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Abstract. In an election, self-voting, i.e. candidates voting for them-
selves or their own proposals, might only capture an obvious inclination
or a fear of loss of reputation, and hence may not be useful towards
choosing the best candidate. In some contexts, e.g. for small scale board-
room elections, it can thus be sensible to prohibit self-voting, especially,
this will prevent everybody pointing to themselves as the best choice. In
the case of public elections this is easy to enforce, however, in standard
secret ballot elections the no-self-voting condition is unchecked and re-
lies on the honesty of the participants. More commonly, the constraint
is simply not imposed in the first place due to lack of enforcement. A
generalisation is where certain groups are not allowed to vote for their
own candidate. In this case, preventing self-voting can also reduce the
level of coercion, e.g., if team leaders demand, or more subtly simply
expect, all their team members to vote for them in an election for the
best team leader.
With the aid of secure e-voting, imposing the no-self-voting constraint
becomes possible. We show how this constraint can be implemented ef-
ficiently, in the context of both centralised and decentralised voting. Es-
pecially, we show how to obtain a robust (i.e. allowing absentees) de-
centralised voting system preventing self-voting by using just standard
linkable ring signatures and anonymous vote-casting channels.

1 Introduction

In elections, it is often the case that candidates are themselves part of the elec-
torate. Sometimes self-voting is excluded in order to obtain an expressive result
and avoiding everybody pointing to themselves as the best candidate. In gen-
eral, we can envisage that for some voters, certain voting options are excluded.
In the Eurovision Song Contest, as an example, countries are not allowed to vote
for themselves. A more illustrative example is the Security Protocols Workshop
where the best presentation is elected in a secret ballot but presenters are not
allowed to vote for their own talk. Interestingly, prohibiting PhD students to
vote for the talk of their supervisor, or vice versa, also helps to prevent implicit
coercion threats, and hence to select a better winner.

Ideally, voting systems should fulfill at least two basic properties: 1) Verifi-
ability: Allowing the detection of any vote fraud, including casting more or dif-
ferent votes than allowed, modifying or deleting the votes of other participants,
and finally ensuring a correct tally of the votes; 2) Ballot Privacy: Protecting



the privacy of the cast vote, besides the unavoidable privacy leakage from the
actual result of the election. The challenge is to balance the levels of verifiability
and privacy with good usability and efficiency. Disallowing self-voting adds yet
another constraint that we need to be able to verify, and if done poorly can lead
to privacy leaks.

In this paper, we show how to efficiently enforce the no-self-voting condition
in different settings. For voting systems with central tally authorities, we show
how to efficiently prove the correctness of cast ballots using a voter-side plaintext
(in)equivalency test/proof. For these proofs, we carefully avoid pitfalls both in
terms of soundness (see also discussion in [15]) and privacy (which does not seem
to have been discussed earlier).

We also consider protocols in the decentralised setting (aka boardroom vot-
ing), i.e., in the case where we do not have or do not want to rely on a central
authority trusted for privacy.

Decentralised voting systems come in (at least) two flavours. In systems like
[10, 9] cryptographic ballots are cast with a direct (authenticated) relation to
the voter, and we can apply plaintext (in)equivalence proofs like in the central
system case. However, if just a single voter fails to participate, we need to run
recovery rounds until all anticipated voters participate (see [8] for a method to
gain robustness but paying in terms of privacy and accuracy). The second type of
decentralised scheme assumes anonymous channels to cast plaintext votes.1 The
advantage is that the protocol is robust, i.e. tolerates abstaining voters without
having to redo the election. In this setting, we present a scheme which is simple,
light-weight and fulfills both ballot-privacy, verifiability, and allows detection
and removal of self-votes.

To achieve this we alter the known linkable ring signatures (LRS) decen-
tralised voting protocol. We propose a new primitive called Conditional Link-
able Ring Signatures to replace the LRS and detect self-votes. Importantly, we
manage to achieve this without having to implement new zero-knowledge proofs,
and build our scheme using two instantiations of the basic primitive of LRS.

In this short paper, we give possible solutions to prevent self-voting in paper-
based voting (Sec. 2.1) and central-authority e-voting (Sec. 2.2) including an
outlook towards coercion-resistant voting. We will also point out a privacy pit-
fall problem with plaintext-equivalence tests which relates to their general use
in e-voting and beyond (Sec. 2.3). Finally, we discuss decentralised e-voting in
Sec. 2.4, introduce the conditional linkable ring signatures and our decentralised
scheme.

2 Proposals for No-Self-Voting Solutions

2.1 Paper ballots

In standard elections using paper ballots, where voters mark their choice among
a number of candidates on the ballot, it seems hard to prevent self-voting. How-

1 Anonymous channels can be hard to implement in practice especially in a strong
adversarial model, e.g. a malicious bulletin board seeing network metadata.
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ever, in some election systems, each candidate has their own ballot, and the
voter makes their choice by casting their chosen candidate-ballot in the ballot
box. Such systems have been used historically, but have privacy issues. Despite
these, they are still in use, e.g. in Israel, see [1] which also discusses possible
privacy attacks. However, in such a system we could hand out a selected range
of ballots to each voter individually, preventing self-voting. The main difficulty
here consists of verifying that only one vote is cast, and recollecting the non-cast
ballots in a privacy-preserving way.
Advantages: Easy to implement for candidate-specific paper ballots.
Disadvantages: Hard to handle many candidates. Possibilities of privacy- and
verifiability attacks.

2.2 E-Voting with Central Tally Authority

In the most common setup of e-voting we have a central authority responsible
for the tally holding a key pair (pk, sk) for a public key encryption system. For
better privacy, these keys might be distributed over several players which jointly
will apply threshold verifiable decryption of the final election result, either after
homomorphic aggregation of votes or using a mixnet for privacy. In this case, a
voter will normally cast a ballot to the bulletin board as

ID,Enc(C; r), π

where ID is the identity of the voter, C the choice of candidate, which is encrypted
with randomness r. Finally, π is a zero-knowledge proof (ZKP) of correct en-
cryption of a valid candidate which is also a proof of knowledge, and normally it
ensures NM-CPA security of the ciphertext with the ZKP. To prevent self-voting,
we want to prove that ID ̸= C (for some encoded version of ID).

There are several ways to ensure the absence of self-voting.

– We can adjust the proof π of correctness of C to ensure C ̸= ID. If this is a
simple OR proof over candidates, removing a candidate can even make the
proof smaller. However, in some cases this is less efficient, e.g. π could be a
range proof for the full candidate list which might be twice or more expensive
to split; or in some cases there are no constraints on C over the message space,
e.g., a write-in. Further, it can be easier for the implementation to have the
same proof type π for all voters, and simply add a smaller ZKP for the
exclusion of ID on top.

– The are methods for non-membership proofs, e.g., [4] gives efficient construc-
tions but using the Groth-Sahai proof system in a bilinear group setting.
Depending on the setting this can be good solution.

– The election authority could do standard Plaintext Equivalence Tests/Proofs
(PETs) [15] on Enc(C; r) to prove that C ̸= ID. However, this is not desirable.
In particular, it will involve the secret election key which we prefer to keep
inactive until the decryption of the final tally. Especially, if we want to verify
ballots on the fly, this will be troublesome since PETs requires a threshold
set of authorities to be available online in order to decrypt.

3



We here consider ElGamal encryption in a general DDH group, due to its
extensive use in voting systems. We show how an encryptor can make an effi-
cient plaintext (in)equivalence zero-knowledge proof using the knowledge of the
encryption randomness, using straightforward known and very efficient tech-
niques.2 For generality, parallel to PETs, we show how to prove both equality
and inequality, which can be useful in other settings.

Let G be a prime-order group with q being the order. Let g be a generator
of G and pk = gsk the public election key. An ElGamal encryption of C is
Enc(C; r) = (gr, pkrC) where we abuse notation and use C both as the choice
and the corresponding encoding as a group element. We have suppressed notation
for group multiplications.

In our use case to prevent self-voting, we want a protocol to prove that the
cast vote Enc(C; r1) does not have the voter themself as chosen candidate. For
generality, we present a more general proof of plaintext (in)equality test from a
prover who is the encryptor of two ciphertexts.

The protocol for the proof of plaintext (in)equality of Enc(C; r1) = (gr1 , pkr1C1)
and Enc(C; r2) = (gr2 , pkr2C2) between a prover P knowing r1, r2 (the voter) and
a verfier V is now as follows3

1. P sends Enc(C1; r1) = (gr1 , pkr1C1) := (a1, b1) and Enc(C2; r2) = (gr2 , pkr2C2) :=
(a2, b2)

2. P,V use the homomorphic property of ElGamal encryption to compute
(a1/a2, b1/b2) = Enc(C1/C2; r1 − r2) := (d, e). The problem is now equiv-

alent to showing whether C1/C2
?
= 1.

3. (a) In case of in-equivalence, P gives a ZKP πnon−eq of discrete log inequiva-
lence which proves that d = gr = gr1−r2 (including knowledge of r), but
that e ̸= pkr. This is done without proving knowledge of a discrete log
of e (which could be unknown). We give references for this proof below.

(b) In the case of equivalence, P gives a ZKP πeq of discrete log equivalence
which proves that d = gr = gr1−r2 and e = pkr = pkr1−r2 . This can be
done using a standard Chaum-Pedersen proof [7].

4. V verifies the correctness of πeq or πnon−eq (unless proof was interactive).

Note that if the ZKP is non-interactive, then this protocol is also non-interactive.
Whereas the Chaum-Pedersen proof is very well-known, the discrete log inequiv-
alence proof is less known, but follows from [5, Sec. 5]. Both are very efficient,
the size of the equality proof is just two group elements and the in-equality has
a size of three group elements [16]. Both can be made non-interactive using the
strong Fiat-Shamir transformation [2].
Advantages: We only need to add a very small extra zero-knowledge proof
to standard systems without changing other parts of the system. It also works
easily if a group of voters has to be prevented from voting for a given candidate.

2 Ref. [3] gives general constructions of PETs and PETs for encryptors, but due to
their generality each proof iteration only has soundness 1/2 and will be less efficient.

3 For our case, we can set r2 = 0 but the general case is relevant in other contexts,
e.g. when submitting ballots anonymously in JCJ [11].
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Disadvantages: If we need to exclude more than one candidate, the proof size
will be linear in the number of excluded candidates.

2.3 Privacy Problems in Standard PETs

An important question is why did not follow the procedure of standard PETs
by simply exponentiating Enc(C1/C2; r1− r2) with r (for PETs this is done in a
distributed way using several parties [15]) to get

(gr(r1−r2), pkr(r1−r2)(C1/C2)
r)

Then revealing r(r1− r2) to the verifier allows retrieving (C1/C2)
r and checking

whether this is 1 for equality or random for inequality. Following [15], the verifier
should also check that r(r1 − r2) ̸= 0 for soundness of the proof. However, this
can actually result in privacy leaks of the encrypted candidate.

To see this, note that both here and for standard PETs [15], we reveal the
terms

gr1−r2 , gr(r1−r2), (C1/C2)
r (1)

which we cannot prove to be random to the adversary without further as-
sumptions. In particular, if an active adversary happens to know gr1−r2 be-
forehand when choosing the (encoding of) plaintexts, he could set C1/C2 =
gx(r1−r2) for some x known to the adversary. Now, the plaintext equivalence
proof between ciphertexts of resp. C1 and C2 would fail but would still reveal
the choice of plaintexts by comparing the two last terms in Eq. 1, which would
be gr(r1−r2), gxr(r1−r2) which can be checked by the adversary knowing x. In
practice, one could imagine that this could happen if mixnets are prepared in
advance for a fast online mixing phase, e.g., in JCJ where this is the bottleneck
for the tally efficiency. Even if this attack seems theoretical, the privacy leak is
important since it would make a proof of privacy of a scheme using such PETs
troublesome.

We leave it as an open problem to avoid this privacy problem in general, but
our solution above for the case where the encryptor makes the PET side-steps
this problem.

Coercion-Resistant Voting: We finally comment on the possibilities in coercion-
resistant voting. Here, the voter’s submitted ciphertext should not be linkable
to the voter. This makes the problem of avoiding self-voting harder. In JCJ [11],
one could imagine encoding candidate choices via the publicly encrypted creden-
tials and then weed out self-votes using PETs. However, we leave it as an open
problem to prevent self-voting efficiently while preserving coercion-resistance.

2.4 Decentralised Voting

Decentralised schemes like [10, 9] have ballots which can be extended to ElGamal
ciphertexts with a public key. This means, we can use the plaintext in-equivalence
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proof from Sec. 2.2 to prevent self-voting. However, these schemes are not robust -
all eligible voters need to cast their vote to compute the election result. We now
show how to get robust decentralised voting schemes without self-voting, and
that this can be achieved without implementing new cryptographic primitives
using only linkable signatures.

Linkable Ring Signatures In the seminal paper [13] Linkable Ring Signatures
(LRS) were introduced and shown to facilitate the construction of a robust de-
centralised voting protocol. We describe this approach here in an informal and
abbreviated form. An LRS scheme contains four algorithms Gen,Sign,Ver, Link.
Each user, Ui, holds a signing and public verification key pair (ski, pki) ←
Gen(1k). Let L be a subset of the public keys, which is called the ring and
provides an anonymity set. We need to use an enhanced version of LRS which in
addition to the ring also has a label lbl, called event-id in [12]. Ui can then sign a
message m as σ ← Sign(ski,m, (lbl, L)). These signatures are verified using Ver.
Finally, the signatures can be pairwise checked if they are linked via Link. Signa-
tures are linked iff they have the same signer, same ring and same label, formally
Link(L,m,m′,Sign(m, ski, (lbl, L)),Sign(m

′, skj , (lbl
′, L′))) = δi,jδL,L′δlbl,lbl′ .

4

The security properties are defined via games, see e.g. [14], and informally
ensure: 1) Existential Unforgeability: Given a set of honestly generated pub-
lic keys, EU ensures that even in the presence of a signing oracle that produces
signatures for different, messages, rings and signers, no new verifiable signature
can be constructed. 2) Signer Anonymity: Allows the adversary to adaptively
corrupt and obtain oracle signatures. Then the adversary gets a challenge signa-
ture for a chosen ring and label, and has to guess better than random which of
the non-corrupted users created it. 3) Linkability: Ensures a) that the adver-
sary cannot frame a user by producing a new signature linkable to a signature
from the honest user, other than by copying. b) That users cannot create extra
unlinkable signatures for the same ring.

Given an LRS setup, the voting protocol in [13] is simple: Votes are cast in
plaintext to a bulletin board BB via an anonymous channel, but signed with
LRS, where the ring is over the public keys of all voters. The signatures prevent
ballot stuffing from non-eligible parties. The signer anonymity of LRS means
that the ballots are anonymous in the ring of all voters, and ensures ballot
privacy. Finally, the linkability of LRS means that if someone submits multiple
ballots these are linkable via the Link algorithm, and ensures one-vote-per-voter
verifiability. Since the ballots have plaintext votes, the election is self-tallying,
also with absentees, and anyone can confirm the result.

Conditional Linkable Ring Signatures Our idea to prevent self-voting is to
let voters publish public-verifiable signatures of their prohibited voting options,
and change the LRS primitive to allow linking signatures across different rings

4 δ denotes the Kronecker delta function.
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and labels but only if the user signs the same message twice.5 To be more general,
this could also be a condition in terms of the messages, labels and rings of the
two signatures – hence we name them Conditional Linkable Ring Signatures
(CLRS).

We thus define a second algorithm for linking, denoted LinkR, for a given
(symmetric) predicate R such that (here lbl, L,m are implicit in the signature)
if σi = Sign(m, ski, (lbl, L)) and σ′

j = Sign(m′, skj , (lbl
′, L′))

LinkR(σ
′
i, σ

′
j) = δi,jR

(
(lbl, L,m), (lbl′, L′,m′)

)
In our case it is sufficient to consider the predicate defined to be true iff

m = m′. We denote this by R = id.
The security properties of CLRS are straightforward generalisations of LRS,

with a new linkability game for LinkR and anonymity needs to be updated since
signatures fulfilling the relation are now linkable. When we only link same mes-
sage signatures, users can ensure that anonymity is preserved by only signing
messages including extra unique identifiers.

The idea is now as follows: In an initial round, each voter signs their dis-
allowed voting options where the ring is their own public key. This is sent to
BB and is publicly verifiable due to the ring being only the single voter. For
the actual election round, all voters cast their plaintext votes with their ring
signature, where the ring is now over all voters. If someone casts a self-vote it
will be detectable since the plaintext vote is the same in the first and second
round, making it linkable. We now make this precise.

The No-Self-Voting Voting Protocol Given a CLRS, the protocol prevent-
ing self-voting is a simple two-round protocol. Each of the n voters Ui generates
a key pair ski, pki for the chosen CLRS. Let Ck denote the voting options, and

assume Ui is not allowed to vote for ĈUi
. In an initial round each voter Ui signs

and publishes the prohibited option ĈUi
signed under the ring consisting only of

the user’s own public key and label lbl0 (this round is skipped for voters without
candidate constraints):

Ui, Sign
(
ĈUi

, ski, (lbl0, {pki})
)
−→ BB

In the actual voting round, each voter Ui anonymously submits their candidate
choice CUi

signed under the ring of all voter public keys L = {pki}i=1,...,n and a
second unique label lbl1.

Sign
(
CUi , ski, (lbl1, L)

) anom.−→ BB

Finally, everyone can verify all signatures, check that none of the second round
signatures are linked with Link and check that none are linked to the initial

5 The idea of tracing same message signatures goes back to the untraceable e-cash
system [6] where it was used to avoid double spending.
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round signatures using Linkid. Note that it is clear who signed each message in
the initial round since the ring there is just the single public key of the signer.

If we re-use keys for several elections or election rounds then each round
needs a unique label lblj , and the candidate names in each round are appended
with lblj to prevent linking between rounds. In the initial round, the voters
sign all prohibited choices with the corresponding round labels. Alternatively, a
CLRS with a different predicate can be used to ensure that there is no linkability
between the voting rounds, but still between the voting round and the initial
round for the same messages.
Verifiability: Each voter can check that their ballot appears on BB. Anyone
can verify signatures (ensures no ballot stuffing from externals by existential
unforgeability) and that they are not linked within the voting round using Link
(ensures one-vote-per-voter) and not linkable to the initial round using Linkid
(ensures no self-voting). Linkable ballots are simply removed.
Ballot-Privacy: Ballot privacy follows from the anonymity of the vote casting
channels and the anonymity of the CLRS primitive. For multiple elections the
unique labels ensure no linkability between rounds. It would be interesting to
develop ballot privacy notions that also capture side-channels, e.g., if a voter
always casts a vote fast and can be correlated between rounds.

Instantiating the Primitive Until now we have only considered the CLRS
as a primitive. We now demonstrate that when we have a given overall set of
public keys Lall, we can instantiate CLRS for linking the same messages (or
more generally if f(lbl, L,m) = f(lbl′, L′,m′) for a function f) by using two
LRS signatures. This goes against the spontaneous nature of LRS which allows
adding users ad hoc, but in the case of a voting protocol with a known set of
public keys this is sufficient. The idea is that we sign as expected using the first
signature and let the label of the second signature be the message itself. The
message of the second signature is the first signature to bind them together6 and
the ring is Lall, i.e. the CLRS signature SignCLRS(ski,m, (lbl, L)) consists of the
two LRS signatures

σ1 = SignLRS
(
ski, 0||m, (0||lbl, L)

)
, σ2 = SignLRS

(
ski, 1||σ1, (1||m,Lall)

)
When the same message is signed twice, the second part becomes linkable since
it has the same label, but otherwise when messages are different it is not linkable
and anonymity is preserved since it is over the ring of all public keys. The security
of the construction should be proven formally. However, intuitively existential
unforgeability follows from the LRS primitive. We have appended 0 and 1 to
the messages in σ1 and σ2 to prevent any malleability in reverting the order of
signatures. For linkability, we define Link as the LRS link on the first signature
and Linkid as the LRS link on the second signature. The anonymity of the CLRS
follows intuitively like the anonymity of the underlying LRS. Even in the special

6 Using the first signature as the message in the second signature might not be strictly
necessary but can provide stronger security e.g. strong unforgeability.
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case where a message should happen to collide with a label, there can be no
cross-links between the first and the second part of the signatures because the
labels have been appended with 0 resp. 1.

3 Conclusion

We have discussed how to prevent self-voting in many different voting contexts,
from paper-based voting over centralised e-voting to decentralised voting. Espe-
cially, we designed a decentralised, robust scheme that allows public detection
of self-votes using linkable ring signatures. Future work consists in proper def-
initions of security for the CLRS primitive and a detailed security analyses of
the proposed decentralised scheme and its instantiation.
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