift, and
periodic variations. EKF outperforms LS in smoothly varying scenarios (e.g., drift or sinusoidal
change), especially on larger satellites. For abrupt changes (step), both degrade similarly, with EKF
lagging due to adaptation delay. This confirms the EKF’s capacity to adapt to in-flight variations,

especially when excitation is rich and temporally persistent.

6.3.5 Discussion

This work provides a comparative foundation for selecting excitation strategies and estimation

methods in in-orbit identification pipelines. Batch LS is preferable in short-duration or low-noise

129

satellite = CubeSat satellite = Microsat satellite = SmallSat

LS
EKF

25% 5%
8%

I‘iﬁ & ulinil "Ii IIEIII‘II iILIi.Jl L-ﬁ

o e P 0C e & o e
,",o? @ g‘a\’ ‘o"" R §\\\ ?(o 6“\« q,,*\ ,"& @ &v ‘o"" & §\\\ ?‘“ 6“\« q,,*\ "‘o? @ 9(;\’ ‘o"" &0% §\\\ ?‘“ 6“\« 2@*\
« ‘“ é o « ‘“ é o « ‘“ é

Mean relative error (%)
5 & 8
R® x® R®

o
&
N
&

Figure 6.8: Normalized inertia estimation error across excitation profiles for static cases. Least
Squares excels with smooth profiles, while the EKF benefits from dynamic excitation.

mode = periodic | satellite = CubeSat mode = periodic | satellite = Microsat mode = periodic | satellite = SmallSat

- LS
== EKF

Mean relative error (%)
@
&

mhﬂﬂﬂﬁJﬂJ nhatind wnnmitlnn

mode = slow_drift | satellite = CubeSat mode = slow_drift | satellite = Microsat mode = slow_drift | satellite = SmallSat

Mean relative error (%)
@
&

i' Al .I wad dalatiuddatls I' il il

mode = step_change | satellite = CubeSat mode = step_change | satellite = Microsat mode = step_change | satellite = SmallSat

9
5%
2% II

%

Mean relative error (%)
]
E

]

& ° o ° e & 3 ° &
,’ & 9‘99 ‘oox. é\\ §\\\ ?{o ‘\ * ,"o @ 9(;9 ‘oo‘ é\\ §\\\ ?{o ‘\ * ,"o @ 9(;9 ‘oo‘ é\\ §\\\ ?{o ‘\ *
“‘ ‘0 5\ ﬁ‘ ‘0 5\ “‘ ‘“ 5\

Figure 6.9: EKF vs. LS estimation errors under dynamic inertia conditions. The EKF consistently
outperforms LS under smooth time-varying profiles.

contexts with smooth control inputs. EKF enables online tracking and is better suited for larger,
slower-varying platforms or missions with inertia drift. The simulation framework is released open-

source, and can be further extended with constrained optimization, advanced filtering, or reinforce-

130

ment learning—based excitation design.

6.3.6 Summary and Thesis Integration

While distinct from the core control-focused frameworks in previous chapters, this contribution
enriches the thesis narrative by addressing a critical prerequisite for learning-based control: accu-
rate system modeling. The techniques and findings outlined here open paths to adaptive flight
controllers that can re-estimate their mass properties online, and thus remain robust to mission-
phase transitions, deployment, or failures. Future work includes integrating this estimation mod-
ule into RL-based control stacks, either as a pre-calibration phase or as an online estimator jointly

optimized with policy learning.

6.4 Event-based Angular Rate Estimation with Starfield Ob-
servations

This section summarizes a complementary study to the main contributions of the thesis, led by
Franzese et al.[REF], where the author of this thesis contributed as second author. The work inves-
tigates whether event-based cameras—neuromorphic sensors that asynchronously record changes
in brightness—can be used to estimate spacecraft angular velocity by observing the apparent mo-
tion of stars in the focal plane. This sensing modality offers high temporal resolution, low latency,
and low power consumption, making it an attractive backup or complement to conventional gy-
roscopes for small satellites and resource-constrained spacecraft.

The key idea is that spacecraft rotation induces a measurable motion field of stars across the
image plane. By reconstructing this apparent motion from the stream of brightness-change events,
and by exploiting the geometry of the perspective projection, it is possible to infer the three angu-
lar rate components. This section provides a compact technical summary tailored for the thesis

context.

131

6.4.1 Motion Field Model and Single-Camera Limitations

Let a star at normalized camera-frame coordinates (X, Y, Z) project to image-plane coordinates
(x,y) under the pinhole model. A spacecraft rotating with angular velocity vector (p, ¢,) induces

an apparent motion field (u, v) in the image plane. The relationship is [120]:

p
u
=F(z,y) |q| .
v
.

where F'(x, y) is a matrix derived from camera geometry. Each event provides one constraint on

(p, q,r), and stacking IV events yields the least-squares estimate:
w=(H"H)'H'y.

Figure 6.10 visualizes the reference frames used (inertial, camera, and star projection).

€;
'y A
C;
////
//
o/ -
A
¢
A
€ ¢,

Figure 6.10: Reference frames used in the event-based angular rate estimation pipeline and pro-
jection of a star onto the camera focal plane. The inertial frame is aligned with catalogued star
directions, while spacecraft rotation induces apparent star motion in the camera frame.

Since the projection model causes the roll component () to be weakly observable, single-

camera estimation performs poorly on that axis, as shown later in Fig. 6.13.

132

6.4.2 Event-Based Sensing and Contrast Maximization

Event cameras report asynchronous events (z, y, t, k) when changes in brightness exceed a thresh-
old. As stars move across the sensor due to spacecraft rotation, they produce trails of positive and
negative events indicating edges of motion.

Figure 6.11 shows the principle of contrast maximization: events are “unwarped” back in time
using a candidate motion field (u, v). The candidate that maximizes spatial contrast corresponds

to the correct apparent velocity.

1000 f
[]
800+ e °* o
[]
X 600t -
2
>~ 400t .
200
[]
Q Q Q Q Q Q
DSOS S SR
X [pix]

Figure 6.11: Contrast maximization for apparent star-motion reconstruction. Left: raw event
stream projected onto the focal plane. Right: events warped with the optimal motion-field esti-
mate, producing a high-contrast image.

6.4.3 Simulation Pipeline

A full synthetic pipeline was built to validate the method (Fig. 6.12), using HIPPARCOS and
GAIA star catalogs, random spacecraft attitudes and angular velocities, photometric projection,

event triggering, motion field estimation, and least-squares recovery of (p, ¢,).

133

‘{ Pointing and rates]

Star catalogue

Qy, Sy, Wy

R

‘ IDS) aS’ 65’ VS |

Camera parameters

| FOV, H, W, f, V.,
|

l

Image frames

Event streams

Accuracy
assessment

Rate estimation

€ Eq» &

N

U, V |e

L]

Events (t, X, y, k)]

|

Motion field

estimation

Figure 6.12: Simulation pipeline used to evaluate event-based angular rate estimation: (1) star cata-
log retrieval, (2) camera and boresight definition, (3) star projection and image synthesis, (4) event
triggering, (5) motion-field estimation, (6) angular-rate recovery and accuracy evaluation.

134

6.4.4 Performance of Single-Camera Estimation

Using 100 random simulations of boresight and angular velocities, the method achieves good ac-

curacy in p and ¢, but poor accuracy in the roll component 7, consistent with projection-model

limitations.
2 T T T
Z1y 1
o0 @ (J
< O*MW%WM
w&_l» 4
-2 . . i
0 25 50 75 100
2 :
L1y i
& o kS -
£ NV WA N g poin
o -1f 1
-2 ! ! !
0 25 50 75 100
2 T
z 1 1
20
< 0f :
-1 1
-2 . . ;
0 25 50 75 100

Simulation Number [-]

Figure 6.13: Angular velocity estimation error for single-camera setups. Pitch (p) and yaw (g) are
well estimated, whereas the roll rate (7) is not reliably observable due to projection-geometry limi-
tations.

6.4.5 Dual-Camera Configuration and Sensor Fusion

To recover full 3-axis angular velocity, an **orthogonal dual-camera setup™ is introduced: each
camera’s weak axis becomes the strong axis of the other. The combined configuration yields com-
plete observability.

The fusion rule blends the well-estimated axes from each sensor to recover (p, ¢, r') robustly.

135

2 x x x
L 1r |
& o
. ORI AN AN ety Sty
ST]
_2 L 1 1
0 25 50 75 100
2 , , ,
? [-
@ ! & ° °
<) O\M\OMW,::‘
SL]
2 x i 1
0 25 50 75 100
2 x X X
Lot]
&
<0
ey
St)
W
_2 1 L |
0 25 50 75 100

Simulation Number [-]

Figure 6.14: Estimation accuracy after dual-camera sensor fusion. All three axes achieve compara-
ble performance, eliminating the roll-axis weakness present in single-camera setups.

136

Table 6.2 reports the final RMS error across all simulations.

Table 6.2: Angular velocity RMS error (deg/s) for single- and dual-camera configurations.

Configuration ¢, Eq Er RMS

Single Camera 0.0165 0.0192 0.3060 0.3070
Dual Cameras 0.0115 0.0192 0.0160 0.0275

6.4.6 Discussion

The results demonstrate that event-based vision can effectively estimate angular rates by leveraging
the apparent motion of stars, particularly when paired with a dual-camera configuration. This
approach enables redundancy against gyroscope failures, offers microsecond temporal resolution,

and is highly suitable for small spacecraft thanks to event cameras’ low size, weight, and power.

6.4.7 Summary

This study illustrates a novel sensing modality for spacecraft attitude-rate estimation. Although not
part of the thesis’ core robotics-R L contributions, it complements the broader theme of autonomy
under sensing uncertainty and highlights opportunities to integrate neuromorphic sensing with

learning-based control in future work.

6.5 Conclusion of Additional Studies

This chapter presented three complementary studies that, while distinct from the main simula-
tion and reinforcement learning frameworks developed throughout the thesis, share a common
objective: advancing autonomous spacecraft operations under sensing, modeling, and control un-
certainties.

The first contribution (RL-AVIST) proposed a learning-based visual inspection framework

for 6DoF spacecraft motion using event-based observations. It demonstrated how generalist and

137

specialist policies can be trained to track dynamic inspection trajectories across a variety of space
targets, using the SRB simulator. This work highlights the potential of deep RL beyond ground-
based systems and motivates future extensions to hardware-in-the-loop vision pipelines.

The second study introduced an excitation-based approach to inertia tensor estimation using
reaction wheel torques. Through controlled system identification campaigns, it was shown that
even short excitation profiles can yield accurate inertia estimates, validating their applicability in
adaptive control settings. This contributes to the broader theme of learning or estimating physical
models for onboard decision-making.

Finally, the third work proposed an angular rate estimation method using event-based camera
data and starfield motion. The method achieved sub-0.03 deg/s accuracy using dual orthogonal
sensors, demonstrating a viable alternative or backup to gyroscopes in space. This study illustrates
how emerging neuromorphic sensors can be exploited for navigation tasks, expanding the percep-
tion capabilities of future spacecraft.

Collectively, these studies broaden the scope of the thesis by exploring how learning, estima-
tion, and neuromorphic sensing can support space autonomy in scenarios where conventional
models or sensors may be unavailable, inaccurate, or degraded. While developed outside the main
thesis stack, they point toward promising research directions for integrating learning-based control

with adaptive models and alternative sensing modalities in space robotics.

138

Chapter 7

Conclusion and Future Work

The work presented in this thesis set out to investigate how deep reinforcement learning (DRL),
when paired with principled simulation design, can enable scalable, robust, and generalizable con-
trol of autonomous robots operating in highly uncertain environments. Across spacecraft simula-
tors, multi-robot navigation frameworks, and aecrodynamic vehicles under ground effect, this thesis
has argued for a unified perspective: high-fidelity physics, structured task design, and modular soft-
ware interfaces are not peripheral elements of DRL-based robotics — they are central enablers of
successful learning and transfer.

Beginning with a rigorous overview of DRL foundations (Chapters 1-2), the thesis high-
lighted that modern actor—critic and policy gradient methods excel in continuous control but
remain sensitive to modeling errors, insufficient state information, and non-stationary real-world
dynamics. These challenges motivated the first major contribution: the design of specialized
simulation infrastructures that more faithfully capture the physics and uncertainties faced by real
systems.

Chapters 3-5 developed three such frameworks:

* RANS and DRIFT (Chapter 3): GPU-accelerated 3DoF/6DoF spacecraft simulators en-
abling domain randomization, large-scale parallel training, and sim-to-real validation on

floating platforms.

139

* RoboRAN (Chapter 4): a multi-domain navigation framework for cross-robot, cross-
medium generalization with a unified training and deployment stack validated on Turtle-

bots, Kingfisher USV, and floating platforms.

* FALCON-S (Chapter 5): a dual-backend (GPU/CPU) 6DoF physics suite for fixed-wing
aerial vehicles in ground eftect, supporting RL and optimal control with high aerodynamic

fidelity.

Together, these systems enabled controlled experimentation on learning efficiency, robustness,
generalization, and sim-to-real transfer. The final chapter (Chapter 6) complemented these contri-
butions with additional studies on RL-based visual inspection around orbiting assets (RL-AVIST)
and spacecraft mass-property estimation, broadening the scope of the thesis while maintaining its
central focus on autonomy in uncertain conditions.

In this concluding chapter, we synthesize the scientific outcomes by revisiting the research
questions introduced in Chapter 1, articulating how each was addressed by the frameworks, experi-
ments, and analyses in the thesis. We then discuss broader implications for robotics and autonomy
research, identify limitations, and outline future research directions — including sim-to-real-to-

sim loops, world models, and continual-learning pipelines for long-lived autonomous robots.

7.1 Answers to Research Questions

RQ1. How can we design simulation frameworks that support scalable, physically

realistic, and task-agnostic RL for autonomous robots?

Answer. This thesis addresses RQ1 by developing a suite of simulation frameworks tailored for

scalable and physically grounded reinforcement learning across space-relevant robotic systems.

* RANS (Chapter 3) enables fast, reproducible training for spacecraft control via a GPU-

accelerated backend (6,000+ envs per GPU), configurable thrust models, and modular task

140

definitions such as TrackX, TrackXY, and TrackXYVel, all operating under user-defined dis-

turbance profiles.

* DRIFT (Chapter 3) validates this approach on hardware using a floating platform testbed,
confirming the fidelity of 3DoF translation and the sim-to-real consistency of disturbance-

aware PPO policies.

* RoboRAN (Chapter 4) abstracts robot and task definitions through unified IsaacLab inter-
faces, enabling flexible composition and reproducible training of 16 robot—task pairs across

land, water, and microgravity domains.

* FALCON-S (Chapter 5) highlights the value of dual backends — Warp for high-
throughput learning and CPU for classical control — while introducing fine-grained

aerodynamic and actuator models for fixed-wing aircraft in ground effect.

Together, these frameworks demonstrate that effective simulation infrastructure must com-
bine: (z) modular design, (i1) bigh-throughput physics backends, (iii) realistic actuation and sensing,
and (iv) unified APIs enabling multi-domain extensibility.

RQ2. To what extent can reinforcement learning policies generalize across tasks,

robots, and environmental conditions?

Answer. Generalization was systematically evaluated in RoboR AN (Chapter 4) and supported by

findings from RANS/DRIFT:

* Cross-task generalization. In RoboRAN, each robot (Turtlebot2, Kingfisher, Floating
Platform) successfully learned four distinct navigation tasks, including GoToPosition and
GoThroughPositions. Policies trained with domain randomization showed high success

rates across unseen initial conditions.

141

* Cross-robot generalization. RoboR AN’s unified task API enabled training the same tasks
using fundamentally different mobility systems (thrusters, differential drive, water-based
propulsion). This demonstrated that shared task structures extend across vehicle types when

dynamics are abstracted appropriately.

* Environmental generalization. DRIFT showed that PPO policies trained under stochastic
thrust perturbations retained stable behavior on real hardware. RoboR AN reproduced this

for USV and ground robots under wind, drag, and water disturbances.

* Generalization via world models. RL-AVIST (Chapter 6) demonstrated that DreamerV3
generalizes better than PPO/TD3 to unseen orbital inspection paths, spacecraft morpholo-

gies, and target geometries.

In summary, the thesis shows that DRL generalizes effectively when supported by structured
APIs, domain randomization, and unified learning pipelines — and that this generalization trans-

fers across real platforms.

RQ3. Which techniques most effectively bridge the simulation—reality gap in uncer-

tain environments?

Answer. The thesis introduced and empirically validated several strategies:

* Physics-grounded domain randomization (Chapters 3-4): injecting noise in thrust
curves, actuator latency, water drag, inertia scaling, and sensor bias improved robustness

and reduced overfitting.

* Realistic actuator and sensor models Enabled in RANS, DRIFT, and FALCON-S: actua-
tor dynamics, drag models, acrodynamic coefficients, and reaction wheel coupling increased

stability during transfer.

142

* Unified simulation — deployment pipeline RoboR AN’s ROS2-based lightweight execu-
tor allowed IsaacLab-trained policies (skrl, rl_games) to run directly on hardware without

the simulation layer.

* Trajectory-level evaluation and debugging tools Heatmaps, success metrics, and trajec-
tory overlays (Chapter 4) enabled detecting transfer failure modes such as heading drift, in-

ertia mismatch, and underdamped dynamics.

¢ Real-world validation DRIFT and RoboR AN both demonstrated successful zero-shot

transfer to hardware platforms.

These findings establish that bridging sim-to-real requires a combination of modeling fidelity,

structured randomization, unified interfaces, and principled evaluation protocols.

7.2 Summary of Fulfilled Objectives

This thesis was guided by the ambition to bridge the gap between simulation-based learning and
physically grounded robotic autonomy in uncertain environments. The objectives outlined in the
introduction — including building robust simulation platforms, enabling sim-to-real control, sup-
porting diverse robot-task combinations, and extending DRL techniques to space-relevant scenar-

ios — have been systematically addressed through the core contributions:

* Design of high-fidelity, task-rich simulators: RANS and FALCON-S provide modular
and scalable environments for spacecraft and fixed-wing vehicle control, respectively, featur-
ing 6DoF dynamics, domain randomization, environmental disturbances, and structured
benchmarks. These frameworks enable training and evaluation under realistic uncertainty

and dynamics constraints.

* Generalizable learning across robots and tasks: RoboR AN operationalizes multi-robot

multi-task reinforcement learning in a reproducible and decoupled fashion. It supports fast

143

training, real-world deployment, and systematic comparisons across terrestrial, aquatic, and

microgravity platforms.

Effective sim-to-real transfer: DRIFT and RoboRAN demonstrate successful deploy-
ment of policies trained in IsaacLab to real floating platforms, USVs, and ground robots.
Real-world results validate simulation fidelity and the training methodology under noisy

actuation, imperfect sensing, and inertia mismatches.

Deployment-ready pipelines for space robotics: Through the RL-AVIST and event-based
angular rate estimation studies, the thesis expands into on-orbit robotic autonomy, showing
that learned perception and estimation pipelines can complement or replace classical GNC

systems. These works provide a foundation for future learning-enabled space missions.

Benchmarking and reproducibility tools: The developed frameworks offer consistent
metrics, logging utilities (e.g., WandB), and modular controllers to enable comparative stud-
ies. These tools ensure that future work can build upon this foundation with transparency

and scalability.

Taken together, these contributions fulfill the initial research objectives while laying the

groundwork for broader generalization, integration with adaptive control, and lifelong learning in

robotic systems.

7.3 Broader Implications and Impact

The research presented in this thesis contributes to a broader understanding of how deep reinforce-

ment learning can be made usable, scalable, and reliable for real-world robotics. By emphasizing

physics-aware simulation, multi-robot frameworks, and standardized evaluation pipelines, the the-

sis shows that autonomy under uncertainty is not a byproduct of learning but a property that must

be scaffolded by design.

Several implications emerge:

144

* Simulation as a first-class research artifact. Toolslike RANS, RoboR AN, and FALCON-
S elevate simulation from an auxiliary tool to a core enabler of reproducible and generalizable
research. This supports the growing recognition of simulators as benchmarks — not just

pre-training environments — in RL and robotics communities.

* Unified frameworks enable cross-domain robotics. RoboR AN demonstrates that a sin-
gle codebase can train floating platforms, USVs, and mobile ground robots across multiple
tasks, showing that modular abstractions facilitate not only research efficiency but also in-

sight transfer between domains.

* Scalable DRL with real-world grounding is achievable. The successful deployment of
policies trained entirely in IsaacLab (DRIFT, RoboR AN) onto real robots illustrates that
modern GPU simulation and structured randomization can yield deployable policies in

practice.

* DRL can extend traditional spacecraft autonomy. The RL-AVIST and angular rate esti-
mation studies suggest that vision-based and event-based sensing, when paired with learned
policies or estimation pipelines, can offer complementary or fallback autonomy modes to

classical GNC systems.

Together, these outcomes suggest a path forward where learning-based control, estimation, and
sensing systems are not only academically interesting, but also practically viable across domains

such as space robotics, mobile navigation, and aerial robotics.

7.4 Future Work

While this thesis establishes robust baselines and frameworks, several avenues remain open for ex-

panding and deepening the research.

145

* Sim-to-Real-to-Sim Loops. While we demonstrated sim-to-real transfer (e.g., DRIFT,
RoboR AN), the reverse process — using real-world data to refine simulators — remains
underexplored. A promising direction is to iteratively adjust dynamics, noise profiles, or

actuator models using real-world trajectory deviations as a supervisory signal.

* World Models for Long-Horizon Planning. The success of DreamerV3 in RL-AVIST
suggests world models are promising for domains with sparse rewards or partial observability.
Future work could integrate world models into RoboR AN or FALCON-S to enable sample-

efficient learning or hybrid model-based/model-free control.

* Continual and Lifelong Learning for Robotics. Real-world deployment demands agents
that adapt over time, without catastrophic forgetting. With RoboR AN’s modular setup, it
becomes possible to explore continual learning strategies — e.g., replay-based regularization,

task-conditioned policies, or forward/backward transfer metrics — across tasks and robots.

* Cross-Vehicle and Multi-Agent Generalization. While generalization across individual
robots and tasks was demonstrated, scaling to multi-agent or cross-fleet settings (e.g., hetero-
geneous robot swarms) could be a natural extension, especially using curriculum learning

and domain-conditioned policies.

* In-the-Loop Estimation and Control. RL-AVIST and the Angular Rate Estimation
frameworks offer strong estimation backbones. An exciting future direction is to close
the loop by feeding such estimates directly into adaptive control pipelines or online policy

updates — enabling perception-adaptive controllers.

Collectively, these directions aim to move from robust single-task deployment to lifelong au-

tonomy: systems that can learn, adapt, and generalize in complex, dynamic environments.

146

References

[1] Wenshuai Zhao, Jorge Pefia Queralta, and Tomi Westerlund. “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey”. In: 2020 IEEE symposium series on compu-

tational intelligence (SSCI). IEEE. 2020, pp. 737-744.

[2] Ilge Akkayaetal. “Solving rubik’s cube with a robothand”. In: arXiv preprint arXiv:1910.07113
(2019).

[3] XueBinPengetal. “Sim-to-real transfer of robotic control with dynamics randomization”.
In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE. 2018,
pp- 3803-3810.

[4] Greg Brockman etal. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[S] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:

nature 518.7540 (2015), pp. 529-533.

[6] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-
based control”. In: 2012 IEEE/RS] international conference on intelligent robots and sys-
tems. IEEE. 2012, pp. 5026-5033.

[7] Viktor Makoviychuk et al. “Isaac gym: High performance gpu-based physics simulation
for robot learning”. In: arXiv preprint arXiv:2108.10470 (2021).

[8] C Daniel Freeman et al. “Brax-a differentiable physics engine for large scale rigid body sim-

ulation, 2021”. In: URL http://github. com/google/brax 6 (2021).

147

9]

[10]

Manolis Savva et al. “Habitat: A platform for embodied ai research”. In: Proceedings of the

IEEE/CVF international conference on computer vision. 2019, pp. 9339-9347.

Henry Zhu et al. “The ingredients of real-world robotic reinforcementlearning”. In: 2rXzv

preprint arXiv:2004.12570 (2020).

OpenAl: Marcin Andrychowicz et al. “Learning dexterous in-hand manipulation”. In:

The International Journal of Robotics Research 39.1 (2020), pp. 3-20.

Eric Liang et al. “RLlib: Abstractions for distributed reinforcement learning”. In: Interna-

tional conference on machine learning. PMLR. 2018, pp. 3053-3062.

Antonin Raffin et al. “Stable-baselines3: Reliable reinforcement learning implementa-

tions”. In: Journal of machine learning research 22.268 (2021), pp. 1-8.

Denys Makoviichuk and Viktor Makoviychuk. 7/-games: A High-performance Framework
for Reinforcement Learning. https://github.com/Denys88/rl_games. May 2021.

Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: JCRA work-
shop on open source software. Vol. 3. 3.2. Kobe. 2009, p. S.

Miguel Olivares-Mendez et al. “Zero-G Lab: A multi-purpose facility for emulating space

operations”. In: Journal of Space Safety Engineering 10.4 (2023), pp. S09-521.

Trevor Hocksun Kwan et al. “An air bearing table for satellite attitude control simulation”.
In: 2015 IEEE 10th conference on industrial electronics and applications (ICIEA). IEEE.
2015, pp. 1420-1425.

Daniel Sakoda and James A Horning. “Overview of the NPS Spacecraft Architecture and
Technology Demonstration Satellite, NPSAT1”. In: Internal Report (2002).

Robin Amsters and Peter Slaets. “Turtlebot 3 as a robotics education platform”. In: /nzer-

national Conference on Robotics in Education (RiE). Springer. 2019, pp. 170-181.

148

[20]

[22]

[23]

[24]

[25]

Carlos Barrera et al. “Trends and challenges in unmanned surface vehicles (Usv): From sur-
vey to shipping”. In: TransNav: International Journal on Marine Navigation and Safety

of Sea Transportation 15 (2021).

Laminar Research. X-Plane Flight Simulator.https://www.x-plane.com/. Accessed:
2025-09-12. 2024.

Harold Klee and Randal Allen. Simulation of dynamic systems with MATLAB® and
Simulink®. Crc Press, 2018.

David Abel, Mark K Ho, and Anna Harutyunyan. “Three Dogmas of Reinforcement

Learning”. In: Reinforcement Learning Conference. 2024.

Mayank Mittal et al. “Orbit: A Unified Simulation Framework for Interactive Robot
Learning Environments”. In: JEEE Robotics and Automation Letters 8.6 (2023), pp. 3740-
3747.por: 10.1109/LRA.2023.3270034.

Josh Tobin et al. “Domain randomization for transferring deep neural networks from sim-
ulation to the real world”. In: 2017 IEEE/RS] international conference on intelligent robots

and systems (IROS). IEEE. 2017, pp. 23-30.

Yoshua Bengio et al. “Curriculum learning”. In: Proceedings of the 26th annual interna-

tional conference on machine learning. 2009, pp. 41-48.

Andrej Orsula et al. “Towards Benchmarking Robotic Manipulation in Space”. In: Confer-
ence on Robot Learning (CoRL) Workshop on Mastering Robot Manipulation in a World
of Abundant Data. 2024.

John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint

arXiv:1707.06347 (2017).

Scott Fujimoto, Herke Van Hoof, and David Meger. “Addressing Function Approxima-
tion Error in Actor-Critic Methods”. In: arXiv preprint arXiv:1802.09477 (2018).

149

[30]

[31]

[33]

[34]

Matteo El Hariry, Vittorio Franzese, and Miguel Olivares-Mendez. “Towards Active

Excitation-Based Dynamic Inertia Identification in Satellites”. In: 7SpaRo. 2025.

Vittorio Franzese and Matteo El Hariry. “Spacecraft Angular Rate Estimation via Event-

Based Camera Sensing”. In: ASR (2025). Under review.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Sec-
ond. The MIT Press, 2018. URL: http://incompleteideas.net/book/the-book-
2nd.html.

Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning 8.3
(1992), pp. 279-292.

Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013. arXiv:
1312.5602 [cs.LG]. URL: https://arxiv.org/abs/1312.5602.

Danijar Hafner et al. “Mastering diverse control tasks through world models”. In: Nazture
(2025), pp. 1-7.
Matteo El-Hariry, Antoine Richard, and Miguel Olivares-Mendez. “Rans: Highly-

parallelised simulator for reinforcement learning based autonomous navigating space-

crafts”. In: arXiv preprint arXiv:2310.07393 (2023).

Matteo El-Hariry et al. “Drift: Deep reinforcement learning for intelligent floating plat-
forms trajectories”. In: 2024 IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2024, pp. 14034—14041.

Matteo El Hariry et al. “FALCON-S: Fixed-Wing Aerodynamics and Learning Control
Benchmark”. In: ICLR Datasets and Benchmarks (2026). Under review.

Matteo El-Hariry et al. “NavBench: A Unified Robotics Benchmark for Reinforcement
Learning-Based Autonomous Navigation”. In: TZMLR (2025). Under review.

150

[40]

[42]

[43]

[44]

[45]

[46]

Yongshuai Liu, Avishai Halev, and Xin Liu. “Policy learning with constraints in model-free
reinforcement learning: A survey”. In: The 30th international joint conference on artificial

intelligence (ijcaz). 2021.

Weiye Zhao et al. “State-wise safe reinforcement learning: A survey”. In: arXiv preprint

arXiv:2302.03122 (2023).

Shangding Gu et al. “A review of safe reinforcement learning: Methods, theories and ap-

plications”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2024).

Javier Garcia and Fernando Ferndndez. “A comprehensive survey on safe reinforcement

learning”. In: Journal of Machine Learning Research 16.1 (2015), pp. 1437-1480.

Nathan Koenig and Andrew Howard. “Design and use paradigms for gazebo, an open-
source multi-robot simulator”. In: 2004 IEEE/RS] international conference on intelligent

robots and systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. Ieee. 2004, pp. 2149-2154.

Erwin Coumans and Yuntei Bai. Pybullet, a python module for physics simulation for games,

robotics and machine learning. 2016.

Eric Rohmer, Surya PN Singh, and Marc Freese. “V-REP: A versatile and scalable robot
simulation framework”. In: 2013 IEEE/RS] international conference on intelligent robots

and systems. IEEE. 2013, pp. 1321-1326.
Miles Macklin. Warp: Differentiable Spatial Computing for Python. 2024.

Stephen James et al. “Rlbench: The robot learning benchmark & learning environment”.

In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 3019-3026.

Nicolas Heess et al. “Memory-based control with recurrent neural networks”. In: arXzv

preprint arXiv:1512.04455 (2015).

Tobias Johannink et al. “Residual reinforcement learning for robot control”. In: 2019 in-

ternational conference on robotics and automation (ICRA). IEEE. 2019, pp. 6023-6029.

151

[51]

J. Kopacz, R. Herschitz, and]. Roney. “Small satellites an overview and assessment”. In:
Acta Astronantica 170 (2020), pp. 93-105. por: 10. 1016/ j . actaastro.2020.01.
034.

G. Curzi, D. Modenini, and P. Tortora. “Large constellations of small satellites: a survey
of near future challenges and missions”. In: Aerospace 7 (9 2020), p. 133. po1: 10.3390/
aerospace7090133.

M. B. Quadrelli et al. “Guidance, navigation, and control technology assessment for future
planetary science missions”. In: Journal of Guidance, Control, and Dynamics 38 (7 2015),

pp. 1165-1186. por: 10.2514/1. g000525.

J. Song, D. Rondao, and N. Aouf. “Deep learning-based spacecraft relative navigation
methods: a survey”. In: Acta Astronautica 191 (2022), pp. 22-40. por: 10 . 1016/ j .
actaastro.2021.10.025.

Brian Gaudet, Richard Linares, and Roberto Furfaro. “Deep reinforcement learning for
six degree-of-freedom planetary landing”. In: Advances in Space Research 65.7 (2020),
pp. 1723-1741.

Stefan Willis, Dario Izzo, and Daniel Hennes. Reinforcement Learning for Spacecraft Ma-

nenvering Near Small Bodies. 2016.

T. Tanaka, M. Cescon, and H. A. Malki. “Linear quadratic tracking with reinforcement
learning based reference trajectory optimization for the lunar hopper in simulated environ-

ment”. In: JEEE Access 9 (2021). por: 10.1109/access.2021.3134592.

David M. Chan and Ali-akbar Agha-mohammadi. Autonomous Imaging and Mapping of
Small Bodies Using Deep Reinforcement Learning. 2019. por: 10 . 1109/ AERO . 2019 .
8742147.

Darrel] Conway and Steven P Hughes. “The general mission analysis tool (GMAT): Cur-
rent features and adding custom functionality”. In: International Conference on Astrody-

namics Tools and Techniques (ICATT). 2010.

152

[60]

C Acton et al. “SPICE tools supporting planetary remote sensing”. In: The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 41

(2016), pp. 357-359.

Cyrus Foster. “Trajectory Browser: An online tool for interplanetary trajectory analysis

and visualization”. In: 2013 IEEE Aerospace Conference. IEEE. 2013, pp. 1-6.

N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-source multi-
robot simulator”. In: 2004 IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3. 2004, 2149-2154 vol.3. por: 10 .
1109/IR0S.2004.1389727.

Olivier Michel. “Cyberbotics ltd. webots™: professional mobile robot simulation”. In:

International Journal of Advanced Robotic Systems 1.1 (2004), p. 5.

Tomasz Rybus and Karol Seweryn. “Planar air-bearing microgravity simulators: Review of
applications, existing solutions and design parameters”. In: Acta Astronantica 120 (2016),

pp- 239-259.

Z. Huang et al. “Characterizing an air-bearing testbed for simulating spacecraft dynamics

and control”. In: Aerospace 9 (5 2022). po1: 10.3390/aerospace9050246.

L. Santaguida and Z. H. Zhu. “Development of air-bearing microgravity testbed for au-
tonomous spacecraft rendezvous and robotic capture control of a free-floating target”. In:

Acta Astronautica (2023). por: 10.1016/j.actaastro.2022.11.056.

Cristébal Nieto-Peroy et al. Stmulation of Spacecraft Formation Maneuvers by means of

Floating Platforms. 2021. por: 10.1109/AER050100.2021.9438537.

M. Sabatini, P. Gasbarri, and G. B. Palmerini. “Coordinated control of a space manipulator
tested by means of an air bearing free floating platform”. In: Acta Astronautica 139 (2017),

pp- 296-305.po1: 10.1016/j .actaastro.2017.07.015.

153

[74]

A. Banerjee etal. “On the design, modeling and experimental verification of a floating satel-
lite platform”. In: IEEE Robotics and Automation Letters 7 (2 2022), pp. 1364-1371. DoI:
10.1109/1ra.2021.3140134.

X. Yu, P. Wang, and Z. Zhang. “Learning-based end-to-end path planning for lunar rovers
with safety constraints”. In: Sezsors 21 (3 2021), p. 796. po1: 10.3390/521030796.

K. Hovell and S. Ulrich. Oz deep reinforcement learning for spacecraft guidance. 2020. por:
10.2514/6.2020-1600.

D Athauda et al. “Intelligent Motion Planning for Collision Free Autonomous Docking
of Satellite Emulation Platform Using Reinforcement Learning”. In: JFAC-PapersOnLine

56.2 (2023), pp. 3354-3359.

Zhehua Zhou et al. “Towards Building AI-CPS with NVIDIA Isaac Sim: An In-
dustrial Benchmark and Case Study for Robotics Manipulation”. In: arXiv preprint

arXiv:2308.00055 (2023).

Barig Can Yal¢in et al. “Lightweight Floating Platform for Ground-Based Emulation of
On-Orbit Scenarios”. In: JEEE Access 11 (2023), pp. 94575-94588. por: 10 . 1109 /
ACCESS.2023.3311202.

Lukas Biewald. Experiment Tracking with Weights and Biases. Software available from

wandb.com. 2020. URL: $https://www.wandb.com/$.
Robert F Stengel. Optimal control and estimation. 1994.

Elisa Sara Varghese, Anju K Vincent, and V Bagyaveereswaran. “Optimal control of in-
verted pendulum system using PID controller, LQR and MPC”. In: IOP Conference Series:
Materials Science and Engineering. IOP Publishing. 2017.

Mohsen Khosravi, Hossein Azarinfar, and Kiomars Sabzevari. “Design of infinite horizon
LQR controller for discrete delay systems in satellite orbit control: A predictive controller

and reduction method approach”. In: Helzyon (2024).

154

[79] Vivek Muralidharan et al. “Rendezvous in cislunar halo orbits: Hardware-in-the-loop
simulation with coupled orbit and attitude dynamics”. In: Acta Astronantica 211 (2023),

pp- 556-573.

[80] Vivek Muralidharan et al. “On-ground validation of orbital GNC: Visual navigation as-

sessment in robotic testbed facility”. In: Astrodynamics (2024).

[81] Antonio Serrano-Muifioz et al. “skrl: Modular and Flexible Library for Reinforcement

Learning”. In: arXiv preprint arXiv:2202.03825 (2022).

[82] Dirk Merkel. “Docker: lightweight linux containers for consistent development and de-

ployment”. In: Linux journal 2014.239 (2014), p. 2.

[83] Steven Macenski et al. “Robot Operating System 2: Design, architecture, and uses in
the wild”. In: Science Robotics 7.66 (2022), eabm6074. por: 10 . 1126 / scirobotics .
abm6074. URL: https://www.science.org/doi/abs/10.1126/scirobotics.
abm6074.

[84] Sergey Levineetal. “End-to-End Training of Deep Visuomotor Policies”. In: 27X7v:1504.00702
(2015). Available at arXiv: https://arxiv.org/abs/1504.00702.

[85] Xue Bin Peng et al. “DeepMimic: Example-Guided Deep Reinforcement Learning of
Physics-Based Character Skills”. In: a7X7v:1804.02717 (2018). po1: 10.1145/3197517.
3201311.

[86] Joonho Lee et al. “Learning Quadrupedal Locomotion over Challenging Terrain”. In: Scz-
ence Robotics 2020 Vol. S, Issue 47, eabc5986 (2020). por: 10 . 1126 / scirobotics .
abcb986. eprint: arXiv:2010.11251.

[87] Youngwoon Lee et al. “IKEA Furniture Assembly Environment for Long-Horizon Com-

plex Manipulation Tasks”. In: arX7v:1911.07246 (2019).

[88] Stephen James et al. “RLBench: The Robot Learning Benchmark & Learning Environ-
ment”. In: @rXiv:1909.12271 (2019).

155

[89]

[90]

[92]

[93]

[98]

Yuke Zhu et al. “robosuite: A Modular Simulation Framework and Benchmark for Robot

Learning”. In: arX7v:2009.12293 (2020).

Minho Heo et al. “FurnitureBench: Reproducible Real-World Benchmark for Long-
Horizon Complex Manipulation”. In: a7X7v:2305.12821 (2023).

Kai Zhu and Tao Zhang. “Deep reinforcement learning based mobile robot navigation: A
review”. In: Tsinghua Science and Technology 26.5 (2021), pp. 674-691. por: 10.26599/
TST.2021.9010012.

Manolis Savva et al. “Habitat: A Platform for Embodied AI Research”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2019.

Andrew Szot et al. “Habitat 2.0: Training home assistants to rearrange their habitat”. In:

Advances in Neural Information Processing Systems (NeurIPS) 34 (2021), pp. 251-266.

Daniel Perille et al. “Benchmarking Metric Ground Navigation”. In: 2020 IEEE Interna-
tional Symposium on Safety, Security and Rescue Robotics (SSRR). IEEE. 2020.

Shu-Ang Yu et al. “FlightBench: Benchmarking Learning-based Methods for Ego-vision-
based Quadrotors Navigation”. In: arXiv preprint arXiv:2406.05687 (2024).

Davide Corsi, Davide Camponogara, and Alessandro Farinelli. “Aquatic Navigation:
A Challenging Benchmark for Deep Reinforcement Learning”. In: arX7v:2405.20534
(2024).

Fei Xia et al. “Interactive Gibson Benchmark (iGibson 0.5): A Benchmark for Interactive
Navigation in Cluttered Environments”. In: JEEE Robotics and Automation Letters, Vol.
5, No. 2, April 2020 (2019). po1: 10.1109/LRA . 2020.2965078. eprint: arXiv:1910.
14442,

Zifan Xu et al. “Benchmarking Reinforcement Learning Techniques for Autonomous
Navigation”. In: 2023 IEEE International Conference on Robotics and Automation

(ICRA). 2023, pp. 9224-9230. po1: 10.1109/ICRA48891.2023.10160583.

156

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Adil Zouitine et al. “RRLS: Robust Reinforcement Learning Suite”. In: arXzv (2024).

Shangding Gu et al. “Robust Gymnasium: A Unified Modular Benchmark for Robust
Reinforcement Learning”. In: Github (2024).

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.

John Wiley & Sons, 2014.

Yi Zhou et al. On the Continuity of Rotation Representations in Neural Networks. 2018.

eprint: arXiv:1812.07035.

Jon Berndt. “JSBSim: An open source flight dynamics model in C++”. In: ALAA modeling

and simulation technologies conference and exhibit. 2004, p. 4923.

Yunlong Song et al. “Flightmare: A flexible quadrotor simulator”. In: Conference on Robot

Learning. PMLR. 2021, pp. 1147-1157.

Christoph Richter and Ruben Calix. “QPlane: A reinforcement learning toolkit for fixed-
wing aircraft simulation”. In: Proceedings of the ACM Multimedia Systems Conference

(MMSys). ACM. 2021, pp. 334-337.

Zifan Xue et al. “NeuralPlane: Efficiently parallelizable platform for fixed-wing aircraft

control”. In: NeurIPS Datasets and Benchmarks. 2024.

Shital Shah et al. “AirSim: High-fidelity visual and physical simulation for autonomous

vehicles”. In: Field and Service Robotics. 2017.

Franz Furrer et al. “RotorS—A modular Gazebo MAV simulator framework”. In:
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS). 2016,
pp- 46-51.

Felix Berkenkamp et al. “Safe model-based reinforcement learning with stability guaran-

tees”. In: NeurIPS 32 (2019).

157

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Jiayuan Liu, Jemin Hwangbo, Jongwoo Lee, et al. “Impact of dynamics randomization
on policy transfer for quadrotors”. In: IEEE Robotics and Automation Letters 6.3 (2021),
pp- 5300-5307.

Calin Basescu et al. “Post-stall landing of a fixed-wing UAV using learned aerodynamic
models and nonlinear MPC”. In: IEEE Robotics and Automation Letters 8.3 (2023),
pp- 1681-1688.

Xingyou Pan, Yikang Cui, Yi Zhang, et al. “WarpDrive: Extremely Fast End-to-End Deep
Multi-Agent Reinforcement Learning on a GPU”. In: arXiv preprint arXiv:2108.13976
(2021).

NASA OpenVSP Team. Open VSP: NASA’s Open Vebicle Sketch Pad. https://openvsp.

org/. Accessed: 2025-09-12. 2025.

Warren F Phillips and Douglas F Hunsaker. “Lifting-line predictions for induced drag and
lift in ground effect”. In: Journal of Aircraft 50.4 (2013), pp. 1226-1233.

HL Dryden and AM Kuethe. Effect of turbulence in wind tunnel measurements. Vol. 342.
US Government Printing Office, 1930.

Grady Williams et al. “Information-Theoretic Model Predictive Control: Theory and
Applications to Autonomous Driving”. In: JEEE Transactions on Robotics 34.6 (2018),
pp- 1603-1622. por: 10.1109/TR0.2018.2865891.

Mark Towers et al. “Gymnasium: A Standard Interface for Reinforcement Learning Envi-

ronments”. In: arXiv preprint arXiv:2407.17032 (2024).

NASA Ames Research Center. X-Plane Connect (XPC). https://github.com/nasa/
XPlaneConnect. Accessed: 2025-09-12. 2025.

Andrej Orsula et al. “Towards Benchmarking Robotic Manipulation in Space”. In: Confer-
ence on Robot Learning (CoRL) Workshop on Mastering Robot Manipulation in a World
of Abundant Data (MRM-D). 2024.

158

[120] YiMa et al. An invitation to 3-d vision: from images to geometric models. Vol. 26. Springer,

2004.

159

ST

