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Critical heat current fluctuations in Curie-Weiss model in and out of equilibrium
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In some models of nonequilibrium phase transitions, fluctuations of the analyzed currents have been observed
to diverge with system size. To assess whether this behavior is universal across phase transitions, we examined
heat current fluctuations in the Curie-Weiss model, a paradigmatic model of the paramagnetic-ferromagnetic
phase transition, coupled to two thermal baths. This model exhibits phase transitions driven by both the
temperature and the magnetic field. We find that at the temperature-driven phase transition, the heat current noise
consists of two contributions: the equilibrium part, which vanishes with system size, and the nonequilibrium
part, which diverges with system size. For small temperature differences, this leads to nonmonotonic scaling of
fluctuations with system size. In contrast, at the magnetic-field-driven phase transition, heat current fluctuations
do not diverge when observed precisely at the phase transition point. Instead, out of equilibrium, the noise is
enhanced at the magnetic field values away but close to the phase transition point, due to stochastic switching
between two current values. The maximum value of noise increases exponentially with system size, while the
position of this maximum shifts towards the phase transition point. Finally, on the methodological side, the
paper demonstrates that current fluctuations in large systems can be effectively characterized by combining
a path-integral approach for macroscopic fluctuations together with an effective two-state model describing

subextensive transitions between the two macroscopic states involved in the phase transition.
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I. INTRODUCTION

Phase transitions, that is, abrupt changes in the system
properties with a small change of some control parameter, are
among the most notable manifestations of collective behavior
found in nature. In recent decades, significant interest has been
focused on phase transitions that occur out of equilibrium
[1]. Such transitions are associated with even more complex
physics than their equilibrium counterparts, as they are not
governed solely by the system thermodynamics but also by
its kinetics. As a result, they can lead to novel phenomena
absent at equilibrium, such as phase separation with purely
repulsive interactions [2], the emergence of limit cycles [3-5],
or the formation of Turing patterns [6,7]. Considerable atten-
tion has also been paid to nonequilibrium phase transitions in
open quantum systems [8—12], among others, because of their
potential metrological applications [13—15].

Most studies of equilibrium and nonequilibrium phase
transitions focused on the characterization of average quanti-
ties, such as magnetization, entropy production, etc. However,
a valuable insight into the dynamics and thermodynamics
of physical systems can be obtained by analyzing current
fluctuations. For example, they can provide information on
energy dissipation (via the so-called thermodynamic uncer-
tainty relations) [16-18], the structure of the Markovian
network in classical stochastic systems [19-24], or quantum
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coherent effects [23,25-28]. Recently, several studies have
been concerned with the finite-size scaling behavior of current
fluctuations at nonequilibrium phase transitions. They demon-
strated divergent scaling of fluctuations with system size (or
another parameter that plays this role). Specifically, a power-
law scaling of fluctuations at continuous phase transitions has
been reported for certain chemical reaction models [29,30],
stochastic time crystals [31], and open quantum systems [32]
(although in the latter case an exponential scaling of fluctua-
tions of certain currents due to quantum measurement effects
was also shown). At discontinuous phase transitions, instead,
one usually observes an exponential scaling of fluctuations
[30,32-34]. This behavior is related to stochastic switching
between the system attractors, whose timescale increases ex-
ponentially with system size [35-37]. Such a switching has
been observed in real time in open quantum systems [11,12].
However, we have recently found that when the discontinuous
phase transition is not associated with phase coexistence, one
observes rather a power-law scaling of fluctuations [38].

In this paper, we aim to explore whether phase transitions
are always associated with the divergent behavior of current
fluctuations at the phase transition point. To this end, we an-
alyze the heat current fluctuations in the Curie-Weiss model,
a paradigmatic model of the paramagnetic-to-ferromagnetic
phase transition [39]. The nonequilibrium driving is applied
to the system by connecting it to two baths with different
temperatures. We show that nonequilibrium heat current fluc-
tuations exhibit a power-law divergence at temperature-driven
continuous phase transitions, even though the equilibrium
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fluctuations vanish at this point. Instead, at the magnetic-
field-driven transition, the fluctuations calculated exactly at
the phase transition point do not diverge. However, a strong
noise enhancement can be observed in close proximity to the
phase transition.

The paper is organized as follows. In Sec. II we introduce
the analyzed model and discuss its critical behavior. In Sec. I1I
we present the methods used to calculate the current fluctua-
tions and responses. Section IV contains the main results of
the paper on finite-size scaling of heat current fluctuations.
Finally, Sec. V presents conclusions that follow from our
results.

II. NONEQUILIBRIUM CURIE-WEISS MODEL

A. Description of the model

Let us first present the considered nonequilibrium Curie-
Weiss model. It consists of N spins coupled through a
homogeneous all-to-all Ising interaction. The energy of a par-
ticular spin configuration reads

7 o
E:—ﬁ ZU,'O’_I'—}Z;O}', (1

i,j=1

where J > 0 is the strength of the ferromagnetic Ising inter-
action, and # is the magnetic field. Spins o; are here classical
random variables taking values 1. We further define the to-
tal magnetization of the systemas M = ) . 0; € {—N, —N +
2,...,N}. Due to the all-to-all nature of the coupling, the
energy of the system can be rewritten as a function of the total
magnetization:

Ey = J M?* — hM )

M= oN '

Each value of the total magnetization corresponds to 2y
possible microscopic spin configurations, where

N!
~ N+ M)/2I[N — M)/2]"

To drive the system out of equilibrium, we connect it to d
ideal thermal baths « € {1, ..., d} with temperatures T, [in-
verse temperatures B, = 1/(kgT,)]. Similar nonequilibrium
models have been previously studied in Refs. [40-48].! The
dynamics of the model corresponds to a Markovian flipping
of individual spins due to interaction with the thermal baths.
Each flipping of spin from 1 to —1 (—1 to 1) changes the total
magnetizationas M — M — 2 (M — M + 2). To simplify the
problem, we also assume that, for each microscopic config-
uration with total magnetization M, the rate of flipping of
each spin with a given orientation is the same. Dynamics can
then be described using the mesoscopic master equation for
probabilities py, of coarse-grained mesostates with definite
magnetization M [46,47,54,55],

3)

Qu

Pm = Z Wu,m+2Pm+2 — Wyt mPum ), 4)
T

"We note that nonequilibrium driving can also be induced by an
alternating magnetic field (see Refs. [49-53]).

where Wy p45 is the transition rate from the state with magne-
tization M = 2 to the state with magnetization M. For a formal
derivation of this form of the master equation, see Ref. [47].
Each rate can be further decomposed into components associ-
ated with individual baths «,

d
Wym+2 = Z Wit ms2- Q)
a=1

To provide consistency with thermodynamics, such com-
ponents have to fulfill the local detailed balance condition
[47,56]

WDt
In Wf‘:inz — ,30,( ﬁiz - F;&), (6)
M=E2,M
where
Fy =Ey— B, ' InQy @)

is the free-energy potential with respect to the bath «. By con-
struction, this condition provides consistency with the laws
of thermodynamics, such as the first and the second law of
thermodynamics, or fluctuation theorems [47,56]. Physically,
it means that each bath tends to relax the system to the equi-
librium state with respect to this bath. In fact, for equal bath
temperatures B, = f3, the steady state of the system is the
Gibbs state py; o exp(—BFy).

Following Refs. [47,54,55], we further focus on a par-
ticular model of transition rates fulfilling the condition (6),
namely, the Arrhenius rates

a Fo(NFM) _
o = 5 e Pu(Enz2 EM)/Z’ (8)

where I, are kinetic rates describing the strength of coupling
to different reservoirs. We notice that, out of equilibrium, the
nonequilibrium steady state depends not only on the tempera-
tures of the baths 7, but also on the details of coupling to the
reservoirs, parametrized by the kinetic rates I',.

B. Mean-field and large deviation approaches

Our aim is now to describe the nonequilibrium phase
transitions in the considered model, that occur in the ther-
modynamic limit N — oo. To this end, one requires methods
suitable for characterizing the macroscopic behavior of the
system. One possible approach is the mean-field theory
[40,43—-47]. Within this framework, from the mesoscopic mas-
ter Eq. (4) one derives an effective deterministic equation of
motion for the normalized magnetization m = M/N. For the
model considered, it reads

m = 2wy (m) — w_(m)], ©)]

where w(m) = Y?_, w%(m) and

Wit T, (1
wi(m) = lim ME2LM ( + m) eﬂ:ﬁa(.lerh)

N—oo N - 2 (10

are the intensive transition rates. The stationary states of the
systems correspond to stable fixed points of the mean-field
dynamics. The fixed points m* (stable or unstable) are given

034125-2



CRITICAL HEAT CURRENT FLUCTUATIONS IN ...

PHYSICAL REVIEW E 111, 034125 (2025)

by the condition 2 = 0, and they are stable when

(3_m) 0 (11)
om/, . . =

The latter condition qualitatively means that the magnetiza-
tion tends to return to the fixed point after a small perturbation
from it.

Due to its nonlinear nature, the mean-field equation (9)
may admit multiple stable fixed points; unstable fixed points
then define the boundaries between basins of attractions of the
stable fixed points. This contrasts with the master equation de-
scription of the model, which predicts a unique stationary
state of the system. This apparent incongruity is referred to
as the Keizer’s paradox [57], and is related to the noncom-
mutativity of two limits: the long-time limit # — oo and the
thermodynamic limit N — oo [47,56]. The mean-field ap-
proach corresponds to taking the thermodynamic limit before
the long-time limit. Then the dynamics may indeed become
nonergodic, and thus the stationary state may not be unique.

The approach that characterizes the macroscopic behavior
of the system while respecting the uniqueness of the stationary
state is provided by large deviation theory [56,58-61]. It en-
ables one to take the long-time limit # — oo before applying
the large N limit. As this method has been thoroughly dis-
cussed in the literature cited above, here we focus only on the
most relevant aspects. Within the large deviation framework,
the asymptotic scaling of stationary magnetization probabili-
ties is described by the formula

Py oc e NVim, (12)

where V (m) is the nonequilibrium quasipotential. Since for
large N the probability distribution is narrowly focused
around the minimum of V (m), the stationary value of normal-
ized magnetization myg corresponds to the global minimum of
the nonequilibrium quasipotential V (m):

mo = argmin,,._; ,V (m). (13)

The other local minima of V (m) correspond to metastable
states of the system, whose lifetimes increase exponentially
with N [35-37]. We further note that all minima (maxima) of
the quasipotential exactly correspond to stable (unstable) fixed
points of mean-field equations [56,59].

The quasipotential can be obtained by noting that the
stationary probabilities obey the detailed balance condition
Wi 2P3 42 = Waura.mPyy- Thus, they can be expressed as
[59,61,62]

s = W_nio-NW_nia,-N+2 - - Wum—2
M=DP-N
Won, NoW_ni2, - Nta- - Wy oy
W_ni2,-N Wym—2
=p5_tNexp<ln—’+~~+ln : .
_N-N+2 M-2.m

In the large N limit, one can convert the above Riemann sum
in the parentheses into a definite integral. Taking into account
Eq. (12), this yields

1 _
Vim) = Efl dg In Zig;, (14)

with the intensive transition rates w4 (m) defined below
Eq. (9). The factor 1/2 before the integral results from the

fact that each jump changes magnetization by £2, and thus
the above Riemann sum contains (1 + m)N/2 elements. The
quasipotential is further normalized by adding a constant so
that V (mp) = 0.

The large deviation approach can be further used to de-
scribe the nonequilibrium thermodynamics of the system [56].
In particular, using the master equation, the stationary heat
current from the bath « can be calculated as

Qo) =D > PWiiso(Evsz — Em).  (15)
M =+

The normalized stationary heat current (gy) = (Qa) /N can
then be calculated in the limit N — oo by converting the
above sum into an integral and using Eq. (12). This yields

1
(Go) = =2 lim eV (Im + ) [wS (m) — w® (m)ldm

N—oo 1
= =2(Jmg + W[wS (my) — w (mp)], (16)

where the integral is calculated using the Laplace method.

C. Nonequilibrium phase transitions

To make this paper self-contained, we now discuss the
behavior of the model at nonequilibrium phase transitions,
which has been previously analyzed in Refs. [40—48]. At zero
magnetic field (2 = 0) the system admits two phases: the
paramagnetic phase with my = 0 and the ferromagnetic phase
with my # 0. The system is in the paramagnetic phase if the
quasipotential V (m) has a minimum at m = 0. This yields the
condition of stability of the paramagnetic phase:

2
[_a avrg”] > 0. (17)
m=0

One finds that the paramagnetic phase is stable for B < B,
(Tese > To.), where

ST,

is the effective inverse temperature, and the critical inverse
temperature

Bett = (18)

Be=J" (19)

is unchanged with respect to the equilibrium model. This
means that the effective inverse temperature B is the
weighted average of the inverse temperatures of different
reservoirs, B, the weights being proportional to the couplings
to the respective reservoirs. In equilibrium, with g, = B, the
effective temperature is equal to the equilibrium tempera-
ture (Ber = B) independent of the kinetic rates I',. We also
notice that out of equilibrium, for certain values of I', and
Bu, the stable paramagnetic fixed point may coexist with the
ferromagnetic phase, and thus the transition between them
may become discontinuous [43]. Our study focuses on the pa-
rameter regime where the paramagnetic-ferromagnetic phase
transition is continuous.

Let us now focus on the case of two baths (d = 2) and take
the symmetric coupling I'j = I'; = I". We further parametrize
the bath inverse temperatures as f; = ferr — AB/2 and
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FIG. 1. The normalized stationary magnetization m, (a) and the
heat current (g;) = —(g2) (b) as a function of the effective tempera-
ture Top forh=0and 'y =T, =T

B> = Beir + AB/2. Interestingly, in this case the ratio

w—(m) — 1+ me_zﬂeff(1m+h)’ (20)

wi(m) 1—m

and thus the whole quasipotential V (m) is the same as for the
equilibrium model with 8 = Beg. It is given (up to a constant)
by the formula

J
V(m) = _ﬂeff<§m2 + hm)
1+4m 1-m_  1—m

14+m
1 1 . 21
> In— + 5 In— (21)

Here, the first term corresponds to the scaled energy of the
system limy_ o BetEry /N, with Ey, given by Eq. (2). The
next two terms correspond to scaled Boltzmann entropy with a
minus sign, — limy_, oo (In €27)/N, with €, given by Eq. (3).
Thus, in equilibrium with B = B, the quasipotential corre-
sponds to the scaled free energy, V (m) = limy_. o (BFy/N),
where Fyy = Ey — B~ In Q. Consequently, the stationary
value of magnetization and its critical behavior is the same as
for the equilibrium model with 8 = B.g, where minimization
of the quasipotential is equivalent to minimization of the free

energy.
In Fig. 1 we present stationary magnetization mg and heat
current (g;) = —(g») as a function of the effective temper-

ature T for h = 0. As can be observed, both quantities
exhibit a continuous phase transition from 0 to a finite value
at Toie = T,.. We show two branches of my = =|my| that cor-
respond to degenerate minima of V (m). The presence of such
degenerate minima is characteristic for continuous symmetry-

0.05

0.00
-0.2 -0.1 0.0 0.1 0.2

hJ

FIG. 2. The normalized stationary magnetization m (a) and the
heat current (§;) = —(g2) (b) as a function of the magnetic field &
for T = 0.8T.¢, AB = 0.4B, and '} = I’ = I'. The dashed lines
represent the metastable solutions. The dashed line in (b) is calcu-
lated using Eq. (16), but with m replaced by the metastable value of
magnetization.

breaking phase transitions. In contrast, the heat current is
single valued, as it is invariant to the simultaneous rever-
sal of the magnetic field and magnetization (h — —h and
M — —M). Intuitively, the magnitude of the heat current in-
creases with the temperature difference AS, and it vanishes
at equilibrium (AB = 0). The other phase transition takes
place when the magnetic field / is changed for a constant
effective temperature Teir < T¢. This is presented in Fig. 2.
Interestingly, this phase transition can be regarded as either
discontinuous or continuous, depending on the observable
that is considered. As in equilibrium, the stationary magne-
tization exhibits a discontinuous jump at 2 = 0. We can also
observe the presence of metastable solutions [i.e., the local
minima of V(m)], represented by dashed lines, that corre-
spond to the analytic continuations of the stationary solutions.
In contrast, the heat current is continuous but nonanalytic at
h = 0, having a kink at this point. This is a consequence of
the aforementioned symmetry with respect to the magnetiza-
tion reversal. A similar kink of entropy production has been
previously observed in other nonequilibrium phase transition
models [63,64].

III. FLUCTUATIONS AND RESPONSES: METHODS

A. Spectral approach

Let us now discuss the methods used to characterize
the heat current fluctuations, which are the main focus of
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the paper, as well as the current responses, which will be
useful at some points. We first focus on the spectral ap-
proach [65-67], which is applicable for finite system sizes
N. This method has recently been thoroughly reviewed in
Ref. [68]; here, we just briefly present the most relevant
results.

Denote by Q,(¢) the stochastic (fluctuating) value of the
heat transferred from the bath « to the system in the time
interval [0, ¢]. To describe the heat current fluctuations, we
define the scaled cumulant generating function of Q, (¢),

Sulte) = lim ;m f " PN 00, ), (22)

where p[Q,(¢)] is the probability density of Q,(¢) and yx, is
the counting field. This function can be expanded as a power
series

S =3 1%k (23)

n=1

where the coefficients (Q7)) are the scaled cumulants of heat
current from the bath «. In particular, the first two scaled
cumulants correspond to the average heat current (Q,) and
the current variance Var(Q,, ), respectively:

0!) = (0,) = lim ==, (24)

0!} i 2
- 2

(02} = Var@,) = Jim (20— @D

Let us now define the counting-field-dependent rate matrix
W(x), where x = (x1, ..., xq) is the vector of the counting
fields. Its elements read as

d
(WOl = ZW,{",‘eX“(Ek*E’) fork #1,

a=1

[WOOIe = — Y Wi, (26)
1k

where Wy;, W, and Ej are the transition rates and the state en-
ergies defined in Sec. ITA, and k,/ € {—N,—-N +2,...,N}
denote the magnetization values. The rate matrix W (x = 0),
where 0 = (0, ..., 0), is simply denoted as W. We further
define the left and right eigenvectors of W as

Wihx) = Ajlx),  (jiIW = A;{;l. (27)
The eigenvectors are normalized as ((y;|x;)) = 1. The eigen-
values of the rate matrix are here ordered in the decreasing
order of their real parts: Re(Ag) > Re(A;) > --- = Re(Ay).
The dominant eigenvalue Ag is equal to O by virtue of the
Perron-Frobenius theorem. The corresponding right eigen-
vector |xp)) is the stationary state of the system |pg)) =

Py, - .., PY)T. The associated left eigenvector reads {(yo| =
(1, ..., 1), and is further denoted as {(1].

The scaled cumulants are given by the recursive relation”

((Qa)) = Z <m)(11|W(’")| (=), (28)

m=1

where |p{") = | ps) and
(n) WD Z ( ) (m))ip(n m))>’ (29)
NARES [8 ~W (x)] : (30)
x=0
where WP = ZN_l A7 x M {y;l is the Drazin inverse of W

(see Refs. [68,71] for a discussion of its properties). In par-
ticular, the average heat current and the current variance
read as

(Q0) = (LW py), 31)

Var(Qy) = (1|W2 | py)
(LW ) (0 WD peeh)
_ ZZ / J o E .

Jj#0 Aj

Finally, since the system is extensive, we further define
the normalized scaled cumulants for a single spin {(g},)) =
(@20 /N. In particular, the normalized heat current and the
current variance are denoted as (j,) = (Qy)/N and Var(g,) =
Var(Qu)/N .

(32)

B. Current responses

A similar approach can be used to calculate the current re-
sponses, that is, their derivatives over some control parameter
¢ (in our case, it will be the temperature difference). Using
Eq. (31), they can be calculated as

0"(Qa) n) 9" WD 9| py)
= d . 33
o = ()

The derivatives of the stationary state vectors |py)) can be
determined using the stationarity condition

0" () 9"W 3 py))
— W) = — =T 0. 4
a0 W) ;(m) sor g =0 (9

We now note that the derivatives of the stationary state
(@™ ps)))/(0¢™) (for n > 0) are traceless vectors due to
probability conservation, and thus (1](9"|ps)))/(3¢™) = 0.
Using the identity WPW = 1 — |pg)) (1] [68,71], where 1
is the identity matrix, we see that WP W (8"|py)))/(9¢") =
(3" |ps)))/(32™). Applying WP from the left to the second

2Strictly speaking, the formula below is applicable when the rate
matrix is diagonalizable, and thus its right and left eigenvectors
form a complete basis. The opposite situation, when the rate matrix
becomes defective and some eigenvectors become degenerate, may
occur for certain points in the parameter space, called the excep-
tional points [69]. However, the master equation considered here
corresponds to the one-dimensional random walk, for which the rate
matrix is always diagonalizable [70].
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term of the equation above, we obtain a recursive formula
similar to Eq. (29),

3" ) _ P X": (n) "W 8(n7m)|pst». )
m
m=1

aé-n ag-m aé-(n—m)

We note that an alternative method to calculate the linear
response of the stationary state vector has been recently pre-
sented in Refs. [72,73].

C. Equilibrium fluctuation-response relation

Let us now discuss alternative methods to characterize the
heat current fluctuations, which will be useful for large system
size. First, at thermodynamic equilibrium, the heat current
fluctuations are exactly related to the linear response to the
temperature gradients through the symmetry of the scaled
cumulant generating function [28,74]. For a system connected
to two baths o € {1, 2} this fluctuation-response relation reads

_ (300
Var(Q)) = Var(Q;) = 2(—8 Y )Mzo, (36)

where A = B, — B1. We emphasize that the above formula
is valid regardless of system size. In particular, it enables char-
acterizing current fluctuations in the thermodynamic limit,
where heat currents and their responses can be determined
using the macroscopic formula (16).

A particularly simple solution can be found in the case
of symmetric coupling to the baths (I'; = I'). Then, as dis-
cussed in Sec. II C, in the thermodynamic limit N — oo, the
stationary magnetization mg does not depend on the temper-
ature difference AB. Using Eq. (16), the equilibrium heat
current fluctuations are then given by a compact formula

Var(qq) = 2(Jmg + h)* (w2 (mo) + w® (mo)], (37)

where only the equilibrium magnetization my needs to be
determined numerically.

D. Path-integral approach

Another method used is the recently developed approach
to current fluctuations [45,47,75,76] based on the Martin-
Siggia-Rose path integral formulation of stochastic dynamics
[77-79]. Since the details of this approach were thoroughly
described in the above references, we focus only on the most
relevant aspects. Analogously to the mean-field approach de-
scribed in Sec. II B, this method applies the thermodynamic
limit N — oo before the long-time limit + — oo, and thus
describes the current fluctuations around the deterministic
trajectory corresponding to the solution of the mean-field
equation (9). Consequently, it characterizes conditional fluc-
tuations for a system initialized in a basin of attraction of a
given fixed point and measured during an observation time
that is short compared to the lifetime of this fixed point,
but long compared with the other timescales of the system;
such conditional fluctuations have been recently analyzed in
Refs. [34,45].

Within the path-integral approach, the heat current fluctu-
ations are characterized by the normalized scaled cumulant

generating function

. 1
So(Xa) = 1\11me NSa(Xa)v (38)

where S, (X ) is the unnormalized scaled cumulant generating
function defined in Eq. (22). The normalized current cumu-
lants can then be calculated using Eq. (23) as

ot = |

To determine s,(xy), one employs the counting field-
dependent (biased) Freidlin-Wentzell Hamiltonian [47]

d
Hy, (m.p) =" wli(m)[e*Pe™=rE — 1] (40)

v=1 =+

n

So (X )] . (39

Ixa Xa=0

where §,,, is the Kronecker delta and

Em) = lim (Eyio — Ey) = =2(m+h)  (41)

is the energy change due to flipping one spin up (i.e., transition
M — M + 2). The function s, () is then calculated as

— Hy, (m,, p}), 42)

Sa(Xa) X

where {m} ., p} } is the fixed point of the equations of motion

a
p=——Hy(m.p). (43)

a
= _H ) )
it = ——H,, (m, p) .

ap
We notice that, analogously to the mean-field equation (9),
the above equations can have multiple fixed points. Since the
current cumulants are determined by the behavior of s, (xy)
close to xo =0 [see Eq. (39)], to determine the steady-
state fluctuations one considers the fixed point lying close
to the fixed point of the unbiased dynamics [Eq. (43) with
X« = 0] that corresponds to the stationary state of the system.
The latter fixed point has the coordinates m, _o = my and
Px.=0 = 0. The finding of the fixed point can be further sim-
plified using the analytic solution for p;, ,

1 dﬁ wv m e_‘sm)(ug(m)(u)
px;(a = _In Zv-l —( Xu) (44)

4 Zi:l wi(m)(a )eﬁva)(ozg(mxg)

The solution m) ~can then be found numerically. Conse-
quently, one can determine s, (¥, ) numerically in the vicinity
of xo =0 and then numerically estimate the derivatives in
Eq. (39) using the finite difference method. In particular, to
the lowest order of precision, the normalized current variance

can be estimated as
50(0) — 254(€) + 54(2€)
€? +

Var(q,) = O(e), (45)

with a small parameter €. The higher-order finite difference
methods are easily accessible in the literature.

E. Two-state model

As a last method, let us present an effective two-state
model proposed in Ref. [33]. This model is applicable in the
regime where the system has two stable fixed points, i.e.,
the quasipotential V (m) has two minima. We further denote
these minima as m, and m_, and the maximum of V (m)
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that separates them as m,. The model assumes that, for large
system sizes N, the dominant contribution to noise results
from stochastic switching between the heat current values
associated with the fixed points m, and m_. This switching
is described as a Markov jump process among two discrete
states corresponding to different fixed points. The jumps from
the state m. to my occur with the transition rate ... For large
N, these transition rates can be approximated as [33,35,36]3

2e NV (m)=V (mx)] W+(m:|:) V7 (mL)V (my)

~ . (46
r+ N (46)

This expression implies that transition rates are suppressed
exponentially with N multiplied by the quasipotential barrier;
the latter corresponds to the difference between the value of
V(m) at the fixed point m4 from which the jump occurs and
the maximum m,. Each fixed point is further assumed to be
associated with a well-defined heat current value

(do)+ = =2(Jms + W)W (my) — w (my)], (47)

which is the average heat current calculated using Eq. (16)
for a given fixed point m. Using these assumptions, the
heat current variance associated with the stochastic switching
between the current values (g, )+ can be calculated as [33]

o P+P-

Var(qe) ~ 2((qu)+ — (Ga)-) s
+ —

(48)
where p1 = r4/(r + r_) are the probabilities of states m..

IV. RESULTS: FLUCTUATIONS SCALING

Let us now turn to the main point of the paper, namely,
the analysis of heat current fluctuations. For simplicity, in the
whole section we focus on the case of two symmetrically
coupled baths (I'y = I', = I'). The main quantity analyzed
is the normalized current variance Var(q; ), which is equal to
Var(g,) due to energy conservation.

A. Temperature-driven transition

Let us first analyze the dependence of the heat current
variance on the effective temperature, evaluated at & = 0.
We consider both the exact results for finite system sizes,
provided by the spectral approach from Sec. III A, and the
asymptotic results for the thermodynamic limit N — oo. In
the equilibrium case, the latter results are evaluated using the
fluctuation-response relation, Eq. (37), which was found to
fully agree with the path-integral approach from Sec. III D. In
the nonequilibrium case, we use the path-integral approach,
and the current variance is evaluated using Eq. (45) with

3We notice that our Eq. (46) appears to be larger than the corre-
sponding Eq. (37) in Ref. [33] by a prefactor 4. The reason is that
Ref. [33] considered the case where the difference between succes-
sive values of the number of molecules X was equal to 1, while in
our case the difference between successive values of magnetization
M equals 2. Consequently, Eq. (46) can be obtained from Eq. (37)
in Ref. [33] by using parametrization X = M/2, x = m/2, so that
V"(x) = 4V"(m).
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FIG. 3. The effective temperature dependence of the heat current
variance Var(q, ) for different system sizes N at equilibrium (A8 =0)
(a) and for AB = 0.4 (b). The green solid line in (a) represents
the equilibrium fluctuation-response relation (FRR), Eq. (37), while
in (b) it represents the path integral (PI) results. The dotted lines
in (b) are added for eye guidance. Parameters: h =0, I'} =Ty,

Br=Berr — AB/2, B2 = Berr + AB/2.

€ = 0.001.* We recall that in the ferromagnetic case the actual
steady state corresponds to an equally weighted mixture of
two degenerate magnetization states my = %|mg|. However,
the results obtained using the fluctuation-response relation or
the path-integral approach are the same when evaluated for
either of those states; furthermore, the stochastic switching
between these states does not contribute to noise for 2 = 0, as
both states are associated with the same current value (see the
more elaborate discussion in Sec. IV C).

The results are presented in Fig. 3 for the equilibrium
(a) and the nonequilibrium (b) cases. At equilibrium, the
variance tends to saturate at a finite value with increasing
system size, and converges asymptotically to the predictions
of the fluctuation-response relation for the thermodynamic
limit N — oo. In particular, in the paramagnetic phase (7o >
T.), the normalized variance decreases monotonically with
system size, since the current response vanishes in this limit.
This results from the fact that, for N — oo, the flipping of a
spin for m = 0 does not change the energy of the system. In

“For the values of Var(q,) presented in Fig. 3, the results are
consistent with those for larger and smaller €, as well as with the
results obtained using the higher-order finite difference methods.
The consistency becomes worse only in a region very close to the
criticality, where Var(q,) goes beyond the range of Fig. 3.
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Var(q1)/(TJ?)

50 100 500 1000

FIG. 4. The finite-size scaling (in log-log scale) of the heat cur-
rent variance Var(q;) at the phase transition point (T = 7;) for
different temperature differences AB. Other parameters as in Fig. 3.
Lines added for eye guidance.

the ferromagnetic phase (T < 1), especially away from the
phase transition point, we observe a good quantitative agree-
ment between the results for finite and infinite N, even for a
relatively low number of spins N = 100. We further notice
that in the thermodynamic limit N — oo, the heat current
fluctuations exhibit a nonanalytic behavior at T = T, (they
are equal to zero for T > T; and finite for T < 7). This
shows that current fluctuations can witness the presence of
phase transitions in equilibrium, where there is no average
current.

A very different behavior of heat current fluctuations is
observed in the nonequilibrium case [Fig. 3(b)] close to the
phase transition point. As one may observe, the current vari-
ance evaluated for finite N exhibits a pronounced peak close
to the phase transition point, whose magnitude increases with
system size. This agrees with the path-integral results, which
predict the asymptotic divergence of heat current fluctuations
when the phase transition point is approached from the fer-
romagnetic phase. Away from the phase transition point, the
results are generally analogous to the equilibrium case: In the
paramagnetic phase, the finite-size results converge asymptot-
ically to zero, in agreement with the path-integral approach,
which predicts the vanishing of heat current fluctuations. In
the ferromagnetic phase, one observes a good agreement be-
tween the finite-size results and the path-integral approach
even for relatively small system sizes. Finally, we note that the
current variance is discontinuous at the phase transition point.
This comes from the fact that the scaled cumulant generating
function s(x) is then nonanalytic at x; = 0 (see Ref. [47] for
more details).

We now focus on the finite-size scaling behavior of the
current variance at the phase transition point (T = 7). This
is illustrated in Fig. 4. As shown, in equilibrium, the variance
decays as a power law, tending to O for N — o0, in agreement
with the predictions of the fluctuation-response relation (37).
For a large temperature difference A = 0.6 it exhibits,
instead, a power-law divergence. Finally, for a small tempera-
ture difference A8 = 0.2 8¢ the heat current variance exhibits
a nonmonotonic behavior, first decreasing and then increasing
with system size.

100} ._...'““__.-._—ﬂ
LIRS (gf)ea/(TT*)
| ]

o100l ]
0.010 Gs (Q1)/<FJ4)
0.001

0 100 ‘ ' 500 1000

N

FIG. 5. The finite-size scaling (in log-log scale) of the third-order
response G3(g;) and the equilibrium kurtosis ((q‘l‘ Neq at the equilib-
rium phase transition point (7} = 7, = T;). Other parameters as in
Fig. 3. Lines added for eye guidance.

To explain this behavior, we note that the heat current
variance can be expanded in A as [28]

Var(q;) = Vareq(q1) + A'g2|: Gs(q1)

4
D + T] + O(ABY),

(49)

where Varg(q;) is the equilibrium variance, ((q‘l‘))eq is the
equilibrium value of the fourth cumulant of the heat current,
called kurtosis, and

3%(g
Gs(qn) = (8 féﬁ >Aﬂ=o (50)

is the third-order response of the heat current at equilibrium.
It can be calculated using the approach presented in Sec. III B.
Here, due to system symmetry, the current variance depends
only on even powers of AB. From Fig. 5, we see that G(g3)
vanishes as a power law with system size, while ((q‘l‘))eq di-
verges as a power law. Thus, the heat current variance consists
of two contributions: the equilibrium contribution, which van-
ishes as a power law, and the nonequilibrium contribution,
which diverges as a power law. The latter is mainly related to
divergent equilibrium kurtosis. The nonmonotonic behavior of
the current variance for small temperature biases is thus a re-
sult of competition of the vanishing equilibrium contribution
and the divergent nonequilibrium contribution, with the latter
becoming dominant for large system sizes.

Qualitatively, we can relate the divergence of the nonequi-
librium contribution to a competition of two baths, with the
cold one tending to relax the system to the magnetically
ordered state, and the hot bath tending to disorder the sys-
tem. At the same time, we can see that a similar frustration
between the ordering and disordering dynamics is already
present at equilibrium and is revealed by the behavior of
equilibrium kurtosis. This illustrates the usefulness of higher
cumulants in providing insight into the dynamics of open
systems [22-26,80-89].
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FIG. 6. The finite-size scaling of the magnitude of the peak of the
heat current variance (a) and the displacement of the peak position,
labeled Tt max, from 7. (b). Parameters as in Fig. 3(b). The figure is
plotted in log-log scale. The black dots represent the exact results,
while the solid lines represent the fitted power-law behavior.

Finally, to complete our analysis, let us analyze the behav-
ior of the peak of current fluctuations in their dependence
on the effective temperature (see the analogous procedure
in Ref. [29]). As can be observed in Fig. 3, the maximum
of that peak occurs at effective temperatures slightly lower
than 7;.. The magnitude (height) of that peak, as well as the
displacement of the maximum of that peak from T, are plotted
in Fig. 6 as a function of system size. As shown, the peak
magnitude increases polynomially with system size, with the
scaling exponent estimated as 0.65. The displacement of the
peak position from 7, decays with system size, which can also
be approximated by a power law, with the scaling exponent
estimated as —0.46.

B. Critical isotherm

In the previous section, we considered the situation when
the critical point (i.e., the continuous phase transition point)
Ter = T,, h =0 is crossed by sweeping the effective tem-
perature. However, alternatively, this point can be crossed by
sweeping the magnetic field along the critical isotherm, that
is, for a constant T = T,. The magnetic field dependence
of the heat current fluctuations in such a case is presented
in Fig. 7. First, we notice that, both in and out of equilib-
rium, Var(q;) is symmetric with respect to 4 = 0. This is
related to the symmetry of the model with respect to the
simultaneous reversal of magnetization and magnetic field

Var(q1)/(T'J?) €

Var(q)/(TJ?) 2

70110 70I.05 0.00 0465 0.‘10
h)J

FIG. 7. The magnetic field dependence of the heat current vari-
ance Var(q;) for the effective temperature T = T, and different
system sizes N at equilibrium (a) and for AB = 0.5B. (b). The
green solid line in (a) represents the equilibrium fluctuation-response
relations (FRR), Eq. (37), while in (b) it represents the path-integral
(PI) results. The finite-size results are represented by large dots, and
the dotted lines are added for eye guidance. Parameters: ') = I'y,

Bi = Betr — AB/2, B2 = Berr + AB/2.

(M — —M, h — —h). Second, in equilibrium [Fig. 7(a)], the
current fluctuations exhibit a dip at 4 = 0, which deepens
with system size. This agrees with the predictions of the
fluctuation-response relation (37) for N — oo, according to
which the noise vanishes at 4 = 0 and increases with |A|.
Further, one can observe that for N — oo, current fluctuations
exhibit a nonanalytic behavior at 7 = 0 (specifically, exhibit a
kink), which is analogous to the behavior at Toi = T. in the
temperature dependence. This can be explained by a nonana-
lytic behavior of magnetization as a function of the magnetic
field at the critical point, which behaves as mg o sgn(h)|h|'/?
[39]. Inserting this into Eq. (37), one finds that the heat current
variance behaves close to 4 = 0 as Var(g,) o< |h]*/3.

In contrast, out of equilibrium [Fig. 7(b)], the current
fluctuations exhibit two pronounced peaks that are mirror
symmetric with respect to 7 = 0. As further demonstrated in
Fig. 8, analogously to the behavior of the noise peak in the
effective temperature dependence (Fig. 6), the peak magnitude
(respectively, peak position) increases (respectively, decays)
polynomially with system size. This agrees with the predic-
tions of the path-integral approach, according to which the
current fluctuations diverge at 4 = 0 in the thermodynamic
limit.

034125-9



PTASZYNSKI AND ESPOSITO

PHYSICAL REVIEW E 111, 034125 (2025)

—~
oo
~—

Var(q1 ) max/(TJ?)

X N—O.75

0.01

100 200 500 1000

N

FIG. 8. The finite-size scaling of the magnitude of the peak of the
heat current variance (a) and the peak position (b) for parameters as
in Fig. 7(b). The figures are plotted in log-log scale. The black dots
represent the exact results, while the solid lines represent the fitted
power-law behavior.

We notice that the observed behavior of the heat current
fluctuations out of equilibrium is slightly different from the
behavior of the entropy production fluctuations along a critical
line in the Schlogl model (which can be regarded as analogous
to the critical isotherm) analyzed in Ref. [30]. In that case, the
fluctuations exhibit only a single peak near a critical point.
This may be related to the fact that the Schlogl model does
not possess any symmetry that is analogous to the symmetry
of the Curie-Weiss model with respect to magnetization and
field reversal.

C. Field-driven transition

Let us now turn our attention to the behavior of current
fluctuations at the magnetic-field-driven transition occurring
for h = 0 and T < T:.. In Fig. 9 we present the magnetic field
dependence of the heat current variance at equilibrium (a) and
for AB = 0.58 (b). Since the current variance is symmetric
with respect to & = 0 (see Sec. IV B), for better visibility, we
now plot the results as a function of |A|. At equilibrium, the
finite-size results agree well with the fluctuation-response re-
lation. As at the critical isotherm, in the thermodynamic limit,
the heat current variance behaves nonanalytically (exhibits a
kink) at 4 = 0, witnessing the presence of phase transition.
In contrast, out of equilibrium, the finite-size results for the
current variance develop a strong peak for finite values of |A|
near the phase transition point. The path-integral approach

T =0.8T., AB=0 ]
e N =100
= N =200 ]
+« N =300
— N = oo (FRR)
\ e N =100
—~ ome N =200
[\ ' ]
™ : 4 N =300
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= _ —— N — o (PI)
= ok = ]
S e
= St e, Teg =0.8T., AB=0.58eg |
S
1L ‘:_‘ 5‘""5""3"'::4 L B8
O.E)() 0.62 0.64 0.06 0.68 O.iO 0.12

e

FIG. 9. The magnetic field dependence of the heat current vari-
ance Var(q;) for the effective temperature T = 0.87, and different
system sizes N at equilibrium (a) and for A = 0.5B.¢ (b). The
green solid line in (a) represents the equilibrium fluctuation-response
relations (FRR), Eq. (37), while in (b) it represents the path integral
(PI) results. (b) is plotted in logarithmic scale, and the dotted lines
are added for eye guidance. Parameters: I'y = ', 81 = Ber — AB/2,

B2 = Bt + AB/2.

does not capture the presence of this peak, though it well
describes the heat current fluctuations for a sufficiently large
magnetic field. The reason is that now this peak originates
from stochastic switching between two current values asso-
ciated with different fixed points of the system, namely, the
absolutely stable and metastable magnetization states. This
phenomenon often (though not always [38]) occurs in systems
that undergo discontinuous phase transitions [30,33,34].

As discussed in Sec. IITE, the contribution to noise origi-
nating from stochastic switching between fixed points can be
approximately described using an effective two-state model.
This suggests that we can approximate noise in the whole
range of & by adding this contribution to path-integral results.
We verify this in Fig. 10; here we present a smaller range of
h than in Fig. 9 to better visualize the noise peak. As shown,
the applied approximation well reproduces the noise behavior,
with the quantitative agreement improving for large N.

At first glance, the behavior of the heat current fluctuations
out of equilibrium (the presence of the noise peaks) may
appear to be similar to that observed at the critical isotherm
(Sec. IV B). However, there are crucial differences. First,
as shown in Fig. 11, the current variance does not diverge
with system size when evaluated exactly at the phase tran-
sition point (h = 0). This differs from the behavior at the
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FIG. 10. The magnetic field dependence of the heat current vari-
ance Var(q,), plotted in logarithmic scale, for two different system
sizes N. Dots represent the exact results while lines represent the
sum of current variances calculated using the path-integral approach
and the two-state model. Parameters as in Fig. 9(b).

critical point (continuous phase transition) where the fluc-
tuations diverge polynomially (Fig. 4). Instead, fluctuations
exhibit nonmonotonic behavior: they first increase but later
decrease with N, tending to saturate at some finite value.
This saturation value is higher for effective temperatures
closer to T, where fluctuations diverge. We notice that this
behavior of fluctuations differs significantly from previously
considered models of phase transitions, where current fluctu-
ations diverged either polynomially [29-32] or exponentially
[30,32-34] at the phase transition point. In particular, even
though the system exhibits a stochastic switching between
fixed points, this does not lead to noise enhancement. This
can be explained using the two-state model: for 7 = 0, both
fixed points are associated with the same heat current value,
and thus the prefactor {(q;)+ — (¢1)—, appearing in formula
(48) for the current variance, disappears. Second, as shown

Var(q)/(I'J?)
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FIG. 11. The finite-size scaling of the heat current variance
Var(q,) at the phase transition point (2 = 0) for different effective
temperatures To and AB = 0.4B.g. Other parameters as in Fig. 9.
Lines added for eye guidance.
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FIG. 12. The finite-size scaling of the magnitude of the peak of
the heat current variance (a) and the peak position (b) for parameters
as in Fig. 9(b). The black dots represent the exact results, while the
red circles represent predictions of the two-state model. (a) is plotted
in logarithmic scale and (b) is plotted in log-log scale. The solid line
in (b) represents the fitted power-law behavior.

in Fig. 12(a),’ the magnitude of the peak of current fluctu-
ations diverges exponentially with system size (rather than
polynomially, as in the case of peak at the critical isotherm).
At the same time, the position of this peak [Fig. 12(b)] shifts
toward the phase transition point (4 = 0), following a power-
law behavior that is close to a hyperbolic one. This behavior
can be explained using the two-state model (see red circles
in Fig. 12), which well reproduces the exact results. Within
this model, exponential scaling of the peak magnitude is the
result of the exponential suppression of transition rates r4 [see
Eq. (46)]. At the same time, the shift of the peak position is
the result of the competition of two factors: On the one hand,
by increasing |k|, one magnifies the difference between the
heat current values for the stationary and metastable states,
(g1)+ — {(q1)—, which enhances the fluctuations. On the other
hand, this also magnifies the difference between quasipo-
tential values of magnetization states |V (my) — V(m_)|. By
virtue of the large deviation principle (12), this speeds up the

SHere we focus on N < 450, since for larger systems the numerical
calculations in the bistable regime become unreliable due to the small
value of the spectral gap.
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FIG. 13. The magnetic field dependence of the heat current vari-
ance Var(q;) at equilibrium (AB =0) for Ty = 1.057, (a) and
T = 1.25T, (b). The green solid line represents the equilibrium
fluctuation-response relations (FRR), Eq. (37). The finite-size results
are represented by large dots, and the dotted lines are added for
eye guidance. Parameters: I'y = I, 81 = Berr — AB/2, B2 = Berr +
AB/2.
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exponential decay of the probability of the metastable state,
min{p., p_}. This reduces noise, which is proportional to the
product py p_ [Eq. (48)]. The latter effect becomes dominant
for large N, leading to the shift of the peak position towards
h=0.

This leads to a somewhat paradoxical conclusion: while
fluctuations do not diverge with system size when eval-
uvated exactly at the phase transition point (Fig. 11), the
observed peak behavior suggests that in the thermodynamic
limit N — oo they diverge “infinitely closely” to the phase
transition point. Thus, there is certain subtlety in applying the
thermodynamic limit when considering current fluctuations.®
This also suggests that to fully account for the effect of phase
transitions on current fluctuations, one needs to analyze their
behavior not only at the transition point itself but also in a
finite region around the phase transition point.

%We note that a similar subtlety arises already when considering the
equilibrium magnetization for the Curie-Weiss model: it is equal to
0 when the limit # — 07 is applied before the thermodynamic limit
N — oo, while it is finite when the limits are applied in the opposite
order.
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FIG. 14. The same plot as in Fig. 13 but for the nonequilibrium
case (AB = 0.5B). The green solid line represents the path-integral
(PI) results.

D. Magnetic field dependence of fluctuations
above the critical temperature

Finally, for the sake of completeness, let us analyze the
magnetic field dependence of the heat current fluctuations
for Tos > T., where no phase transition occurs. In Figs. 13
and 14, we plot the results for the equilibrium (AB = 0) and
the nonequilibrium (A B = 0.5B.¢) cases, respectively. In both
cases, we consider two effective temperatures that are close
to (Teee = 1.057;) or away from (T = 1.25T;) the critical
temperature. As shown, both in and out of equilibrium, the
heat current variance exhibits a dip at 2 = 0 and is an analytic
function of £ in the thermodynamic limit N — oco. However,
when the system is out of equilibrium and close to critical
temperature (T = 1.057;), the system exhibits two noise
peaks at the magnetic field close to 4 = 0 [Fig. 14(a)], which
are not observed otherwise. As predicted by the path-integral
approach, in contrast to the behavior for T < T, these peaks
have a finite magnitude in the thermodynamic limit. Thus,
their presence might be regarded as a precursor of the diver-
gent behavior of fluctuations observed for Toy < To.

V. CONCLUSIONS

Our objective was to verify whether current fluctuations
always exhibit divergent behavior at the phase transition point.
To this end, we studied the heat current fluctuations in the
Curie-Weiss model attached to two thermal baths with differ-
ent temperatures. First, we considered the temperature-driven
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phase transition, which is continuous for both the magne-
tization and the heat current. We found that in this case
the fluctuations consist of two components: the equilibrium
one, which vanishes in the thermodynamic limit, and the
nonequilibrium one, which exhibits a power-law divergence
with system size. For a small temperature bias, this leads to a
nonmonotonic scaling of fluctuations: they first decrease due
to vanishing of the equilibrium contribution and then increase
due to the divergence of the nonequilibrium noise component.
Qualitatively, we can relate the different behavior of equi-
librium and nonequilibrium fluctuations to the competition
between the ordering and disordering dynamics induced by
the cold and the hot bath, respectively. At the same time, we
note that a similar frustration mechanism is already present
at equilibrium and manifests itself in the divergent behavior
of the heat current kurtosis, that is, the fourth current cumu-
lant. This illustrates the value of higher-order cumulants in
providing insight into the dynamical behavior of open systems
[22-26,80-89]. It may be worth further investigating whether
the divergent (respectively, nondivergent) behavior of heat
current fluctuations at the nonequilibrium (respectively, equi-
librium) phase transition is related to the similar behavior of
the nonequilibrium (respectively, equilibrium) heat capacity,
reported in Ref. [48].

In the next step, we analyzed the magnetic-field-driven
transition that occurs below the critical temperature. At this
transition, magnetization jumps discontinuously, while the
heat current is continuous but exhibits a kink. In this case,
the current fluctuation behavior is somewhat more subtle than
in the previously investigated models [29-34]. When fluctua-
tions are evaluated exactly at the phase transition point, they
do not diverge with system size, but rather saturate at some
finite value. However, one can observe the emergence of max-
ima in the magnetic field dependence of noise, that occur for
small but finite field values. The magnitude of those maxima
diverges exponentially with system size, while their positions
shift towards the phase transition point. This effect is the result

of stochastic switching between metastable current values, a
phenomenon often [32-34] (though not always [38]) occur-
ring for discontinuous nonequilibrium phase transitions. This
means that to fully account for the effect of phase transition
on current fluctuations, one needs to examine their behavior
not only at the phase transition point itself but also in a finite
region around the phase transition point. Furthermore, we
emphasize that the noise maxima grow exponentially despite
the fact that the heat current is continuous at the phase tran-
sition. This makes the previously suggested picture, in which
continuous (respectively, discontinuous) phase transitions are
associated with power-law (respectively, exponential) diver-
gence of fluctuations [29,33], more nuanced.

On the methodological side, the paper demonstrates that
current fluctuations in large systems can be effectively char-
acterized by combining two complementary approaches:
the recently developed path-integral approach [45,47,75,76],
which characterizes conditional current fluctuations at a
specific fixed point, and the two-state model [33], which
accounts for stochastic switching between fixed points. We
also note that conditional current fluctuations, considered
on their own, have recently attracted some attention in the
literature [34,45].
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