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Abstract

This thesis explores the use of deep reinforcement learning (DRL) for enabling robust, au-

tonomous control of robotic systems operating in highly uncertain environments. Motivated

by space applications and the need for generalizable learning pipelines, we develop a series of

simulation frameworks and experimental platforms that progressively expand the scope, realism,

and generalization capability of DRL-based controllers.

We begin by introducing GPU-accelerated simulation tools tailored to spacecraft-like dy-

namics (RANS), showing that physically grounded models and disturbance injection can yield

transferable control policies. These findings are validated through DRIFT, a framework pre-

senting an holonomic floating platform testbed where learned controllers achieve sub-centimeter

trajectory tracking despite stochastic disturbances. Building on this, we propose RoboRAN, a

modular IsaacLab-based framework that decouples robot and task specifications, enabling repro-

ducible training across diverse platforms such as ground robots, USVs, and microgravity analogs.

Sim-to-real evaluations confirm the framework’s effectiveness for low-level policy transfer. Finally,

FALCON-S broadens this research direction to fixed-wing platforms in ground-effect regimes

by integrating a full 6-DoF aerodynamic model, actuator dynamics, and unified CPU–GPU

backends. The framework accommodates both learning-based and classical control schemes,

allowing systematic benchmarking, ablation studies, and cross-validation.

Together, these contributions demonstrate that DRL can be scaled, generalized, and validated

across a range of robotic platforms, provided that simulation fidelity, modularity, and hardware

alignment are preserved. Additional studies explore visual policy learning for spacecraft inspec-

tion and sensor-driven estimation for satellite angular dynamics, broadening the thesis impact. We

conclude by outlining directions toward continual learning, sim-to-real-to-sim adaptation, and in-

tegrated world model architectures for real-world deployment.



Chapter 1

Introduction

Preface

The field of autonomous robotics has seen rapid advancements over the past decade, driven by

progress inmachine learning, computational hardware, andopen-source simulation environments.

Among variousmachine learning paradigms,ReinforcementLearning (RL) stands out as a promis-

ing tool for enabling agents to acquire control policies through interactionwith their environment.

RL’s potential to solve complex sequential decision-making problemsmakes it particularly appeal-

ing for robotic systems operating in unstructured, dynamic, and uncertain environments.

However, deploying RL in real-world robotics remains non-trivial. The community has made

significant strides in simulation-based performance, but a large gap persists between benchmark

success and practical deployment. This thesis addresses this gap by focusing on generalizable and

robust RL control for autonomous robots operating in highly uncertain environments—such

as satellites, water vessels, ground and vehicles—through the development of scalable simulation

tools, systematic evaluation frameworks, and real-world validation.
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1.1 Motivation

Reinforcement Learning has emerged as a powerful paradigm for developing control policies for

complex robotic systems. Its ability to learn directly from interaction, without requiring explicit

models, makes it particularly appealing for domains where accurate modeling is difficult or where

environmental uncertainty is dominant. In space robotics, maritime systems, and aerial vehicles,

this adaptability is crucial. These systems often operate in high-dimensional, stochastic, and par-

tially observable environments, with delayed or limited feedback. Despite the promise of RL, de-

ploying such agents on physical platforms remains a significant challenge, particularly in scenarios

with severe dynamics, limited sensing, and real-time constraints. The development of robust and

generalizable RL agents is hindered by several factors:

(i) Poor transferability from simulation to real-world systems. Policies trained in idealized

simulation environments often fail when exposed to the unmodeled dynamics, sensing noise, and

disturbances present in the real world. This is known as the sim-to-real gap. It stems from the

fact that simulators typically provide deterministic or low-noise feedback, whereas real environ-

ments are rife with stochasticity, delay, and partial observability [1, 2, 3]. For example, tactile-based

robotic manipulation policies that perform well in simulation often degrade sharply in real-world

tests unless heavily domain-randomized. Additionally, even accurate physics engines fail to model

the nonlinearities of friction, compliance, or fluid-structure interactions, which can dominate cer-

tain tasks (e.g., underwater or aerial control).

(ii) Lack of standardization in benchmarking environments and evaluation protocols. A

major bottleneck in the field stems from the limited standardization of RL benchmarks and eval-

uation protocols. The development of OpenAI Gym [4] marked a turning point by establishing

a unified API and environment structure for training and evaluating RL agents. Gym became

the de facto foundation for modern RL research, standardizing the interface between agents and

environments and enabling reproducible comparisons across algorithms. However, most of its
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tasks—such as Atari [5] and MuJoCo locomotion environments [6]—were originally designed

for algorithmic validation rather than embodied robotics.

Building upon Gym’s success, a new generation of simulation frameworks emerged to bridge

the gap between abstract tasks and physically realistic robotic scenarios. Among these, Isaac Gym

[7] introduced GPU‑accelerated physics for large‑scale training, Brax [8] provided differentiable

and parallelizable rigid‑body dynamics, andHabitat [9] targeted embodied visual navigation and

indoor mobility. While these toolkits significantly improved performance and realism, they differ

substantially in physics fidelity, scalability, and supported robot morphologies. Moreover, few are

coupled with real‑world evaluation protocols or standardized metrics across robotic systems. As

a result, reproducibility, comparability, and cross‑domain generalization in robotics‑focused RL

remain open challenges.

(iii) Complexity of deploying RL agents across diverse robot morphologies. Real-world

robotic systems differ substantially in actuation, sensing, dynamics, and failure modes. Transfer-

ring RL policies across such platforms is hindered by the need to carefully redesign observation

and action spaces, tailor rewards, and re-tune network architectures and hyperparameters [10,

11]. For example, a policy trained to navigate a differential drive robot cannot be reused as-is for

a holonomic mobile base, let alone a surface vehicle or drone. This lack of portability contrasts

sharply with the generalization ambitions of RL. Moreover, RL libraries and frameworks (e.g.,

RLlib [12], SB3 [13], RL-Games [14]) often require significant customization for integration

with robotic middleware such as ROS [15], and lack standardized wrappers or diagnostic tools for

sim-to-real transfer.

Addressing these issues requires a structured and systematic approach—one that embraces sim-

ulation as a key enabler while also validating solutions in physical scenarios. In this thesis, we ex-

plore how to design scalable simulators, robust policy training strategies, and unified benchmark-

ing tools to bridge the gap between reinforcement learning research and deployment in real-world

autonomous robotic platforms.
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The resulting methodologies are validated in four robotic domains that present a range of con-

trol and sim-to-real challenges:

1. Spacecraft ground simulators (floating platforms): These systems emulate planar space-

craft dynamics using air-bearing platforms constrained to frictionless two-dimensional mo-

tion. The platforms operate by generating a thin cushion of air between the robot base and

the ground, allowing free-floating dynamics akin to microgravity conditions. Such setups

are commonly used for attitude and orbit control prototyping in academic and industrial

research [16, 17, 18]. In simulation, the dynamics are replicated using lightweight physics

engines such as Isaac Gym [7], enabling high-throughput training of controllers under dis-

turbances, actuator dynamics, and realistic sensing models. These platforms serve as valu-

able proxies for validating autonomous control strategies in space-relevant environments.

2. Wheeled mobile robots (Turtlebot2): Differential-drive wheeled robots like the Turtle-

bot2 are widely used in indoor robotic navigation and academic benchmarking. They

exhibit non-holonomic dynamics and are typically equipped with low-cost sensors such as

odometry, inertial measurement units, and monocular or depth cameras. These platforms

enable testing of visual navigation and control policies in real-world cluttered environ-

ments [15, 19]. Their modular hardware and broad software support make them ideal for

evaluating sim-to-real transfer under perception and actuation noise.

3. Unmanned surface vehicles (USVs): Surface vehicles such as the Kingfisher M200 repre-

sent over-actuated aquatic systems subject to complex hydrodynamics. These include drag,

inertia, buoyancy, and environmental disturbances like wind and waves. Accurate simula-

tion of such vehicles requires extending standard planar dynamics with water resistance and

coupling models [20]. USVs offer a testbed for assessing generalization of control policies

to domains with continuous drift and nonlinear damping, distinct from terrestrial or aerial

robotics.

4. Fixed-wing aerial vehicles in ground effect: Fixed-wing vehicles flying close to the ground
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experience nonlinear aerodynamic phenomena known as ground effect, where increased

lift and reduced drag alter their dynamics. Simulating these behaviors necessitates special-

ized flight models, sometimes based on semi-empirical data or computational tools such as

XPlane [21] orMATLABSimulink [22]. Ground-effect vehicles pose unique challenges for

control algorithms due to unstable dynamics and strong coupling—making them ideal for

evaluating both classical and learning-based flight controllers.

Figure 1.1: Robotic systems considered in this thesis. The five domains include spacecraft plat-
forms (2D/3D), floating platforms (Zero-G Lab), wheeled robots (Turtlebot2), surface vehicles
(USV), and fixed-wing aerial vehicles (WIG). Real-world deployments were performed on systems
marked in green.

1.2 Research Scope and Objectives

This dissertation lies at the intersection of reinforcement learning, robotics, spacecrafts autonomy

and simulation engineering. Its overarching aim is to develop scalable tools, simulation frame-
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works, and learning pipelines that enable RL-based control of autonomous robots operating in

highly uncertain, dynamic, and partially observable environments. Rather than focusing on the

development of novel RL algorithms, this work emphasizes the design of structured environments

and evaluation protocols that support algorithmic generalization and deployment in real systems.

This choice of focus aligns with what Abel et al. [23] identify as the first foundational dogma

of modern RL: the environment spotlight, depicted in Figure 1.2. This dogma critiques the field’s

traditional emphasis on environments and problem-solving over agents themselves. In this thesis,

we embrace this environment-centric perspective—not as a limitation, but as a deliberate method-

ological stance. By engineering domain-randomized, physically grounded simulators and cross-

domain benchmarks, we aim to construct the “stage” upon which diverse RL agents can be tested,

improved, and transferred into reality. This work acknowledges that progress in RL for robotics

requires not only richer, more representative and well-structured environments, but also smarter

agents and novel algorithms and techniques. This latter topics are presented in the last chapter,

where future work with focus on the Agent block of the RL loop is discussed.

Figure 1.2: The environment spotlight from [23]: the field of RL has historically focused more
on problem formulations and environments than on agent modeling. This thesis aligns with that
perspective by emphasizing simulation infrastructure and task design.

The core intellectual pursuit of this work is driven by the following three high-level research

questions:
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Research Question 1

How can we design simulation frameworks that support scalable, physically realistic,

and task-agnostic RL for autonomous robots?

Research Question 2

Towhat extent can reinforcement learning policies generalize across tasks, robots, and

environmental conditions?

Research Question 3

Which techniques most effectively bridge the simulation–reality gap in uncertain en-

vironments?

To address these questions, the thesis pursues the following structured research objectives:

Research Objective 1

Develop modular and scalable simulation environments for reinforcement learning in

robotics.

A fundamental objective of this thesis is to design and implement simulation environments

that combine physical fidelity with large-scale computational efficiency. The simulators must sup-

port parallelized training, accurate dynamics modeling, and efficient GPU execution to enable

thousands of environments to run in real time. Particular emphasis is placed on reproducing real-

istic actuation and sensing, incorporating latency, noise, and model uncertainty to better approxi-

mate real-world conditions. Each environment is structured with clear interfaces for observation,

action, and reward functions, adhering to widely adopted standards such as OpenAI Gym [4],

Isaac Gym [7] and Isaac Lab [24]. The resulting platforms provide a modular and extensible foun-

dation for evaluating diverse control algorithms across multiple robotic domains, from spacecraft

to ground and marine systems.
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Research Objective 2

Train generalizable and robust policies through domain variation and algorithmic di-

versity.

This objective focuses on the development of learning pipelines that expose agents to struc-

tured variability in their training conditions. By combining techniques such as Domain Random-

ization (DR) [25] and Curriculum Learning [26], policies are trained to withstand uncertainty in

system dynamics, sensory feedback, and environmental perturbations. The study includes com-

parative evaluation of different neural architectures—feedforward, recurrent (PPO‑RNN), and

latent world‑model approaches (DreamerV3)—to assess how memory, abstraction, and temporal

reasoning contribute to robustness. Training procedures are designed to promote generalization

rather than overfitting to specific initial conditions, thus encouraging the emergence of adaptive

and transferable control behaviors suitable for real‑world operation.

Research Objective 3

Establish a unified training and evaluation framework for multi‑robot and multi‑task

pipelines.

A central contribution of this thesis is the creation of a standardized software framework that

enables systematic comparison of RL algorithms across different robot morphologies and task

types. The framework integrates modular configuration, logging, and evaluation interfaces, en-

suring reproducibility and scalability. It supports multi‑robot training setups spanning micro-

gravity platforms, wheeled and surface vehicles, and fixed‑wing aircraft, as well as multiple task

families such as point‑to‑point navigation, trajectory tracking, and pose regulation. By unifying

data collection, training, and evaluationunder a commonprotocol, this benchmark suite facilitates

fair cross‑algorithm analysis and accelerates the development of robust, transferable control poli-

cies. Moreover, it contributes to the broader reproducibility effort in reinforcement‑learning‑based

robotics research.
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Research Objective 4

Validate learned policies on real robotic platforms and rigorously assess sim‑to‑real

transfer.

A last objective of this work is to evaluate the real‑world applicability of policies trained in

simulation. Selected control policies are deployed on physical systems introduced in Section 1.1, in-

cluding air‑bearing floating platforms andwheeledmobile robots. The validationprocess examines

policy transferability across sensing noise, actuator delays, and unmodeled disturbances, providing

an empirical measure of robustness. Comparative baselines based on classical control techniques

(e.g., LQR) are used to contextualize the learning performance. This objective ultimately seeks to

identify the conditions under which domain‑randomized simulation yields transferable behaviors

and to derive general insights for bridging the gap between synthetic and physical robotic environ-

ments.

1.3 Thesis Contributions

This thesis presents a research program advancing the use of Reinforcement Learning (RL) for

robotic control in uncertain, dynamic, and partially observable environments. Its contributions

span the design of simulation tools, training frameworks, and empirical studies across multiple

robot morphologies and physical domains, rather than proposing new algorithms. Each contri-

bution corresponds to a peer‑reviewed publication or submitted manuscript and is unified by the

shared objective of improving the scalability, generalization, and reproducibility of RL‑based con-

trol in robotics. A visual overview is presented in Figure 1.3.

1. RANS and DRIFT – Scalable Simulation for Generalizable RL Control of Spacecraft

and Floating Platforms. These works establish a foundation for scalable, domain ran-

domized simulation of robotic systems that approximate space and planar microgravity dy-

namics. RANS introduces a high‑performance parallel simulation pipeline for spacecraft
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Figure 1.3: Overview of the thesis contributions and their mapping to dissertation chapters. The
work evolves from simulation infrastructure (RANS, DRIFT [Chapter 3]) to benchmarking and
multi-robot evaluation (RoboRAN, [Chapter 4]), domain-specific benchmarking for aerial vehi-
cles (FALCON-S [Chapter 5]), and complementary sensing and estimation studies (Inertia-ID,
RL-AVIST, Event-Based Inertia Estimation [Chapter 6]).

training, enabling large‑scale data generation and multi‑scenario evaluation. DRIFT ex-

tends this framework to real‑world validation, demonstratingDeepRL control of a physical

air‑bearing floating platform under uncertainty and comparing it against optimal control

baselines. Together, these contributions provide the first complete sim‑to‑real demonstra-

tion of DRL for near‑frictionless robotic platforms and constitute a reproducible founda-

tion for subsequent developments in this thesis.

2. RoboRAN – A Unified Robotics Framework for Reinforcement Learning‑Based Au-

tonomous Navigation. RoboRAN contributes a modular and extensible benchmarking

suite that unifies training, logging, and evaluation across heterogeneous robots and navi-

gation tasks. It provides standardized configuration, metric tracking, and reproducibility

tools forRL research in robotics, integrating simulation back‑ends and real‑world interfaces.
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The framework supports experiments on spacecraft analogs (floating platforms), wheeled

robots, and surface vessels, enabling systematic assessment of robustness, generalization, and

cross‑domain transfer.

3. FALCON‑S – Fixed‑Wing Aerodynamics and Learning Control Suite. FALCON‑S

introduces the first benchmark suite dedicated to learning‑based control of fixed‑wing vehi-

cles operating under ground‑effect conditions. It integrates multiple simulation back‑ends

(Python-CPU,GPU‑basedWarp,MATLAB, andXPlane) with standardized APIs, making

it possible to compare model‑free (PPO), model‑based (DreamerV3), and classical (LQR,

MPPI) controllers on consistent aerodynamic models. The benchmark emphasizes repro-

ducibility and extensibility, allowing comparative evaluation of control algorithms across

various flight regimes, disturbances, and aircraft geometries.

4. RL‑AVIST: Reinforcement Learning for Autonomous Visual Inspection of Space Tar-

gets: introduces a learning‑based framework for 6‑DOF proximity operations around large

orbital assets. Built on the SpaceRobotics Bench [27], RL‑AVIST employs model‑based

RL (DreamerV3) and model‑free baselines (PPO [28], TD3 [29]) to train inspection

policies under realistic spacecraft dynamics and visual feedback. This work demonstrates

the potential of latent‑model RL for efficient trajectory tracking, visual inspection, and

multi‑morphology generalization in orbital scenarios, marking a step toward percep-

tion‑aware, long‑duration autonomy in space operations.

5. Complementary Contributions in Sensing and System Identification. To complement

the core simulation and control studies, two auxiliary works have been proposed to increase

the realism and scope of the proposed frameworks:

• Active Excitation‑Based Dynamic Inertia Identification in Satellites [30]: develops a

data‑driven approach for estimating spacecraft inertia tensors using Least Squares and

EKF filters, supporting simulator fidelity and model validation under realistic torque

inputs.
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• Event‑Based Angular Rate Estimation for Spacecraft [31]: proposes a novel vision

based angular velocity estimation method leveraging neuromorphic cameras observ-

ing star fields, extending sensing capabilities for future attitude‑estimation pipelines.

Complete list of publications:

• ”RANS: Highly-Parallelised Simulator for Reinforcement Learning based Autonomous

Navigating Spacecrafts.” Matteo El-Hariry , Antoine Richard, and Miguel A.O Mendez.

17th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA’23).

2023.

• ”Drift: Deep reinforcement learning for intelligent floating platforms trajectories.” El-

Hariry, Matteo, et al. 2024 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2024.

• ”RoboRAN: A Unified Robotics Framework for Reinforcement Learning-Based Au-

tonomousNavigation.”Matteo El-Hariry and Antoine Richard andRicardM. Castan and

Luis F. W. Batista and Matthieu Geist and Cedric Pradalier and Miguel Olivares-Mendez.

2025, arXiv, cs.RO. Published in Transactions on Machine Learning Research (TMLR)

(11/2025).

• ”FALCON-S: Fixed-wing Aerodynamics and Learning Control Suite.”, Matteo El-Hariry,

Pedro Lima, Andrej Orsula, Antoine Richard, Matthieu Geist, Miguel Olivares-Mendez.

Under review at – ICLR 2026 Conference.

• ”RL-AVIST: Reinforcement Learning for Autonomous Visual Inspection of Space Tar-

gets.”. Matteo El-Hariry, Andrej Orsula, Matthieu Geist, Miguel Olivares-Mendez.

Internation Astronautical Congress (IAC) 2025, arXiv preprint arXiv:2510.22699 (2025).

• ”Towards Active Excitation-Based Dynamic Inertia Identification in Satellites.”. El-Hariry,

Matteo, Vittorio Franzese, and Miguel Olivares-Mendez. Accepted at International Confer-

ence on Space Robotics (iSPaRo) 2025. arXiv preprint arXiv:2510.16738 (2025).
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• ”Spacecraft Angular Rate Estimation via Event-Based Camera Sensing”, Vittorio Franzese,

Matteo El Hariry. Under review at Advances in Space Research (ASR).
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Chapter 2

Background and Related Work

This chapter establishes the context for the research conducted in this thesis, which lies at the inter-

section of deep reinforcement learning (DRL), simulation engineering, and robotic autonomy un-

der uncertainty. It begins by introducing the core theoretical principles of reinforcement learning

for continuous control, focusing onpolicy optimizationmethods and their extensions for handling

partial observability and temporal dependencies. The chapter then examines the unique challenges

posed by real-world robotic systems, including sample inefficiency, system diversity, sim-to-real

mismatches, and safety-critical constraints. Building on this, we review the primary techniques

used to bridge simulation and physical deployment, with emphasis on domain randomization,

curriculum-based training, and memory-augmented policies.

Subsequently, the chapter surveys the landscape of simulation tools and environments that

underpin DRL research in robotics, contrasting traditional physics engines with recent GPU-

accelerated frameworks, and outlining the requirements that motivated the development of the

custom simulation stacks presented in this thesis. A dedicated section then explores the specific

robotic domains targeted in this work—ranging from floating platforms and spacecraft testbeds

to wheeled robots and fixed-wing aircraft—with a focus on the dynamics, sensing, and control

characteristics that distinguish each. Finally, the chapter discusses recent critiques and emerging

methodological shifts in the RL community, particularly the emphasis on structure and agent
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design as articulated in the “Three Dogmas of RL”. This synthesis helps situate the thesis con-

tributions within a broader movement toward robust, scalable, and generalizable learning in

robotics.

2.1 Reinforcement Learning for Continuous Control

ReinforcementLearning (RL)provides amathematical framework for sequential decision-making,

where an agent interactswith an environment in order tomaximize cumulative reward. This frame-

work is particularly well suited to robotics, where actions affect the system state over time, and con-

trol policies must account for delayed, noisy, or partial feedback. However, the application of RL

to continuous control problems in robotics presents specific challenges—chief among them are

high-dimensional state-action spaces, sample inefficiency, and sensitivity to hyperparameters and

initialization.

2.1.1 The Markov Decision Process Formalism

The agent-environment interaction is commonly modeled as a Markov Decision Process (MDP)

defined by the tuple (S,A, P, R, γ), where:

• S is the set of possible states,

• A is the set of actions,

• P (s′|s, a) is the transition probability distribution,

• R(s, a) is the reward function,

• and γ ∈ [0, 1) is the discount factor.

At each timestep t, the agent observes state st, selects an action at ∼ π(at|st) according to its

policy π, and receives a scalar reward rt while transitioning to a new state st+1 (Figure 2.1). The
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goal is to learn a policy that maximizes the expected cumulative discounted reward:

J(π) = Eπ

[
∞∑
t=0

γtrt

]
.

Figure 2.1: Standard agent–environment interaction loop in reinforcement learning [32].

2.1.2 Policy Optimization for Continuous Actions

Many real-world robotic control tasks require continuous actions—e.g., motor torques, thrust lev-

els, or velocity commands—which cannot be effectively handled by discrete action methods like

Q-learning [33] or Deep Q-Networks (DQN) [34]. As a result, modern deep reinforcement learn-

ing in robotics predominantly relies on policy optimization approaches, where a policy is directly

learned to maximize expected cumulative rewards.

A widely adopted structure for this class of methods is the actor–critic architecture (Fig-

ure 2.2), which decouples the task of selecting actions from that of evaluating them. The actor

is a parameterized policy πθ(a|s) that outputs an action distribution conditioned on the current

state. The critic is a value function (e.g.,V π(s) orQπ(s, a)) trained to estimate the expected return

under the current policy. These two components work in tandem: the critic provides a learning

signal—typically the advantage function or a temporal difference error—that guides the gradient

updates of the actor.

This design has several advantages for robotics:

16



Figure 2.2: Actor–critic reinforcement learning loop. The actor updates its policy using feedback
from the critic, which evaluates actions via the temporal-difference (TD) error derived from envi-
ronment rewards and state transitions.

• It enables learning stochastic policies directly in continuous action spaces.

• It allows for low-variance updates through the use of bootstrapped value estimates.

• It is compatible with modular policy/value architectures tailored to different sensing and

actuation modalities.

Among actor–critic methods, policy gradient algorithms have proven especially effective in

continuous control settings. These algorithms compute an estimate of the gradient of the expected

return J(πθ)with respect to the policy parameters θ, and perform stochastic gradient ascent:

∇θJ(πθ) ≈ Et

[
∇θ log πθ(at|st) · Ât

]
,

where Ât is an estimate of the advantage of action at in state st under the current policy. This

formulation enables end-to-end learning of both perception and control from raw or processed

sensory inputs.
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Awidely usedpolicy gradientmethod isProximal PolicyOptimization (PPO) [28], due to its

ease of implementation, strong empirical performance, and stability across awide rangeof domains.

PPO introduces a trust regionmechanismby clipping the policy update to prevent large deviations

from the current policy. The surrogate objective function is:

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) = πθ(at|st)
πθold

(at|st) is the likelihood ratio between the new and old policies, and ϵ is a hyper-

parameter controlling the maximum update step.

PPO forms the algorithmic backbone of all learning experiments in this thesis. It is used in

its standard feedforward form, as well as in its recurrent variant (PPO-RNN), allowing policies to

integrate temporal information across partial observations.

2.1.3 Handling Temporal Dependencies: PPO-RNN

Robotic systems often exhibit partial observability, delayed dynamics, or unmeasured disturbances.

Standard feedforward policies struggle in such settings. To overcome this, recurrent architectures

such as PPO-RNN extend PPO by incorporating memory via recurrent neural networks (RNNs,

e.g., GRU or LSTM), enabling the policy to condition on a sequence of past observations:

at ∼ π(at|o0:t),

where o0:t represents the history of observations. This enhances robustness in real-world tasks,

especially when sensors are noisy or state estimation is imperfect.

2.1.4 Model-Based RL andWorld Models

Model-based RL (MBRL) introduces, as shown in Figure 2.3 an explicit model of the environ-

ment, enabling planning or simulated rollouts to improve sample efficiency. While promising in
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theory, traditional MBRL has limited success in robotics due to the challenge of learning accurate

transition models. Recent advances, such as DreamerV3 [35], address this by learning compact

latent dynamics models and training policies entirely in imagination.

Figure 2.3: Model-based reinforcement learning loop. In addition to interacting with the environ-
ment, the agent learns a world model to simulate future states and rewards, supporting planning
and policy optimization through imagined rollouts.

In this thesis, we incorporate Dreamer in the context of fixed-wing flight (FALCON-S bench-

mark), evaluating its performance against model-free baselines. Although still sensitive to hyperpa-

rameters and architecture choices, Dreamer represents a promising direction for efficient learning

in physics-based domains.

2.2 Challenges for Real-World Reinforcement Learning

Despite the promise of deep reinforcement learning (DRL) in simulated domains, deploying such

agents on real-world robotic systems remains a considerable challenge. Several bottlenecks hinder

reliable transfer of learning-based control policies from virtual environments to physical platforms.

This section highlights four critical challenges: (1) data efficiency, (2) simulation-reality mismatch,

(3) task and morphology transferability, and (4) safe exploration, that are particularly relevant to

the robotic domains addressed in this thesis. Each subsection presents the challenge and discusses

practical mitigation strategies adopted throughout the thesis.
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2.2.1 Data Efficiency and Exploration Costs

In contrast to game-like environments or purely virtual control problems, real-world robotic sys-

tems face hard constraints on the amount and quality of data that can be collected. Physical trials

are slow, expensive, and subject to wear-and-tear. Safety concerns and limited availability of the

hardware further restrict the number of interactions that can be executed. As a result, algorithms

that require millions of environment steps, such as standard model-free DRL methods, are often

infeasible for direct deployment.

Even in simulation, where data is cheap, many robotic environments involve complex dynam-

ics and sparse rewards, exacerbating exploration difficulties. This motivates the use of parallelized

simulation frameworks (e.g., RANS [36]) and curriculum learning strategies to mitigate sample

inefficiency. Techniques such as reward shaping, parameterized initial conditions, and dense aux-

iliary objectives can further reduce training time and improve policy convergence.

Example: Data Bottlenecks in Air-Bearing Platforms

In the Zero-G Lab [16] floating platform testbed, each real-world episode requires physical

setup, safety checks, and actuator reset, taking several minutes per trial. This makes iter-

ative learning in-the-loop impractical and highlights the need for scalable simulation-first

pipelines.

Curriculum Learning for Sample Efficiency. One of the strategies explored in this thesis to

mitigate sample complexity is curriculum learning, gradually increasing task difficulty during train-

ing, as shown in Figure 2.4. This is especially effective in sparse-reward settings or under complex

failure modes. By first training in simplified conditions and progressively introducing variability

(e.g., more noise, tighter targets), convergence is improved and unsafe behavior in early stages is

avoided.
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Figure 2.4: Illustrative curriculum progression: training starts in simplified conditions (short goal
distances, no drift) and gradually increases complexity over time by introducing disturbances in
the environment (e.g., actuator noise, wind, tighter tolerances, obstacles).

2.2.2 Simulation–Reality Mismatch and Dynamics Uncertainty

A core obstacle to sim-to-real transfer is the mismatch between modeled and real-world dynamics.

Simulation often fails to capture the full complexity of sensors (e.g., latency, noise, occlusions),

actuators (e.g., backlash, delay, saturation), and environmental interactions (e.g., ground effect,

friction asymmetries). These discrepancies result in policies that overfit to idealized physics and

perform poorly when deployed.

To address this, several strategies have been proposed:

• Domain Randomization (DR): Introduces variability in environment parameters during

training (e.g., mass, damping, latency) to encourage robustness [25].

• Observation Corruptions: Models sensor noise and delay stochastically to simulate de-

graded sensing conditions [37].
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• Stochastic ActuatorModels: Adds delay, saturation, or variability to control inputs, better

matching physical actuators [38].

Despite these measures, there remains no guarantee of successful deployment, and most poli-

cies require careful tuning to bridge the residual sim-to-real gap. In this thesis, we empirically evalu-

ateDRL controllers under variousmismatch conditions across floating platforms, aquatic vehicles,

and mobile robots.

2.2.3 Morphology and Task Transferability

RL policies are typically trained for a single robot, task, or domain. However, in practical robotics,

it is often desirable to re-use or fine-tune policies across platformswith differentmorphologies (e.g.,

fromfloating towheeled to aquatic robots) or across related tasks (e.g., point navigation to velocity

tracking). Transfer learning in this context remains difficult due to several factors:

• Inconsistent observation and action spaces across robots.

• Differing control frequencies, delays, and dynamics regimes.

• Divergent reward function definitions and task formulations.

Even when high-level policies or encoders are shared, the inductive biases of each morphology

require significant adaptation. Frameworks like RoboRAN [39] attempt to mitigate this by defin-

ing a common structure and logging interface, enablingmodular training pipelines and evaluation

across morphologies. Still, full generalization remains elusive without retraining.

Challenge: Reusing RL Policies Across Robots

Policies trained on the Turtlebot2 may fail when applied to USVs or floating platforms due

to mismatched inertia, drift, and heading dynamics. Despite shared tasks (e.g., point navi-

gation), the control strategies must adapt to morphology-specific disturbances.
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Architectural Support for Transfer. One approach used in this thesis is to train shared policy

architectures (e.g., PPO with MLP encoders) across robot types using aligned state-action spaces

and task encodings. Additionally, trainingwithmorphology-specific domain randomization helps

expose agents to wider dynamics, enabling partial transfer.

2.2.4 Safety and Constraint Encoding

Unlike in simulation, mistakes in real-world RL carry physical risks of damaging hardware, vio-

lating safety constraints, or entering irrecoverable states. Standard RL algorithms do not natively

account for these risks. Instead, safety must be enforced through:

• Reward shaping: Penalizing unsafe behaviors (e.g., high angular velocities or collisions)

during training.

• Action clipping or bounds: Hard constraints on actuation to prevent over-control.

• Control-theoretic prefilters: Adding stability layers outside the learned policy.

• Constrained RL or shields: Explicit incorporation of constraints in the learning objective

(not adopted in this thesis).

A critical difficulty is that many constraints, such as actuator limitations or minimum safety

margins, are discontinuous, hard tomodel, or not differentiable. While constrainedRL [40, 41, 42,

43] is an active research area, themethods used in this thesis rely instead on structured training cur-

ricula, domain randomization, and reward design to indirectly promote safer behaviors. Empirical

tests are performed under realistic disturbances and sensor noise to assess robustness post-training.

Summary: When Does Sim-to-Real Transfer Work?

While sim-to-real transfer remains an open problem, the findings of this thesis suggest that:
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• Domain randomization and stochastic modeling significantly improve robustness when

properly calibrated.

• Curriculum learning reduces early training instabilities and improves convergence in com-

plex tasks.

• Transferability across robot morphologies remains difficult without re-training, despite

modular architectures.

Takeaway

Robust sim-to-real transfer is achievable when structured training (DR, curriculum), archi-

tectural support, and task-aware simulation design are combined. However, generalization

across robots or tasks still requires significant effort, motivating the need for unified frame-

works like RoboRAN.

2.3 Simulation Frameworks for RL in Robotics

Simulation is a critical enabler for reinforcement learning (RL) in robotics. It allows safe, repro-

ducible, and accelerated training of control policies that would otherwise be impractical or risky to

develop directly on hardware. However, the design of such simulators presents a trade-off between

physical fidelity, computational performance, and scalability. This section reviews the evolution

of simulation tools in robotics and describes the custom frameworks developed in this thesis to

support large-scale, generalizable RL.

2.3.1 Traditional vs GPU-Accelerated Simulators

Early simulators such as Gazebo [44], PyBullet [45], and V-REP [46] prioritized realism and ex-

tensibility for robotic prototyping. However, their CPU-bound architecture limited the number

of concurrent environments that could be simulated, often leading to prohibitively long training

times in DRL applications. While accurate and modular, these tools were not originally designed
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for thousands of parallel rollouts, making them ill-suited for modern data-hungry policy gradient

methods.

To address this, recent efforts have introduced GPU-accelerated simulators such as Isaac

Gym [7] (now Isaac Lab [24]), Warp [47], Brax [8], and MuJoCo [6] with GPU backends.

These frameworks exploit massively parallel physics kernels to simulate hundreds to thousands

of environments simultaneously, drastically reducing training wall time. In particular, Isaac Lab

andWarp support tensor-based simulation of rigid body dynamics and are tightly integrated with

PyTorch, allowing for seamless GPU-to-GPU data pipelines during RL training.

Nonetheless, GPU-based simulators come with trade-offs: they often require simplified con-

tact models, limited sensor realism, and manual tuning of timestep stability. This is primarily be-

cause high-throughput simulation on GPUs prioritizes vectorized computation and rigid schedul-

ing over detailed physics fidelity. For example, soft contacts, frictional instabilities, and sensor la-

tency are computationally expensive to model accurately in parallelized GPU pipelines, which are

optimized for deterministic, synchronous updates across thousands of environments. This moti-

vates hybrid architectures andmodular extensions to better balance realismwith speed—e.g., using

simplified GPU simulation for training and switching to CPU-based or high-fidelity simulators

(e.g., Isaac Sim, X-Plane) for validation and fine-tuning.

2.3.2 Custom Simulation Tools Developed in this Thesis

This thesis contributes three modular and scalable simulation tools, each tailored to a specific

robotic class and research objective:

(1) RANS and DRIFT: Parallel Simulation for Floating Platforms and Spacecraft Control

• RANS [36] is a highly-parallelized environment suite for spacecraft-relevant planar motion

(x, y, yaw), designed to support domain-randomized training of DRL agents on floating

platforms.
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• DRIFT [37] builds on RANS by integrating actuator failure modes, observation corrup-

tions, and curriculum learning for progressive training across difficulty levels.

• Both simulators integrate with Isaac Gym and IsaacLab [24] backends and support transfer

to the physical air-bearing platform used at the Zero-G Lab [16].

(2) RoboRAN: Multi-Robot and Multi-task Sim-to-Real Framework

• RoboRAN [39] enables training and evaluation across heterogeneous robots (floating plat-

form, Turtlebot2, Kingfisher USV) and task types (GoToPose, trajectory following).

• It includes shared configuration schemas, observation/action space adapters, and task-

agnostic logging for reproducible benchmarking.

• Themodular design ensures that new robots or tasks can be added withminimal effort, pro-

moting generalization studies across morphologies.

(3) FALCON-S: Fixed-Wing Aerodynamics and Ground Effect Simulator

• FALCON-S [38] is a lightweight, extensible benchmark formulti-aircraft designs andmod-

ular physics simulation. It includes:

– ACPU-based physics core (Python, Warp) for scalable DRL training.

– MATLAB and X-Plane simulators for validation and high-fidelity comparisons.

– PID, LQR, PPO, PPO-RNN, and DreamerV3 controllers for baseline evaluation.

• The suite provides an end-to-end pipeline for evaluating learning and classical control strate-

gies on nonlinear flight dynamics.
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2.3.3 The Need for Scalable, Structured Benchmarks

AsDRL for roboticsmatures, the field increasingly demands standardized, structured, and scalable

benchmarks that go beyond single-task, single-robot training. Unlike game environments or loco-

motion tasks, real-world robotics involves diverse sensing modalities, control regimes, and failure

modes—requiring modular simulation tools and consistent evaluation pipelines.

Existing efforts such as OpenAI Gym [4], RLBench [48], Habitat [9], and IsaacLab [24] each

offer valuable abstractions, but are limited in their ability to cover:

• Heterogeneous robot morphologies with shared evaluation logic.

• Realistic actuator and sensor models for sim-to-real research.

• Multi-task curricula with systematic difficulty variation.

To this end, our frameworks (especially RoboRAN and FALCON-S) address a key research

gap by providing reusable environments, configurable agent wrappers, and cross-domain evalua-

tion tools. They allow benchmarking DRL policies on equal footing with classical controllers and

support structured experiments on generalization, transferability, and robustness.

2.4 Robotic Control Domains Addressed in this Thesis

This thesis investigates reinforcement learning for autonomous control across a diverse set of

robotic platforms. Each domain—spacecraft-inspired floating systems, ground and surface robots,

and fixed-wing aerial vehicles—poses distinct modeling, control, and transfer challenges. The se-

lection of these domains reflects both their practical relevance and their role as structured testbeds

for evaluating DRL generalization under uncertainty.

2.4.1 Spacecraft Simulators and Floating Platforms

Simulating spacecraft dynamics for learning-based control presents a unique opportunity: the dy-

namics are relatively clean (few contact discontinuities), yet highly sensitive to model uncertainty,
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actuator delays, and observation noise. Real-world testing is infeasible in microgravity, but planar

analogues can emulate key aspects.

In this thesis, we use floating platforms—air-bearing systems that move frictionlessly on a pla-

nar surface—to replicate 2D spacecraft dynamics. These platforms exhibit near-inertial motion,

are actuated by discrete on-off thrusters, and feature drift-dominant behaviorwithminimal passive

damping. Controlmust account for long time constants, slow convergence, and frequent actuator

saturation.

Simulation is performed using custom rigid-body dynamics integrated into Isaac Gym and

later IsaacLab, with extensions to support:

• Binary and low-thrust actuation modelswith time delay and saturation.

• Noisy sensing for pose, velocity, and angular rates.

• Task variability, including point-to-point, pose alignment, and trajectory following.

Real-world experiments are conducted on theZero-GLab air-bearing platform [16], validating

PPO and LQR controllers trained entirely in simulation. These experiments demonstrate success-

ful transfer under actuator faults, drift, and delayed sensing.

2.4.2 Ground and Surface Robots (Wheeled and USV)

Terrestrial and marine robots present a complementary challenge: although easier to deploy and

instrument, they feature heterogeneous dynamics, noisy proprioception, and varying actuation

strategies. In this work, two types of robots are considered:

Wheeled Robots. We use the Turtlebot2 as a representative differential-drive robot with non-

holonomic constraints and odometry-based sensing. Policies are trained in simulation and exe-

cuted onboard the physical robot using the RoboRAN framework. Additional wheeled robots

(JetBot, Leatherback) are tested in sim to verify morphology generalization. Navigation tasks in-

clude:
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Figure 2.5: Photo of the floating platform system: 8 binary thrusters enable planar maneuvering
under drag and inertia.

• Go-To-Pose: Reaching a specific target position and orientation.

• Trajectory Tracking: Following a predefined path in clutter-free environments.

Unmanned Surface Vehicles (USV). The Kingfisher USV is a twin-hull vessel with high iner-

tia and hydrodynamic coupling. It is simulated using custom planar dynamics with added buoy-

ancy, damping, and wind-like perturbations. Control tasks include waypoint tracking under dis-

turbance and drift.
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Cross-Robot Policy Evaluation

The RoboRAN framework enables training policies that are portable across floating,

wheeled, and aquatic platforms by standardizing task interfaces and logging. However, sig-

nificant domain-specific tuning remains necessary to achieve robust generalization.

2.4.3 Fixed-Wing Vehicles in Ground-Effect

Fixed-wing aerial vehicles operating near the ground exhibit highly nonlinear, coupled dynamics

due to the ground effect phenomenon, which modifies lift and drag characteristics. These effects

are hard to model and pose challenges for both classical and learning-based control.

The FALCON-S benchmark introduced in this thesis provides the first structured suite forRL

in ground-effect flight. It supports multiple simulation backends:

• Python andWarp-based rigid body dynamics for fast training.

• MATLAB Simulink and XPlane for high-fidelity validation.

Control policies are evaluated on:

• Altitude keeping near the ground plane.

• Go-to-position tasks under wind perturbations.

• Flight path stabilization across vehicle geometries.

Bothmodel-free (PPO, PPO-RNN,Dreamer) andmodel-based (LQR,MPPI) controllers are

tested. Ground-effect interaction is randomized to promote robustness. This domain showcases

the challenge of partial observability and the benefit of recurrent policies and domain randomiza-

tion.
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2.5 Trends and Critiques in RL for Robotics

The field of reinforcement learning (RL) has undergone a significant shift in recent years, moving

from purely theoretical formulations toward large-scale experimentation, real-world deployment,

and critical introspection. In the context of robotics, this has led to several emerging themes: a

rethinking of agent-environment abstraction, a focus on structure and priors over brute-force op-

timization, and a broader reflection on the scientific framing of RL.

2.5.1 The “Three Dogmas” and Environment-Centric Design

In their influential position paper, deMasi et al. [23] identify three ”dogmas” that have constrained

progress in RL:

1. Tabula Rasa Learning: Agents are expected to learn from scratch in each environment,

ignoring past experience or structure.

2. Scalar Reward Maximization: Learning is driven by a single reward signal, often sparse or

misaligned with the task.

3. Episodic Learning: The MDP formulation assumes well-defined resets and episodic re-

turns, which do not reflect real-world operation.

A central theme in this critique is the overemphasis on the environment, which has led to what

the authors term the environment spotlight. Most RL systems are designed around a fixed en-

vironment structure, treating the agent as a passive optimizer rather than a grounded, adaptive

entity.

This thesis embraces this critique by shifting focus toward the design of environments, simula-

tors, and evaluation suites. Rather than proposing new RL algorithms, we emphasize:

• Carefully constructed simulation pipelines.

• Realistic physical modeling and sensor/actuator noise.
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• Transferable training curricula.

• Modular task-agent interfaces.

These decisions aim to support generalizable policy learning under realistic constraints,

grounded in the actual needs of robotic deployment.

2.5.2 Structure, Priors, and Generalization over Optimization

As RL systems scale up, purely reward-driven optimization becomes less practical. In robotics,

rewards are often sparse, safety constraints are hard to encode, and environment resets are infeasible.

Recent research trends reflect a growing emphasis on structure and inductive priors, including:

• Architectural priors: Using recurrent networks [49], residual policies [50], or world mod-

els [35] to bias the learning process.

• Curriculum and task design: Structuring the learning process with gradually increasing

complexity [26].

• Multi-task and transfer setups: Sharing representations or policies across tasks and mor-

phologies [1].

Thesemethods often outperform ”pure” optimizationwhen generalization is required. In this

thesis, these insights are adopted in the form of:

• Domain-randomized simulation environments.

• Recurrent policy architectures (e.g., PPO-RNN).

• Multi-robot benchmarking frameworks (e.g., RoboRAN).

Rather than optimizing each agent-environment pair in isolation, we prioritize designing sys-

tems that generalize across settings: a goal that aligns with the broader shift in RL research.
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2.5.3 Positioning This Thesis in the Evolving Landscape

This dissertation responds to the field’s current challenges not by contributing a new RL algo-

rithm, but by structuring the conditions under which existing algorithms can succeed in robotics.

Specifically, it addresses the need for:

• Structured simulation to support efficient and robust learning pipelines.

• Unified benchmarks for evaluation across robot morphologies and tasks.

• Physical deployment as a validation step for real-world applicability.

The systems studied span spacecraft emulators, surface and ground robots, and fixed-wing

aerial vehicles—each serving as a testbed for evaluating generalization, robustness, and transferabil-

ity. Across all domains, the thesis emphasizes robust agent-environment co-design and realistic

training signals, reflecting a pragmatic and grounded response to the theoretical critiques of RL.

2.6 Summary

This chapter has surveyed the theoretical foundations, practical challenges, and recent critiques of

reinforcement learning for real-world robotics. We began by introducing the policy optimization

framework for continuous control and discussed the limitations of current DRL methods when

applied to physical systems. The chapter then addressed the key bottlenecks—data inefficiency,

simulation mismatch, transferability, and safety—and reviewed strategies to mitigate them, such

as domain randomization and curriculum design.

We also introduced the simulation tools developed in this thesis and outlined the three robotic

control domains investigated. Finally, we positioned this work in the broader RL discourse, draw-

ing from recent critiques such as theThreeDogmas ofRL to argue for environment- and structure-

aware learning systems.
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The next chapters present the core contributions of the thesis, detailing simulation frame-

works, benchmark design, and empirical results across multiple robotic platforms.

34



Chapter 3

Generalizable RL for spacecrafts ground

simulators

3.1 Motivation and Scope

Autonomous navigation and control systems are essential for the success and resilience of future

space missions. As spacecraft become increasingly compact, distributed, and autonomous, the

need for robust guidance, navigation, and control (GNC) algorithms grows accordingly. This

trend is particularly evident in the rise of nano- and micro-satellites [51, 52], which impose strin-

gent constraints on onboard power, actuation, and computation [53]. These platforms must be

able to make independent decisions under uncertainty, without human oversight, especially in re-

mote or delay-sensitive space scenarios.

The traditional approaches to spacecraft control typically rely on optimal control and model-

based schemes [53], which, while powerful, often assume idealized conditions and require accurate

modeling of the system dynamics. Moreover, these techniques tend to operate in open-loop or as-

sume predefined flight trajectories, which limits their ability to adapt to changing mission require-

ments or external disturbances. When applied to real-world space robotics applications—where

sensing noise, actuator faults, and partial observability are common—these limitations hinder reli-
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ability and performance.

Meanwhile, the recent rise of artificial intelligence (AI), deep learning (DL), and reinforce-

ment learning (RL) in terrestrial robotics has opened promising avenues for space applications as

well [54]. Reinforcement learning, in particular, has demonstrated the potential to autonomously

learn complex control policies through interaction, without requiring hand-crafted models. Rele-

vant applications include planetary landing [55], spacecraft trajectory planning in unknown gravi-

tational fields [56], terrain navigation [57], and mapping during orbital operations [58].

Despite these advances, the deployment of RL in space systems presents substantial challenges:

• RLpolicies require extensive training data—unavailable on physical spacecraft—and are dif-

ficult to test safely.

• Existing simulation tools for space applications (e.g., GMAT [59], SPICE [60], Trajectory

Browser [61]) are not designed to support RL-style training.

• Modern physics simulators for robotics (e.g., Gazebo [62], MuJoCo [6], Webots [63], Isaac

Sim [24]) often focus on ground-based or articulated robots and lack support for thrust-

based spacecraft dynamics.

To address these gaps, this thesis presents two core contributions:

1. RANS [36], anopen-sourceGPU-parallel simulator for reinforcement learning-based space-

craft control. RANS allows fast training of RL agents for 2D and 3D free-floating vehicles

using realistic force-based dynamics, fault profiles, and domain randomization.

2. DRIFT [37], a structured extension of RANS enabling real-world policy deployment on

floating air-bearing platforms. DRIFT introduces more complex evaluation scenarios, sup-

ports real-world sensing and actuation profiles, and allows benchmarking of RL versus clas-

sical optimal control methods (e.g., LQR).
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Figure 3.1: Floating platform testbed used in this thesis, located at the Zero-G Lab. It enables
validation ofRLpolicies in real-worldmicrogravity-like environments using 3DoF thrust-actuated
planar motion.

Together, RANS and DRIFT form a two-stage simulation-and-deployment pipeline for

spacecraft-like platforms. While RANS focuses on fast, scalable training with generalization

across domains, DRIFT targets physical deployment with realistic system modeling and policy

robustness under uncertainty. Figure 3.1 shows the floating platform used for the sim-to-real

validation.

This chapter presents both frameworks and their validation across multiple tasks: pose-

reaching, velocity tracking, fault recovery, and robustness testing. We compare DRL policies

with classical baselines and highlight key factors influencing sim-to-real transfer performance.

These contributions aim to bridge the current gap between RL research and the development of

practical autonomous mobility systems in space.
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3.2 Related Work

3.2.1 Simulation Tools for Space Robotics

Several general-purpose mission planning and simulation tools have been developed to support

spacecraft navigation. These include:

• GMAT [59], an open-source tool for orbit dynamics and trajectory planning.

• SPICE [60], used for science data analysis and spacecraft ephemeris management.

• Trajectory Browser [61], which allows multi-body trajectory optimization.

However, none of these frameworks are designed for RL-based control or interactive learn-

ing. They assume predefined system models and are not compatible with modern deep learning

pipelines.

On the other hand, popular physics simulators for terrestrial robotics—such as Gazebo [62],

MuJoCo [6], PyBullet [45], and Isaac Sim [24]—offer plug-and-play tools forRLexperimentation.

Notably, Isaac Sim supportsGPUacceleration and universal scene description (USD) files, making

it highly extensible. Still, most existing environments targetmanipulation or ground robots. None

of them extends to thrust-based control or spacecraft analogs.

RANS and DRIFT address this gap by providing fully parallelized and spacecraft-specific

RL simulation tools, integrating domain randomization, fault injection, and real-world transfer

pipelines.

3.2.2 Floating Platforms and Air-Bearing Systems

Floating platforms provide a practical way to emulate microgravity conditions on Earth. Air bear-

ings reduce planar friction and allow free-floating 3DoF motion [64]. These systems have been

widely adopted for rendezvous, docking, and spacecraft servicing research [65, 66, 67].
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Recent innovations have introduced vision-based sensing [65], dual-arm manipulation [68],

and more robust thruster actuation [69]. However, most control approaches remain grounded in

trajectory optimization or PID-like strategies. Few works explore fully learned policies.

3.2.3 RL for Spacecraft and Floating Platform Control

The use of RL for spacecraft control remains limited, especially in real-world settings. Most works

report simulation-only results [55, 70, 56]. The few real-world studies—e.g., [71, 72]—use hybrid

setups, where RL provides a reference signal to a classical controller. Our work differs in two ways:

• We deploy a fully learned RL policy that directly produces low-level control commands.

• We introduce a structured evaluation methodology for comparing learned vs classical con-

trol across both simulation and real-world trials.

To the best of our knowledge, this is the first open-source framework to systematically train,

deploy, and benchmark RL spacecraft controllers on a floating platform in real-world experiments.

3.3 RANS: Highly-Parallelised Simulator for Reinforcement

learning based Autonomous Navigating Spacecrafts

To enable the training and validation of RL-based guidance and control policies for free-flying

spacecraft systems, we introduce RANS—a GPU-accelerated simulator built on Isaac Gym [7]

designed specifically for thrust-based spacecraft dynamics. RANS is developed to bridge the gap

between existing space mission design tools and modern deep reinforcement learning frameworks,

providing a scalable andmodular environment for trainingRL agents on planar and 3Dnavigation

tasks.

Unlike traditional mission simulators such as GMAT [59] or SPICE [60], RANS supports

direct control of low-level thrust vectors, realistic force dynamics, and randomized physical param-
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Figure 3.2: Sample renders of RANS tasks in 3DoF (top) and 6DoF (bottom) settings. The simu-
lated agents (cylindrical or spherical)must reach target locations andorientationsmarkedby arrows
or pins. Tasks vary in translational and rotational complexity.

eters. It is fully compatible with popular RL libraries (e.g., RL-Games [14]), and includes both

headless and GUI-rendered modes. Figure 3.2 illustrates the visual interface for task visualization.

3.3.1 Parallelism and GPU Efficiency

RANS is built onNVIDIAIsaacGymandutilizes itsGPU-nativephysics engine (PhysX) to enable

highly parallelized simulation. This design allows for training thousands of independent agents

simultaneously, drastically reducing wall-clock time for policy optimization. Such efficiency is

particularly valuable for spacecraft control tasks, where long horizons and sparse rewards increase

training time. Figure 3.3 summarizes community feedback on Isaac Sim, the broader ecosystem

from which Isaac Gym originates. Practitioners highlight its GPU performance and extensibility
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Figure 3.3: Isaac Sim survey on DRL suitability [73]. Although Isaac Gym offers high parallelism
and flexibility, challenges remain in documentation and community support. RANS builds on
this foundation with domain-specific extensions for spacecraft control.

as key strengths, yet note gaps in documentation and community support [73]. RANS builds

on this foundation by providing domain‑specific extensions for spacecraft and floating‑platform

dynamics, tailored observation/action spaces, and ready‑to‑use PPO interfaces.

Unlike traditional CPU-based simulators like PyBullet [45] or Gazebo [62], which simulate

agents sequentially or with limited multi-threading, RANS exploits the GPU’s parallel compute

architecture to run up to 16000 environments concurrently. This facilitates:

• Fast policy iteration and hyperparameter tuning.

• Scalable evaluation over randomized initial states.

• Real-time observation of learned behaviors across task variants.

Combined with the efficient PPO implementation from the rl-games library [14], RANS

enables simulation-to-training cycles at a scale suitable for robust control under uncertainty.

41



Parallel Training Efficiency

RANS supports running asmany as 16,000 environments concurrently on a singleGeForce

RTX4090GPU.APPO agent can solve theGoToXY andGoToPose tasks to high accuracy

within 15 minutes of training time, demonstrating the advantage of GPU-accelerated RL

workflows.

3.3.2 Simulator Design and Task Suite

The RANS simulator provides a flexible and high-performance environment tailored for thrust-

based control of spacecraft and floating platforms in 3DoF and 6DoF. The simulation is imple-

mented using NVIDIA Isaac Gym’s PhysX backend, enabling massive GPU-parallel simulations

across thousands of agents. This allows reinforcement learning (RL) policies to be trained effi-

ciently in domains with complex, continuous dynamics.

Simulation Physics. The simulation timestep is typically set to 10–20 ms, with substepping

used to maintain numerical stability. Agent policies actuate at 5–10 Hz, while the physics engine

runs at 10x higher frequency to avoid instability. Gravity is disabled in 3DoF scenarios to emulate

planar floating motion, while in 6DoF tasks, free-space motion is fully unconstrained.

For thrust application, multiple rigid bodies are created and forces applied at the relative po-

sitions of the thrusters. This circumvents limitations in OmniIsaacGym where consecutive force

applications would overwrite previous inputs.

Environment Definition as an MDP. Each task in RANS is formalized as a Markov Decision

Process (S,A, r, T , γ):

• S : State space includes orientation (e.g., 2D angle or 6D rotation representation), linear and

angular velocities, task flags, and target deltas.

• A: Discrete thrust activation vector (binary action per thruster), either 8 (3DoF) or 16

(6DoF) dimensions.
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• r: Dense reward function penalizing distance to target, angular deviation, and control effort.

• T : Transition dynamics based on PhysX physics.

• γ: Discount factor, typically 0.99.

Tasks and Configurations. RANS supports multiple control tasks: In the 3DoF scenarios, the

simulator includes a default system configuration with 8 thrusters (Fig. 3.4 (a)) and allows users to

customize various parameters, such asmass and thruster positions, via configurationfiles. Similarly,

in the 6DoF scenario, the simulators comes with a default 16 thrusters configuration (Fig. 3.4 (b)).

The tasks defined for position control and position-attitude control are:

• GoToXY / GoToPose (3DoF): Reach a target (x, y) and optionally a heading angle θ.

• TrackXYVel / TrackXYOVel (3DoF): Match linear or angular velocity commands.

• GoToXYZ / GoToPose-3D (6DoF): Reach a 3D target position and orientation using full

control of all degrees of freedom.

The observation space varies between 10 and 22 dimensions depending on the task, and in-

cludes terms such as: cos(θ), sin(θ), vxy, ωz , target deltas, and task-specific identifiers. Table 3.1

summarizes the task-dependent observations.

Table 3.1: Task-specific deltas appended to the observation vector.

Task Observations td Target Types
GoToXY ∆x,∆y Position
GoToPose-2D ∆x,∆y,∆θ Position + Angle
TrackXYVel ∆vx,∆vy 2D Velocity
TrackXYZVel ∆vx,∆vy,∆vz 3D Velocity
GoToXYZ ∆x,∆y,∆z Position 3D
GoToPose-3D ∆x, y, z +∆R (rotation matrix) Full 6D pose
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(a) 3DoF (b) 6DoF

Figure 3.4: Arrows indicate the directions of the forces applied by the thrusters mounted on the
system. The center of mass is located at (0, 0, 0).

3.3.3 Baseline Agents and Experimental Results

All RL agents are trained using PPO [28] with binary action heads corresponding to each thruster.

The policies are implemented as feedforward neural networks with either two or three hidden lay-

ers (128 or 256 units), depending on the dimensionality of the control problem (3DoF or 6DoF).

Training is performed for 2000 epochs using 1024 parallel environments, leveraging GPU acceler-

ation for fast convergence.
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(a) Actions count (b) Position distances

(c) Position distances summary (d) Angular velocities summary

(e) Trajectories (f) Angle distances

(g) Angle distances summary (h) Rewards summary

Figure 3.5: Evaluation for the “go to pose” task, with 1024 parallel agents running for 500 steps
(25 s), each with randomized initial conditions.
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3.3.4 3 DoF Pose Evaluation results

The evaluation encompassed spawning a trained policy in random poses around the target, within

distances of 3 to 4 meters. Evaluation metrics, including distance-to-target over time and equiv-

alent planar trajectories, were utilized to quantify and visualize the performance of the trained

agents. Figure 3.5 shows the results of the evaluation of an agent trained for the GoToPose task

over 1024 runs under nominal conditions. In (a) the average number of thrusts activation per

episode shows a high energy demand, needed to achieve both position and orientation control,

which can need constant compensation as there is distinguished actuator for that (e.g. reaction

wheels). (b) and (c) illustrate the fast and stable convergence to the target position through the

distance lines starting from a random position between 3 and 4 meters. Similarly, the plots (f)

and (g) demonstrates the convergence to the target orientation. In (d) the mean and standard

deviation of the angular velocity show the rotation ranges, after an initial spike, tend to quickly

converge to zero, or oscillate around 0.3 radians in the worst case. All the trajectories can be seen

in the 2D plane (e), where starting from a random position they all converge to the center. Finally,

the reward best, mean and worst cases in (h) interestingly display the agents learned behavior to

first collect the orientation rewards by adjusting the attitude, then moving to the target position.

Robustness

3.3.5 3 DoF Linear Velocity Tracker results

The results of the linear velocity tracking policy trained with PPO are demonstrated through a set

of trajectory following examples. To make the agent follow the trajectories, we use a simple look-

ahead planner. In these examples, showed in Fig. 3.6, theRL agents exhibit the ability to accurately

track target velocities, enabling them to follow both simple and more complicated predefined tra-

jectories with precision. This planner acquires the farthest point of the trajectory within a 25cm

radius, or if there are no points within 25cm, the closest point to the system. Using the position

of this point and the position of the system, we compute vector between these two points, nor-

malize it, multiply it by the desired system velocity (0.25m/s) and the resulting vector is given to
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the agent as the velocity to be tracked. Three distinct trajectories are showcased, including circle,

a spiral, and a square. On the circle trajectory, we can see that the agent can easily track sinusoidal

velocity commands, though the measured velocities are noisy. Similarly, the spiral shows the agent

successfully tracking sinusoidal velocities with different frequencies. The most challenging trajec-

tory to track is the square, this results in step-like velocity commands which the agentsmatch fairly

well. However, we can see that the positive and negative velocities have less overshoot than the null

velocities. This could be linked to the reward design.
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Figure 3.6: Example of trajectory following using agents trained to track velocities. The first three
plots show circular, spiral, and square trajectories executedwith a simple look-ahead controller that
provides target velocities to the RL agents. The last three plots show the policy tracking sinusoidal
and square continuous reference signals.
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3.3.6 6 DoF GoToXYZ Evaluation results

Presented here is an illustrative demonstration of the policy’s behavior trained for the 6DoF Go-

ToXYZ task. The agent’s initialization occurs on a spherical surface centered around the target,

randomly positioned within a radius of 1 to 5 meters and an angle ϕ ranging from−π to π. Dur-

ing the evaluation episode, a set of 1024 parallel agents is spawned for the task, converging swiftly

towards the target. Occasionally, some agents display small overshooting or high angular speeds.

Overall, the PPO agent’s performance is acceptable, exemplified by a rendered trajectory illustrated

in Figure 3.7.

Figure 3.7: Visualization of a 10-frame sequence from a rendered episode depicting the 6-DoF
GoToXYZ task. Progressing from top-left to bottom-right, the sequence shows one of the 1024
agents approaching and stabilizing at the designated target location.

3.4 Discussion and Summary

The RANS simulator constitutes a foundational component of this thesis, enabling the develop-

ment, evaluation, and benchmarking of reinforcement learning agents for spacecraft control tasks

in both 3DoF and 6DoF settings. Through extensive experiments, we demonstrated the ability

of PPO-based agents to solve complex pose and velocity control tasks with high accuracy across

thousands of parallel simulated environments.

Built on Isaac Gym, RANS leverages GPU-parallelism to drastically reduce training times and

support systematic experimentation over randomized dynamics, actuator faults, and noise profiles.
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The simulation framework is explicitly tailored to thrust-based control scenarios, allowing agents

to learn low-level motor policies through binary action heads per thruster. This design supports

fine-grained investigation of actuator interactions and fault resilience.

Key Features of RANS

• GPU-accelerated physics with support for 3DoF and 6DoF spacecraft models.

• Modular task suite with structured observations and actions.

• Compatible with modern DRL libraries and scalable to 6000+ agents.

• Built-in support for custom dynamics, actuator topologies, and logging tools.

While RANS already enables meaningful experimentation, the results obtained are still lim-

ited to simulation and focus primarily on nominal conditions. Future development will extend

the simulator with richer failure modes (e.g., partial thrust loss, sensor degradation), multi-task

training support, and seamless integration with real-world testbeds. This work sets the stage for

the DRIFT platform, which builds on RANS to evaluate policies in a physical floating platform

environment, closing the sim-to-real loop.

3.5 DRIFT: Deep Reinforcement Learning for Intelligent

Floating Platforms

DRIFTbuilds upon theRANS simulator and extends it to support complex control tasks, realistic

simulation disturbances, and direct deployment on physical air-bearing platforms. This section

details theDRIFTmethodology, simulator architecture, task formulation, reinforcement learning

training, and a comparison with optimal control baselines in both simulation and hardware.
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3.5.1 Problem Formulation

Figure 3.8: Floating platform and target in the global reference frame.

Similarly to RANS, in DRIFT the task of guiding a FP’s maneuvers is modelled as a sequential

decision-making problem. To facilitate and demonstrate the practical applicability of RL from

sim to real-world scenarios, the complex orbital dynamics is simplified into a two-dimensional kine-

maticmodel. As illustrated in Figure 3.8, a global reference frame (denotedW ) is used. This allows

for consistent and absolute measurements of the position and heading errors. The framework also

allows for the use of local coordinates whenever considered convenient.

Within this framework the control policy must learn the optimal sequence of actions by ob-

serving state transitions, thereby minimizing the task-specific error. We define the different tasks

as: (i) Go to pose, starting from a random initial position in the plane, reach the given pose (position

and orientation θ); (ii) Track velocity, track the given velocity vector, which can in turn be used to

follow a trajectory.

For both tasks the control policy is required to minimize the error metrics derived from the

current state observations of the floating platform and the target. Regarding the “go to pose”

task, the positional error is defined as the Euclidean distance between the FP’s current position,

pfp = (xfp, yfp), and the target position, pt = (xt, yt), Eq. (3.1), while the heading error is

calculated based on the difference between the platform’s current orientation θfp and the target
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heading θt, Eq. (3.2):

ep = ∥pt − pfp∥2 (3.1)

eθ = arctan 2
(
sin(θt − θfp), cos(θt − θfp)

)
(3.2)

For the “track velocity” task the angular and linear velocity errors (ev, eω) are determined by

subtracting the FP’s current velocities (vfp) from the target velocities (vt), Eq. (3.3) and (3.4).

ev = vt − vfp (3.3)

eω = ωt − ωfp (3.4)

The floating platform system [74] system is defined by a 10-dimensional state space, Eq. 3.5. At

each discrete time step t, the state variables include the FP’s heading (θ), its linear velocities (vx and

vy), angular velocity (ωz), a task flag (f) indicating the current task, and four additional variables

(d1−4) representing task-specific data such as distances to the target position and heading:

st = (cos(θ), sin(θ), vx, vy, ωz, f, d1, d2, d3, d4)⊤. (3.5)

Task-specific data, written d1−4, is detailed in Table 3.1, where ∆ denotes the vector norm

distance between the variables (such as position, velocity, or angle) and their respective target

values. This configuration of the observation space is intentionally designed to facilitate the future

extension of this work to learn policies capable of handling multiple tasks simultaneously.

For the control of the platform, our agents use an 8-dimensional action space that corresponds

to a binary activation of 8 “on-off thrusters”. These share the same pressure line, such that, at

every step of the control loop, themaximum force generated by each thruster is 1
n
Nwhere n is the

number of active thrusters. Simply put, if only one thruster is turned on, it will output 1 Newton,

if 2 thrusters are activated they generate 0.5 N each, etc.

To guide the optimization process for the control policies, aas shown in Figure 3.9, an expo-
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Table 3.2: State task-specific data.

Task f d1 d2 d3 d4
Go to pose 1 ∆x ∆y cos(∆θ) sin(∆θ)

Track velocity 2 ∆vx ∆vy - -

nential reward structure was adopted, as after empirical evaluation it was found to yield faster and

more accurate convergence. In particular, Eq. (3.6) for the “go to pose” task and Eq. (3.7) for the

“track velocity” task were used:

Rpo = exp
(
− ep
0.25

)
· Sp + exp

(
− eθ
0.25

)
· Sθ − p (3.6)

Rv = exp
(
− ev
0.25

)
· Sp + exp

(
− eω
0.25

)
· Sθ − p (3.7)

Figure 3.9: Reward functions represented in a 3Dplot, showing the shape of the scalar exponential
signal provided to the agent for the GoToPose (left) and TrackVelocity (right) tasks.
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Figure 3.10: Penalty signals represented in 2D plots: thruster activation (left), linear velocity (cen-
ter), and angular velocity (right) penalties.

In this context, errors are quantified as the norm distance from the specified targets, with ev

denoting the linear velocity error, and ep and eθ representing the errors in position and orientation,

respectively. Scaling coefficients Sp and Sθ, which adjust the impact of position and orientation

errors, were both set to 0.5 in our experiments. Additionally, p sums up to three penalties (pact,

pvel, pω) designed to discourage excessive thruster activation or reaching states with elevated linear

and angular velocities. A representation of the penalties is displayed in Figure 3.10. Our exper-

imentation with various penalty configurations led us to adopt a penalty for thruster activation,

Eq. (3.8) as well as excessive angular velocities, Eq. (3.9). Here, T stands for an indicator function

reflecting the on-off states of the thrusters.

pact = 0.3
8∑

i=1

Ti (3.8)

pω = 0.15max(0, |ωz| − 1) (3.9)

3.5.2 Simulation

In the original RANS framework, only nominal system and environmental conditions were

present. This hindered the ability of the agents to adapt to non-ideal conditions, which are

usually common when using the real FP systems. To mitigate this gap, we introduce RANS v2.0
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which includes the following extensions: (1) parameterized rewards and penalties, to allow easy

fine-tuning of the control policies; (2) analogue kinematic model in Mujoco [6], to allow easy

evaluation of both traditional and RL-based controllers in a non-Torch depended environment;

(3) disturbance generationmodule, that allows the injection of: (a) ActionNoise (AN): a random

disturbance force of ± an N applied to every thruster; (b) Velocity Noise (VN): ± vn m/s

added to the state velocities; (c) Uneven Floor (UF): uf N of force, added to simulate the floor

unevenness, applied to the FP body throughout the episode, either with a constant direction or

through a sinusoidal generated direction; (d) Torque Disturbance (TD): tdNmof torque applied

to the body’s center of mass; (e) RandomThrusters Failure (RTF): a zeroingmask over the output

actions to simulate one or multiple thruster failures which remains the same throughout the

episode. Some disturbance are illustrated in Figure 3.11 for better clarity.
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Figure 3.11: Visualizations of the disturbance models used in simulation: (top-left) sinusoidal
force field (FD) introducing position-dependent perturbations; (top-right) constant force field
pulling the agent toward the origin; (bottom-left) RandomThruster Failure (RTF) where a subset
of actuators is disabled during training; (bottom-right) torque disturbance (TD) field inducing ro-
tational drift around the center of mass.

RANS v2.0, requires 30 minutes to train an agent on an RTX 4090. Achieving a through-

put of more than 40,000 steps per second with all disturbances enabled, which is very close to its

previous version. Furthermore, it enables large-scale testing by swiftly evaluating thousands of ini-

tial conditions in seconds. It offers rich visualization options, including metric tracking during

training through the WandB API [75], and comprehensive evaluation metrics presented through

tables and plots. The library uses theOpenAIGym [4] format to define theRL loop, including the
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standard normalization of the observation space. Additionally, the integration of a ROS interface

enhances the versatility of our framework, allowing easy integration and deployment of the control

policies within real-world robotic systems.

3.5.3 Training Procedure

We reworked the PPO implementation from the RL Games library [14] as the foundation of our

training procedure. This implementation utilizes GPU acceleration to vectorize observations and

actions, enabling parallelizationwithin the simulator by having both the simulation and the policy

training residing onGPU.Our agents are designed as actor-critic networks with two hidden layers,

each consisting of 128 units. Thismakes them light and fast enough to be ran at high frequency on

embeddeddevices. Thehyper-parameters are listed inTable 3.3 in the appendix. The agents train in

their respective environments for 2000 epochs (approximately 130M steps). Table 3.3 outlines the

key parameters used in the adapted version of the Proximal Policy Optimization (PPO) algorithm

for training our models.

3.5.4 Benchmark comparison with an Optimal Controller

DRIFT aims to provide a benchmark comparison between deep reinforcement learning and op-

timal control approaches, LQR in particular, for addressing the control problem of the floating

platform in various scenarios. The objective is not to establish the superiority of one method over

the other, but rather to gain insights into the strengths and weaknesses of each approach under

different environmental conditions and task requirements.

An infinite horizon discrete-time LQR controller [76] is used as a preliminary comparison

with the DRL algorithm to control the FP. The LQR technique utilizes linearized dynamics to

comprehensively model system behavior, providing optimal solutions with long-term stability

while handling minor disturbances [77]. Their adaptability and relatively straightforward imple-

mentation have resulted in their adoption for numerous space applications [78, 79, 80]. In the

case of a FP, the position, linear velocities, orientation quaternions, and angular velocities in the
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Parameter Value
Algorithm PPO

Network Type Actor-Critic MLP
Separate Networks True

MLP Units [128, 128]
Activation Function tanh

Initializer Identity
Regularizer None
Learning Rate 1e− 4
Gamma (γ) 0.99
Tau (τ ) 0.95

Entropy Coefficient 0.0
Horizon Length 16
Minibatch Size 8192
Mini Epochs 8

Critic Coefficient 0.5
Gradient Clipping Norm 1.0

KL Threshold 0.016
Critic Coefficient 0.5

Table 3.3: PPO training parameters.

2D plane are considered state variables of the system, Xi. Since a FP operates at a relatively high

frequency, a linearized system dynamics, defined as (3.10)

Xk+1 = AXk + BUk (3.10)

is sufficient to predict the control output for incremental steps. The linearized system matrices,

represented byA and B, are the partial derivatives of the state vector at the final time step, denoted

as Xk+1, with respect to the current time step, Xk, and the control input δUk, respectively. This

computation leverages the central differencing technique, where the effects on the final states are

evaluated in response to deliberate andminor perturbations applied to both the states and control

inputs within the kinematic model simulated in Mujoco. To better account for the disturbances

endured by the FP, the system matrices are updated at regular intervals. The LQR controller
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minimizes the cost function:

J =
∞∑
k=0

XT
kQXk + UT

kRUk

whereQ andR are weighting matrices that penalize state errors and control outputs. Minimizing

the aforementioned cost function delivers an optimal control sequence given by:

Uk = −KXk

whereK is the control feedback gain matrix defined by:

K = (R+ BTPB)−1BTPA

such that P is a positive definite matrix that is a solution for the Algebraic Riccati equation, as in:

P = Q+ ATPA− ATPBK.

The optimal control output, Uk, is an eight-dimensional array with real numbers. Note that the

control outputs correspond to the actuation of the eight thrusters on the FP, hence an alternate

vector �Uk is implemented that is a least squares solution to:

min || �Uk − U′
k ||2

where U′
k is the normalized vector of Uk with values between 0 and 1. Moreover, for �Uk =

[u1, u2, ..., u8], each ui for i ∈ {1, 2, ..., 8} represents a binary variable, i.e., ui ∈ {0, 1}

signifying the actuation state of each thruster as either “on” or “off”.

Table 3.4 summarizes the parameters of the Discrete LQR Controller used. The controller is

made planar compatible, indicating a restriction to the 2D plane.
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Parameter Value
Name LQR
Q (State cost matrix) [0.0001, 1e-05, 100, 100, 1e-06, 1e-06, 1]
R (Control cost matrix) [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
W (Disturbance weight matrix) [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
Make planar compatible Yes
Control type LQR

Table 3.4: Parameters for the Discrete LQRController

Figure 3.12: Framework employed for training and evaluation. Left: agent interaction during
training and evaluation in simulation, including disturbance injection. Right: deployment of the
trained policy performing open-loop control on the real floating-platform system.

3.5.5 Laboratory Experiment Setup

To validate our approach in a real-world scenario, we conducted experiments using the physical

air bearings platform [74] located within the ZeroG Laboratory at the University of Luxembourg.

This specific platform floats on an epoxy floor, weighs 5.32 kg and measures 31 cm in radius and

45 cm in height, a detailed representation is shown in Figure 3.13. It is equipped with a Raspberry

Pi 4 for onboard control and communication. TheZeroGLab contains anOptitrackMotionCap-

ture System (MCS) that precisely tracks the platform’s pose at a frequency of 200 Hz. We derive
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linear and angular velocities through simple forward differencing, that estimate the rate of change

of positions and orientations over consecutive time-steps. Thanks to the relatively high accuracy of

theMCS, and a reasonable averaging window, concerns about noise sensitivity are negligible. Our

experimental setupmaintains a connection between a laptop, theMCS, and the FP through a local

network. The laptop serves as the ROS (Robot Operating System) master node on the network,

subscribing to the Optitrack node to acquire pose data and publishing the actions of the trained

agents at a rate of 5 Hz. This action frequency is deliberately constrained to prevent damage to

the solenoid valves controlling the thrusters on the floating platform. Figure 3.12 illustrates the

key components interacting during the simulated training and validation phase (on the left), and

those interacting during the closed-loop control tests of the real FP system in the Lab (on the right).

Figure 3.13: Rendered floating platform used for the experiments, showing detailed positioning
and zoomed views of the air bearings (blue boxes) and thrusters (green boxes).

3.5.6 Experimental Setup

Our experiments encompass both numerical simulation-based evaluations and real-world valida-

tions. For the evaluation, each trained policy was tested across a diverse set of scenarios defined by

various environmental conditions.
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Performance Metrics

To evaluate the performance of the pose task in numerical simulations, we record 9 metrics: The

percentage of time the agent spendsunder a givendistance thresholdduring a single trajectory. This

measure is then averaged across all experiments. For instance, PT5 denotes the percentage of time

spent under5 cm,we also record this for2 cm (PT2) and1 cm (PT1). Thismeasure is also applied to

the heading of the agentswhenperforming the pose task. In this case,OT5 is the percentage of time

spent under 5 degrees, this measure is also done for 2 degrees (OT2), and 1 degrees (OT1). Finally,

we also record the absolute average linear velocity (ALV) and absolute average angular velocities

(AAV). Thesemetrics are compiled per trajectory, and averaged on thewhole of them. This enables

us to estimate how dynamic the agent’s movements are. Furthermore, we monitor the average

number of actions used per step (AAS), to evaluate the efficiency of the policy.

To evaluate the pose task in the lab, we only use the position and orientation error, since we

do not have enough experiments to compile more complete statistics. However, we do provide

complete trajectories to better understand the behavior of the RL agent and LQR controller.

Finally, for the velocity tracking, we chose to apply the controllers on a trajectory tracking task.

For that, we wrote a simple trajectory tracker, that generates a velocity vector to track, based on

a sequence of points to follow. This vector is computed by taking the closest point that intersect

with a circle of radius r centered around the system. This radius, is a look-ahead-distance which

can be tuned to adjust the speed of the tracker. The velocity is considered fixed for the whole of

the trajectory, meaning that the instructed velocity is not reduced even if there are sharp corners.

This controller is then applied on 3 shapes, a circle, a square and a infinite. For these trajectories,

we measure the error in velocity, and the averaged trajectory tracking error.

Real-World Experimental Validations

To validate the real-world applicability of our simulation-trained control policies, we used the phys-

ical floating platform with the laboratory setup described in section 3.5.5 to perform a series of

experiments. Each test run, for the same policy, initiated the FP from different initial conditions,
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Table 3.5: Benchmark of the RL model and LQR controller under disturbances. For PT and OT,
higher values indicate better performance; for ALV, AAV, and AAS, lower is better. Colors in the
table indicate the drop in performance relative to eachmethod’s ideal (no-disturbance) conditions:
blue (0–20%), green (20–40%), yellow (40–60%), red (60–80%), purple (80–100%). LQR dynam-
ics parameters are tuned without noise or disturbances enabled.

Conditions Controllers Disturbances Metrics
VN UF TD RTF PT5 PT2 PT1 OT5 OT2 OT1 ALV AAV AAS
(m/s) (N) (N·m) (-) (%) (%) (%) (%) (%) (%) (m/s) (rad/s) (-)

Ideal RL - - - - 64 34 6 94 89 73 0.08 0.12 0.29
LQR - - - - 73 41 17 27 11 5 0.07 0.16 0.10

Velocity Noise

RL 0.02 - - - 64 30 7 94 90 72 0.08 0.12 0.31
RL 0.04 - - - 61 21 6 94 89 66 0.09 0.13 0.31
LQR 0.02 - - - 53 21 6 4 1 0 0.09 0.49 0.23
LQR 0.04 - - - 14 3 0 2 1 0 0.15 0.56 0.29

Constant Torque RL - - 0.05 - 63 24 2 94 86 61 0.08 0.12 0.35
LQR - - 0.05 - 57 20 6 3 1 0 0.07 0.43 0.35

Constant Force

RL - 0.20 - - 63 29 7 94 90 74 0.09 0.12 0.30
RL - 0.40 - - 52 19 5 94 89 72 0.09 0.12 0.31
LQR - 0.20 - - 66 17 4 28 12 6 0.07 0.15 0.12
LQR - 0.40 - - 23 0 0 30 13 6 0.08 0.16 0.15

Constant Force & Torque RL - 0.20 0.05 - 62 24 5 94 86 61 0.08 0.12 0.35
LQR - 0.20 0.05 - 13 2 0 3 1 0 0.07 0.44 0.32

Thruster Failures

RL - - - 1 32 15 6 70 55 36 0.10 0.12 0.28
RL - - - 2 15 6 2 45 31 20 0.16 0.15 0.25
LQR - - - 1 40 17 5 20 8 4 0.10 0.21 0.16
LQR - - - 2 12 4 1 11 4 2 0.14 0.28 0.22

namely position and orientation within the lab.

3.5.7 Results

Simulation-based experiments demonstrate the efficacy of the PPO-based approach in achieving

the defined tasks. The agent exhibits rapid task completion, stability in control, and adaptation

to various scenarios. Quantitative metrics and qualitative visualizations substantiate the agent’s

high-performance capabilities.

Numerical Simulation RL & LQR

In this section, we explore the behaviour of an RL agent trained to perform the “go to pose” task,

and compare it to the LQR controller. We chose the “go to pose” task as it is a representative exam-

ple, allowing us to assess the behaviour of different policies while controlling both the position and
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the orientation of the FP. To characterize the controllers’ behaviors we expose them to a range of

disturbances. Neither the RL agents nor the LQR are specifically adapted to incorporate methods

from robust RL or robust optimal control theory. Yet, it is important to acknowledge that the RL

agent was trained with some domain randomization to learn how to deal with force disturbances

up to 0.25N. Both of them are evaluated inMuJoCo, with similarly randomized initial conditions.

In Table 3.5, each line corresponds to an experiment, with various disturbances applied, and was

compiled using 256 trajectories of 250 steps each.

First, the two test models are analyzed under ideal conditions with no disturbances. From the

PT metrics, it is evident that the LQR controller converges faster in position with better accuracy

than the RL, owing to substantially longer durations where the LQR maintains a position error

under 1 cm. We can also see that the RL controller first aligns its heading with the goal, as it spends

almost all its time under the 5◦ threshold. This is a byproduct of its reward shaping, which incen-

tivizes the convergence of the heading as much as the position. Hence, to score the maximum of

points, aligning the heading first is a sound strategy as it is the easiest under ideal conditions. Fi-

nally, AAS values show that the LQR is a lot more fuel efficient in these conditions, with 66% less

fuel used than the RL agent.

When considering the Velocity Noise (VN), it is observed that with the lowest noise level,

the RL performances remain unchanged, while the LQR struggles, in particular with attitude

control. With 0.04 m/s of noise, the performance of both controllers decreases. However, the RL

controller is more resilient than the LQR controller to this kind of disturbance, even though it

was not trained for it. In the interest of brevity, we do not report action noise value in the table, as

we found their effect to be negligible on both controllers.

Furthermore, when examining the Torque Disturbance (TD) of 0.05 N·m, equivalent to 1/6-

th of the total torque capacity of the platform, the performance of both controllers experiences a

noticeable reduction, particularly for the LQR controller. A similar pattern is observed with the

force disturbance (UF), which would be equivalent to an uneven floor in the lab. In this case, start-

ing by applying 0.2N of force on the platform (equivalent to 1/5th of its maximum thrust), results
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in the performance of both controllers being close to the ideal conditions, with a small performance

drop of the LQR in fine positioning. When doubling it (0.4 N), the RL policy remains close to

its baseline, but the LQR performance decreases, making it unable to maintain positions under

the 2.5 cm threshold. Similar behaviours are observed upon the addition of both force and torque

disturbances.

Finally, the thruster failures impact the performance of both controllers in the same manner.

With a single failed thruster, both controllers perform relatively well, but the addition of a second

thruster failure impedes the controller’s ability to drive the FP to its defined goals.

Overall, while the LQR controller demonstrates greater efficiency and precision in position

control with our current tuning, it encounters challenges when subjected to the selected range of

disturbances. In contrast, RL exhibits a lower degree of energy conservation but offers stronger

resilience when subject to a wide range of disturbances. It is possible that with a different cost

function, better tuning of its weights, and a robust optimal control approach, the LQR becomes

adeptwith these disturbances. Similarly, theRL agent could be induced to learnmore conservative

policy that uses less actions throughout the episodes, via adequate reward shaping. However, the

RL agent is not using a robust RL approach either, and domain randomization was only applied

on force disturbances up to 0.25N, which is less than the disturbances it can overcome.

ZeroG Laboratory

For experiments with the real FP system, we report tests using both the RL and LQRmethods for

the “go to pose” task, and tests using the RL agent only for the “track velocity” task.

Go to pose The controllers are run on the FP, which is connected to a constant air supply

through a tether. This tether applies some light unknown disturbances such as a small torque and

force to the platform. Moreover, the system velocities are derived from the optitrack system. The

observed velocities include minor noise and small delays due to network communication.

Figure 3.14 illustrates the performance of each controller. The first row shows the trajectories
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of the FP, and the second row shows the distance to the goal in position and orientation. The first

two columns have the rough same initial pose: Init1, while the two last share the same initial pose:

Init2.

From the last row, it is evident that the LQR controller converges faster in position than the

RL controller. This aligns well with the behaviours observed in the simulation benchmark, with

an LQR controller converging faster. However, it is also apparent that the LQR solution exhibits a

minor overshoot. Such an observation is also in linewith the simulation benchmark, as the uneven

floor in the lab likely disrupts the LQR controller by applying a subtle constant force, preventing

it from reaching its simulation baseline performance. Looking at the top row, we can see that the

LQR is also overshooting a bit. Of course, the behaviour can be adjusted bymodifying the weights

associated with the importance of the error in position in the cost matrix. It is also worth noting

that if these weights are not large enough, the LQR controller struggles to converge toward the

goal. It is also worth noting that the LQR controller is sensitive to the weights; smaller weights do

not incentivize the FPmotion toward the goal. Compared to the simulation, we had to adjust these

weights to make the controller more aggressive in order to have satisfactory performances. In com-

parison to the simulation, it was deemed necessary to alter the weights of the LQR controller to

yield a more aggressive approach to achieve satisfying performances. As for the RL agent, it can be

seen that it is first aligning its heading and then slowly converging towards the goal. As for the RL

agent, it is noticeable that the FP initially aligns its heading and then gradually converges toward

the goal. Consistently with the results from the simulation, the RL controller is significantly more

accurate in terms of heading while achieving a position accuracy similar to that of the LQR con-

troller. Overall, both controllers performed well in the lab, reaching their expected performances.
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Figure 3.14: Comparison of theRL and LQR controllers on two different initial poses in the Zero-
G Lab. Init 1 denotes the first initial pose and Init 2 the second. For the trajectory plots, the y-axis
is shown on a logarithmic scale for improved visualization.
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Figure 3.15: RL agent performing velocity tracking in simulated (bottom) and lab (top) environ-
ments. From left to right, circular, lemniscate, and square trajectories are used as references.

Track velocity

In the tests performed for this task in the lab, the objective is to assess the simulation-trained policy

ability to adhere to a set of predetermined target velocities. Since the LQR model relies on both

position and velocity states as input, while the RL agent only requires velocity, we opted to present

the RL policy results for this specific task. Both numerical-simulation and lab tests are displayed

to validate the sim-to-real transfer.

Similar to the “go to pose” experiments, the FP was subjected to un-modeled disturbances

affecting both linear and angular motion. An additional challenge in these tests was the accurate

estimation of velocities, affected by slightmeasurement noise and communication delays. The pre-

generated trajectories to be tracked by the policy were designed to test the FP’s response accuracy
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Shape Lab Error (µ± σ) [m/s] Sim Error (µ± σ) [m/s]
circle 0.03± 0.02 0.01± 0.01
infinite 0.04± 0.03 0.01± 0.01
square 0.07± 0.05 0.05± 0.08

Table 3.6: Comparison of velocity errors between lab and simulation environments for the Track-
Velocity task. All trajectories are tracked at 0.2m/s.

and agility.

Figure 3.15 illustrates the target trajectory and the FP’s position for the circle, square and infi-

nite shapes. It is clearly visible that the hardest task was to follow a squared-shaped trajectory. This

is due to the sharp turns that require precise maneuvering and acceleration adjustments, which

could be induced by reducing the look-ahead-distance and target velocity of the tracking when

close to corners. The performance metric used is the linear velocity error ev expressed as µ ± σ,

where µ is the mean and σ is the standard deviation during the test duration. Table 3.6 reveals that

the lab environment generally presents higher velocity errors compared to the simulation environ-

ment, particularly notable in the square shapewith a lab error of 0.07± 0.05m/s versus a sim error

of 0.05± 0.08 m/s, the difficulty of real-world transfer. For the infinite trajectory, we observed a

slight overshoot in the path’s lower regions, caused by the irregularities in the epoxy floor, which

are significant in that area of the laboratory, affecting the FP’s motion. This can also be seen on the

square, and to less of a degree on the circle. In our case, there is a slope pulling free-floating objects

towards negative y.

3.6 Discussion and Summary

This chapter presented DRIFT, an experimental framework and physical testbed enabling the vali-

dation of DRL-based control policies on air-bearing floating platforms. Building upon the RANS

simulator, DRIFT introduced a sim-to-real pipeline that supports both position–orientation con-

trol and velocity tracking in a 2D planar space, emulating the drag-free conditions of microgravity.

We demonstrated that PPO-based agents trained entirely in simulation could be successfully
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transferred to the physical floating platform with minimal degradation in performance. Compar-

ative experiments against optimal control techniques such as LQR revealed that while traditional

methods remain effective under nominal conditions, DRL policies exhibit greater robustness in

the presence of stochastic force fields, actuator delays, andmodel mismatch. This confirms the po-

tential of DRL for real-world space autonomy, particularly when accurate modeling is infeasible

or when onboard adaptability is required.

Key Contributions of DRIFT

• Introduced a sim-to-real pipeline for 2D floating platform control.

• Demonstrated task transfer of PPO policies under domain uncertainties.

• ComparedDRLwith LQRunder force disturbances, showing better adaptability of

learning-based policies.

• Released an extended simulation framework with richer dynamics, visual tools, and

task diversity.

Despite the encouraging results, limitations remain. The current DRL agents use feedforward

policies, whichmayunderperform inhighly delayedorpartially observable settings. In futurework,

we plan to investigatememory-based architectures (e.g., LSTMsorTransformers) and augment the

simulation with additional sensors and disturbances. Moreover, extending the platform to sup-

port articulated morphologies—such as legged robots with reaction thrusters—could open new

avenues for microgravity locomotion and hopping-based mobility.

Together, RANS and DRIFT lay the groundwork for reproducible research in space-relevant

RL control, from scalable simulation to real-world deployment. These efforts inform the unified

training and evaluation frameworks described in the next chapters, where we extend from space-

craft scenarios to multi-robot navigation and aerial-ground control.
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Chapter 4

Unified Learning-Based Navigation Across

Diverse Robot Platforms in Simulated and

Physical Environments

4.1 Introduction and Motivation

The previous chapters have highlighted the growing role of simulation frameworks in advancing

reinforcement learning (RL) methods for robot navigation. While task-specific environments like

RANS andDRIFT provided efficient training grounds for spacecraft andmicrogravity platforms,

the broader robotics field still lacks standardized frameworks to develop, compare, and deploy RL

agents across heterogeneous platforms and environments.

This chapter introduces RoboRAN, a multi-domain simulation and evaluation framework

designed to scale upRL-based navigation research across diverse robotic systems. The work builds

on the IsaacLab [24] ecosystem and extends it with modular abstractions for tasks, robots, eval-

uation protocols, and deployment pipelines. RoboRAN is a direct response to the limitations

of isolated, domain-specific benchmarks that hinder generalization and reproducibility in robot

learning research.
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Unlike previous chapters, which focused on single-domain systems (e.g., spacecraft, floating

platforms), RoboRAN targets cross-medium extensibility—supporting thruster-based, wheeled,

and aquatic robots under a unified RL stack. It enables flexible robot-task combinations, allow-

ing RL practitioners to train and evaluate one policy per pair under standardized configurations,

reward structures, and performance metrics.

Figure 4.1: RoboRAN supports RL-based navigation tasks across a variety of robotic platforms,
including the Kingfisher USV, Floating Platform, Turtlebot2, Leatherback, and JetBot. The first
three were also evaluated in real-world conditions.

Acknowledgments. This framework was developed as part of a collaborative effort. While I

led the design, implementation, and testing of the simulation stack—including all robot and task

abstractions and domain-randomized training—I contributed only marginally to the real-world

deployment of trained policies. These hardware experiments were conducted by my co-authors,

who also developed the ROS 2-based deployment infrastructure and supervised the physical tests

on the Floating Platform, USV, and Turtlebot2 robots.
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Main Contributions

This chapter presents four key contributions, structured around design, training, deployment, and

evaluation:

1. A modular and scalable RL framework that enables robot–task interchangeability through

standardized APIs. This supports the seamless integration of new tasks and robotic platforms

with minimal code duplication or structural changes.

2. Sim-to-real transfer across three distinct physical robots, leveraging a shared training

pipeline with domain randomization and physically plausible noise models. Experiments

span microgravity emulation (floating platform), aquatic (Kingfisher USV), and terrestrial

(Turtlebot2) systems.

3. The first open-source deployment interface for IsaacLab-trained policies, bridging the

gap between simulation and physical execution. The interface supports models trained with

rl_games [14] and skrl [81], includes lightweight inference routines, and integrates with

Docker [82] and ROS 2 [83] for field deployment.

4. A unified evaluation suite for navigation tasks across different domains, using consistent

metrics (e.g., distance-to-goal, heading error, constraint violation rates). This allows repro-

ducible comparisons and cross-domain policy benchmarking.

4.2 Related Work

Reinforcement Learning (RL) has emerged as a powerful paradigm for control tasks, demonstrat-

ing its ability to learn complex policies directly from sensorimotor data. This has led to significant

advancements across various domains, including robotic manipulation [84], humanoid locomo-

tion [85], and the control of legged robots [86]. While benchmark development has primarily

centered on manipulation [87, 88, 89, 90], navigation remains a fundamental aspect of embodied

intelligence that has gained increasing attention [91, 36].
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Table 4.1: Comparison of RoboRANwith existing RL frameworks.

Benchmark Domain Diversity Task Types Sim-to-Real Robustness Sensor / Env. Realism Modularity Backend
RoboRAN (Ours) Land / Water / Orbital Navigation (4+) ✓(3 robots) Partial Moderate (realistic physics) ✓ IsaacLab
RL-Nav (Xu et al., 2023) [98] Ground Navigation (1) (1 robot) Partial Moderate (realistic physics) Partial Gazebo
Habitat 2.0 [93] Indoor Rearrangement / Manipulation — Limited High (photorealism, articulation) Partial Bullet
RRLS [99] Sim (MuJoCo) Continuous control — ✓(worst-case) Low Moderate MuJoCo
Robust Gymnasium [100] Sim (varied tasks) Control / Safe RL /Multi-agent — ✓(disruptions) Medium ✓ Gymnasium
FlightBench [95] Aerial (quadrotors) Ego-vision navigation ✓(1 robot) Partial High (occlusion, motion blur) — Custom
BARN [94] Ground Reactive / Safe navigation ✓(1 robot) ✓(safety/uncertainty) Medium / Low Partial ROS / Gym
iGibson 0.5 [97] Indoor Interactive navigation — Limited High (realistic sensors) Partial Gibson + PyBullet
Aquatic Benchmark [96] Water (aquatic) Point-to-point navigation — Partial Moderate (hydrodynamics, drift) — Unity3D

To facilitate learning-based navigation, numerous simulation environments and physics en-

gines have been developed. Frameworks such as MuJoCo [6], PyBullet [45], Webots [63], and

Isaac Gym [7] provide efficient and scalable platforms for RL training, but are often constrained

to single-domain settings or specific robot morphologies. IsaacLab [24] extends Isaac Gym by

supporting diverse robotic platforms, though it lacks both a structured evaluation suite for bench-

marking RL policies across tasks and domains and the flexibility for interchangeable training of

multiple tasks across multiple robots. Several recent benchmarks have addressed learning-based

navigation under specific environmental and sensory constraints. Habitat [92, 93] targets high-

level planning and mobile manipulation in photorealistic indoor environments. The BARN chal-

lenge [94] focuses on low-level control in cluttered scenes, while FlightBench [95] benchmarks

ego-vision-based navigation for agile quadrotors. Aquatic navigation tasks are considered in [96],

and iGibson 0.5 [97] provides an interactive benchmark in household environments. These ef-

forts, however, are typically domain-specific and lack support for robot–task interchangeability or

sim-to-real evaluation.

Robustness and generalization have become important in recent benchmark development.

RRLS [99] introduces worst-case robust control evaluation using adversarial domains in Mu-

JoCo, while Robust Gymnasium [100] defines modular disruption models across 60+ tasks.

Although these environments are well-suited to studying resilience in policy learning, they remain

simulation-bound and are limited in the diversity of robotic embodiments.

Prior work such as [98] identifies four key desiderata for RL in robotics (uncertainty handling,

safety guarantees, data efficiency, and generalization) and provides valuable evaluationmetrics and

insights. TheGazebo-based simulation environment used in thiswork supports algorithmcompar-
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isons, but is limited to a single navigation task and robot. In contrast,RoboRANemphasizesmulti-

robot, multi-domain flexibility within a high-throughput, GPU-accelerated simulation stack. Its

modular design and extensibility enable future integration of safety-focused features such as policy

and environment constraints.

While robustness and safety-centric studies like RRLS [99], Robust Gymnasium [100],

and [98] focus on domain shifts or guarantees, RoboRAN provides complementary value by sup-

porting simple real-world deployment and modular task-robot definitions, allowing practitioners

to easily integrate different robot morphologies and new navigation tasks across diverse physical

environments. Table 4.1 compares RoboRAN with existing RL benchmarks along axes such as

domain diversity, task types, sim-to-real validation, robustness testing, realism, and modularity.

We highlight our benchmark’s cross-domain reach, support for real-world deployment, and

modular structure enabling extensibility.

4.3 RoboRANOverview

Figure 4.2: RoboRAN framework: the Navigation Tasks and Simulation Robots modules, to-
gether with a chosen RL library, are the only inputs required by the Environment Manager to
train a policy in simulation, producing a ready-to-deploy network for the real robot counterpart.

RoboRAN is designed to train and evaluate robotic navigation tasks across a variety of opera-

tional settings. We introduce a unified structure where diverse robots can be evaluated on a shared
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set of tasks, using consistent interfaces and metrics. This design uniquely enables seamless inter-

changeability between agents and environments across different physical domains.

Our environment, formulated as a standardMarkovDecision Process (MDP) [101], is defined

by the tuple (S,A, P, r, γ), where S is the set of states, A is the set of actions, P (s′ | s, a) is

the transition probability function, r(s, a) is the scalar reward function, and γ ∈ [0, 1] is the

discount factor. At each time step t, an agent observes a state st ∈ S , selects an action at ∈ A

according to its policy π(at | st), receives a reward rt = r(st, at), and transitions to a new state

st+1 ∼ P (· | st, at). The environment thus provides at each step an observation ot ∈ O, a reward

rt, and a done signal dt ∈ {0, 1} indicating termination. The goal of the agent is to maximize the

expected return J(π) = Eπ

[∑T
t=0 γ

tr(st, at)
]
over episodes of length T .

Figure 4.2 depicts the main components of our framework:

The Common Environment Manager instantiates a specified task-robot pair, dynamically

configuring the simulation assets, physics parameters, and task constraints based on the robot’s

specific characteristics and operational medium. This modular design is a key contribution of

our framework, as it enables full interchangeability between tasks and robots, and sub-module

addresses a distinct aspect of this flexibility.

The Custom Physicsmodule computes custom dynamics and actuation forces through parame-

terized thruster/propeller models. For instance, it applies hydrodynamic and propeller models for

surface vessels, or microgravity and frictionless dynamics for the floating platform. It also enables

flexible rewards to platform-specific constraints, such as penalizing rapid thruster actuation.

The Custom Domain Randomization module implements the disturbances detailed in subsec-

tion 4.3.4 which are required to achieve sim-to-real transferability.

During training or evaluation, the PerformanceMetrics layer attach task-specific logging hooks en-

abling both on-line navigation metric updates and uniform post-hoc evaluation.

TheROS2 API simplifies policy deployment by using a ready-to-use inference node that exposes

standard ROS2 interfaces, eliminating manual policy export steps that differ across RL libraries.

Together, these sub-modules enables flexibility and streamline the pipeline that shortens the
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loop between Training, Deployment and Simulation for diverse types of robots.

4.3.1 Robots

RoboRAN supports all robots presented in Figure 4.1. Among them, we selected three represen-

tative robots for further evaluation and field tests. Their characteristics and control properties are

summarized in Table 4.2.

Land

We selected the Turtlebot2, an open source platform with differential drive system with non-

holonomic dynamics. To demonstrate the extensibility of our stack, two more wheeled robots

(Leatherback and JetBot) are supported and tested in simulation.

Water

We use the Kingfisher M2001, a surface vessel with high inertial properties featuring a catamaran

hull configuration and is driven by two fixed propellers, one on each hull. To simulate aquatic

dynamics, we override IsaacLab’s default planar physics with custom hydrodynamics and hydro-

statics models, enabling more accurate motion behaviors influenced by water resistance.

Space

We implement a floating platform, a thruster-actuated system constrained to planar movement,

mimicking spacecraft-like motion with force-based control. This robot, through air bearings

mounted on its base, generates a microgravity effect by pushing a constant airflow against the floor

to lift and levitate in a free-floating fashion. To simulate this effect, we implement a custom fric-

tionless dynamics to approximate free-floating orbital behavior, which is not natively supported

by IsaacLab.

1https://clearpathrobotics.com/
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Table 4.2: Comparison of robot properties in RL navigation tasks. Control inputs are expressed
as mathematical spaces.

Robot Actuation Type Degrees of Freedom Control Input Space Motion Constraints
Floating Platform Thruster-based (binary) 3 (x, y, yaw) {0, 1}8 No rolling/pitching, planar motion
Kingfisher Water-based thrusters 3 (x, y, yaw) R2 (left/right thrust) Drag and inertia effects, smooth but slow
Turtlebot2 Differential drive 3 (x, y, yaw) R2 (v, ω) No lateral movement, limited turn speed

Table 4.3: Summary of navigation tasks, objectives, and observation space.

Task Objective Obs
Dim

Obs Components Obs Variables

GoToPosition Reach a target position 6 Base Velocities, Target
Info

[vx, vy, ω], [d, cos(θ), sin(θ)]

GoToPose Reach a target 3DoF
pose

8 Base Velocities, Target
Info, Target Heading

[vx, vy, ω], [d, cos(θ), sin(θ)],
[cos(ψ), sin(ψ)]

GoThroughPositions Follow a sequence of
waypoints

6 + 3n Base Velocities, Target
Info, Future Goals

[vx, vy, ω], [d, cos(θ), sin(θ)],
[di, cos(θi), sin(θi)]

TrackVelocities Maintain a set velocity 6 Error Terms, State [ev, el, eω], [vx, vy, ω]

These three representative robots (FloatingPlatform, Kingfisher, Turtlebot2) are described in

themain evaluation; additional wheeled platforms supported byRoboRAN are summarized next.

Additional wheeled platforms

In addition to the TurtleBot2 (used for real-world deployment and sim-to-real evaluation), Robo-

RAN supports two further wheeled platforms in simulation: theLeatherback (NVIDIA research

platform) and the JetBot (open-source educational robot). Including multiple wheeled platforms

highlights RoboRAN’s modular robot API and allows us to evaluate how learned navigation con-

trollers generalize across differential- andAckermann-style locomotionwithoutmodifying the task

definitions or training pipeline.

4.3.2 Tasks

While IsaacLab designs tasks around fixed robot models, RoboRAN decouples robot and task

definitions, allowing consistent training and evaluation pipelines for any supported robot across all
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tasks. Our framework includes a suite of four navigation tasks designed to evaluate roboticmotion

in different environments and actuation methods. Each task leverages a structured observation

space, detailed in Table 4.3, providing essential state information such as base velocities [vx, vy, ω],

which capture the linear and angular velocity of the agent. To enhance temporal reasoning, we

augment the observation vectorwith the previous actionat−1, enabling the policy to infer dynamic

transitions and improve stability in control. In all tasks, the observations are provided in the robot’s

own frame and apply Domain Randomization that mimics the noise of real sensors commonly

used for state estimation.

GoToPosition task requires the agent to reach a randomly initialized 2D position using the

target information [d, cos(θ), sin(θ)], representing the Euclidean distance and bearing to the goal.

The relative angular position of the goal, is provided as a cos and sin of the angle to ensure the ob-

servations are continuous [102].

GoToPose task is similar to GoToPosition, but also requires orientation alignment. Therefore, the

observation space incorporates the target heading as [cos(ψ), sin(ψ)] to provide the angular dis-

tance to the desired final orientation.

GoThroughPositions task involves sequential navigation through a series of n waypoints, intro-

ducing future goals [di, cos(θi), sin(θi)] in the observation space to ensure smooth trajectory plan-

ning.

TrackVelocities task requires the agent to follow a time-varying velocity reference in both linear

and angular components. The observation space includes velocity error terms [ev, el, eω] capturing

deviations from the desired forward, lateral, and angular velocities. While no explicit path planner

is embedded in the control policy, the velocity references can be derived from any arbitrary tra-

jectory generator, including spline interpolators or MPC-based local planners. In this sense, the

generator acts as a lightweight path planner, and the learned policy serves as a robust low-level con-

troller that tracks planned motion commands across diverse robot morphologies and terrains.

These tasks provide a flexible evaluation suite for RL-based navigation, adaptable to use-cases

such as autonomous docking, inspection, formation control, and trajectory tracking. While the
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core experiments in this paper focus on fundamental control-oriented tasks without obstacles or

perceptual inputs, the framework is designed to support more complex scenarios. Thanks to its

modular architecture, features such as obstacle avoidance, moving targets, and real-world sensing

modalities can be integrated with minimal code changes.

4.3.3 Reward Formulation

The reward function combines task-specific objectives with general regularization terms to ensure

consistent goal-directed behavior and control smoothness across robot types. Its unified form is

shown in Eq. 4.1, where dp, dh, and db denote the distance to the goal position, heading misalign-

ment, and boundary proximity respectively. The terms vj represent linear and angular velocities

clipped to task-defined ranges,∆dp is the signed progress along the goal direction, and ⊮goal pro-

vides a terminal bonus when the goal is reached. The term rrobott adds optional robot-specific shap-

ing such as control regularization.

rt =
∑

i∈{p,h,b}

wie
−di/λi +

∑
j∈{v,ω}

wj clip(vj, vmin, vmax) + wpg∆dp + wbns · ⊮bonus + rrobott

(4.1)

The weightswi,wj ,wpg, andwsucc vary by task, and are denoted in Table 4.4 as αi forGoToPo-

sition, βi forGoToPose, ϕi forGoThroughPositions, and γi for TrackVelocities with decay constants

λi shared across tasks. For example, α1e
−dp/λ1 encourages position convergence in GoToPosition,

while β1e−dp/λ1e−dh/λ4 jointly rewards alignment in GoToPose. Similarly, progress is captured by

ϕ1∆dp in GoThroughPositions, and TrackVelocities uses γie−ei/λ5 to penalize velocity tracking er-

rors. All coefficientswere tuned for balance and stability across robots, and are reported inTable 4.4

for full reproducibility.

4.3.4 Domain Randomization

To support sim-to-real transfer, we apply domain randomization in three key areas: (i) robot mass

properties (mass, center ofmass location, inertia tensor), (ii) actuation noise viaGaussian perturba-
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Table 4.4: Reward parameters for PPO training. Task-specific coefficients and decay values used in
Equation 4.1.

GoToPosition GoToPose GoThroughPos. TrackVelocities
αi1 (pos) 1.0 βi1 (pose align) 1.0 ϕi1 (progress) 1.0 γi1 (lin vel err) −1.0
αi2 (head) 0.25 βj1 (lin vel) −0.05 ϕi2 (head) 0.05 γi2 (ang vel err) −0.5
αj1 (lin vel) −0.05 βj2 (ang vel) −0.05 ϕj1 (lin vel) 0.0 γi3 (bonus) 0.0
αj2 (ang vel) −0.1 βbns1 (boundary) −10.0 ϕj2 (ang vel) −0.05 γbns1 (boundary) −10.0
αbns1 (bonus) −10.0 βpg1 (progress) 0.2 ϕbns1 (bonus) −10.0 — —

λ1 = 1.0 (dist) λ2 = 0.25 (head) λ3 = 1.0 (bnd) λ4 = 1.0 (vel err)

tions to commanded actions, and (iii) external disturbances modeled as randomwrenches applied

to the robot’s base. The amount of randomization is chosen at random at every reset. We ensure

reproducibility through a per-environment seed-controlled random number generation (RNG)

using Warp [47], allowing fine-grained domain randomization across parallel training environ-

ments. We apply moderate randomizations to simulate real-world uncertainties. For the Turtle-

bot2, we vary its mass by ±0.1 kg and CoM by ±0.05m (std = 0.01), reflecting typical manu-

facturing variances. For the Kingfisher, which operates in a fluid environment, we use broader

mass (±2.0 kg) and CoM (±0.05m) perturbations, and apply random body wrenches (forces

∈ [0, 0.25]N, torques ∈ [0, 0.05]Nm) to account for water currents. For the Floating Platform,

we use intermediate mass (±0.25 kg) and similar CoM and wrench ranges to model small-scale

system variations and external disturbances.

4.3.5 Training

We train RL algorithms using the skrl [81] library, with PPO [28] as the training algorithm. PPO

was selected due to its stability in high-dimensional continuous control and its widespread use

in RL robotics settings. Rather than comparing algorithms, our focus is on demonstrating the

decoupling of robot-task development within a unified framework. All experiments were run on

a single NVIDIARTX 4090. PPOwas trained with default hyperparameters, and each robot-task

pair converged in∼ 15minutes on average. The final set of policies trained and used for evaluation
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Table 4.5: Task success criteria and thresholds. Each task defines success based on reaching posi-
tion, orientation, velocity, or time-based constraints.

Task Success Condition Threshold
GoToPosition Final position error≤ ϵp ϵp = 0.1m
GoToPose ϵp and orientation error≤ ϵθ ϵp = 0.1m, ϵθ = 10◦

GoThroughPositions Waypoints reached within ϵtp ϵtp = 0.2m
TrackVelocities Maintain ϵv, ϵw ϵv = 0.2m/s, ϵw = 10◦/s

are 12 (3 robots and 4 tasks).

4.3.6 Deployment (summary)

While I did not contribute directly to the real-robot deployment, our co-authors developed and

tested a ROS2-based deployment stack enabling policies trained in IsaacLab to control the Float-

ing Platform, Turtlebot2, and Kingfisher in the field. The architecture includes state abstraction,

policy inference, and goal interface modules, integrated with Docker and ROS 2. Detailed deploy-

ment and system integration are available in the original publication and appendix.

4.4 Simulation Results

We evaluate ourRL-trained policies in simulation across representative robot–task pairs, reporting

results for three multi-domain robots: Floating Platform,Kingfisher, and Turtlebot2. These cover

a diverse range of actuation models and navigation challenges, ensuring a broad evaluation scope.

4.4.1 Experimental Setup

Each policy is trained for 3200 epochs using PPO, over 5 random seeds per robot-task pair. Dur-

ing evaluation, we use GPU-accelerated IsaacLab rollouts with parallel environments to collect

performance data from 4096 evaluation episodes per run. All results are reported as mean ± std

across environments. We define task-specific success as percentage of trajectories that satisfy the
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task specific metrics. Each metric is associated to a set of thresholds (ϵp, ϵθ, ϵtp, ϵv, and ϵw) that are

listed in Table 4.5):

GoToPosition: distance to goal< ϵp within a fixed time budget.

GoToPose: both distance< ϵp and heading error< ϵθ must be satisfied.

GoThroughPositions: count of waypoints reached in sequence within ϵtp tolerance before time-

out.

TrackVelocities: mean absolute tracking error for linear and angular velocity must stay below ϵv
and ϵw.

In addition to success rate (defined as the percentage of episodes that meet task-specific thresh-

olds), we report continuous evaluation metrics to capture control precision and stability:

Final Distance Error (m): Euclidean distance to the goal at the end of the episode.

Heading Error (°): Absolute orientation difference at the final timestep (GoToPose only).

Time to Target (s): Duration required to reach the target precision threshold. Lower values

reflect faster convergence.

Velocity Tracking Error (m/s): Mean absolute error between target and actual linear/angular

velocities (TrackVelocities only).

Control Signal Variation (unitless): Standard deviation of control signals over the episode,

reflecting smoothness or abruptness of control.

Goals Reached: Total number of intermediate targets successfully reached during sequential

waypoint tasks (GoThroughPositions).

All these metrics are aggregated in Table 4.7, enabling a multi-dimensional comparison across

tasks and robots.
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Figure 4.3: Learning curves showing rewards (mean± std) over 5 seeds per robot, compared by
task.

4.4.2 Training Efficiency and Learning Trends

Figure 4.3 shows the training reward across 5 seeds, highlighting learning speed and convergence

per robot. The FloatingPlatform achieves the highest asymptotic rewards, benefiting from direct

actuation despite its discrete thrust model. Turtlebot2 converges reliably with moderate final re-

turns, aided by low-dimensional control. Kingfisher shows slower and less stable learning, likely

due to its hydrodynamic complexity and inertia. Table 4.6 reports averagewall-clock time per train-

ing run. The Kingfisher requires the longest training time, consistent with its complex dynamics.

Turtlebot2 trains fastest among wheeled platforms. The unexpectedly short time for the Floating-

Platform suggests beneficial interaction between its discrete control structure and IsaacLab’sGPU-

based parallelization. These differences motivate further study into simulation efficiency under

varying robot dynamics.
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Table 4.6:Wall-clock time per robot–task pair (mean± std over 5 seeds) in minutes [m].

Task Floating Platform Kingfisher Turtlebot2
GoToPosition 7.35± 0.02m 13.91± 0.19m 11.55± 0.14m
GoToPose 5.46± 0.00m — 11.53± 0.16m
TrackVelocities 5.08± 0.18m 13.47± 0.07m 11.28± 0.02m
GoThroughPositions 5.51± 0.13m 13.47± 0.35m 11.20± 0.03m

Table 4.7: Simulation evaluation metrics per task and robot (mean ± std across 4096 envs,
PPO–skrl). Metrics include: success rate (%), final distance error (m), heading error (°), time to
target (s), velocity tracking error (m/s), control signal variation (unitless), and number of goals
reached. “—” indicates non-applicable metrics.

Task Robot Success Rate ↑ Dist Err ↓ Heading Err ↓ Time to Target ↓ Lin Vel Err ↓ Ang Vel Err ↓ Ctrl Var ↓ Goals Reached ↑

GoToPosition FloatingPlatform 0.94 ± 0.04 0.05 ± 0.01 — 87.05 ± 3.38 — — 0.62 ± 0.04 —
Kingfisher 0.59 ± 0.29 1.06 ± 0.73 — 176.11 ± 60.86 — — 0.75 ± 0.45 —
Turtlebot2 0.99 ± 0.01 0.07 ± 0.00 — 92.60 ± 4.67 — — 0.43 ± 0.26 —

GoToPose FloatingPlatform 0.99 ± 0.01 0.02 ± 0.01 0.78 ± 0.01 92.38 ± 2.59 — — 0.69 ± 0.05 —
Kingfisher 0.66 ± 0.09 0.23 ± 0.06 7.07 ± 3.08 126.80 ± 31.29 — — 0.48 ± 0.29 —
Turtlebot2 0.84 ± 0.04 0.14 ± 0.01 4.39 ± 1.56 131.49 ± 2.16 — — 0.63 ± 0.38 —

GoThroughPositions FloatingPlatform 1.00 ± 0.00 2.35 ± 0.25 — 65.18 ± 1.03 — — 0.32 ± 0.04 13.57 ± 0.33
Kingfisher 1.00 ± 0.00 2.41 ± 0.79 — 93.29 ± 18.56 — — 0.43 ± 0.24 10.70 ± 2.84
Turtlebot2 1.00 ± 0.00 1.79 ± 0.05 — 101.50 ± 12.25 — — 0.13 ± 0.06 11.01 ± 0.12

TrackVelocities FloatingPlatform 0.93 ± 0.18 — — — 0.05 ± 0.07 0.03 ± 0.01 0.45 ± 0.04 —
Kingfisher 0.48 ± 0.03 — — — 0.03 ± 0.00 0.24 ± 0.02 0.62 ± 0.37 —
Turtlebot2 0.77 ± 0.01 — — — 0.02 ± 0.01 0.11 ± 0.01 0.15 ± 0.09 —

4.4.3 Task Success and Performance Analysis

To complement the reward learning curves shown in Figure 4.3, we conduct a detailed quantitative

evaluation across all robot-task pairs. This evaluation uses standardized successmetrics and control

efficiency indicators (Table 4.7) collected over 4096 parallel trajectories per setting.

Figure 4.4 presents the convergence curves for each robot-task pair. Shared tasks (GoToPosi-

tion, GoThroughPositions, and TrackVelocities) are plotted together for comparison, while special-

ized tasks (GoToPose) are shown separately.

GoToPosition and GoToPose The Turtlebot2 achieves the highest success rate in GoToPosition

with 0.99 ± 0.01, benefiting from its differential-drive system and precise low-speed control. The

FloatingPlatform follows with 0.94 ± 0.04, while the Kingfisher lags at 0.59 ± 0.29 due to inertia

and limited turning agility. These trends are confirmed in Figure 4.4a, where Turtlebot2 reaches
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(a) GoToPosition: all robots. (b)GoToPose (distance): Floating-
Platform, Turtlebot2.

(c) GoToPose (heading): Floating-
Platform, Turtlebot2.

(d) GoThroughPositions: goals
achieved (all robots).

(e) GoThroughPositions: goals
distribution (4096 evaluation
envs, all robots).

(f) TrackVelocities: linear (black)
and angular (orange) velocity er-
rors (all robots).

Figure 4.4: Simulation results across robots and tasks. Performance comparisons for GoToPo-
sition, GoToPose, GoThroughPositions, and TrackVelocities. (a) All robots for GoToPosition. (b, c)
FloatingPlatform andTurtlebot2 onGoToPose (distance, heading). (d)Number of goals achieved
in GoThroughPositions (all robots). (e) Goals distribution over 4096 parallel evaluation environ-
ments (all robots). (f) Linear velocity error in TrackVelocities (all robots).

the goal region fastest, followed by FloatingPlatform and Kingfisher. In the GoToPose task, both

FloatingPlatform and Turtlebot2 succeed in reaching the target, with success rates of 0.99 ± 0.01

and 0.84 ± 0.04, respectively. Kingfisher is not evaluated due to its lack of heading control. Float-

ingPlatformachieves superior orientation control, with aheading error of 0.78°±0.01°, compared

toTurtlebot2’s 4.39° ± 1.56°, as shown in Figure 4.4c. Distance convergence is also faster andmore

precise for FloatingPlatform (0.02 ± 0.01 m vs 0.14 ± 0.01 m, Fig. 4.4b).

GoThroughPositions All three robots successfully complete partial trajectories (100% success

rate), but differ in the number of goals reached. FloatingPlatform achieves the highest average

at 13.57 ± 0.33, while Turtlebot2 and Kingfisher reach 11.01 ± 0.12 and 10.70 ± 2.84 respec-

tively. These differences are reflected in Figure 4.4d (cumulative goals) and Figure 4.4e (distri-
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bution), where FloatingPlatform’s performance is both higher and more consistent. Turtlebot2

shows smoother trajectories but fails to reach all waypointswithin the time constraints, whileKing-

fisher’s performance is more variable due to inertia limiting sharp turns.

TrackVelocities FloatingPlatform demonstrates moderate success in tracking target velocities.

Its linear velocity error is 0.05 ± 0.07, and angular velocity error is 0.03 ± 0.01, better than both

Turtlebot2 (0.02 ± 0.01, 0.11 ± 0.01) and Kingfisher (0.03 ± 0.00, 0.24 ± 0.02), as detailed in

Table 4.7 and shown in Figure 4.4f. The high angular error for Kingfisher highlights the difficulty

of fast heading corrections in water due to drag and momentum.

Success Rate Summary Table 4.7 confirms these observations across tasks. Turtlebot2 dom-

inates in GoToPosition, FloatingPlatform leads in GoThroughPositions, and both Turtlebot2 and

FloatingPlatform perform comparably in GoToPose. In TrackVelocities, all robots achieve reason-

able success, but Kingfisher exhibits the highest angular tracking errors, limiting its overall preci-

sion. These trends are visible in Figure 4.4, supporting our conclusion that control effectiveness

varies not only across robots but also across tasks.

Additional results Figure 4.5 shows the other wheeled robots available in the simulation stack,

while they solve the the available tasks GoToPosition, TrackVelocities, GoThroughPositions, and

GoToPositionWithObstacles.

Extended Environments and Task Variations RoboRAN supports more complex environ-

ments and objectives. Its modular task interface allows users to easily introduce obstacles, moving

targets, or perception-driven goals without altering the robot implementation or training pipeline.

To demonstrate flexibility under environmental constraints, we evaluate theGoToPosition task

with static obstacles placed between the robot and its sequence of goals. Using the same reward

structure and PPO hyperparameters as in the base task, without task-specific tuning, all three

robots (FloatingPlatform, Kingfisher, Turtlebot2) successfully learn to navigate around obstacles
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(a) JetBot—GoToPose (b) JetBot—TrackVelocities

(c) JetBot—GoThroughPositions (d) Leatherback—GoThroughPositions

(e) Leatherback—GoToPositionWithObstacles (f) Leatherback—GoToPose

Figure 4.5: Examples of JetBot and Leatherback in simulated tasks.

(Fig. 4.7). Training curves (Fig. 4.6) show rapid improvement followed by stable convergence,

with final mean rewards over the last 50 steps of ∼ 93.4 (Kingfisher), ∼ 75.4 (Turtlebot2), and

∼ 73.0 (FloatingPlatform). The observation space is extended from the base task by appending

the positions of the three closest objects in addition to the original six dimensions.

Additional complex scenarios, such as manipulation-inspired tasks (e.g., push-block for
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Figure 4.6: Training performance on GoToPosition with static obstacles for three robots. Curves
show mean and std reward over 10 seeds. All robots learn stable obstacle-avoiding behaviors; the
final-50-step mean rewards are Kingfisher ≈ 93.4, Turtlebot2 ≈ 75.4, and FloatingPlatform
≈73.0.

wheeled robots), are also supported but are left out of the main scope. These can be integrated

with minimal code changes and will be shared in future iterations of the framework.

Figure 4.7: FloatingPlatform, Kingfisher, and Turtlebot2 in GoToPositionWithObstacles

4.4.4 Discussions

While RL policies achieve high success rates, several robot-specific failure cases were observed. The

FloatingPlatform experiences oscillations near target positions due to force-based control lag. The

Kingfisher struggles with understeering in tight waypoint sequences, making sharp turns difficult.

TheTurtlebot2, despite overall fast learning, exhibits difficulty in precise in-place rotations, leading

to longer turning maneuvers in theGoToPose task. These challenges highlight the need for refined

reward shaping and constraint definitions to improve task execution. Overall, the successful train-
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(a) GoToPose: FloatingPlatform. (b) GoToPose: Turtlebot2.

(c) GoToPosition: all robots. (d) GoThroughPositions: all robots.

Figure 4.8: Field test results for navigation tasks. Performance evaluation for GoToPose (Float-
ingPlatform, Turtlebot2),GoToPosition (all robots), andGoThroughPositions (all robots).

ing of diverse robots on shared tasks, despite their differing actuation and mobility constraints,

demonstrates the viability of unified cross-mediumpipeline. TheTurtlebot2’s rapid convergence,

the FloatingPlatform’s discrete thrust limitations, and theKingfisher’s inertia-driven control diffi-

culties highlight the importance of evaluating RL policies across heterogeneous platforms.

4.5 Sim-to-Real Results (Summary)

The deployment of RoboRAN policies on physical robots (FloatingPlatform, Kingfisher, and

Turtlebot2) was led by collaborators and is described in detail in the original paper. While I con-

tributed to the simulator side and overall benchmarking structure, the real-world integration and

tests were outside themain scope ofmy thesis contribution. Nonetheless, their results confirm the
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effectiveness of domain-randomized training and structured evaluation pipelines for policy trans-

fer.

4.6 Conclusions

This chapter presented RoboRAN, a unified and scalable reinforcement learning framework de-

signed to benchmark and compare navigation policies across robots with different locomotion

modalities—wheeled, aquatic, and air-bearing systems. By decoupling robot and task definitions

through standardized interfaces andmodular simulation backends, RoboRAN enables consistent

training, evaluation, and deployment pipelines, addressing the long-standing fragmentation inRL

for robotics.

The chapter demonstrated the effectiveness of this modular design across four core navigation

tasks—GoToPosition, GoToPose, TrackVelocity, and GoThroughPositions—and three heteroge-

neous robotic platforms: the Turtlebot2 (wheeled), the Kingfisher USV (aquatic), and the Float-

ing Platform (microgravity emulator). Policies trained entirely in simulation were evaluated us-

ing uniform metrics and thresholds, enabling side-by-side comparisons across embodiments. The

resulting policies achieve high success rates and centimeter-level accuracy in both simulated and

real-world conditions, showcasing the framework’s potential for sim-to-real generalization.

While real-world deployment of the policies revealed strong qualitative transfer, residual

performance gaps—especially in heading alignment and failure recovery under high-momentum

transitions—highlighted the importance of dynamics fidelity and morphology-aware domain

randomization. These observations reinforce the thesis’ broader theme: robust real-world general-

ization depends not only on algorithmic strength but also on the structured design of simulation

environments and training protocols.

Importantly, this work also underscores a key methodological insight: policy benchmarking

across modalities is not merely a matter of comparing numerical metrics, but requires a carefully

structured simulation and evaluation interface. RoboRANaddresses this need andprovides a prin-
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cipled foundation for future research in generalization, transfer learning, and multitask control.

Looking forward, RoboRAN’s modularity opens the door to several extensions: support for

new robots (e.g., aerial or articulated systems), richer observation modalities (e.g., vision-based in-

puts), and more complex navigation tasks involving obstacle avoidance, constrained motion, or

adversarial environments. Moreover, RoboRAN provides a fertile testing ground for algorithmic

innovations such as curriculum learning, policy distillation, or learning-to-learn approaches. In

this sense, RoboRAN represents a convergence point between robust engineering practices and

scalable RL research, and contributes directly to the thesis’ broader goal of enabling reliable deep

reinforcement learning for autonomous robotics across real-world domains.
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Chapter 5

FALCON-S – Fixed Wing Aerodynamics

And Control Suite

5.1 Introduction

Theprevious chapters introducedmodular frameworks for reinforcement learning (RL) in robotic

navigation, spanning floating platforms, ground vehicles, and water-surface vessels. These contri-

butions emphasized sim-to-real transfer, scalable multi-robot pipelines, and modularity in simula-

tion and control. In this chapter, we expand the scope of autonomous control to fixed-wing aerial

vehicles operating in ground effect—aparticularly challenging andunderexplored domain for deep

reinforcement learning.

The motivation behind this work stems from the observation that most existing simulators

either oversimplify aerial vehicle dynamics or are tailored to pilot training and do not provide the

flexibility and scalability required for modern RL-based control. For instance, while tools like JSB-

Sim [103], X-Plane [21], and Flightmare [104] offer partial realism, they lack essential features such

as GPU-accelerated simulation, modular controller integration, or fine-grained modeling of aero-

dynamic phenomena like ground effect. As a result, deploying RL policies to real aerial platforms

remains limited by the fidelity gap between simulation and real-world dynamics.
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To address these limitations, we introduce FALCON-S (Fixed-wing Aerial Learning andCon-

trol with Open-Source Newtonian Simulation), a modular, physics-rich simulation framework

designed for training and benchmarking both learning-based and classical control algorithms on

fixed-wing aircraft in low-altitude flight scenarios. The key features of FALCON-S include:

• High-throughput dual-backend simulation: AGPU-accelerated physics engine built on

NVIDIAWarp and aCPUfallback, allowing efficient training and evaluation at scale—with

support for millions of parallel environments at real-time step rates.

• Modular control stack: Support for interchangeable controllers including Proximal Pol-

icyOptimization (PPO),DreamerV3, LQR, andMPPI, enabling controlled benchmarking

across control paradigms.

• Physically-grounded dynamics: Accurate modeling of aerodynamic forces (including

ground effect), actuator and sensor dynamics, and environmental disturbances such as

wind and noise.

• Cross-platform validation: Interfaces to MATLAB/Simulink and X-Plane for co-

simulation and validation in commercial-grade high-fidelity environments.

FALCON-S builds upon the prior contributions of this thesis—namely the emphasis on simu-

lation fidelity, control generalization, and benchmarkability—but shifts the focus to aerial vehicles,

which pose new challenges in terms of high-speed dynamics, actuator constraints, and sensitivity

to environmental effects. The framework serves both as a scientific tool for controlled experimen-

tation and as an engineering platform for RL deployment pipelines.

By offering fully open and customizable infrastructure, FALCON-S aims to bridge the gap

between traditional flight control and modern machine learning, supporting the development of

robust controllers for aerial autonomy. The remainder of this chapter details the simulator design,

flight tasks, physics modeling, and experimental benchmarking, concluding with a discussion of

limitations and directions for future aerial learning research.
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5.2 Related Work

Simulation of fixed-wing flight dynamics.

Simulators such as JSBSim, FlightGear, and X-Plane have long supported fixed-wing aircraft

modeling, but are primarily designed for pilot training or certification, and lack native support

for reinforcement learning or scalable training. Recent research platforms such as QPlane [105]

andNeuralPlane [106] address this limitation by exposing lightweight and configurable interfaces

suitable for policy learning. QPlane wraps JSBSim for Gym-based RL experiments, while Neu-

ralPlane introduces a parallel GPU-based pipeline for efficient large-scale simulation. However,

both frameworks simplify critical aspects of flight dynamics, often using 3DoF or attitude-only

models, with limited actuator fidelity and minimal environmental realism.

Flight control benchmarks and learning environments.

While platforms likeAirSim [107], Flightmare [104], andRotorS [108] have successfully advanced

learning-based control for multirotor drones, fixed-wing benchmarks remain scarce due to the in-

creased complexity of forward-flight dynamics, non-holonomic constraints, and sensitivity to ex-

ternal disturbances. Most existing learning environments focus on hover-capable vehicles, leaving

limited support for lift-based platforms. Our work addresses this gap by introducing a unified sim-
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ulation suite tailored to fixed-wing aircraft operating near the ground, combining realistic 6DoF

dynamics with actuator and sensor models, ground effect, and wind disturbances. It supports

both classical and learning-based controllers and achievesmillisecond-scale single-stepperformance

through GPU acceleration, enabling rigorous, scalable, and physically grounded benchmarking.

Combining classical control with deep learning.

There is increasing interest in combining optimal control methods with reinforcement learn-

ing [109, 110]. Works like Basescu et al. [111] show howmodel predictive control can be extended

with learned aerodynamic models to achieve aggressive post-stall landings. Similarly, residual RL

and hybrid policy architectures have been used to improve control generalization while retaining

safety guarantees. Our environment supports both classical baselines and learning-based con-

trollers, enabling direct comparisons and hybrid control studies under consistent dynamics.

Modular, accelerated simulators for RL.

Efficient learning requires simulators that are both fast and customizable. GPU-accelerated simula-

tors likeWarpDrive [112] and IsaacGym [7] have become increasingly popular in robotics research,

but few have targeted flight vehicles. Flightmare [104] provides GPU acceleration via Unity, yet

focuses on quadrotor dynamics. Our Warp-based simulator offers domain-specific GPU acceler-

ation for fixed-wing vehicles with detailed aerodynamics, supporting large-scale training without

compromising physical realism.

To contextualize our contribution, Table 5.1 presents a detailed comparison between our simula-

tion platform and several prominent aircraft simulation frameworks, includingNeuralPlane [106],

QPlane [105], JSBSim [103] andXPlane [21]. While prior systems offer valuable capabilities, such

as high-fidelity physics engines, Gym-compatible RL integration, or large-scale parallelism, most

fall short in supporting near-ground aerodynamic effects or unified, extensible control pipelines.

In contrast, our platform combines realistic 6-DoF flight dynamics with explicit ground effect
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Table 5.1: Comparison of our platform with existing aircraft simulation frameworks. Our system
combines realistic near-ground fixed-wing aerodynamics with modular flight tasks and supports
advanced controllers in a reinforcement learning context, with rich sensor and actuator modeling,
while enabling expandability for sim-to-real transfer. [✓] fully supported, [*] partially or optionally
supported, [–] not supported.

Feature Ours NeuralPlane QPlane JSBSim XPlane

Open-source ✓ ✓ ✓ ✓ –
Physics-based FDM ✓(WIG, 6DoF) ✓(fixed-wing only) ✓(JSBSim/XPlane) ✓ ✓
Ground Effect Model ✓(semi-empirical) – * (depends on JSBSim) * ✓
GPU Acceleration ✓(Warp) ✓(PyTorch) – – –
Multi-agent Support – ✓ ✓ * * (via UDP)
Multiple Flight Tasks ✓ ✓ ✓ * *
Controller Support ✓ ✓ ✓ * *
Realism High Medium High (if X-Plane) High High
Visualization Tools ✓ * * * (via FlightGear) ✓
Sim-to-Real Ready * * * ✓ ✓

modeling, modular control integration (classical and learning-based), precise actuator and sensors

modeling and support for advanced aerodynamicmodeling and realistic disturbance injection, like

wind turbulence, atmospheric pressure (for high altitude flight conditions) and simplified compu-

tation of aerodynamics coefficients with OpenVSP [113].

5.3 Preliminaries

We consider the control of a rigid fixed-wing vehicle flying in proximity to the ground, modeled as

a six-degrees-of-freedom (6DoF) system with coupled translational and rotational dynamics. The

vehicle is subject to forces from gravity, aerodynamics, and propulsion, and its motion is described

in the body frame. The state vector x ∈ R9 × S3 (or x ∈ R12) comprises the position p ∈ R3,

orientation (represented as an unit quaternion q ∈ S3 = {q ∈ H : ||q|| = 1} or Euler angles

(ϕ, θ, ψ) ∈ R3), linear velocity v ∈ R3, and angular velocity ω ∈ R3. Control inputs include

throttle and actuator deflections for the elevator, rudder, and ailerons. The equations of motion
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followNewton-Euler rigid body dynamics:

mv̇ = Fg + Fa + Ft − ω ×mv, (5.1)

Jω̇ = τa + τt − ω × Jω, (5.2)

wherem is the vehicle mass, J is the inertia tensor, Fg is the gravitational force, Fa and τa are aero-

dynamic forces and moments, and Ft and τt are thrust-generated force and moment vectors. We

assume constant mass and neglect gyroscopic effects. Each vehicle is modeled as a rigid body with

a body-fixed frame {b} rigidly attached at the centre ofmass, andmotion is described relative to an

inertial north–east–down (NED) frame {I}.

Aerodynamic forces and moments are computed using semi-empirical models based on the vehi-

cle’s angle of attack α, sideslip β, Reynolds numberRe and control surface deflections. Lift, drag,

and side force coefficients are computed from look-up tables or parametric expressions derived

from geometric tools such as OpenVSP [113]. The effect of actuator dynamics is captured using

first- or second-order response models, governed by user-defined time constants and damping ra-

tios. This introduces realistic response delays and rate limits to control surface inputs. Thrust is

generated by propellers whose outputs are mapped from normalized throttle commands via first-

order response curves. In asymmetric thrust configurations, this can introduce differential yaw

moments. Our simulator also supports ground effectmodeling, which alters the lift and drag char-

acteristics of the vehicle when flying close to the surface. This effect is modeled through empirical

corrections [114] to the aerodynamic coefficients as a function of height-over-span ratio, tamper

ration and aspect ratio.

The detailed derivation and parameterizations for the physical model are presented next.

5.3.1 Physical Modeling Details

This appendix provides the mathematical details behind the simulation environment used in the

main paper. The simulator integrates a high-fidelity 6DoF flight model with realistic actuator dy-
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namics, wind turbulence (Dryden), and optional ground-effect modeling. These models are con-

figured via a modular system that supports controlled ablation studies and toggling of physical

phenomena.

Aerodynamic Coefficients and Ground Effect

The aerodynamic forces and moments are computed from lookup tables or polynomial fits, using

the local flow conditions:

Faero = qS


−CD

CY

−CL

 , Maero = qS


bCl

cCm

bCn

 , (5.3)

where q = 1
2
ρV 2

a is the dynamic pressure, S is the reference wing area, b and c are the wingspan

and chord, andCi are the aerodynamic coefficients dependent on angle of attackα, sideslip β, and

control surfaces δa (ailerons), δe (elevator) and δr (rudder).

To model ground effect, the lift and drag coefficients CL and CD are corrected via empirical

terms, following [114]:

CL = C∞
L (1 + µL(h/b)) , (5.4)

CD = C∞
D (1− µD(h/b)) , (5.5)

where µL, µD are ground effect modifiers parameterized as functions of the height ratio h/b, and

C∞
L , C∞

D denotes the out-of-ground-effect coefficients. These modifiers can be toggled to assess

the effect of WIG-specific dynamics.

Table 5.2 presents the influence of ground effect on the performance of the LQR controller.

As expected, operating close to the ground leads to a noticeable reduction in overall commanded

thrust. The increase inCL reduces the required angle of attack (α) for the same airspeed tomaintain

steady flight. Together with the higher µD in ground effect, this results in a substantial decrease in
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CD, which lowers the overall drag and, consequently, the thrust required to sustain steady flight.

These effect quickly become negligible once (h/b) ≥ 1 (figure 5.1).

(a) 1.0 m constant altitude (b) 2.5 m constant altitude

(c) 5.0 m constant altitude (d) 10.0 m constant altitude

Figure 5.1: Variation of CL and CD with altitude due to ground effect, using the airship with the
LQR controller.

Table 5.2: LQR performance metrics (RMSE, settling time, overshoot, error mean + std, and en-
ergy utilization) for the Airship vehicle at various altitudes.

Altitude (m) RMSE (m) Settling Time (s) Overshoot (m) Error (mean± std) (m) Energy Utilization
1.0 0.008 0.01 0.187 0.002± 0.014 0.303
2.5 0.011 0.01 0.247 0.002± 0.020 0.590
5.0 0.012 0.01 0.265 0.003± 0.021 0.689
10.0 0.013 0.01 0.271 0.003± 0.022 0.723
100.0 0.013 0.01 0.280 0.003± 0.022 0.743
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Actuator Dynamics

Actuator systems (control surfaces andmotors) aremodeled via first- or second-order transfer func-

tions with configurable time constants and damping ratios:

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (2nd-order), (5.6)

or

H(s) =
1

τs+ 1
, (1st-order), (5.7)

whereωn is the natural frequency, ζ is the damping ratio, and τ is the time constant. Each actuator

group (e.g., elevator, ailerons, motors) can use a different response model based on configuration.

(a) Control surfaces step response (b) Motor step response

Figure 5.2: Control surfaces and motor unit step responses for the Airship.

Wind and Turbulence Modeling

Environmental disturbances include: -Constant wind in the inertial frame (NED), rotated to the

body frame. -Dryden turbulence [115], implemented via the MIL-F-8785C model using band-

limited white noise through forming low-pass filters (see table 5.4).

For low altitude flights (h < 1000 ft), the turbulence scale lengths and intensities are defined

as

Lu = Lv =
h

(0.177 + 0.000823h)1.2
, Lw = h (5.8)
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Table 5.3: Dryden turbulence velocity spectral filters.

Table 5.4: Dryden turbulence velocity spectral filters.

Longitudinal Lateral Vertical

Filter Gu(s) =
σuKu

(1 + Tus)2
Gv(s) =

σvKv

(
1 +

√
3Tvs

)
(1 + Tvs)2

Gw(s) =
σwKw

(
1 +

√
3Tws

)
(1 + Tws)2

Constants Ku =

√
2Lu

π U0

, Tu =
Lu

U0

Kv =

√
Lv

π U0

, Tv =
Lv

U0

Kw =

√
Lw

π U0

, Tw =
Lw

U0

and

σu = σv =
σw

(0.177 + 0.000823h)0.4
, σw = 0.1W20, (5.9)

where h represents the altitude in feet, andW20 is the chosen wind speed at 20 meters, which

defines the intensity of the turbulence.

(a) Light Dryden turbulence (b) Moderate Dryden turbulence (c) Severe Dryden turbulence

Figure 5.3: Longitudinal, lateral, and vertical effects of different Dryden turbulence intensities at
2.5m altitude and 28m/s airspeed, using the same random seed.

Sensor Realism and Noise

To simulate realistic perception pipelines, our framework includes configurable sensor models af-

fectedby various imperfections: additive noise, constant bias, scaling errors, clipping (limits), quan-

tization (resolution), reduced sampling rates, and delay. Figure 5.4 illustrates these effects on sensor

outputs compared to the ground truth signal. Each disturbance can be toggled or combined for

robustness testing and sim-to-real transfer studies.

Overall, the simulator produces time-continuous dynamics that are discretized using a config-

102



(a) Perfect sensors (b) Sensor noise (c) Sensor bias (d) Sensor scaling factor

(e) Sensor limits (f) Sensor resolution (g) Sensor sampling rate (h) Sensor delay

Figure 5.4: Illustration of different sensor effects implemented in the simulator.

urable integration scheme (e.g., Euler or RK4) and exposed through a modular interface support-

ing both CPU and GPU implementations. These dynamics form the basis for the environments

used in training classical and learning-based controllers.

5.4 FALCON-S Framework

Our simulation platform is designed to support the development, training, and evaluation of flight

control strategies for fixed-wing aircraft operating in near-ground environments. The architecture,

illustrated in Figure 5.5, consists of two primary modules: the agent and the environment.

5.4.1 Agent module

The agent module supports a wide range of control models, including classical approaches such as

LinearQuadratic Regulator (LQR) andModel Predictive Path Integral (MPPI), as well as modern

learning-based controllers such as PPO, LSTM-based PPO, and DreamerV3. These controllers

can be executed on either CPU or GPU for both evaluation and large-scale training, enabling

both quick debugging of simulated flight conditions and heavy-duty batched experiments, where

millions of trajectories can be collected to train and evaluate control performance.
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Figure 5.5: Overview of our FALCON-S simulation platform architecture. The environment
module includes aerodynamicmodeling, actuator dynamics, environmental effects such as ground
effect and turbulence, and configurable sensor suites. The agent module supports both classical
and learning-based controllers. Tasks, metrics, and visualization tools are modular and extensible,
enabling robust benchmarking and policy training across single- and multi-agent setups.

LQR with Integral action

The LQR controller is implemented in closed form using discrete-time linearization of the vehicle

dynamics around a steady trim condition. The gain matrixK is precomputed using the Riccati

equation solution, and the resulting control law u = −Kx is applied at each simulation step.

The linearization matrices (A,B) are precomputed and approximated using numerical Jacobians

based on the simulator’s physics model. For LQRI (LQR with integral action) the state vector

is augmented with integrator states (e.g. integrated altitude error) before forming (Ad, Bd) and

solving the Ricatti equation 5.10.

The Linear Quadratic Regulator (LQR) controller was tuned using state and input weighting
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matrices selected to balance tracking accuracy and control effort. The stateweightingmatrixQLQR

was defined as

QLQR = diag(14.6, 8.2, 14.6, 8.2, 14.6, 8.2, 1, 1,

0.25, 0.25, 0.25, 18.2, 18.2, 18.2,

10−5, 10−5, 10−5, 10−5, 1, 400),

(5.10)

where the first six entries correspond to actuator states, followed by velocity, angular velocity,

imaginary quaternion components, and position. The very small weights on the quaternion error

terms (10−5)were introduced to avoid biasing the controller towards any one given attitude, while

still ensuring stability.

To incorporate integral action, the augmented weighting matrix was defined as

QLQI = diag
(
QLQR, QLQR(18 :20)

)
, (5.11)

and the integral gains were set toKI =
[
0 −1 −1.5

]⊤
.

The control effort weighting matrix was chosen as

RLQR = diag
(
1, 1, 800, 800, 800

)
,

assigning higher penalties to thrust-related control inputs in order to limit excessive propulsive

effort and improve efficiency.

The complete state-feedback gain matrixK (including integral augmentation where applica-

ble) was computed inMATLAB using the built-in lqr function. The state-space matrices (A,B)

required by lqrwere obtained from the system linearization tool (linearization around the chosen

trim condition). Full implementation and resulting K matrices for each aircraft can be seen in the

open source repository.
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MPPI

TheModel Predictive Path Integral controller follows a sampling-based trajectory optimization ap-

proach. At each control step, the algorithm samples multiple control sequences sampled from a

Gaussian distribution centred on the previous action sequence, propagates each action through

the dynamicsmodel, and computes an optimal control output from the weighted average of trajec-

tories based on their cumulative cost. The implementation supports GPU-based sampling for par-

allelized inference, using aWarp backend. The cost function is task-specific and includes weighted

penalties on tracking error, control effort, and constraint violations.

For all experiments theMPPI controller was initialized the following settings: number of sam-

pled trajectories N = 103, planning horizon T = 100 time steps, temperature λ = 3.0, and

control perturbation covariance Σ = diag(σ2
e , σ

2
a, σ

2
r , σ

2
T ) = diag(0.10, 0.08, 0.08, 0.10), for

elevator, aileron, rudder and throttle respectively.

The cost function employed in the planner is the sum of weighted penalties for: (i) altitude

tracking, (ii) lateral (cross-track) tracking, (iii) ground-collision/proximity avoidance, (iv) angular-

rate intensity, (v) airspeed keeping, (vi) penalization of excessive altitude, (vii) excessive angle-of-

attack (α), and (viii) excessive sideslip (β).

MPPI trajectory sampling and propagation were implemented using NVIDIA Warp to JIT-

compile the simulation kernels and execute large numbers of trajectories in parallel on the GPU.

The formulation and implementation follow the approach described in [116]. Exact numeric

weights, cost functions and process are also available in the open-source repository.

Gymnasium interface

The environment exposes a compliantGymnasium [117] interface through theCoreAirshipEnv

class and its wrappers. It supports reset(), step(action), and render() methods, and op-

tionally includes info dictionaries with task-specific diagnostics. Observations are exposed as flat

NumPy arrays and can be extended with sensor noise or delays via wrapper classes. The action

space is continuous (bounded) and directlymaps to control surface deflections and throttle values.
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For high-performance training and evaluation, a parallelized variant of the environment is available

through the Warp backend. This wrapper implements the same Gymnasium API but executes

dynamics in batched form on the GPU, leveraging Warp’s kernel-level integration and memory

model.

Stable-Baselines3 and DreamerV3 support

We provide out-of-the-box integration with Stable Baselines3 (SB3), enabling rapid experimenta-

tion with off-the-shelf RL algorithms like PPO and SAC. Model-based RL agents are supported

via a DreamerV3 [35] pipeline that wraps the simulation environment in a recurrent state-space

model (RSSM). The implementation reuses the ‘dreamerv3‘ codebase, adapted for continuous-

control fixed-wing tasks. The world model is trained jointly with a policy and value network using

imagined rollouts. Action sequences are optimized through learned latent trajectories. GPU accel-

eration is used for both training and inference.

5.4.2 Environment module

Our environment module supports multiple simulation backends and interoperation with exter-

nal tools, allowing flexibility in simulation fidelity, performance, and controller design workflows.

Specifically, we offer two primary physics engines in Python: one based on SciPy’s numerical

integration for rapid prototyping, and another leveraging NVIDIA Warp for large-scale GPU-

accelerated simulation. In addition, MATLAB and Simulink can be used for validation or control

design tasks, such as symbolic derivation of system matrices for LQR or linearized model identifi-

cation. This dual-language and dual-backend setup enables practitioners to prototype quickly in

Python and validate or deploy controllers using industry-standard tools when necessary.
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Core Physics

The environment simulates full six-degree-of-freedom (6DoF) rigid-body aircraft dynamics, focus-

ing on low-altitude scenarios where physical effects such as ground proximity and turbulence dom-

inate. The physics module is structured around five interconnected components:

Aerodynamics: Uses precomputed aerodynamic coefficients fromOpenVSP or analytical approx-

imations. Aerodynamic forces and moment forces are adjusted dynamically based on airspeed, an-

gle of attack, sideslip angle, height above ground and control surface deflection. Ground effect

corrections are applied using semi-empirical models 5.3.1.

Actuators: Control surface deflections and thrust values are passed through first- or second-order

actuator dynamics 5.3.1, allowing simulation of latency, saturation, and rate-limited responses.

The actuator module outputs net forces and moments in the body frame.

Environmental Effects: Wind gusts, turbulence fields, and pressure gradients are injected into the

dynamics via different noise models 5.3.1, enabling robustness testing under realistic conditions.

Sensors: An onboard sensor model simulates IMU measurements (accelerometer, gyroscope),

GPS, and optional encoders 5.3.1. Sensor noise, sampling rate, resolution, or delay can be added

to evaluate performance under degraded sensing.

Flight Tasks: The agent interacts with the environment through a set of modular task definitions,

such as fixed-altitude keeping, dynamic climbing/descending, 2D path following, and full 3D tra-

jectory tracking. These are defined as reward functions and success conditions on top of the raw

physics simulation.

Each of these components interacts through the environment interface, which passes state

transitions, sampled observations, and reward signals to the agent. Each physics component can

be independently toggled or simplified, enabling ablation studies and comparative benchmarking

under controlled settings.
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Aircraft 3D model

Our framework supports rapid prototyping of different airframes via JSON-based configuration

files. Each aircraft model (e.g., Navion, Cessna, or Airship) is described by its geometry, mass,

inertia, control surface layout, propulsion system parameters, sensor configuration and environ-

mental settings. Given the aircraft OpenVSP 3D model, using its python API, the aerodynamic

coefficients can be computed as a luck-up table and then fitted to aN th order polynomial. These

models are then used for both simulation and visualization. The modular setup makes it easy

to switch between vehicles and test control policies across different configurations, improving

generalization and robustness.

Validation with X-Plane

To improve validation and high-fidelity visualization, FALCON-S includes an interface to the X-

Plane using the Python XPlaneConnect API [118] developed by NASA. Given the same aircraft

configuration (geometry and flight initial conditions), trajectories generated in our simulator can

be replayed or compared within X-Plane’s high-resolution rendering engine. This allows cross-

verification of dynamics between our model and an industry-standard closed-source simulator.

Additionally, X-Plane can be used to test the different controllers and scenarios in an different

simulation environment, providing a practical robustness and check for controller performance

under a different modeling physics engine. Lastly, it can be used to capture high-quality video

demonstrations of trained agents flying over varied terrain.

To support high-quality visualization and cross-simulator validation, FALCON-S includes a

Python interface to X-Plane. This allows us to reproduce the same control task shown in previ-

ous experiments—such as dynamic altitude keeping—withinX-Plane’s rendering engine using the

same aircraft configuration and reference trajectory. This enables visual inspection, qualitative val-

idation, and future extensions toward sim-to-real transfer.
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Figure 5.6: Rendered views of the Airship performing a dynamic altitude-keeping task in X-Plane,
aligned with the same reference trajectory used in FALCON-S.

5.5 Experiments & Results

Our experiments are designed to highlight the flexibility and realismof the FALCON-S framework,

rather than tooptimize or compare specific learningor control algorithms. Theprimary objective is

to demonstrate how the simulator supports awide variety of use cases andprovides structured tools

to evaluate control performance under diverse settings. To this end, we present a set of illustrative

results covering four key aspects:

• (1) Algorithm performance illustration: We demonstrate how FALCON-S supports

consistent benchmarking by applying both classical (e.g., LQR) and learning-based (e.g.,

DreamerV3) controllers to standard tasks like altitude keeping.

• (2)Multi-task generalization: We test a single controller (e.g., MPPI or LQR) on multi-

ple tasks (e.g., altitude regulation, 2D path tracking, 3D trajectory tracking) to show how

FALCON-S supports task variation and behavioral analysis with minimal reconfiguration.
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• (3) Cross-vehicle testing: Using the same control policy, we evaluate performance across

different aircraftmodels (e.g., Cessna, Navion, Airship) to highlight how simulation fidelity

and control difficulty change across morphologies and configurations.

• (4) Environmental sensitivity: We analyze the impact of physical realism features, such as

wind disturbance, ground effect, sensor noise, or actuator delay, by toggling them indepen-

dently and observing the effect on controller robustness and behavior.

Metrics

To evaluate controller performance, we compute a set of standard metrics from each simulated

trajectory, including root mean square error (RMSE), settling time, overshoot, energy utilization,

and mean error. RMSE and mean error quantify overall tracking accuracy; settling time measures

how quickly the agent enters and remains within a defined error band (1m); overshoot reflects the

maximum deviation from the reference; and energy utilization serves as a proxy for control effort,

computed from the squared motor actions over time. These metrics, together with full trajectory

and action logs, allow structured comparisons across algorithms, tasks, vehiclemodels, and environ-

mental settings. Table 5.5 summarizes the performance metrics used to evaluate control strategies

in FALCON-S. Each metric is computed from logged trajectories and actions, capturing accuracy,

responsiveness, and control efficiency.

For interpretation, lower values of tracking error and overshoot indicate higher accuracy, while

shorter settling times reflect faster convergence. Control smoothnessmetrics (e.g., input rate penal-

ties) capture responsiveness without excessive actuator usage. Energy consumption is evaluated

from integrated thrust and control surface activity (range [0-1]): lower values indicate more effi-

cient control. Conversely, excessively high energy consumption may reflect oscillatory or unstable

control behavior.

Trajectories: The trajectories (a)–(f) correspond to: (a) altitude sine wave, (b) altitude ramps,

(c) altitude and lateral ramps, (d) lateral sine wave, (e) altitude and lateral sine wave, and (f) spiral

wave.
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Table 5.5: Summary of evaluation metrics computed from trajectory and control logs.

Metric Formula / Description

RMSE (Total) RMSE =
√

1
N

∑N
t=1 ∥et∥2

Where et is the position error at timestep t
Mean Error Mean = 1

N

∑N
t=1 ∥et∥

Overshoot Overshoot = maxt ∥et∥
Settling Time Minimum time t such that ∥et∥ ≤ δ and remains within the

band ∀t′ ≥ t for at least 10% of the episode length. Default
threshold: δ = 1m

Energy Utilization Energy = 1
T

∫ T

0
∥umotors(t)∥2 dt

Where umotors are normalized motor inputs and T is total time

Each subsection below presents a brief experiment showcasing these capabilities. We leave de-

tailed quantitative benchmarking and algorithm tuning to future work.

5.5.1 Demonstrating Learning-Based Control with Dreamer

To illustrate how FALCON-S supports modern reinforcement learning pipelines, we trained a

DreamerV3 agent to perform altitude regulation. The task consists of maintaining flight along a

forward trajectory while matching a time-varying altitude reference. Figure 5.7 shows the learned

behavior overmultiple rollouts, with 3D trajectory tracking, orientation stabilization, position evo-

lution, and linear velocity regulation. The results indicate stable control behavior and successful

learning of the target altitude profile, albeit with slight oscillations due to limited policy tuning.

Performancemetrics across representative environments are summarized in Table 5.6, demonstrat-

ing tracking accuracy in the sub-meter range with energy usage that can be improved.

Table 5.6: Mean± standard deviation across five DreamerV3 runs for dynamic altitude tracking.

RMSE (m) Alt. RMSE (m) Overshoot (m) Error (mean ± std) (m) Energy Util.

0.756 ± 0.763 1.309 ± 1.231 1.540 ± 1.246 1.270 ± 1.369 0.743 ± 0.066
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Figure 5.7: DreamerV3 agent controlling the airship along a dynamic altitude-keeping trajectory.
Top-left: 3D trajectory tracking. Top-right: orientation convergence. Bottom-left: position over
time. Bottom-right: body-frame velocity components.

5.5.2 Single Controller Across Multiple Tasks

We evaluate the LQR controller on six trajectory tracking tasks of increasing complexity using the

same airshipmodel. As shown in Figure 5.8 andTable 5.8, the controllermaintains lowRMSE and

smooth behavior on simpler tasks such as single-axis sine waves (a, d) and low-frequency ramps (b,

e), with minimal overshoot and low energy usage. Performance degrades in more challenging 3D

or fast-changing trajectories (c, f), where the controller exhibits larger errors and reduced stability.
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These results demonstrate the ability of our framework to highlight task-dependent control limi-

tations and enable fine-grained benchmarking across diverse reference profiles.

Performance metrics for the MPPI controller can be seen in table 5.7.

Table 5.7: Performancemetrics (RMSE, settling time, σ, overshoot, mean error, and energy utiliza-
tion) for theAirship vehicle for constant altitude and tasks (a)–(f) with theMPPI controller. Runs
marked with ‘*’ indicate simulations that terminated prematurely due to instability (crash or stall).

Task RMSE (m) Settling Time (s) Overshoot (m) Error (mean± std) (m) Energy Utilization
2.5 m altitude 0.010 0.84 0.119 0.013± 0.010 0.787
60.0 m altitude 0.013 1.08 0.158 0.017± 0.013 0.786
(a) 0.012 0.01 0.070 0.017± 0.011 0.780
(b)* 1.075 – 3.836 1.330± 1.303 0.367
(c)* 3.046 – 11.256 3.837± 3.621 0.340
(d) 0.008 0.01 0.081 0.011± 0.009 0.525
(e) 0.010 0.01 0.088 0.014± 0.010 0.757
(f)* 0.814 – 4.581 0.971± 1.023 0.419

Table 5.8: Performancemetrics (RMSE, settling time, σ, overshoot, mean error, and energy utiliza-
tion) for the Airship vehicle in tasks (a)–(f) with the LQR controller.

Task RMSE (m) Settling Time (s) Overshoot (m) Error (mean± std) (m) Energy Utilization
(a) 0.025 1.48 0.211 0.037± 0.024 0.663
(b) 0.052 41.55 0.671 0.025± 0.087 0.370
(c) 0.213 44.06 1.708 0.144± 0.339 0.379
(d) 0.017 2.94 0.213 0.014± 0.026 0.303
(e) 0.019 2.40 0.209 0.024± 0.021 0.583
(f) 0.149 – 0.704 0.231± 0.114 0.565

5.5.3 Cross-Aircraft Evaluation

To evaluate generalization across vehicle morphologies, we test the same LQR controller on three

aircraft models, Airship (A), Cirrus SR22 (B), and Navion (C), across all six trajectory tracking

tasks. As shown in Table 5.9, performance varies significantly with aircraft dynamics. The Airship

(A), for which the controller was tuned, consistently achieves the lowest RMSE and overshoot,

indicating good stability and responsiveness. In contrast, the Cirrus (B) and Navion (C) exhibit

higher errors and settling times, especially in dynamic or multi-axis tasks (e.g., tasks c and f), due
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(a) Altitude sine wave (b) Altitude ramps (c) Altitude and lateral ramps

(d) Lateral sine wave (e)Altitude and lateral sinewave (f) Spiral wave

Figure 5.8: LQR-controlled airship response while tracking different trajectories.

to differences in actuation and inertia properties. These results illustrate how the framework en-

ables structured comparisons across vehicle configurations and supports benchmarking controller

robustness to morphology changes.

Table 5.9: Performancemetrics for scenarios (a)–(f). Columns (A), (B), and (C) correspond to the
Airship, Cirrus SR22, and Navion, respectively.

RMSE Settling Time (s) Overshoot Error (mean± std) (m) Energy Utilization
Task (A) (B) (C) (A) (B) (C) (A) (B) (C) (A) (B) (C) (A) (B) (C)

(a) 0.025 0.024 0.055 1.48 1.63 1.51 0.211 0.419 1.227 0.037± 0.024 0.028± 0.031 0.034± 0.089 0.663 0.372 0.362
(b) 0.052 0.045 0.049 41.55 41.27 41.27 0.671 0.787 0.854 0.025± 0.087 0.019± 0.076 0.019± 0.082 0.370 0.322 0.315
(c) 0.213 0.223 0.208 44.06 46.20 46.00 1.708 1.709 1.877 0.144± 0.339 0.158± 0.352 0.148± 0.328 0.379 0.322 0.315
(d) 0.017 0.023 0.056 2.94 3.22 2.70 0.213 0.412 1.250 0.014± 0.026 0.017± 0.037 0.022± 0.094 0.303 0.290 0.289
(e) 0.019 0.022 0.055 2.40 2.59 1.95 0.209 0.416 1.237 0.024± 0.021 0.021± 0.032 0.027± 0.091 0.583 0.345 0.338
(f) 0.149 0.161 0.163 – – – 0.704 0.739 1.290 0.231± 0.114 0.248± 0.126 0.243± 0.143 0.565 0.340 0.335
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(a) Airship trajectory (b) Cirrus SR22 trajectory (c) Navion trajectory

(d) Airship actuator actions (e)Cirrus SR22 actuator actions (f) Navion actuator actions

Figure 5.9: LQR-controlled Airship, Cirrus SR22, and Navion responses to altitude and lateral
sine-wave trajectory tracking.

5.5.4 Robustness Under Environmental Variations

We assess the robustness of the LQR controller under different sources of environmental uncer-

tainty: sensor noise (A), wind disturbances (B), and sensor delay (C). Table 5.10 shows that all

three perturbations impact performance to varying degrees, with wind disturbances generally in-

ducing the highest errors, overshoot, and energy usage, especially in fast-changing tasks such as (c)

and (f). Sensor noise introduces more variability (e.g., increased RMSE and error variance), while

sensor delay has a relatively smaller effect in most scenarios, though certain tasks (e.g., (b), (f)) re-

main sensitive. These results demonstrate FALCON-S’s capacity to simulate realistic disturbances

and evaluate controller sensitivity in a structured and reproducible way.
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(a) Trajectory with sensor noise
(b) Trajectorywith lightDryden
turbulence (c) Trajectory with sensor delay

(d) Actuator actions with sensor
noise

(e) Actuator actions with light
Dryden turbulence

(f) Actuator actions with sensor
delay

Figure 5.10: LQR-controlled Airship response to altitude and lateral sine-wave trajectory tracking
under sensor noise, light Dryden turbulence, or a 20ms sensor delay.

Table 5.10: Performance metrics for scenarios (a)–(f). Columns (A), (B), and (C) correspond to
the Airship under sensor noise, wind disturbances, and sensor delay, respectively.

RMSE Settling Time (s) Overshoot Error (mean± std) (m) Energy Utilization
Scenario (A) (B) (C) (A) (B) (C) (A) (B) (C) (A) (B) (C) (A) (B) (C)

(a) 0.091 0.220 0.024 64.43 – 0.01 0.619 1.155 0.215 0.131± 0.089 0.312± 0.218 0.036± 0.023 0.760 0.741 0.663
(b) 0.087 0.141 0.051 31.00 42.24 30.70 0.689 0.783 0.663 0.118± 0.093 0.178± 0.168 0.024± 0.084 0.464 0.476 0.371
(c) 0.394* 0.250 0.210 –* 43.37 43.20 1.732* 1.753 1.686 0.473± 0.492* 0.249± 0.354 0.142± 0.335 0.799* 0.474 0.380
(d) 0.066 0.076 0.017 0.01 0.01 0.01 0.356 0.382 0.217 0.099± 0.057 0.114± 0.065 0.014± 0.026 0.425 0.430 0.303
(e) 0.068 0.194 0.018 0.01 – 0.01 0.438 1.167 0.214 0.102± 0.060 0.253± 0.220 0.023± 0.021 0.669 0.668 0.583
(f) 0.163 0.238 0.147 2.34 87.28 2.48 0.766 1.401 0.691 0.260± 0.112 0.327± 0.249 0.228± 0.113 0.649 0.665 0.565

5.6 Discussion and Conclusions

This chapter introduced FALCON-S, a simulation benchmark for learning and control of fixed-

wing aerial vehicles operating in ground effect. The contribution builds upon the central themes

of this thesis—modular simulation, physically grounded modeling, and scalable reinforcement

learning—while extending them to a more aerodynamically complex domain.
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FALCON-Swas designed in response to the limitations of existing flight simulators in terms of

modularity, aerodynamic realism, and compatibility with modern learning algorithms. Through

a dual CPU-GPU architecture and a clean modular design, the framework supports both high-

throughput training and physically plausible evaluation. Notably, it incorporates detailed models

for six-degree-of-freedom dynamics, actuator and sensor response, and ground-effect aerodynam-

ics, enabling systematic experimentation across a range of low-altitude flight scenarios.

From a research perspective, FALCON-S serves two complementary goals. First, it provides

a robust testbed for evaluating classical and learning-based control methods under realistic flight

conditions, bridging the gap between control theory and deep reinforcement learning. Second, it

enables ablation studies on model fidelity, observation corruption, and dynamics variation, which

are critical for understanding the limits of sim-to-real generalization.

By supporting classical controllers (e.g., LQR, MPPI) alongside state-of-the-art learning algo-

rithms (e.g., PPO, DreamerV3), FALCON-S encourages structured comparisons and opens the

door to hybrid approaches that combine model-based and model-free reasoning. This aligns with

the broader thesis direction of integrating domain knowledge, structure, and data-driven learning.

Limitations and Outlook. While FALCON-S offers high simulation fidelity and control flexi-

bility, the current framework operates entirely in simulation and assumes accurate aerodynamic pa-

rameters and actuator models. Real-world transfer remains an open challenge, particularly under

actuator faults, sensor drift, and uncertain aerodynamic regimes (e.g., post-stall behavior). Future

work will focus on:

• Extending the library of tasks and vehicle models, including path following, obstacle

avoidance, and energy-efficient cruise.

• Sim-to-real validation, including interfaces with onboard hardware, sensors, and embed-

ded controllers for real-world experiments.

• Policy adaptation and generalization, incorporating online learning, residual control, and

memory-based architectures for robustness across conditions.
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In the broader context of this thesis, FALCON-S complements previous chapters by tackling

one of the most dynamic and unstable robotic platforms—fixed-wing aircraft—and by showing

that structured, high-fidelity simulation can enable progress toward generalizable and interpretable

control. It serves as a foundation for future research in aerial robotics, where data-driven meth-

ods and physical modeling must go hand-in-hand to support robust autonomy in complex, low-

altitude flight regimes.
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Chapter 6

Additional Studies

6.1 Introduction

While the core of this thesis revolves around the design of high-performance simulation frame-

works (RANS, RoboRAN, FALCON-S) and their application to deep reinforcement learning

(DRL) control in multi-modal robotic platforms, several additional studies were carried out in

parallel to explore adjacent challenges in spacecraft autonomy. These works, although not fully

integrated into the main simulation stack presented so far, provide complementary insights into

two critical dimensions of autonomous space robotics: (i) learning-based visual inspection in com-

plex orbital scenarios, and (ii) estimation of angular velocity and inertia properties for spacecraft

operating under partial observability and limited sensing.

The first study, RL-AVIST (Reinforcement Learning for Autonomous Visual Inspection

of Space Targets), investigates model-based DRL for proximity operations around large orbital

structures such as the Lunar Gateway and the ISS. Implemented using the Space Robotics

Bench (SRB) framework rather than the IsaacLab-based environments developed in this thesis,

RL-AVIST demonstrates the potential of DreamerV3 and other RL algorithms for training

generalist and specialist policies in 6-DoF continuous-thrust settings. Although developed in-

dependently from the RANS and DRIFT pipelines, this work shares many motivations with
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previous chapters—particularly the need for adaptability, robustness, and scalable learning in

uncertain space environments.

The second and third studies shift focus to a more classical control domain, aiming to recover

inertial properties or angular velocity fromminimal on-board sensing. The Excitation-Based An-

gular Rate Estimation work explores a novel method to estimate angular velocity using injected

torque profiles and observed attitude changes, offering a lightweight and interpretable alternative

to learning-based estimators. A related work, currently under review and conducted in collabora-

tion, proposes an event-camera-based approach to recover angular velocity by tracking stars in the

spacecraft’s visual field. Though these contributions differ in methodology from the DRL-centric

core of the thesis, they remain aligned with the overarching theme of enabling autonomy under

uncertainty and hardware limitations.

Taken together, these works expand the scope of this thesis toward enabling autonomy not just

through control policies, but also through improved sensing, estimation, and inspection capabili-

ties. The remainder of this chapter is organized as follows: - Section 6.2 presents the RL-AVIST

framework and experimental results; - Section 6.3 introduces the torque-based angular rate estima-

tion pipeline; - Section 6.4 provides an overview of the event-camera angular velocity estimation

work.

Each section includes a summaryof the problem formulation, keymethodological innovations,

andmainfindings. Throughout,we clarify theboundaries of the author’s contribution anddiscuss

how these studies relate to the broader thesis narrative.

6.2 RL-AVIST: Visual Inspection of Space Assets via Model-

Based RL

While the previous chapters focused on training generalizable RL policies for terrestrial and or-

bital robots using unified simulation frameworks (RANS, RoboRAN, FALCON-S), this section

explores a complementary but independent line of work on intelligent visual inspection in orbit.
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Specifically, we present RL-AVIST (Reinforcement Learning for Autonomous Visual Inspection

of Space Targets), a study leveraging the Space Robotics Bench (SRB) [119] to train spacecraft

agents to maneuver around complex space structures using 6-DoF control.

This work diverges from the simulator stack used in earlier chapters, operating instead within

SRB—aphysics- and rendering-capable platformdesigned for diverse space andplanetary robotics

tasks. The focus here lies in benchmarkingRLmethods under continuous-thrust dynamics, space-

craft morphology variation, andmission trajectory complexity. Despite this deviation, RL-AVIST

remains aligned with the thesis’ broader goal: investigating scalable and robust RL strategies for

robot control in highly uncertain environments.

6.2.1 Problem Setting and Environment

In RL-AVIST, agents learn 6-DoF control policies to autonomously perform close-range visual

inspections of static orbital targets (e.g., Lunar Gateway, ISS, Venus Express). The spacecraft is

equipped with 8 fixed-direction thrusters and is modeled as a free-floating rigid body initialized at

a random position and orientation relative to the target.

The state space includes previous actions, body-frame velocities, and relative pose to the target.

The continuous action spaceA ⊂ R8 corresponds to normalized thrust levels for each actuator.

The dynamics are fully simulated, including control latency, inertia variations, and randomized

initial conditions.

Reward functions are shaped to encourage smooth, efficient, and accurate tracking of desired

poses around the target. Components includeposition convergence, orientation alignment, action

smoothness, and actuation penalties — weighted to balance fuel efficiency with task success.

6.2.2 Model-Based vs Model-Free Learning

The study compares the performance of three RL algorithms:

• DreamerV3 [35] – A model-based algorithm learning compact latent dynamics for long-
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Figure 6.1: Training of multiple CubeSat morphologies to follow randomized velocity commands
around the Lunar Gateway. Agents learn generalist policies by experiencing a wide variety of sce-
narios within SRB [119].

horizon planning.

• PPO [28] – A widely used model-free policy gradient baseline.

• TD3 [29] – An off-policy model-free algorithm suitable for continuous actions.

All agents are trained in SRB using randomized spacecraft geometries and initial conditions.

Figure 6.2 shows thatDreamerV3achieves faster convergence andbetter performance, highlighting

the benefit of planning in latent space for complex, long-horizon control.

6.2.3 Trajectory Tracking and Generalization

UsingDreamerV3, agents are deployed on structured inspection trajectories: circle, spiral, capsule,

rectangle, lemniscate, andLissajous patterns. Figure 6.3 illustrates accurate tracking in all scenarios,

showcasing DreamerV3’s adaptability and precision.
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Figure 6.2: Training curves (mean± std over 3 seeds) for different RL algorithms on generalized
velocity-tracking tasks. DreamerV3 achieves higher returns and faster convergence thanmodel-free
baselines.

6.2.4 Deployment on Realistic Orbital Targets

To simulate realistic mission settings, the trained agent is tested on inspection tasks around high-

fidelity space assets. These include:

• Lunar Gateway, Fig. 6.4

• Venus Express, Fig. 6.5

• International Space Station (ISS), Fig. 6.6

Each deployment includes RGB, depth, and semantic renderings for visual inspection, emu-

lating the outputs of an onboard perception system.

6.2.5 Summary and Discussion

RL-AVIST provides a compelling case for applying model-based reinforcement learning in orbital

visual inspection. Despite using a separate simulation stack (SRB), the work aligns with this the-
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(a) Capsule (b) Circle (c) Rectangle

(d) Lemniscate (e) Lissajous (f) Spiral

Figure 6.3: DreamerV3 agent tracking various inspection trajectories. The policy demonstrates
strong generalization across geometrically diverse 3D paths.

sis by targeting intelligent control under uncertainty and using task-specific RL reward shaping,

morphologically diverse training, and rigorous trajectory evaluation.

Scope and Integration Note

While RL-AVIST was developed independently of the core simulator stack used in this

thesis, its methodology—task-driven RL with high-fidelity dynamics—complements our

broader investigation into scalable control in uncertain environments. This study validates

DreamerV3 as a sample-efficient baseline in complex orbital contexts.

Futurework includes integrating perception-based policy learning andbridging the sim-to-real
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Figure 6.4: Inspection trajectory around the Lunar Gateway.

Figure 6.5: Visual inspection simulation near Venus Express.
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Figure 6.6: Close-proximity maneuvering around the ISS structure.

gap via hardware-in-the-loop validation or docking demonstration platforms.

6.3 Inertia Estimation via Active Excitation in Satellites

6.3.1 Motivation and Context

Accurate knowledge of a spacecraft’s inertia tensor is critical for safe and precise attitude control,

especially in long-durationmissions ormodular systemswheremass distribution evolves over time.

While pre-launch models are available, post-deployment changes—due to fuel consumption, pay-

load deployment, or environmental degradation—can cause mismatches that degrade control per-

formance. This motivates autonomous on-board identification methods based solely on available

actuation and sensing.

This study investigates the use of excitation-based estimationpipelines for on-orbit inertia iden-

tification, comparing the effectiveness of two estimators—a batch Least Squares (LS) method and

an Extended Kalman Filter (EKF)—under different excitation designs and satellite configurations.
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The work is published in [30] and complements the thesis’ broader focus on intelligent autonomy

under uncertainty by addressing parameter estimation as a prerequisite to robust control.

6.3.2 Simulation Framework

The system simulates a 6-DoF rigid-body satellite equippedwithorthogonal reactionwheels (RWs),

modeling nonlinear attitude dynamics, RW coupling, actuator saturation, and simplified external

disturbances (e.g., gravity gradient). Three spacecraft configurations are considered: a CubeSat

(24kg), a Microsatellite (95kg), and a SmallSat (118kg), each with distinct RW specifications (Ta-

ble 6.1). Estimation is performed over 300s episodes under varying conditions: static inertia, and

three dynamic profiles—step, linear drift, and periodic variation.

Eight normalized torque excitationprofiles are used to induce systemobservability (Figure 6.7).

These range from smooth (sine, chirp) to discontinuous (multi-step, PRBS), targeting different

spectral and temporal excitation characteristics.

Figure 6.7: Overview of excitation profiles used to stimulate satellite dynamics for estimation.
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Table 6.1: Satellite physical and reaction wheel parameters [30].

Model Mass [kg] Inertia [kg·m2] RWMax Torque [Nm]

CubeSat 24.0 [0.26, 0.26, 0.16] 0.01
Microsat 95.0 [6.53, 5.96, 4.53] 0.1
SmallSat 118.0 [10.6, 14.2, 15.3] 0.1

6.3.3 Estimation Methods

TheLSmethod assumes static inertia and reconstructs angular accelerations using finite differences

fromgyro readings,minimizing residual errors over time. TheEKF tracks angular velocity, reaction

wheel speeds, and the diagonal inertia vector jointly, allowing it to handle dynamic changes by

modeling inertia as a random walk state variable. Both estimators are implemented without hard

physical constraints (e.g., triangle inequality), yet remain physically valid across seeds.

6.3.4 Results and Insights

Static Inertia Estimation: Figure 6.8 shows the relative error for all estimators and profiles. LS

performs best under spectrally rich, smooth excitations (e.g., chirp, multi-sine), which im-

prove regression conditioning. EKF shows better performance for high-inertia systems and tempo-

rally rich inputs (e.g., multi-step, sine-3axis) due to frequent state updates.

Time-Varying Inertia Tracking: Figure 6.9 summarizes estimation errors under step, drift, and

periodic variations. EKF outperforms LS in smoothly varying scenarios (e.g., drift or sinusoidal

change), especially on larger satellites. For abrupt changes (step), both degrade similarly, with EKF

lagging due to adaptation delay. This confirms the EKF’s capacity to adapt to in-flight variations,

especially when excitation is rich and temporally persistent.

6.3.5 Discussion

This work provides a comparative foundation for selecting excitation strategies and estimation

methods in in-orbit identification pipelines. Batch LS is preferable in short-duration or low-noise
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Figure 6.8: Normalized inertia estimation error across excitation profiles for static cases. Least
Squares excels with smooth profiles, while the EKF benefits from dynamic excitation.

Figure 6.9: EKF vs. LS estimation errors under dynamic inertia conditions. The EKF consistently
outperforms LS under smooth time-varying profiles.

contexts with smooth control inputs. EKF enables online tracking and is better suited for larger,

slower-varying platforms ormissionswith inertia drift. The simulation framework is released open-

source, and canbe further extendedwith constrainedoptimization, advancedfiltering, or reinforce-
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ment learning–based excitation design.

6.3.6 Summary and Thesis Integration

While distinct from the core control-focused frameworks in previous chapters, this contribution

enriches the thesis narrative by addressing a critical prerequisite for learning-based control: accu-

rate system modeling. The techniques and findings outlined here open paths to adaptive flight

controllers that can re-estimate their mass properties online, and thus remain robust to mission-

phase transitions, deployment, or failures. Future work includes integrating this estimation mod-

ule into RL-based control stacks, either as a pre-calibration phase or as an online estimator jointly

optimized with policy learning.

6.4 Event-based Angular Rate Estimation with Starfield Ob-

servations

This section summarizes a complementary study to the main contributions of the thesis, led by

Franzese et al.[REF], where the author of this thesis contributed as second author. Thework inves-

tigates whether event-based cameras—neuromorphic sensors that asynchronously record changes

in brightness—can be used to estimate spacecraft angular velocity by observing the apparent mo-

tion of stars in the focal plane. This sensing modality offers high temporal resolution, low latency,

and low power consumption, making it an attractive backup or complement to conventional gy-

roscopes for small satellites and resource‑constrained spacecraft.

The key idea is that spacecraft rotation induces a measurable motion field of stars across the

image plane. By reconstructing this apparentmotion from the stream of brightness-change events,

and by exploiting the geometry of the perspective projection, it is possible to infer the three angu-

lar rate components. This section provides a compact technical summary tailored for the thesis

context.
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6.4.1 Motion Field Model and Single-Camera Limitations

Let a star at normalized camera-frame coordinates (X,Y, Z) project to image-plane coordinates

(x, y) under the pinholemodel. A spacecraft rotatingwith angular velocity vector (p, q, r) induces

an apparent motion field (u, v) in the image plane. The relationship is [120]:

u
v

 = F (x, y)


p

q

r

 ,

where F (x, y) is a matrix derived from camera geometry. Each event provides one constraint on

(p, q, r), and stackingN events yields the least-squares estimate:

ω̂ = (H⊤H)−1H⊤y.

Figure 6.10 visualizes the reference frames used (inertial, camera, and star projection).

e2

e1

e3

c1

c2

c3

o focal plane

star

Figure 6.10: Reference frames used in the event-based angular rate estimation pipeline and pro-
jection of a star onto the camera focal plane. The inertial frame is aligned with catalogued star
directions, while spacecraft rotation induces apparent star motion in the camera frame.

Since the projection model causes the roll component (r) to be weakly observable, single-

camera estimation performs poorly on that axis, as shown later in Fig. 6.13.
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6.4.2 Event-Based Sensing and Contrast Maximization

Event cameras report asynchronous events (x, y, t, k)when changes in brightness exceed a thresh-

old. As stars move across the sensor due to spacecraft rotation, they produce trails of positive and

negative events indicating edges of motion.

Figure 6.11 shows the principle of contrast maximization: events are “unwarped” back in time

using a candidate motion field (u, v). The candidate that maximizes spatial contrast corresponds

to the correct apparent velocity.

0
20

0
40

0
60

0
80

0
10

00
0

200

400

600

800

1000

0
20

0
40

0
60

0
80

0
10

00
0

200

400

600

800

1000

Figure 6.11: Contrast maximization for apparent star-motion reconstruction. Left: raw event
stream projected onto the focal plane. Right: events warped with the optimal motion-field esti-
mate, producing a high-contrast image.

6.4.3 Simulation Pipeline

A full synthetic pipeline was built to validate the method (Fig. 6.12), using HIPPARCOS and

GAIA star catalogs, random spacecraft attitudes and angular velocities, photometric projection,

event triggering, motion field estimation, and least-squares recovery of (p, q, r).
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Motion field
estimation

Events (t, x, y, k)Rate estimation

Pointing and rates Star catalogue

Image frames Event streams

Accuracy 
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Camera parameters

α , δ  ωb b, b ID , α , δ , Vs s s s FOV, H, W, f, Vlim

ε , ε , εp q r

Figure 6.12: Simulation pipeline used to evaluate event-based angular rate estimation: (1) star cata-
log retrieval, (2) camera and boresight definition, (3) star projection and image synthesis, (4) event
triggering, (5) motion-field estimation, (6) angular-rate recovery and accuracy evaluation.
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6.4.4 Performance of Single-Camera Estimation

Using 100 random simulations of boresight and angular velocities, the method achieves good ac-

curacy in p and q, but poor accuracy in the roll component r, consistent with projection-model

limitations.
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Figure 6.13: Angular velocity estimation error for single-camera setups. Pitch (p) and yaw (q) are
well estimated, whereas the roll rate (r) is not reliably observable due to projection-geometry limi-
tations.

6.4.5 Dual-Camera Configuration and Sensor Fusion

To recover full 3-axis angular velocity, an **orthogonal dual-camera setup** is introduced: each

camera’s weak axis becomes the strong axis of the other. The combined configuration yields com-

plete observability.

The fusion rule blends the well-estimated axes from each sensor to recover (p, q, r) robustly.
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Figure 6.14: Estimation accuracy after dual-camera sensor fusion. All three axes achieve compara-
ble performance, eliminating the roll-axis weakness present in single-camera setups.
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Table 6.2 reports the final RMS error across all simulations.

Table 6.2: Angular velocity RMS error (deg/s) for single- and dual-camera configurations.

Configuration εp εq εr RMS
Single Camera 0.0165 0.0192 0.3060 0.3070
Dual Cameras 0.0115 0.0192 0.0160 0.0275

6.4.6 Discussion

The results demonstrate that event-based vision can effectively estimate angular rates by leveraging

the apparent motion of stars, particularly when paired with a dual-camera configuration. This

approach enables redundancy against gyroscope failures, offers microsecond temporal resolution,

and is highly suitable for small spacecraft thanks to event cameras’ low size, weight, and power.

6.4.7 Summary

This study illustrates a novel sensingmodality for spacecraft attitude-rate estimation. Althoughnot

part of the thesis’ core robotics‑RL contributions, it complements the broader theme of autonomy

under sensing uncertainty and highlights opportunities to integrate neuromorphic sensing with

learning-based control in future work.

6.5 Conclusion of Additional Studies

This chapter presented three complementary studies that, while distinct from the main simula-

tion and reinforcement learning frameworks developed throughout the thesis, share a common

objective: advancing autonomous spacecraft operations under sensing, modeling, and control un-

certainties.

The first contribution (RL-AVIST) proposed a learning-based visual inspection framework

for 6DoF spacecraft motion using event-based observations. It demonstrated how generalist and
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specialist policies can be trained to track dynamic inspection trajectories across a variety of space

targets, using the SRB simulator. This work highlights the potential of deep RL beyond ground-

based systems and motivates future extensions to hardware-in-the-loop vision pipelines.

The second study introduced an excitation-based approach to inertia tensor estimation using

reaction wheel torques. Through controlled system identification campaigns, it was shown that

even short excitation profiles can yield accurate inertia estimates, validating their applicability in

adaptive control settings. This contributes to the broader theme of learning or estimating physical

models for onboard decision-making.

Finally, the third work proposed an angular rate estimation method using event-based camera

data and starfield motion. The method achieved sub-0.03 deg/s accuracy using dual orthogonal

sensors, demonstrating a viable alternative or backup to gyroscopes in space. This study illustrates

how emerging neuromorphic sensors can be exploited for navigation tasks, expanding the percep-

tion capabilities of future spacecraft.

Collectively, these studies broaden the scope of the thesis by exploring how learning, estima-

tion, and neuromorphic sensing can support space autonomy in scenarios where conventional

models or sensors may be unavailable, inaccurate, or degraded. While developed outside the main

thesis stack, they point toward promising research directions for integrating learning-based control

with adaptive models and alternative sensing modalities in space robotics.
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Chapter 7

Conclusion and Future Work

The work presented in this thesis set out to investigate how deep reinforcement learning (DRL),

when paired with principled simulation design, can enable scalable, robust, and generalizable con-

trol of autonomous robots operating in highly uncertain environments. Across spacecraft simula-

tors,multi-robot navigation frameworks, and aerodynamic vehicles under ground effect, this thesis

has argued for a unified perspective: high-fidelity physics, structured task design, andmodular soft-

ware interfaces are not peripheral elements of DRL-based robotics — they are central enablers of

successful learning and transfer.

Beginning with a rigorous overview of DRL foundations (Chapters 1–2), the thesis high-

lighted that modern actor–critic and policy gradient methods excel in continuous control but

remain sensitive to modeling errors, insufficient state information, and non-stationary real-world

dynamics. These challenges motivated the first major contribution: the design of specialized

simulation infrastructures that more faithfully capture the physics and uncertainties faced by real

systems.

Chapters 3–5 developed three such frameworks:

• RANS and DRIFT (Chapter 3): GPU-accelerated 3DoF/6DoF spacecraft simulators en-

abling domain randomization, large-scale parallel training, and sim-to-real validation on

floating platforms.
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• RoboRAN (Chapter 4): a multi-domain navigation framework for cross-robot, cross-

medium generalization with a unified training and deployment stack validated on Turtle-

bots, Kingfisher USV, and floating platforms.

• FALCON-S (Chapter 5): a dual-backend (GPU/CPU) 6DoF physics suite for fixed-wing

aerial vehicles in ground effect, supporting RL and optimal control with high aerodynamic

fidelity.

Together, these systems enabled controlled experimentation on learning efficiency, robustness,

generalization, and sim-to-real transfer. The final chapter (Chapter 6) complemented these contri-

butions with additional studies onRL-based visual inspection around orbiting assets (RL-AVIST)

and spacecraft mass-property estimation, broadening the scope of the thesis while maintaining its

central focus on autonomy in uncertain conditions.

In this concluding chapter, we synthesize the scientific outcomes by revisiting the research

questions introduced inChapter 1, articulating how eachwas addressed by the frameworks, experi-

ments, and analyses in the thesis. We then discuss broader implications for robotics and autonomy

research, identify limitations, and outline future research directions — including sim-to-real-to-

sim loops, world models, and continual-learning pipelines for long-lived autonomous robots.

7.1 Answers to Research Questions

RQ1. How can we design simulation frameworks that support scalable, physically

realistic, and task-agnostic RL for autonomous robots?

Answer. This thesis addresses RQ1 by developing a suite of simulation frameworks tailored for

scalable and physically grounded reinforcement learning across space-relevant robotic systems.

• RANS (Chapter 3) enables fast, reproducible training for spacecraft control via a GPU-

accelerated backend (6,000+ envs per GPU), configurable thrust models, and modular task
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definitions such as TrackX, TrackXY, and TrackXYVel, all operating under user-defined dis-

turbance profiles.

• DRIFT (Chapter 3) validates this approach on hardware using a floating platform testbed,

confirming the fidelity of 3DoF translation and the sim-to-real consistency of disturbance-

aware PPO policies.

• RoboRAN(Chapter 4) abstracts robot and task definitions throughunified IsaacLab inter-

faces, enabling flexible composition and reproducible training of 16 robot–task pairs across

land, water, and microgravity domains.

• FALCON-S (Chapter 5) highlights the value of dual backends — Warp for high-

throughput learning and CPU for classical control — while introducing fine-grained

aerodynamic and actuator models for fixed-wing aircraft in ground effect.

Together, these frameworks demonstrate that effective simulation infrastructure must com-

bine: (i) modular design, (ii) high-throughput physics backends, (iii) realistic actuation and sensing,

and (iv) unified APIs enabling multi-domain extensibility.

RQ2. To what extent can reinforcement learning policies generalize across tasks,

robots, and environmental conditions?

Answer. Generalizationwas systematically evaluated inRoboRAN (Chapter 4) and supported by

findings from RANS/DRIFT:

• Cross-task generalization. In RoboRAN, each robot (Turtlebot2, Kingfisher, Floating

Platform) successfully learned four distinct navigation tasks, including GoToPosition and

GoThroughPositions. Policies trained with domain randomization showed high success

rates across unseen initial conditions.
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• Cross-robot generalization. RoboRAN’s unified taskAPI enabled training the same tasks

using fundamentally different mobility systems (thrusters, differential drive, water-based

propulsion). This demonstrated that shared task structures extend across vehicle typeswhen

dynamics are abstracted appropriately.

• Environmental generalization. DRIFT showed thatPPOpolicies trainedunder stochastic

thrust perturbations retained stable behavior on real hardware. RoboRAN reproduced this

for USV and ground robots under wind, drag, and water disturbances.

• Generalization via world models. RL-AVIST (Chapter 6) demonstrated that DreamerV3

generalizes better than PPO/TD3 to unseen orbital inspection paths, spacecraft morpholo-

gies, and target geometries.

In summary, the thesis shows that DRL generalizes effectively when supported by structured

APIs, domain randomization, and unified learning pipelines — and that this generalization trans-

fers across real platforms.

RQ3. Which techniques most effectively bridge the simulation–reality gap in uncer-

tain environments?

Answer. The thesis introduced and empirically validated several strategies:

• Physics-grounded domain randomization (Chapters 3–4): injecting noise in thrust

curves, actuator latency, water drag, inertia scaling, and sensor bias improved robustness

and reduced overfitting.

• Realistic actuator and sensor modelsEnabled inRANS,DRIFT, and FALCON-S: actua-

tor dynamics, dragmodels, aerodynamic coefficients, and reactionwheel coupling increased

stability during transfer.
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• Unified simulation→ deployment pipelineRoboRAN’sROS2-based lightweight execu-

tor allowed IsaacLab-trained policies (skrl, rl_games) to run directly on hardware without

the simulation layer.

• Trajectory-level evaluation and debugging tools Heatmaps, success metrics, and trajec-

tory overlays (Chapter 4) enabled detecting transfer failure modes such as heading drift, in-

ertia mismatch, and underdamped dynamics.

• Real-world validation DRIFT and RoboRAN both demonstrated successful zero-shot

transfer to hardware platforms.

These findings establish that bridging sim-to-real requires a combination of modeling fidelity,

structured randomization, unified interfaces, and principled evaluation protocols.

7.2 Summary of Fulfilled Objectives

This thesis was guided by the ambition to bridge the gap between simulation-based learning and

physically grounded robotic autonomy in uncertain environments. The objectives outlined in the

introduction— including building robust simulation platforms, enabling sim-to-real control, sup-

porting diverse robot-task combinations, and extending DRL techniques to space-relevant scenar-

ios — have been systematically addressed through the core contributions:

• Design of high-fidelity, task-rich simulators: RANS and FALCON-S provide modular

and scalable environments for spacecraft and fixed-wing vehicle control, respectively, featur-

ing 6DoF dynamics, domain randomization, environmental disturbances, and structured

benchmarks. These frameworks enable training and evaluation under realistic uncertainty

and dynamics constraints.

• Generalizable learning across robots and tasks: RoboRAN operationalizes multi-robot

multi-task reinforcement learning in a reproducible and decoupled fashion. It supports fast
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training, real-world deployment, and systematic comparisons across terrestrial, aquatic, and

microgravity platforms.

• Effective sim-to-real transfer: DRIFT and RoboRAN demonstrate successful deploy-

ment of policies trained in IsaacLab to real floating platforms, USVs, and ground robots.

Real-world results validate simulation fidelity and the training methodology under noisy

actuation, imperfect sensing, and inertia mismatches.

• Deployment-ready pipelines for space robotics: Through theRL-AVISTand event-based

angular rate estimation studies, the thesis expands into on-orbit robotic autonomy, showing

that learned perception and estimation pipelines can complement or replace classical GNC

systems. These works provide a foundation for future learning-enabled space missions.

• Benchmarking and reproducibility tools: The developed frameworks offer consistent

metrics, logging utilities (e.g.,WandB), andmodular controllers to enable comparative stud-

ies. These tools ensure that future work can build upon this foundation with transparency

and scalability.

Taken together, these contributions fulfill the initial research objectives while laying the

groundwork for broader generalization, integration with adaptive control, and lifelong learning in

robotic systems.

7.3 Broader Implications and Impact

The research presented in this thesis contributes to a broader understanding of howdeep reinforce-

ment learning can be made usable, scalable, and reliable for real-world robotics. By emphasizing

physics-aware simulation, multi-robot frameworks, and standardized evaluation pipelines, the the-

sis shows that autonomyunder uncertainty is not a byproduct of learning but a property thatmust

be scaffolded by design.

Several implications emerge:
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• Simulation as a first-class research artifact. Tools likeRANS,RoboRAN, andFALCON-

S elevate simulation fromanauxiliary tool to a core enabler of reproducible andgeneralizable

research. This supports the growing recognition of simulators as benchmarks — not just

pre-training environments — in RL and robotics communities.

• Unified frameworks enable cross-domain robotics. RoboRAN demonstrates that a sin-

gle codebase can train floating platforms, USVs, and mobile ground robots across multiple

tasks, showing that modular abstractions facilitate not only research efficiency but also in-

sight transfer between domains.

• Scalable DRL with real-world grounding is achievable. The successful deployment of

policies trained entirely in IsaacLab (DRIFT, RoboRAN) onto real robots illustrates that

modern GPU simulation and structured randomization can yield deployable policies in

practice.

• DRL can extend traditional spacecraft autonomy. The RL-AVIST and angular rate esti-

mation studies suggest that vision-based and event-based sensing, when paired with learned

policies or estimation pipelines, can offer complementary or fallback autonomy modes to

classical GNC systems.

Together, these outcomes suggest a path forwardwhere learning-based control, estimation, and

sensing systems are not only academically interesting, but also practically viable across domains

such as space robotics, mobile navigation, and aerial robotics.

7.4 Future Work

While this thesis establishes robust baselines and frameworks, several avenues remain open for ex-

panding and deepening the research.
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• Sim-to-Real-to-Sim Loops. While we demonstrated sim-to-real transfer (e.g., DRIFT,

RoboRAN), the reverse process — using real-world data to refine simulators — remains

underexplored. A promising direction is to iteratively adjust dynamics, noise profiles, or

actuator models using real-world trajectory deviations as a supervisory signal.

• World Models for Long-Horizon Planning. The success of DreamerV3 in RL-AVIST

suggestsworldmodels are promising for domainswith sparse rewards or partial observability.

Futurework could integrateworldmodels intoRoboRANorFALCON-S to enable sample-

efficient learning or hybrid model-based/model-free control.

• Continual and Lifelong Learning for Robotics. Real-world deployment demands agents

that adapt over time, without catastrophic forgetting. With RoboRAN’s modular setup, it

becomes possible to explore continual learning strategies— e.g., replay-based regularization,

task-conditioned policies, or forward/backward transfer metrics — across tasks and robots.

• Cross-Vehicle and Multi-Agent Generalization. While generalization across individual

robots and tasks was demonstrated, scaling tomulti-agent or cross-fleet settings (e.g., hetero-

geneous robot swarms) could be a natural extension, especially using curriculum learning

and domain-conditioned policies.

• In-the-Loop Estimation and Control. RL-AVIST and the Angular Rate Estimation

frameworks offer strong estimation backbones. An exciting future direction is to close

the loop by feeding such estimates directly into adaptive control pipelines or online policy

updates — enabling perception-adaptive controllers.

Collectively, these directions aim to move from robust single-task deployment to lifelong au-

tonomy: systems that can learn, adapt, and generalize in complex, dynamic environments.
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