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Thermodynamics of coherent energy exchanges between lasers and two-level systems
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We study the quantum thermodynamics of a coherent macroscopic electromagnetic field (laser) coupled to
a two-level system (qubit) near resonance, from weak- to strong-driving regimes. This combined system is,
in turn, weakly coupled to a thermal radiation field and can be described by an autonomous quantum master
equation. We show that the laser acts as an autonomous work source and that, in the macroscopic limit, the work
produced is independent of the phase of the laser. Using the dressed qubit approach, we show that the variation of
energy in the laser is not the work transferred to the dressed qubit, which is instead obtained from the “dressed
laser”—a coherent superposition of the laser and the qubit. Using a two-point measurement technique with
counting fields, we obtain the full counting statistics for the work of the laser and dressed laser, and show that they
satisfy the Crooks fluctuation theorems. We then use these theorems as criteria to investigate the thermodynamic
consistency of quantum master equations, first in the autonomous setup for the combined system, then in the
nonautonomous setup for the quantum system where the coherent field is eliminated and effectively described by
a time-dependent external field. Treating the laser as an external field is known to yield expressions for the work
which are in contradiction with quantum thermodynamics predictions in the strong-driving regime. We show that
these inconsistencies stem from a confusion between the laser and dressed laser, and show how to correct them.
We also derive a generalized Bloch master equation, thermodynamically consistent across all driving regimes,
from which the Bloch and Floquet master equations can be obtained using additional approximations (of which
we also examine the consistency).
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I. INTRODUCTION

Quantum optics is the study of the interaction of matter
(atoms and molecules) with quantized radiation fields [1].
In many cases, the radiation fields can be treated as baths,
and their degrees of freedom can be traced out from the
equations of motion, leading to a quantum optical master
equation describing the dynamics of the system of atoms
and molecules. This procedure is well suited, for example,
to describe the decay of a two-level system in vacuum, or
the resonance fluorescence when an external coherent field is
also present [2]. In the context of quantum computing and
technologies, many implementations rely on the ability to
coherently monitor a two-level system, or qubit, using a laser,
while competing with spontaneous emission processes which
act as a damping mechanism. The dynamics of the qubit is
then described by the optical Bloch equation [3–5], or, in the
strong-driving regime, by the Floquet master equation [6–8],
derived from the quantum Floquet theory [9].

The optical Bloch equation was primarily used in
spectroscopy [10], which motivated early works on its
thermodynamic consistency [11]. The rapid and recent de-
velopment of quantum technologies has revived interest in
the thermodynamic consistency of quantum optical master
equations [5–7,12–14], with the Bloch and Floquet master
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equations being increasingly used to study the thermodynam-
ics of driven quantum systems [15–20]. More precisely, the
consistency of the Bloch master equation has been studied
at the average level [5,11], while the full counting statistics
has been done for the steady state of the Floquet master
equation [12]. In these approaches, the driving field is de-
scribed by an external time-dependent field, which interacts
with the qubit through a time-dependent Hamiltonian V̂ (t ).
Interestingly, it was found [5] that, in the strong drive regime,
the rate of work performed by the driving field on the qubit
is not equal to the expression predicted by quantum thermo-
dynamics, namely, Tr[ρ̂(t )dtV̂ (t )] [21,22]. Instead, the work
depends on the rates of dissipation to the bath. The qualitative
interpretation of this feature is that the work results from a
nonconservative force, arising from neglecting the fluctuation
of the number of photons [5]. We show that this explanation is
not sufficient, and that the complete answer is that the Floquet
master equation describes the energy transfers in the dressed
qubit basis (the eigenbasis of the joint qubit-coherent field
system), in which the work source is not the original coherent
field. Moreover, the consistency at the fluctuating level, i.e.,
whether the master equations preserve fluctuation theorems,
has never been addressed.

In this paper, we study thermodynamics at the average and
fluctuating level of a qubit driven by a coherent monochro-
matic radiation (further on called the laser) and dissipating
to a thermal cavity (the bath). Importantly, everything is de-
rived starting from a microscopic and autonomous description
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of the combined qubit-laser-bath system where the laser is
modeled as a monochromatic mode in a macroscopic (large
number of photons) coherent state. In Sec. II, we provide a
general description of lasers as work sources and show that
the work transferred by a single laser source to a generic
quantum system is independent of the phase of the laser in
the macroscopic limit (large number of photons). In Sec. III,
we introduce the qubit-laser-bath model, starting from the full
unitary level. We study the model’s dynamics, first in the
autonomous description using the dressed qubit approach [3],
and we introduce the concept of dressed laser. Then, we study
the dynamics in the equivalent nonautonomous description for
the qubit after a frame rotation. Using the two-point measure-
ment method with counting fields [23], we then derive and
compare the laws of thermodynamics and work fluctuation
theorems in both descriptions. In Sec. IV, we identify the
thermodynamic consistency conditions implied by the previ-
ous results at the level of quantum master equations in both
the autonomous and nonautonomous pictures. In Sec. V, we
use the formalism of quantum maps to derive an alternative
master equation, called generalized Bloch equation, valid at
all driving strengths and which is thermodynamically con-
sistent. We then examine the Bloch and Floquet quantum
master equations, which are obtained from the generalized
Bloch equation using additional approximations. We find that
the Floquet equation is fully consistent (the fluctuation theo-
rems are preserved and the first and second law hold at the
average and fluctuating levels) and that the work performed
on the dressed qubit is indeed not expressed in the canonical
form Tr[ρ̂(t )dtV̂ (t )], but has become a nonconservative force
of which we explain the origin. The Bloch equation instead
satisfies the fluctuation theorems, but the first law of thermo-
dynamics is only satisfied at the average level. In Sec. VI,
we comment on an alternative derivation of the Bloch mas-
ter equation, commonly used in the literature, which relies
on the Redfield equation, see, for instance, Refs. [2,5]. We
show that the Bloch master equation, dressed with count-
ing fields, obtained from the Redfield equation, is different
from the one obtained using the quantum maps, although
both approaches yield the same Bloch master equation once
the counting fields are set to zero. The Redfield approach
breaks the fluctuation theorems, which implies that the ther-
modynamics at the fluctuating level should be examined using
master equations derived from the quantum maps. In Sec. VII,
we compare the steady-state heat and work flows predicted
by the Bloch and Floquet master equations in their common
regime of validity. A summary of results is given in Sec. VIII,
while conclusions are drawn in Sec. IX. Throughout the paper,
we set h̄ = 1 and kB = 1.

II. WORK FROM A LASER SOURCE

In this section, we discuss the properties of a laser coupled
to a generic quantum system. The total system-laser is a closed
system, described by a density matrix ρ̂(t ) evolving according
to a unitary operator Û , ρ̂(t ) = Û ρ̂(0)Û †. We further assume
that initially

ρ̂(0) = ρ̂S (0) ⊗ ρ̂L(0) . (1)

In later sections, the system will be a qubit.

A. Lasers: Autonomous work sources

Quantum mechanically, a monochromatic radiation field of
frequency ωL is described by the Hamiltonian

ĤL = ωL(â†â + 1/2), (2)

where â†, â are bosonic creation and annihilation operators. A
laser can in turn be modeled as a field in a pure coherent state,
described by the density matrix

ρ̂coh
L = |α〉〈α|, with

|α〉 ≡ e−|α|2/2
∑
N�0

αN

√
N!

|N〉, (3)

where α = |α|eiφ and |α| and φ are respectively the am-
plitude and phase. The corresponding average number of
photons is 〈N〉 = |α|2, and the standard deviation is σ (N ) ≡
(〈N2〉 − 〈N〉2)1/2 = |α|.

From a thermodynamics viewpoint, a laser is an au-
tonomous work source, because its change in von Neumann
entropy, S ≡ Tr[ρ̂L ln ρ̂L], while interacting with the system, is
negligible compared with its corresponding change in energy
EL ≡ Tr[ĤLρ̂L] [24],

�SL

�EL
→ 0. (4)

This remains true when averaging over the phase φ of the
laser, after which the laser source is described by a phase-
averaged state, also called a Poisson state,

ρ̂
poi
L ≡ e−|α|2 ∑

N�0

|α|2N

N!
|N〉〈N |

=
∫ 2π

0
dφ||α|eiφ〉〈|α|eiφ |, (5)

which yields, as for a coherent state, 〈N〉 = |α|2 and σ (N ) =
|α|. It will furthermore be useful to think of a Poisson state
as a thermal state at infinite temperature. Indeed, it is known
that, in the large-|α|2 limit, a Poisson distribution converges to
a Gaussian distribution of average |α|2 and standard deviation
|α|. In turn, such a Gaussian state is equivalent to a Gibbs
state at temperature β−1

L ≡ |α|2. See Appendix A for a proof
of (4) for both a coherent and Poisson state and Fig. 1 for a
numerical check in the case where the system is a qubit.

As a result, we may then identify minus the variation of
energy in the laser as work,

WL ≡ −�EL = −Tr[ĤL(ρ̂L(t ) − ρ̂L(0))]. (6)

B. Irrelevance of the phase

The phase φ may be difficult to determine in practice. How-
ever, as we now show, in the macroscopic limit |α| → +∞,
the work (6) becomes independent of φ, and the laser source
can equivalently be described by a Poisson state (5).

1. Average work

The expectation value of ĤL is given by

Tr[ĤLρ̂(t )] =
∑

N,N ′,N ′′�0

〈N |ĤL|N〉TrS[〈N |Û |N ′〉

× ρ̂S (0)〈N ′|ρ̂L(0)|N ′′〉〈N ′′|Û †|N〉]. (7)
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FIG. 1. Ratio of the variation of the von Neumann entropy �SL

and of the energy �EL of a laser interacting with a two-level system.
The time is in units of the inverse Rabi frequency 
−1. The coupling
Hamiltonian is identical to V̂AL , defined in (17), without the IB com-
ponent. (top) Laser in a coherent state. (bottom) Laser in a Poisson
state.

In the macroscopic limit |α| 
 1, since the distribution
e−|α|2/2 αN√

N!
is peaked around N = |α|2, for both a coherent

and a Poisson state, we may approximate

Tr[ĤLρ̂(t )] ∼
∑
N�0

∑
N ′∈�

〈N |ĤL|N〉 (8)

× TrS[〈N |Û |N ′〉ρ̂S (0)〈N ′|ρ̂L(0)|N ′〉〈N ′|Û †|N〉],
(9)

where � ≡ [|α|2 − |α|, |α|2 + |α|]. This means that for a
macroscopic coherent and a Poisson state, (4) and (6) hold.
We numerically confirm this expectation in Fig. 1, where the
system is a qubit.

2. Work fluctuations

The above discussion is for average quantities. We now
show that, at the level of fluctuations, performing a two-point
measurement [23] when the laser is initialized in a Poisson
state is equivalent to performing a series of measurements on
a system initialized in a coherent state and averaging over the
initial phase.

Let us first recall the two-point measurement approach with
counting fields: given a (possibly time dependent) observable
Â, of eigenvalues {am(τ )} at time τ , the probability to observe
a fluctuation �a when measuring Â at times 0 and t is given
by

p(�a) =
∑

al (0),am (t )

P[am(t ), al (0)]δ[�a − (am(t ) − al (0))],

(10)

where P[am(t ), al (0)] is the joint probability to measure al (0)
at time 0 and am(t ) at time t . The statistics of p(�a) is con-
veniently described using the moment-generating function,
defined as the Fourier transform of p(�a),

G(λ, t ) ≡
∫ +∞

−∞
eiλ�a p(�a) d�a, (11)

where λ ∈ R is called a counting field. The time dependence
of G(λ, t ) lies in �a, which corresponds to a fluctuation
observed between the times 0 and t . The moment-generating
function G(λ, t ) is also equal to the trace of the “tilted”
density matrix ρ̂λ(t ), obtained from the evolution operator
Û (t, 0) = T←[e−i

∫ t
0 dsĤ (s)] (with T← denoting time-ordering),

dressed with the counting field λ:

G(λ, t ) = Tr[ρ̂λ(t )],

ρ̂λ(t ) ≡ Ûλ(t, 0) ˆ̄ρ(0)Û †
−λ(t, 0),

Ûλ(t, 0) ≡ eiÂ(t )λ/2Û (t, 0)e−iÂ(0)λ/2, (12)

where ˆ̄ρ(0) is the diagonal part of ρ̂(0) in the eigenbasis of
Â(0) chosen for the measurement. From (12), and assum-
ing the initial condition (1), it is clear that the generating
function obtained when the laser is initialized in a Poisson
state Gpoi(λ, t ) is related to the generating function Gpoi(λ, t )
obtained with a coherent state by

Gpoi(λ, t ) =
∫ 2π

0
dφ Gcoh(λ, t ). (13)

The work WL defined in (6) is then obtained by measuring
−ĤL. Since the Poisson state (5) commutes with ĤL, the initial
projective measurement does not modify the density matrix,
ρ̂(0) = ρ̂(0), hence does not modify the dynamics, and the
work fluctuations can be rigorously computed. This is not the
case for a coherent state. However, from (13), we see that
we may obtain the statistics of the work during a series of
measurements performed on coherent states by performing
a single measurement on a Poisson state. Therefore, for all
practical purposes, when dealing with measurements of ther-
modynamic observables, we always assume that the laser is
initialized in a Poisson state.

To summarize, we showed that, from a thermodynamics
viewpoint, a laser can equivalently be described as a pure co-
herent state or as a Poisson state. The advantage of the Poisson
state description is that it allows a rigorous investigation of
the work statistics using the two-point measurement scheme
with counting fields. However, in many applications, a laser is
described as an external, time-dependent field. We refer to the
time-dependent field description as the nonautonomous case,
and we investigate the thermodynamics in this case as well.
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As a final remark, we point out that knowing the initial
phase only becomes important if other lasers with different
phases were used later on, since they would induce a dephas-
ing. In the case of multiple coherent sources, one could resort
instead to the recently developed photon-resolved Floquet
theory [25], which is consistent with full counting statis-
tics methods [26]. The results presented in this work could
in principle be extended to multiple light sources using the
framework of Ref. [26] for the counting statistics of the laser’s
photons. However, for the sake of clarity and without loss of
generality, we focus on the case of a single laser.

We now proceed to analyzing the thermodynamics of a
qubit driven by a laser.

III. UNITARY DESCRIPTION

A. Model

We denote by X the system consisting of qubit A and laser
L. The total qubit-laser-bath system evolves in the product
Hilbert space

H = HX ⊗ HB, HX = HA ⊗ HL, (14)

where HA, HL, HB are respectively the Hilbert spaces of the
qubit, laser, and bath, and where HX is the Hilbert space of
the qubit-laser system. The qubit is characterized by a ground
state |a〉 and an excited state |b〉, separated by ωA. The total
Hamiltonian is

Ĥ = ĤX ⊗ IB + V̂AB + IX ⊗ ĤB, (15)

where

ĤX = ĤA ⊗ IL + V̂AL + IA ⊗ ĤL. (16)

The laser Hamiltonian ĤL was defined in (2), while the qubit
and bath Hamiltonians are respectively ĤA = ωA

2 σ̂z and ĤB =∑
k ωk (b̂†

kb̂k + 1
2 ), where b̂†

k, b̂k are bosonic creation and anni-
hilation operators. The qubit-laser and qubit-bath interaction
Hamiltonians are respectively

V̂AL = g0

2
(σ̂+ + σ̂−) ⊗ (â + â†) ⊗ IB,

V̂AB = (σ̂+ + σ̂−) ⊗ IL ⊗ (
B̂ + B̂†

)
, (17)

with

σ̂+ = |b〉〈a|, σ̂− = |a〉〈b|,
σ̂z = (|b〉〈b| − |a〉〈a|), (18)

and B̂ = ∑
k

gk

2 b̂k , where g0, gk ∈ C are coupling amplitudes.
To alleviate the notation, we drop the tensor products with
identity operators when there is no ambiguity. The total qubit-
laser-bath system is described by a density matrix ρ̂(t ), which
follows a unitary dynamics

d ρ̂(t )

dt
= −i[Ĥ (t ), ρ̂(t )], (19)

the solution of which is

ρ̂(t ) = Û (t, 0)ρ̂(0)Û †(t, 0), (20)

where Û (t, 0) ≡ e−iĤt is the propagator. The combined qubit-
laser system is described by a density matrix ρ̂X ≡ TrB[ρ̂],

emission and absorption

FIG. 2. Schematic representation of the mapping to the dressed
qubit space. (top left) The three processes at play represented in the
product basis {|b, N〉, |a, N + 1〉} of the product Hilbert space HA ⊗
HL: spontaneous emission and stimulated emission and absorption.
(top right) Change of basis to the eigenbasis of ĤA + V̂AL + ĤL .
(bottom) Mapping to HDA ⊗ HDL .

where TrB denotes the partial trace over the space HB. The
state of the qubit A is in turn given by the density matrix
ρ̂A ≡ TrL[ρ̂X ], and the state of the laser L is described by the
density matrix ρ̂L ≡ TrA[ρ̂X ]. The density matrix is initially
factorized,

ρ̂(0) = ρ̂A(0) ⊗ ρ̂coh
L (0) ⊗ ρ̂B, (21)

where the bath is in a Gibbs state,

ρ̂B = e−βBĤB/ZB, (22)

with ZB = Tr[e−βBĤB ] and β−1
B the temperature.

There are two processes involved in the evolution of
the qubit: the spontaneous absorption and emission and
the stimulated absorption and emission. In the product ba-
sis {|b, N〉, |a, N〉} of the Hilbert space HA ⊗ HL, where
{|N〉}N∈N is the Fock basis for the photons of the mode
ωL, these processes are represented as follows (see Fig. 2):
During a spontaneous emission (absorption), the qubit emits
(absorbs) a photon from the bath, while the number of photons
in the laser remains constant. Hence, a spontaneous emission
(absorption) induces a transition |b, N〉 → |a, N〉 (|a, N〉 →
|b, N〉) between states separated by an energy gap ωA. On
the other hand, during a stimulated emission (absorption), the
qubit exchanges a photon with the laser, which corresponds
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to the transitions |b, N〉 → |a, N + 1〉 (|a, N + 1〉 → |b, N〉)
between states separated by an energy gap |δ|, where

δ ≡ ωA − ωL (23)

is the detuning between the qubit and laser frequencies.

B. Dressed qubit approach

In this section, we introduce the two assumptions and
approximations underlying near-resonant coherent driving,
which we make throughout this paper. We then present the
dressed qubit approach [3] and show that this approach leads
to a change of basis, which allows us to write the Hilbert space
HX as a tensor product of two new Hilbert spaces.

1. Assumptions

We make the following two assumptions, later referred to
as assumptions 1 and 2:

(1) The laser is nearly resonant with the qubit: ωL 

|ωL − ωA|.

(2) The photon statistics of the laser satisfies 〈N〉 

σ (N ) 
 1,
where σ (N ) = (〈N2〉 − 〈N〉2)1/2 is the standard deviation.
Assumption 1 allows us to perform the rotating-wave approx-
imation, i.e., neglect the off-resonant terms σ̂+â† and σ̂−â in
V̂AL in (17) [2]. Consequently, ĤX becomes block diagonal
in the product basis {|a, N + 1〉, |b, N〉}, ĤX = ∑

N∈N Ĥ (N )
X ,

where Ĥ (N )
X only acts on the subspace E (N ) spanned by

{|b, N〉, |a, N + 1〉}. Assumption 2 is satisfied in the macro-
scopic limit |α| 
 1 and implies that the relative variations of√

N in the range σ (N ) around 〈N〉 are small, which allows us
to neglect the fluctuations of

√
N in the subspace E (N ) and to

replace

g0

√
N + 1 ≈ g0

√
〈N〉 ≡ g. (24)

Consequently,

Ĥ (N )
X =

[(
N + 1 + 1

2

)
ωL − ωA

2

]
|a, N + 1〉〈a, N + 1|

+
[(

N + 1

2

)
ωL + ωA

2

]
|b, N〉〈b, N |

+ g

2
(|a, N + 1〉〈b, N | + |b, N〉〈a, N + 1|). (25)

2. The dressed qubit and dressed laser Hilbert spaces

Under assumptions 1 and 2, the restrictions Ĥ (N )
X of ĤX

on E (N ) defined in (25) can be diagonalized by a unitary
transformation which is identical in every E (N ),

Ĥ (N )
X =

[
(N + 1)ωL + 


2

]
|2(n)〉〈2(n)|

+
[

(N + 1)ωL − 


2

]
|1(n)〉〈1(n)|, (26)

where

|2(n)〉 ≡
√


 + δ

2

|b, N〉 +

√

 − δ

2

|a, N + 1〉,

|1(n)〉 ≡ −
√


 − δ

2

|b, N〉 +

√

 + δ

2

|a, N + 1〉, (27)

and where


 =
√

δ2 + g2 (28)

is the Rabi frequency [3].
Using the eigenbasis {|1(n)〉, |2(n)〉}n∈N , we see that the

total Hilbert space HX = HA ⊗ HL is equivalent to a tensor
product of two new Hilbert spaces, defined by the change of
basis (see Fig. 2)

HA ⊗ HL → HDA ⊗ HDL,

| j(n)〉 �→ | j〉 ⊗ |n〉. (29)

In this new basis, the Hamiltonian (26) becomes

ĤX = ĤDA ⊗ IDL + IDA ⊗ ĤDL,

ĤDA = 


2
(|2〉〈2| − |1〉〈1|),

ĤDL =
∑
n�0

ωL(n + 1)|n〉〈n|. (30)

We use different notations N, n in order to distinguish between
the Fock basis {|N〉} of ĤL and the Fock basis {|n〉} of ĤDL.
The subscript DA stands for “dressed qubit” [3], denoting the
qubit “dressed” with the photons from the driving field. By
symmetry, we introduce the concept of “dressed laser”—the
state of the laser slightly modified by the interaction with
the qubit, when the laser and the qubit are in a coherent
superposition—and denote it with the subscript DL. The iden-
tity (30) describes the physical phenomenon at play: the laser
and the qubit form a new quantum state, consisting of the
dressed qubit and another monochromatic macroscopic field.
Moreover, the change of basis (27) and the mapping (29)
allow us to rewrite the initial condition (21), up to corrections
of the order 1/|α|, as

ρ̂(0) = ρ̂DA(0) ⊗ ρ̂coh
DL (0) ⊗ ρ̂B, (31)

with ρ̂coh
DL (0) in a coherent state in the basis {|n〉}.

Notice that, by construction, the Hamiltonian ĤDL is equal
to

ĤDL = IA ⊗ ĤL + ωL

2
σ̂z ⊗ IL. (32)

C. Nonautonomous approach

An alternative approach to study the problem of III A is to
trace out the degrees of freedom of the laser and account for
its effect using an external, time-periodic field.

Consider the density matrix ˆ̃ρ(t ) obtained by performing
the following unitary transformation on ρ̂(t ), called the Mol-
low transformation [27],

ˆ̃ρ(t ) ≡ D̂†[α(t )]ρ̂(t )D̂[α(t )]

= ˆ̃U (t, 0) ˆ̃ρ(0) ˆ̃U †(t, 0), (33)
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with α(t ) ≡ αe−iωLt , ˆ̃U (t, 0) ≡ D̂†[α(t )]Û (t, 0)D̂[α(0)], and
where we introduced the displacement operator [3] D̂[α(t )] ≡
eα(t )â†−α(t )∗â, a unitary operator acting on the creation
and annihilation operators as D̂[α(t )]†âD̂[α(t )] = â + α(t ),
D̂[α(t )]âD̂†[α(t )] = â − α(t ), and creating a coherent state
from the vacuum, D̂[α(t )]|0〉 = |α(t )〉. The density matrix
ˆ̃ρ(t ) is the solution of Ref. [3]

d ˜̂ρ(t )

dt
= −i[ ˜̂H (t ), ˜̂ρ(t )], (34)

ˆ̃ρ(0) = ρ̂A(0) ⊗ ρ̂ ′
B, (35)

where ρ̂ ′
B ≡ |0〉〈0| ⊗ ρ̂B and

ˆ̃H (t ) = ĤA(t ) + V̂ ′
AB + Ĥ ′

B, (36)

with

ĤA(t ) = ĤA + V̂ (t ), (37)

and

V̂ (t ) = 1
2 (gσ̂+e−iωLt + g∗σ̂−eiωLt ), (38)

where g = g0α is the same as defined in (24), and where we
regrouped V̂ ′

AB = V̂AL + V̂AB and Ĥ ′
B = ĤL + ĤB.1

1. Floquet basis

Since the Hamiltonian (36) is 2π/ωL periodic, it is con-
venient to describe the evolution of ˆ̃ρ(t ) using Floquet states.
The Floquet states {|un(t )〉} are by definition 2π/ωL periodic
and solutions of the eigenvalue problem

(ĤA + V̂ (t ) − i∂t )|un(t )〉 = εn|un(t )〉. (39)

The {|un(t )〉} form an orthonormal basis of HA. Quite conve-
niently, in the present case, the {|un(t )〉} are simply related to
the states {| j〉} by (see details in Appendix B)

eiωL σ̂zt/2|u j (t )〉 = | j〉 (40)

for j = 1, 2.

2. Equivalence between dressed qubit and rotating frame

The operation (40), which defines a change of basis from
the Floquet basis to the dressed qubit basis, is equivalent to
going to the rotating frame, where the qubit-bath system is
described by the density matrix

ˆ̃ρrot(t ) ≡ [eiωL σ̂zt/2 ⊗ IB] ˆ̃ρ(t )[e−iωL σ̂zt/2 ⊗ IB], (41)

and follows the dynamics

d ˆ̃ρrot(t )

dt
= −i

[
Ĥ rot

A + V̂ ′
AB(t ) + Ĥ ′

B, ˆ̃ρrot(t )
]
, (42)

where

V̂ ′
AB(t ) ≡ eiωL σ̂zt/2V̂ ′

ABe−iωL σ̂zt/2

= eiωLt σ̂+B̂ + e−iωLt σ̂−B̂†. (43)

1To obtain the expression for ˆ̃H (t ), we used D̂†(α(t ))ĤLD̂(α(t )) =
ĤL + ωL[α(t )∗â + α(t )â† + |α|2] and −i∂t [D̂†(α(t ))]D̂(α(t )) =
ωL[α(t )∗â + α(t )â† + |α|2].

As expected from the relation (40), we check that

Ĥ rot
A ≡

[
eiωL σ̂zt/2(ĤA + V̂ (t ))e−iωL σ̂zt/2 − ωL

2
σ̂z

]
= ĤDA. (44)

Moreover, we can show (see proof in Appendix B) that the
evolution of the dressed qubit and bath in the autonomous
description, obtained by tracing out the dressed laser’s degrees
of freedom in (19), is equivalent to the evolution of the qubit
and bath in the rotating frame in the nonautonomous descrip-
tion. In other words,

ˆ̃ρrot = TrDL[ρ̂]. (45)

We use this equivalence extensively in the rest of this work.

D. Thermodynamics at the average level

We now derive and compare the first and second laws
of thermodynamics in the autonomous and nonautonomous
descriptions. Starting with the autonomous description, we
show that the laser acts as a work source for the qubit,
while the proper work source in the dressed qubit approach
is the dressed laser. We then discuss the nonautonomous
description, showing the equivalence with the autonomous
case: the laws of thermodynamics for the qubit are equiva-
lent in the autonomous and nonautonomous descriptions, and
the laws of thermodynamics in the dressed qubit picture (in
the autonomous description) are equivalent to the laws of
thermodynamics in the rotating frame (in the nonautonomous
picture). The results are summarized in Fig. 3.

1. Autonomous description

In the autonomous description, the total qubit-laser-
bath system is closed, hence its total energy is conserved,
Tr[(ρ̂(t ) − ρ̂(0))Ĥ ] = 0 for all t � 0. Since the bath is as-
sumed by be initially at thermal equilibrium, the variation of
energy in the bath is identified as minus the heat [28],

Q ≡ −Tr[(ρ̂(t ) − ρ̂(0))ĤB]. (46)

On the other hand, as discussed in Sec. II, we identify minus
the variation of energy in the laser as work,

WL ≡ −Tr[(ρ̂(t ) − ρ̂(0))ĤL]. (47)

The conservation of energy leads to define the energy of the
qubit as

EA(t ) ≡ Tr[ρ̂(t )
(
ĤA + V̂AL + V̂AB

)
], (48)

which leads to the first law for the qubit,

�EA = Q + WL. (49)

We point out that the rate of the work is proportional to the
coherences in the dressed qubit basis: from (19), we obtain
the rate ẆL = −Tr[dt ρ̂(t )ĤL],

ẆL = iωLg0Tr[(â†σ̂− − âσ̂+)ρ̂(t )] (50)

= iωLg0

∑
n�0

(〈a, n + 1|ρ̂(t )|b, n〉 − 〈b, n|ρ̂(t )|a, n + 1〉)

≈ iωLg
∑
n�0

(〈2, n|ρ̂(t )|1, n〉 − 〈1, n|ρ̂(t )|2, n〉)

= −ωLg Im(〈2|ρ̂DA(t )|1〉), (51)
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FIG. 3. Summary of the laws of thermodynamics and identities at the unitary level. (a) In situation 1, ĤL is first measured before the
interaction is turned on and the last measurement is performed after the interaction is switched off. In this case, it is more convenient to use the
nondressed approach. In situation 2, the interaction is always on, but we measure instead ĤDL , which implies that the dressed qubit approach is
more convenient. (b) Thermodynamic observables in both the dressed and nondressed approaches. (c) Laws of thermodynamics. (d) Identities
between the thermodynamic observables of both approaches.

where we used assumption 2 for the third line. We highlight
that assumption 2 (macroscopic limit) ensures that these co-
herences survive the phase averaging. To see this, consider
the case where the interaction with the bath is neglected,
hence where the evolution of ρ̂X (t ) depends only on ĤX .
The generalization to the case where the bath is taken into
account is straightforward by repeating the reasoning at the
level of quantum maps, which will be introduced in Sec. IV
[specifically in (99)]. When the bath is neglected, we have
ρ̂X (t ) = e−it ĤX ρ̂X (0)eitĤX . Under assumption 2, ĤX can be
written as a sum of terms (26), which, using (21), yields

〈2, n|ρ̂(t )|1, n′〉 ∝ e−|α|2 |α|n+n′
eiφ(n−n′ )

√
n!n′!

ei(n′−n+
)t , (52)

hence when setting N = N ′ the dependence in the phase φ

disappears. Numerically, we find that this feature happens
as early as α = 4, see Fig. 4. This illustrates the general
statement of Sec. II B, that the phase of the laser is irrelevant
for the work. However, we point out that the coherent term
〈b|ρ̂A|a〉 ≡ ∑

N 〈b, N |ρ̂|a, N〉 does not survive phase averag-
ing, since

〈b, N |ρ̂|a, N〉 ∝ eiφ, (53)

as illustrated in Fig. 5.
Let us now turn to the dressed qubit picture. We define

instead

EDA(t ) ≡ Tr[ρ̂(t )(ĤDA + V̂AB)], (54)

and the conservation of energy leads to the first law

�EDA = Q + WDL, (55)

where,

WDL ≡ −Tr[(ρ̂(t ) − ρ̂(0))ĤDL], (56)

is identified as work.
Using (32), we can split

WDL = WL − Tr

[
ωL

2
σ̂z(ρ̂(t ) − ρ̂(0))

]
, (57)

which leads to the following identity connecting the internal
energies of the qubit and dressed qubit:

�EA = �EDA + Tr

[
ωL

2
σ̂z(ρ̂(t ) − ρ̂(0))

]
. (58)

We now examine the second law of thermodynamics. Since
the density matrix is initially factorized (21), the von Neu-
mann entropy SX ≡ −Tr[ρ̂X ln ρ̂X ] can be split into two terms
[28], �SX = βBQ + D(ρ̂||ρ̂X (t ) ⊗ ρ̂B), where D(ρ̂1||ρ̂2) ≡
Tr[ρ̂1 ln ρ̂1] − Tr[ρ̂1 ln ρ̂2] denotes the relative entropy be-
tween two density matrices. Since a relative entropy is always
positive, the identity leads to a second law of thermodynamics
for X ,

�X ≡ �SX − βBQ � 0, (59)

where �X is the entropy production for X . Using again
(21), the von Neumann entropy variation �SX can then be
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FIG. 4. Work WL transferred from the laser to the qubit, with the
time in units of the inverse Rabi frequency 
−1. The joint qubit-laser
system is coupled to a heat bath. The Hamiltonian is given in (15).
The parameters are β = 5/D, where D = 20 is the spectral width
of the bath, g0 = gk = 0.1 for all k, and the bath is modelized with
NB = 50 modes. The blue dotted line is the work obtained when the
laser is in a coherent state, while the red dashed line corresponds to a
Poisson state. (top) α = 2. (bottom) α = 4. The number of photons
is chosen as 2(|α|2 + |α|).

FIG. 5. (dashed line) Coherences in the dressed qubit basis; (full
line) coherences in the qubit basis. Parameters: NB = 50 modes in
the bath, 2|α|2 + 2|α| photons in the laser, β = 5/D, where D = 20
is the spectral width of the bath, g0 = gk = 0.1 for all k, and where
the time is in units of the Rabi frequency.

written as

�SX = �SA + �SL − D(ρ̂X (t )||ρ̂A(t ) ⊗ ρ̂L(t )), (60)

where SA, SL are respectively the von Neumann entropies
associated with the subsystems A and L. As long as the laser
stays close to a coherent state or a Poisson state, �SL is
negligible (see Appendix A and Fig. 1), and we obtain the
second law for the qubit,

�A ≡ �SA − βBQ � D(ρ̂X (t )||ρ̂A(t ) ⊗ ρ̂L(t )) � 0, (61)

where �A is the entropy production of the qubit. Likewise, for
the dressed qubit, using (31), we find

�DA ≡ �SDA − βBQ � D(ρ̂(t )||ρ̂DA(t ) ⊗ ρ̂DL(t )) � 0.

(62)

2. Nonautonomous description

In the nonautonomous description, the qubit-bath system
is isolated, with energy changes due solely to the time-
dependence of the Hamiltonian, identified as work,

Ẇ ≡ dt Tr[ ˆ̃ρ(t ) ˆ̃H (t )] = Tr[ ˆ̃ρ(t )dtV̂ (t )]. (63)

Interestingly, this definition becomes equivalent to the def-
inition of work in the autonomous description (6) in the
macroscopic limit |α| 
 1. Indeed, applying the transforma-
tion (33) in (50), we find

ẆL = Ẇ + iωLg0Tr[(σ̂−â† − σ̂+â) ˆ̃ρ]. (64)

Since the coupling amplitude of V̂ (t ) is g = g0|α|, the first
term on the right-hand side (r.h.s.) is dominant compared with
the second one when |α| 
 1.2

Defining now

ẼA(t ) ≡ Tr[(ĤA + V̂ (t ) + V̂AB′ ) ˆ̃ρ(t )], (65)

the conservation of energy leads to

dt ẼA(t ) = Ẇ − Tr[ĤB′dt ˆ̃ρ(t )]. (66)

Note that, using (33) which connects ˆ̃ρ(t ) to ρ̂(t ), we obtain
the identity ẼA(t ) = EA(t ). A standard calculation also shows
that

−Tr[ĤB′dt ˆ̃ρ(t )] = Q̇ + ẆL − Ẇ , (67)

which simplifies to

−Tr[ĤB′dt ˆ̃ρ(t )] = Q̇ (68)

in the macroscopic limit, hence the first law for the qubit in
the nonautonomous description is consistent with that of the
qubit in the autonomous description,

dt ẼA(t ) = Q̇ + ẆL. (69)

Similarly, we find that the first law in the rotating frame
coincides with that of the dressed qubit, namely,

dt Ẽ
rot
A (t ) = Q̇ + ẆDL, (70)

2The correspondence between the autonomous and nonautonomous
work rates has also been pointed out in Ref. [29], in the absence of
dissipation (no bath).
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where (see Appendix C for details)

Ẽ rot
A (t ) ≡ Tr

[(
Ĥ rot

A + V̂ ′
AB(t )

)
ˆ̃ρrot(t )

]
. (71)

This shows that the equivalence between the dressed qubit in
the autonomous picture and the qubit in the rotating frame, in
the nonautonomous picture, also holds for the thermodynam-
ics at the average level.

As a final remark, we point out that, on one hand

Tr[ ˆ̃ρ(t )dtV̂ (t )] = −ωLgIm(〈b| ˆ̃ρrot|a〉), (72)

while on the other hand, a standard calculation shows that

Im(〈b| ˆ̃ρrot|a〉) = Im(〈2|ρ̂|1〉). (73)

This is consistent with the fact that the work in the
autonomous picture (51) is equal to the one in the nonau-
tonomous picture (63).

We now turn to the second law. Using the initial condition
in (34) and following the same reasoning as in the autonomous
description, we obtain

�S̃A − βBQ � D( ˆ̃ρX || ˆ̃ρA(t ) ⊗ ˆ̃ρL(t )) � 0, (74)

and

�S̃rot
A − βBQ � D

(
ˆ̃ρX

∣∣∣∣ ˆ̃ρrot
A (t ) ⊗ ˆ̃ρL(t )

)
� 0. (75)

E. Thermodynamics at the fluctuating level

Here, we focus on the thermodynamics at the fluctuating
level. We resort to the two-point measurement technique with
counting fields, introduced in Sec. II B 2. This technique is
efficient to relate the fluctuations of observables correspond-
ing to operators which commute (e.g., ĤA and ĤL), when
the interactions between these operators are weak, but fails
in the presence of strong interactions, which is the case in
the macroscopic limit |α| 
 1, for example. In this section,
we show that the dressed qubit picture, on the one hand,
and the Mollow transformation, on the other hand, allow us
to overcome the difficulty raised by the coupling term V̂AL,
yielding two different work fluctuation theorems, respectively,
for WDL and WL.

1. Joint generating functions

One can measure several observables simultaneously pro-
vided that they commute. In the case of simultaneous
measurements, we resort to a joint moment-generating func-
tion

G(t,λ) ≡ Tr[ρ̂λ(t )],

ρ̂λ(t ) ≡ Ûλ(t, 0) ¯̂ρ(0)Û †
−λ(t, 0),

Ûλ(t, 0) ≡ eiλ·Ĥ/2Û (t, 0)e−iλ·Ĥ/2, (76)

where Ĥ , λ respectively denote a vector of Hamiltonians
and a vector of counting fields. By convention, we use
the same subscripts for the counting fields and the corre-
sponding Hamiltonians; for instance, when measuring Ĥ =
(ĤA(t ), ĤB′ ) we use λ = (λA, λB′ ), while the counting fields
for Ĥ = (ĤDA, ĤDL, ĤB) are denoted λ = (λDA, λDL, λB).

Let us now connect the outcomes of the measurements de-
scribed by (76) with the thermodynamic quantities introduced
in Sec. III D. From (46) and (68), it is straightforward to see

that the heat Q leaked from the bath is equivalently obtained
by measuring −ĤB or −ĤB′ , while from (6) and (56) we see
that the work terms WL and WDL are obtained by measuring
respectively −ĤL and −ĤDL . Finally, we may measure the
energy of the qubit (dressed qubit) defined in (65) [(54)], using
a two-point measurement of ĤA(t ) (ĤDA) if we require that
the coupling V̂AB′ (V̂AB) is switched on only after the initial
measurement and switched off before the final one.

2. Work and entropy fluctuation theorems—autonomous picture

Fluctuation theorems are symmetries relating the energy
or entropy fluctuations generated during a given forward
process and its time-reversed counterpart. In the context
of two-point measurement schemes with counting fields,
such theorems can be expressed as symmetries between the
moment-generating functions of the forward and backward
dynamics.

In this section, we derive a work fluctuation theorem and
an entropy fluctuation theorem in the autonomous description.

We first need to introduce the moment generating function
of the reversed dynamics, which is defined as [23,30]

GR(λ, t ) ≡ Tr
[
ρ̂R

λ (t )
]

= Tr[Û †
λ (t, 0) ¯̂ρR(0)Û−λ(t, 0)], (77)

where ¯̂ρR(0) is the diagonal part of the initial density matrix of
the reverse dynamics ρ̂R(0) in the common eigenbasis of ĤDA,
ĤDL, ĤB chosen for the measurement. Now, we assume that
the initial density matrix of the reverse dynamics is factorized,
as for the forward dynamics,

ρ̂R(0) = ρ̂R
DA(0) ⊗ ρ̂R

DL(0) ⊗ ρ̂B. (78)

Notice that, since Ĥ is time-independent, (78) implies that
the time-reversed density matrix is simply given by ρ̂R(t ) =
ρ̂(−t ). Let us furthermore assume that

ρ̂DA(0) = ρ̂R
DA(0) = e−βDAĤDA/ZDA. (79)

As explained in Sec. II B 2, the two-point measurement tech-
nique with counting fields allows us to compute rigorously
the fluctuations of the work performed by a Poisson state,
which correspond to the fluctuations of the work performed
by a coherent state during a series of experiments where the
initial phase of the coherent state is randomly chosen. We
therefore assume that ρ̂DL(0) and ρ̂R

DL(0) are Poisson states
(5). As explained in Sec. II B 2, Poisson states can be written
as Gibbs states in the macroscopic limit |α| 
 1, specifically
(see Appendix D),

ρ̂DL(0) = ρ̂R
DL(0) = e−βDLĤ ′

DL /ZDL, (80)

with βDL ≡ 1/|α|2 and where Ĥ ′
DL = (â†â − 〈N〉)2/2. Under

these assumptions, the moment-generating function (76) sat-
isfies the following symmetry (see Appendix D):

G(λ, t ) = GR(−λ + iν, t ), (81)

with ν = (βDA, βDL, βB). Given that, under assumption 2, fluc-
tuations of the order 1/|α| can be neglected, we further on
replace βDL = 0.

On its own, the symmetry (81) is formal but, combined
with the notion of energy conservation, it yields a work fluctu-
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ation theorem. Energy conservation is conveniently expressed
using the generating function (76): in the absence of external
driving, the total energy of the system should be conserved.
Setting λDA = λDL = λB ≡ λ, this condition is satisfied at the
average level if and only if ∂λG(λ, t )|λ=0 = 0, which yields
the first law (55). Imposing instead energy conservation at the
fluctuating level takes the form of a strict energy conservation
condition [31],

ρ̂λ(t ) = ρ̂λ+χ1(t ), (82)

where 1 = (1, 1, 1). Together with the symmetry (81), the
strict energy conservation condition (82) implies a work fluc-
tuation theorem: setting βDA = βB ≡ β, we find

G(0, λDL, 0, t ) = GR(iβ,−λDL, iβ, 0)

= GR(0,−λDL − iβ, 0, t ). (83)

Applying a reverse Fourier transform allows us to rephrase
the above equality in terms of the probabilities p(WDL ) the
[respectively pR(WDL )] to observe a variation WDL in the for-
ward (respectively time-reversed) dynamics [see (11)], which
yields

p(WDL )

pR(−WDL )
= eβWDL . (84)

The symmetry (81) and fluctuation theorem (84) constitute
important results of this work, and will serve as a criteria of
consistency for quantum optical quantum master equations.

A similar relation as (81) can be obtained for the entropy
production, �, obtained from measuring the variations of the
operator

�̂DA(t ) ≡ − ln ρ̂DA(t ) − ln ρ̂DL(t ) + βBĤB. (85)

Assuming the initial conditions (31) and (78), we obtain an
entropy fluctuation theorem

G� (λ�, t ) = GR
� (−λ� + i, t ), (86)

where λ� is the counting field associated with �̂. In particular,
G� (i, t ) = 1, which leads to the integral fluctuation theorem
〈e−�〉 = 1 and by convexity to 〈�〉 � 0, which is the second
law (62).

3. Work and entropy fluctuation
theorems—nonautonomous picture

We now turn to the nonautonomous description, starting
with the work fluctuation theorem.

Performing a two point-measurement of the Hamiltonian
ĤL, then applying the Mollow transformation (33) yields the
tilted density matrix

ˆ̃ρλL ≡ D†[α(t )]ρ̂λL D[α(t )]

= T
[
e−i

∫ t
0 dsĤλL (s)]ρ̂(0)T

[
ei

∫ t
0 dsĤ−λL (s)], (87)

where ρ̂λL (t ) is obtained by choosing λ = (0, λL, 0) with
H = (0, ĤL, 0) in (76), where T denotes time ordering and

where ĤλL (t ) = ĤA + ĤB′ + V̂AB + V̂ λL
AL + V̂λL (t ) with

V̂ λL
AL = g0

2
(σ̂+âe−iωLλL + σ̂−â†eiωLλL ), (88)

V̂λL (t ) = g0

2
(σ̂+α(t )e−iωLλL + σ̂−α∗(t )eiωLλL )

= V̂ (t + λL ). (89)

The fluctuations of ĤL, measured by λL, are now carried both
by V̂ λL

AL and the time-dependent term V̂λL (t ). Performing now
additional projective measurements with counting fields on
ĤA + V̂ (t ) and ĤB yields the tilted density matrix

ˆ̃ρλ ≡ ˆ̃Uλ
ˆ̃ρ(0) ˆ̃U †

−λ, (90)

with λ = (λA, λL, λB) and

ˆ̃Uλ = ei λB
2 ĤB ei λA

2 (ĤA+V̂ (t ))T [e−i
∫ t

0 dsĤλL (s)]

× e−i λB
2 ĤB e−i λA

2 (ĤA+V̂ (0)). (91)

The tilted density matrix for the reversed dynamics is in turn
given by

ˆ̃ρR
λ (t ) ≡ ˆ̃U †

λ
ˆ̃ρ(0) ˆ̃U−λ. (92)

Noticing that the Mollow transformation does not change
the trace, we may apply the same reasoning as in the
autonomous description. Let us introduce the partition func-
tion ZA(t ) ≡ Tr[e−βA(ĤA+V̂ (t ))]. Since ei ˆωLσ zt/2V̂ (t )e−iωL σ̂zt/2 =
V̂ (0), the partition function is in fact time-independent,
ZA(t ) = ZA(0) ≡ ZA. We now assume that the initial density
matrix of the reverse process is factorized as in (35), and
further that

ˆ̃ρA(0) = e−βA(ĤA+V̂ (0))

ZA
,

ˆ̃ρR
A (0) = e−βA(ĤA+V̂ (t ))

ZA
. (93)

We point out that, since, in the rotating frame, the evolution of
the qubit is equivalent to that of the dressed qubit (as shown in
Sec. III C 2), which is governed by a time-independent Hamil-
tonian, we deduce, as in the autonomous case, the relation
ˆ̃ρR(t ) = ˆ̃ρ(−t ). For an alternative proof using the Floquet
states, see Appendix E. We then obtain, in the macroscopic
limit |α| 
 1, the following symmetry for the generating
function in the nonautonomous description G̃(λ, t ) ≡ Tr[ ˆ̃ρλ],

G̃(λ, t ) = G̃R(−λ + iν, t ), (94)

with ν = (βA, 0, βB). Similarly as in the autonomous case,
the energy conservation condition is here satisfied if
∂λG̃(λ, t )|λ=0 = 0 when λ = (λ, λ, λ). When satisfied, this
condition yields the first law (69). In turn, the strict energy
conservation reads

ˆ̃ρλ+χ1(t ) = ˆ̃ρλ(t ). (95)

The combination of (95) and (94) then yields the following
work fluctuation theorem for the laser, similar to the Crooks
relation [32,33]: setting βA = βB = β, we find

p(WL )

pR(−WL )
= eβWL . (96)

Notice that (96) implies the Jarzynski equality [34].
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We now turn to the entropy fluctuation theorem. We use the
same reasoning as in the previous section: since the entropy
fluctuations of the laser can be neglected in the autonomous
picture (see Appendix A), measuring

�̂A(t ) ≡ ln ˆ̃ρA(t ) + ln ˆ̃ρL(t ) + βBĤB (97)

amounts to measuring the entropy production �S̃A − βBQ.
Then, assuming that the density matrices of the forward and
time-reversed dynamics are initially factorized with ˆ̃ρR(0) =
ˆ̃ρA(t ) ⊗ ρ̂B′ , we obtain the entropy fluctuation theorem

G̃� (λ�A, t ) = G̃R
� (−λ�A + i, t ). (98)

We mention that recent works [25,26] have examined the
full counting statistics of the work performed by a laser using
the counting field method, but no symmetry such as (94)
had so far been derived. We also highlight that, in those
approaches, the statistics of the laser is described solely using
the term (89). Our approach shows that the full statistics are in
fact given by both the terms (88) and (89). In the macroscopic
limit |α| 
 1, the term (89) dominates, and both approaches
should become equivalent. It would be interesting to study the
low number of photons limit, where (88) and (89) become
comparable.

IV. THERMODYNAMIC CONSISTENCY OF QUANTUM
MASTER EQUATIONS

We now turn to the effective description in terms of
quantum master equations and examine their thermodynamic
consistency, i.e., under which conditions the laws of thermo-
dynamics derived in Sec. III D, the symmetries (81) and (94),
and the fluctuation theorem (84) and (96) hold. We derive the
quantum master equations using the theory of quantum maps.
To keep track of the energy transfers fluctuations during the
derivations, we start from the tilted unitary dynamics defined
in (76).

A. For the qubit-laser system X

The coupling to the thermal bath is assumed to be weak.
Since the density matrix is initially a tensor product of the
matrices of X and B (21), the evolution of ρ̂λ

X (t ) ≡ TrB[ρ̂λ(t )]
is described by a quantum map,

ρ̂λ
X (t ) =

∑
μ,ν

Ŵ λ
μ,ν (t, 0)ρ̂X (0)Ŵ −λ†

μ,ν (t, 0)

≡ M̂λ(t, 0)ρ̂X (0), (99)

where Ŵ λ
μ,ν (t, 0) are Kraus operators [2],

Ŵ λ
μ,ν (t, 0) = √

ην〈μ|Ûλ(t, 0)|ν〉, (100)

where Ûλ(t, 0) was defined in (76) and with {|ν〉} the eigen-
states of ĤB of eigenvalues ν and ην = e−βBων /ZB.

We then make the Markov approximation, or semigroup
hypothesis in the context of quantum maps [2]: M̂λ(t, 0) =
M̂λ(t, s)M̂λ(s, 0) for all 0 � s � t . This leads to a time local

equation of motion of the form

d ρ̂λ
X (t )

dt
= lim

δ→δ0

1

δ
(M̂λ(t + δ, t ) − I)ρ̂X (t )

≡ LX
λ

(
ρ̂λ

X (t )
)
, (101)

where the coarse graining time δ0 is chosen larger than the
relaxation time of the bath and smaller than the relaxation time
of X . We discuss precisely these timescales in Sec. V.

The thermodynamic consistency condition for the master
equation (101), where only the thermal bath has been traced
out, has been identified in our previous work [31]. It reads

LX,R
0,0,−λB

[. . .] = LX†
0,0,−λB+iβB

[. . .], (102)

where we introduced the adjoint O† of a superoperator O as
the one satisfying Tr[(O(X ))†Y ] = Tr[X †O†(Y )] for all oper-
ators X,Y .

B. For the dressed qubit: Autonomous description

We now proceed to trace out the degrees of freedom of
the dressed laser and examine the energy exchanges in the
dressed qubit picture. We therefore set λ = (λDA, λDL, λB). In
the dressed qubit picture, the dressed qubit and dressed laser
interact indirectly through the bath. The consistency condition
for the master equations for ρ̂DA can then be derived following
the same logic as in Ref. [31]. Using the initial condition (31)
with (80), tracing out the degrees of freedom of DL in (99)
leads to

ρ̂λ
DA(t ) =

∑
κ,κ′

Ŵ λ
κ,κ′ (t, 0)ρ̂DA(0)Ŵ −λ †

κ,κ′ (t, 0), (103)

where the sum runs over the pairs κ = (μ, n), κ′ = (ν, n′) and
where

Ŵ λ
κ,κ′ =

√
ηνξn〈n, μ|Ûλ(t, 0)|n′, ν〉, (104)

with ξn = 〈n|ρ̂DL(0)|n〉. Notice that the Kraus operators (104)
satisfy the property

Ŵ λ
κ,κ′ (t, 0) = e

λDA
2 ĤDAŴ 0,λDL,λB

κ,κ′ (t, 0)e
−λDA

2 ĤDA , (105)

which implies that

ρ̂λ
DA(t ) = ei λDA

2 ĤDA etL0,λDL ,λB [e−i λDA
2 ĤDA ρ̂DA(0)e−i λDA

2 ĤDA ]

× ei λDA
2 ĤDA , (106)

where Lλ is the superoperator dressed with counting fields
describing the evolution of ρ̂λ

DA. The symmetry (81) is then
satisfied if

LR
0,−λDL,−λB+iβB

[. . .] = L†
0,−λDL,−λB

[. . .], (107)

as can be seen by computing separately the moment-
generating functions G(λ, t ) and GR(−λ + iν, t ) and us-
ing (106) combined with the property of the adjoint
Tr[(etL[X̂ ])†Ŷ ] = Tr[X̂ †etL†

[Ŷ ]]. Note that the generalization
to many uncoupled heat baths is straightforward by linearity.
The condition (107) is another important result of this work: it
is a simple criteria of thermodynamic consistency of quantum
master equations for quantum systems coupled to heat baths
and a coherent light source.
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Using the same reasoning as in Sec. III E 2, we deduce that
(107) ensures that the entropy fluctuation theorem (86) holds
at the level of master equations, hence that the second law is
satisfied on average and at the level of the rates,

dt SDA − βBQ̇ � 0. (108)

The strict energy conservation condition (82) takes the
form

Lλ[. . .] = Lλ+χ1[. . .] (109)

and guarantees that the first law is satisfied at fluctuating
level. It also implies energy conservation on average, i.e., that
∂λTr(Lλ)|λ=0 = 0 when all the counting fields are set equal
to λ, which in turn implies that the first law is satisfied on
average at the level of the rates,

dt EDA = Q̇ + ẆDL. (110)

A quantum master equation is said to be fully thermody-
namically consistent if and only if it satisfies both (107)
and (109). Using the same argument as in Ref. [31], we
find that satisfying these two conditions requires us to use
the secular approximation in the dressed qubit basis. More
precisely, we examine under which condition (103) becomes
λ-independent. Expressing the Kraus operators in the joint
eigenbasis of ĤDA, ĤDL, and ĤB, it appears that the only way to
achieve this condition is to perform the secular approximation.
We do not provide a detailed proof here since the reasoning
and calculations are almost identical as in Ref. [31], where
thorough details are provided in the Appendix. We explicitly
perform the secular approximation in the Sec. V, when deriv-
ing the autonomous Floquet equation.

C. For the qubit: Nonautonomous description

We now turn to the nonautonomous picture. To de-
rive a master equation which preserves the symme-
try (94), we begin by noticing that, using the identity
ei(ĤA+V̂ (t )) = e−iωL σ̂zt/2ei(ĤA+V̂ )eiωL σ̂zt/2 with V̂ ≡ g

2 (σ̂+ + σ̂−)
and the cyclicity of the trace, the generating function in (94)
can be rewritten as

G̃(λ, t ) = Tr
[
Û rot

λ
ˆ̃ρ(0)Û rot†

−λ

]
(111)

where

Û rot
λ = ei λB

2 ĤB ei λA
2 (ĤA+V̂ )eiωL σ̂zt/2

× T [e−i
∫ t

0 dsĤλL (s)]e−i λB
2 ĤB e−i λA

2 (ĤA+V̂ ). (112)

When the counting fields are set to zero, Û rot
λ becomes the

propagator of the dynamics in the rotating frame (42). We
may now apply the same reasoning as in the autonomous case
in Sec. IV B to compute a master equation for ˆ̃ρrot

A . Since the
counting fields λA are now associated with a time-independent
Hamiltonian in (112), the Kraus operators for ˆ̃ρrot

A will have
the same form as (105); applying the same reasoning as in
Sec. IV B, we obtain the following condition, which guaran-
tees the symmetry (94),

L̃rotR
0,λL,λB+iβB

[. . .] = L̃rot†
0,λL,λB

[. . .]. (113)

The strict energy conservation condition is written

L̃λ+χ1[. . .] = L̃λ[. . .] (114)

and is equivalent to (109), since we showed in Sec. III E 3
that the energy conservation conditions are equivalent in the
autonomous and nonautonomous pictures. When satisfied, it
implies that the first law holds at the level of the rates,

dt EA = ẆL + Q̇. (115)

V. GENERALIZED BLOCH, OPTICAL BLOCH,
AND FLOQUET MASTER EQUATIONS

In this section, we derive three master equations which
can be used in practice to study the coherent driving of
a qubit and examine whether they satisfy the general con-
ditions of consistency identified in the previous section.
Each master equation is derived both in the autonomous
and nonautonomous pictures. A schematic representation of
the approximations made and of the correspondences be-
tween the autonomous and nonautonomous picture is given in
Fig. 6.

We first derive a standard Markovian master equation in the
joint qubit-laser space, in the autonomous picture. We then
trace out the dressed laser to derive master equations in the
dressed qubit basis. We begin with a master equation, called
the generalized Bloch equation, valid at all qubit-laser cou-
pling strengths. Then, we identify three relevant qubit-laser
coupling regimes (or driving regimes): strong, intermediate,
and weak. The strong-driving regime leads to the Floquet
master equation, while the intermediate- and weak-driving
regimes gives rise to the Bloch master equation. We then
proceed to show how master equations in the qubit space
can be derived using the correspondence between the dressed
qubit (in the autonomous picture) and the evolution in the
rotating frame (in the nonautonomous picture), showed in
Sec. III C 2.

A. Qubit-laser

For convenience, we use the interaction picture [2]. In the
interaction picture, the map (99) becomes

ρ̂λI
X (t ) =

∑
μ,ν

Ŵ λI
μ,ν (t, 0)ρ̂X (0)Ŵ −λI†

μ,ν (t, 0), (116)

where we recall that λ = (λDA, λDL, λB) and where the Kraus
operators Ŵ λI

μ,ν (t, 0) are given by

Ŵ λI
μ,ν (t, 0) = √

ην〈μ|T [e−i
∫ t

0 dsV̂ λ
AB (s)]|ν〉, (117)

and where we recall that T denotes time ordering. To push
the derivation further, we perform a perturbative expansion to
second order in V̂AB.

The Hamiltonian V̂ λ
AB(t ) in (117) is the Hamiltonian V̂ λ

AB in
the interaction picture, given by (see Appendix F)

V̂ λ
AB(t ) ≡ eiĤ0tV̂ λ

ABe−iĤ0t

= (
Ŝλ

z (t ) + Ŝλ
−(t ) + Ŝλ

+(t )
)
B̂†

λB
(t ) + H.c., (118)

with B̂λB (t ) ≡ ∑
k gkb̂ke−iωk (t+λB/2) and

Ŝλ
z (t ) = e−iωLt e−iωLλDL Ŝz,

Ŝλ
+(t ) = e−i(ωL−
)t e−i(ωLλDL−
λDA )Ŝ+,

Ŝλ
−(t ) = e−i(ωL+
)t e−i(ωLλDL+
λDA )Ŝ−, (119)
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FIG. 6. Schematic representation of the approximations performed in order to derive the generalized Bloch, Bloch and Floquet master
equations, and summary of the unitary transformations connecting the autonomous and nonautonomous pictures, both at the unitary level
and at the level of the master equations. S.D. stands for strong driving, and the weak- and intermediate-driving regimes are grouped
under W.D.

where

Ŝz = g

2

(|2〉〈2| − |1〉〈1|) ⊗

∑
n�0

|n − 1〉〈n|

≡ ŝz ⊗
∑
n�0

|n − 1〉〈n|,

Ŝ+ ≡ −
 − δ

2

|2〉〈1| ⊗

∑
n�0

|n − 1〉〈n|

≡ ŝ+ ⊗
∑
n�0

|n − 1〉〈n|,

Ŝ− ≡ 
 + δ

2

|1〉〈2| ⊗

∑
n�0

|n − 1〉〈n|

≡ ŝ− ⊗
∑
n�0

|n − 1〉〈n|, (120)

where we introduced the reduced operators

ŝz ≡ g

2

(|2〉〈2| − |1〉〈1|) ≡ g

2

�̂z,

ŝ+ ≡ −
 − δ

2

|2〉〈1| ≡ −
 − δ

2

�̂+,

ŝ− ≡ 
 + δ

2

|1〉〈2| ≡ 
 + δ

2

�̂−, (121)

and where �̂z = |2〉〈2| − |1〉〈1|, �̂+ = |2〉〈1| = �̂
†
−. Later

on, we use the reduced operators dressed with counting fields,

ŝλ
z ≡ e−iλDLωL ŝz,

ŝλ
+ ≡ eiλDA
/2e−iλDLωL/2eiλB (ωL−
)/2ŝ+,

ŝλ
− ≡ e−iλDA
/2e−iλDLωL/2eiλB (ωL+
)/2ŝ−. (122)

It will further be useful to use the identity

Ŝz + Ŝ+ + Ŝ− =
∑
NL

|a, NL〉〈b, NL|. (123)

Let us now introduce the set {σ̂mn} of jump operators between
the eigenstates {| j, n〉} of ĤX . The set {σ̂mn} forms a basis of
jump operators acting on HX . To alleviate the notations, we
relabel the eigenstates

| j, n〉 → |En〉, (124)

so that, by definition, σ̂mn = |En〉〈Em|. We introduce ωmn =
Em − En, the corresponding Bohr frequencies. Note that dif-
ferent σ̂mn may be associated with the same frequency ωmn.
We now express the Kraus operators (117) in the basis {σ̂mn}
and perform the Markov approximation to obtain a time local
equation of motion of the form of (101),

Lλ(t )ρ̂S (t ) = lim
δ→δ0

1

δ

∑
mn,m′n′

dλ
mn,m′n′ (t, δ)

× σ̂mnρ̂
λI
X (t )σ̂ †

m′n′ − ρ̂λI
X (t ), (125)

where

dλ
mn,m′n′ (t, δ) ≡

∑
μ,ν

ηνTrS
[
σ̂ †

mnŴ
λI
μ,ν (t + δ, t )

]

× TrS
[
σ̂m′n′Ŵ −λI†

μ,ν (t + δ, t )
]
. (126)
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A perturbative expansion to second order in V̂ λ
AB, combined with ρ̂B = ∑

ν ην |ην〉〈ην | yields

Lλ(t )ρ̂I
X (t ) = lim

δ→δ0

1

δ

⎡
⎣∑

n,n′
σ̂nnρ̂

λI
X (t )σ̂ †

n′n′ − ρ̂λI
X (t ) +

∑
mn,m′n′

Tr

[∫ t+δ

t
ds σ̂ †

mnV̂
λ

AB(s)ρ̂B

∫ t+δ

t
ds σ̂m′n′V̂ −λ†

AB (s)

]
σ̂mnρ̂

λI
X (t )σ̂ †

m′n′

− 1

2

∑
mn,m′n′

TrX [σ̂m′n′ ]Tr

[
σ̂ †

mn

∫ t+δ

t
dsV̂ λ

AB(s)
∫ s

t
ds′V̂ λ

AB(s′)ρ̂B

]
σ̂mnρ̂

λI
X (t )σ̂ †

m′n′

−1

2

∑
mn,m′n′

TrX [σ̂ †
mn]Tr

[
σ̂m′n′

∫ t+δ

t
dsV̂ −λ†

AB (s)
∫ t+δ

s
ds′V̂ −λ†

AB (s′)ρ̂B

]
σ̂mnρ̂

λI
X (t )σ̂ †

m′n′

⎤
⎦. (127)

Notice that the r.h.s. term of the first line cancels out since
the σ̂nnρ̂

λI
X (t )σ̂ †

n′n′ = [ρ̂λI
X (t )]nn′ |En〉〈En′ | and {|En〉}n is a basis

of the system. Writing explicitly V̂ λ
AB(t ) in (127), we find that

the trace over the bath yields terms of the following form for
the coefficients of the master equation (see Appendix F for the
full expression):

1

δ0

∫ t+δ0

t
ds

∫ t+δ0

t
ds′TrB

[
B̂†

λB
(s)B̂−λB (s′)ρ̂B

]
e−i(ωαs−ωα′ s′ )

=
∑

k

sinc

(
ωk − ωα

2
δ0

)
sinc

(
ωk − ωα′

2
δ0

)

× G−(ωk )eiλBωk δ0ei(t+δ0/2)(ωα′−ωα ), (128)

1

δ0

∫ t+δ0

t
ds

∫ t+δ0

t
ds′TrB

[
B̂λB (s)B̂†

−λB
(s′)ρ̂B

]
e−i(ωαs−ωα′ s′ )

=
∑

k

sinc

(
ωk − ωα

2
δ0

)
sinc

(
ωk − ωα′

2
δ0

)

× G+(ωk )e−iλBωk δ0ei(t+δ0/2)(ωα′−ωα ), (129)

where G±(ν) is the real part of the half Fourier transform of
the bath correlation functions,∫ +∞

0
dτTr[B̂(τ )B̂†(0)ρ̂B]eiντ ≡ G+(ν) + iI+(ν),

∫ +∞

0
dτTr[B̂(τ )B̂†(0)ρ̂B]eiντ ≡ G−(ν) + iI−(ν). (130)

The product of sinc functions may be approximated by

δ0 sinc

(
ωk − ωα

2
δ0

)
sinc

(
ωk − ωα′

2
δ0

)
(131)

≈ δ0 sinc

(
2ωk − ωα − ωα′

2
δ0

)

≈
{

δ[2ωk − (ωα + ωα′ )] if |ωα − ωα′ | < δ−1
0

0 otherwise.

Going back to the Schrödinger picture, (127) takes the form

d ρ̂λ
X (t )

dt
= −i[ĤX + ĤLS] + Dλ

(
ρ̂λ

X (t )
)
, (132)

where the dissipator dressed with counting fields Dλ is ex-
pressed in terms of the operators (120), and where ĤLS is a
Lamb shift contribution. The Lamb shift term can be written

in terms of the jump operators (120), with amplitudes given
by the imaginary part I±(ν) of the half Fourier transform of
the bath correlation functions in (130). We further on neglect
the Lamb shift term ĤLS , given that it induces negligibly small
corrections to the qubit’s frequency [5,35,36].

We now proceed to deriving master equations for the
dressed qubit and the qubit, by tracing out respectively the
degrees of freedom of the dressed laser and laser.

B. Dressed qubit

Since, in (131), ωα ∈ {ωL, ωL ± 
}, we have, for any α �=
α′, |ωα − ωα′ | = 
 or |ωα − ωα′ | = 2
. This allows us to
identify three regimes, depending on the value of 
 (equiv-
alently of the coupling g):

2
 < δ−1
0 : weak driving,


 < δ−1
0 < 2
: intermediate driving,

δ−1
0 < 
: strong driving. (133)

However, these definitions are meaningless as long as we do
not connect δ0 with the relevant timescales of the problem.
To identify these timescales, we examine the real parts G± of
the half Fourier transforms of the bath correlation functions,
introduced in (130); we may rewrite them as

G+(ν) ≡ 1

2

∫ +∞

−∞
dτTr[B̂(τ )B̂†(0)ρ̂B]eiντ , (134)

G−(ν) ≡ 1

2

∫ +∞

−∞
dτTr[B̂†(τ )B̂(0)ρ̂B]eiντ . (135)

The functions G±(ν) are related to the bath’s zero-temperature
spectral function, �(ν) ≡ ∑

k |gk|2δD(ν − ωk ), where δD is
the Dirac δ function, by [5]

G+(ν) = �(ν)[nB(ν) + 1], (136)

G−(ν) = �(ν)nB(ν), (137)

where nB(ν) ≡ (eβBν − 1)−1. Note that G+(ν) = eβBνG−(ν),
which is the Kubo–Martin–Schwinger (KMS) condition
[2,37]. Let us now define

γmax ≡ maxα=z,+,−{G±(ωα )}, (138)

where we recall that ωα are the frequencies appearing in
the Fourier transform of V̂AB(t ). These frequencies, together
with γmax, are the relevant timescales to which δ0 should be
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TABLE I. Summary of the approximations used to derive the Bloch and Floquet master equations, of their regimes of validity and of their
thermodynamic consistency. Full consistency means satisfying the symmetries (107), (113) and the strict energy conservation conditions (109),
(114); this implies that the laws of thermodynamics are satisfied at the average and fluctuating levels.

Driving
Weak


 < γmax

Intermediate

 ∼ γmax

(Common regime of validity)
ωL, ωA 
 
 
 γmax

Strong
ωL, ωA, 
 
 γmax

Time scales ωL, ωA 
 δ−1
0 
 
, γmax ωL, ωA 
 δ−1

0 > 
, γmax ωL, ωA 
 
 
 δ−1
0 
 γmax ωL, ωA, 
 
 δ−1

0 
 γmax

Generalized Bloch
•Approximation (141)

•Consistency:
Full consistency in strong coupling

Weak or intermediate: symmetries (107), (113), and 1st and 2nd laws average & rates

QME

Bloch
•Approximation: G±(ν ) → G±

•Consistency:
Symmetries (107), (113)

1st and 2nd laws: average & rates

Floquet
•Secular approximation

•Consistency:
Full consistency

compared in order to push further the derivation of the master
equation (132). A necessary condition on δ0 is that

δ−1
0 
 γmax. (139)

Moreover, we require that ωL, ωA 
 δ−1
0 , which is a rea-

sonable assumption in practice. Combined with (131), these
conditions allows us to redefine the three driving regimes as

ωL, ωA 
 δ−1
0 
 
, γmax: weak driving,

ωL, ωA 
 δ−1
0 > 
, γmax: intermediate driving,

ωL, ωA,
 
 δ−1
0 
 γmax: strong driving. (140)

We now proceed to deriving master equations. We begin by
deriving a new master equation, called generalized Bloch
master equation, valid at all coupling strengths. The Flo-
quet and Bloch master equations are then obtained from
the generalized Bloch equation by performing additional
approximations, respectively, in the strong and weak- or
intermediate-driving regimes. A summary of the regimes of
validity and approximations made for each master equation is
given in the Table I.

1. Generalized Bloch equation

To derive the generalized Bloch equation, we do the fol-
lowing approximation, inspired by the procedure employed in
Refs. [31,38,39],∑

k

G±(ωk )eiλBωk δ0 sinc

(
ωk − ωα

2
δ0

)
sinc

(
ωk − ωα′

2
δ0

)

≈
{√

(G±(ωα )G±(ωα′ )eiλBωα eiλBωα′ if |ωα − ωα′ | < γmax

0 otherwise.

(141)

This procedure makes the superoperator (127) symmetric, al-
though the resulting superoperator takes different forms in the
three driving regimes of (133). Since the operators (120) are
factorized in the basis {|1n〉, |2n〉}, we may readily trace out
HDL, and we obtain a master equation for the dressed qubit. In
the weak-driving regime (2
 < γmax), the generalized Bloch
equation is

LaG
λ

(
ρ̂λ

DA

) = −i
[
ĤDA, ρ̂λ

DA

] + DaGλ
+

(
ρ̂λ

DA

) + DaGλ
−

(
ρ̂λ

DA

)
,

(142)

with

DaGλ
+ (ρ̂ ) = T̂ λ

+ ρ̂T̂ −λ†
+ − 1

2 (T̂ (λDA,λDL,0)†
+ T̂ (λDA,λDL,0)

+ ρ̂

+ ρ̂T̂ (−λDA,−λDL,0)†
+ T̂ (−λDA,−λDL,0)

+ ),

DaGλ
− (ρ̂ ) = T̂ λ†

− ρ̂T̂ −λ
− − 1

2 (T̂ (λDA,λDL,0)
− T̂ (λDA,λDL,0)†

− ρ̂

+ ρ̂T̂ (−λDA,−λDL,0)
− T̂ (−λDA,−λDL,0)†

− ),

where the superscript aG stands for autonomous generalized
Bloch equation (the nonautonomous counterpart is derived in
Sec. V C), λ = (λDA, λDL, λB), and

T̂ λ
± =

∑
α=+,−,z

√
G±(ωα )ŝλ

α. (143)

In the strong-driving regime (
 > γmax), the generalized
Bloch equation is equal to the Floquet master equation (in
the rotating frame), which we derive in the next section;
the expression is given in Eq. (149). The expression of the
generalized Bloch equation in the intermediate regime (
 <

γmax < 2
) is given in Appendix G in order to alleviate the
text.

It is straightforward to check that the generalized Bloch
master equation satisfies the condition (107) in all three
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FIG. 7. Work WDL moment generating functions for the master
equations discussed. (top) The work fluctuation theorem holds for
the Bloch equation derived using quantum maps but breaks down if
the Bloch equation is derived with the Redfield equation. (bottom)
The work fluctuation theorem is satisfied by the Floquet master
equation and the generalized master equation. Parameters: α = 4,
β = 10/D with the spectral width D = 20, γ0 = 0.4

√
D.

regimes (see, e.g., Fig. 7 for the case 2
 < γmax). Conse-
quently, the second law of thermodynamics is satisfied on
average. The strict energy conservation condition (114), on
the other hand, is only valid when 
 > γmax, since, in this
case, (141) amounts to performing the secular approximation
[2] (the product of sinc functions in (141) is then nonzero only
in the case α = α′).

We now derive the rates ẆDL, Q̇ and dt EDA. Let us intro-
duce

P1(t ) = 〈1|ρ̂DA(t )|1〉,
P2(t ) = 〈2|ρ̂DA(t )|2〉, (144)

P21(t ) = 〈2|ρ̂DA(t )|1〉,
and

γ0,↓ = g2

4
2
G+(ωL ),

γ0,↑ = g2

4
2
G−(ωL ),

γ1,↓ = (
 + δ)2

4
2
G+(ωL + 
),

γ1,↑ = (
 + δ)2

4
2
G−(ωL + 
),

γ2,↓ = (
 − δ)2

4
2
G−(ωL − 
),

γ2,↑ = (
 − δ)2

4
2
G+(ωL − 
). (145)

Taking the derivatives in λDL, λB, λDA in the trace of LaG
λ , we

obtain respectively the rates ẆDL, Q̇, and dt�EA. In the weak-
and intermediate-driving regimes, the results are

ẆDL = ωL(γ0↓ − γ0↑)

+ ωL[(γ2↑ − γ1↑)P1(t ) + (γ1↓ − γ2↓)P2(t )]

− 2ωL(
√

γ0↑γ2↓ + √
γ0↑γ1↑)Re[P21(t )]

− 2ωL(
√

γ0↓γ2↑ + √
γ0↓γ1↓)Re[P21(t )], (146)

Q̇ = ωL(γ0↑ − γ0↓)

+ [ωL(γ1↑ − γ2↑) + 
(γ2↑ + γ1↑)]P1(t )

+ [ωL(γ2↓ − γ1↓) − 
(γ2↓ + γ1↓)]P2(t )

+ 2(ωL − 
/2)(
√

γ0↓γ2↑ + √
γ0↓γ2↓)Re[P21(t )]

+ 2(ωL + 
/2)(
√

γ0↓γ1↑ + √
γ0↓γ1↓)Re[P21(t )],

(147)

dt EDA = 
(γ2↑ + γ1↑)P1(t ) − 
(γ2↓ + γ1↓)P2(t )

− 
/2(
√

γ0↓γ2↑ + √
γ0↓γ2↓)Re[P21(t )]

+ 
/2(
√

γ0↓γ1↑ + √
γ0↓γ1↓)Re[P21(t )]. (148)

It is straightforward to check that the first law is satisfied at
the level of the rates. The rates in the strong-driving regime
are given in the next section, on the Floquet equation.

2. Strong qubit-laser coupling: Floquet master equation

We consider here the strong-driving regime, defined in
(140). In this case, the product of sinc functions (141) is
nonzero only in the case α = α′, which is equivalent to the
secular approximation [2]. Performing the secular approxi-
mation on (142), we obtain (see Appendix H for the full
expression)

d ρ̂λ
DA

dt
= LaF

λ

(
ρ̂λ

DA

)
= −i

[
ĤDA, ρ̂λ

DA

] + DaF
λ

(
ρ̂λ

DA

)
. (149)

We call this equation the “autonomous Floquet” master equa-
tion, denoted by the superscript “aF,” since it is equivalent to
the Floquet master equation—traditionally used in the nonau-
tonomous picture—which we derive in Sec. V. The dissipator
in (149) has three dissipation channels, corresponding to the
three frequencies of the Mollow triplet ωL, ωL ± 
; we give
here its expression the counting fields are set to zero λ = 0,

DaF ≡DaF
+ + DaF

− ,

DaF
+ =γ0,↓D�̂z

+ γ1,↓D�̂− + γ2,↑D�̂+ ,

DaF
− =γ0,↑D�̂

†
z
+ γ1,↑D�̂+ + γ2,↓D�̂− . (150)

Since the autonomous Floquet equation is the restriction of
the generalized Bloch equation to the strong-driving regime,
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LaF
λ satisfies the condition (107) and the strict energy conser-

vation condition (109) (this can also be seen directly from the
explicit expression given in Appendix H) and is therefore fully
thermodynamically consistent.

Moreover, the dissipator in (149) satisfies the symmetry

DaF†
0,λDL,λB+iβB

(. . .) = DaF
0,λDL,λB

(. . .). (151)

Since the steady-state moment-generating function
Gss(λDL, λB) ≡ limt→+∞ 1

t G(0, λDL, λB, t ) is given by the
dominant eigenvalue of D0,λDL,λB [12], the identity (151)
implies the steady-state work fluctuation theorem

p(WDL )

p(−WDL )
� e−βBWDL . (152)

We now derive the explicit expressions of the work WDL,
dressed qubit energy �EDA, and heat by taking the derivatives
λDL, λDA and λB, in the trace of LaF

λ (ρ̂λ
DA). We obtain

ẆDL = ωL(γ0,↓ − γ0,↑) + ωL[(γ1,↓ − γ2,↓)P2(t )

− (γ1,↑ − γ2,↑)P1(t )], (153)

dt EDA = 
[(γ1,↑ + γ2,↑)P1(t ) − (γ1,↓ + γ2,↓)P2(t )], (154)

and

Q̇ = ωL(γ0↑ − γ0↓)

+ [ωL(γ1↑ − γ2↑) + 
(γ2↑ + γ1↑)]P1(t )

+ [ωL(γ2↓ − γ1↓) − 
(γ2↓ + γ1↓)]P2(t ). (155)

Notice that these expressions are equal to the rates (146),
(147), and (148) without the coherent terms P21(t ), which is a
consequence of the secular approximation.

We also point out that the rate of the heat (155) is con-
sistent with the results obtained in Refs. [7,40], and the rate
of the work (153) is consistent with the expression derived
in Ref. [5] in the case of a nonautonomous description of
the laser. However, it was then assumed that (153) should
correspond to the work performed by the laser (and not the
dressed laser), which seemed in contradiction with quantum
thermodynamics, according to which that work is expected
to be of the form (63). Our approach unveils that the work
(153) exerted on the dressed qubit is in fact produced by the
dressed laser, which partially explains the difference from
the anticipated form (153). The expression (153) also sug-
gests that work is mediated by transitions and thus originates
from a nonconservative force. This was also pointed out in
Refs. [5,12], in the nonautonomous picture. Nonconservative
forces typically arise when eliminating an underlying de-
gree of freedom (here the laser), that, over sufficiently long
timescales, delivers energy without being affected by it [41].
This is manifest in the form of the rates (145) which satisfy a
local detailed balance condition [41,42], which relates the log
ratio of the transition rates (145) to the change in entropy in
the bath resulting from that transition:

ln
γ j,↓
γ j,↑

= βB(ωL + l j
), (156)

with j = 0, 1, 2 and l0 = 0, l1 = 1, l2 = −1. Interestingly, the
rates (145) are the same as those appearing in the dissipator of
the master equation for ρ̂X , denoted LaF,X above (149). At

the level of the master equation for ρ̂X , the r.h.s. of (156)
is equal to (up to the factor βB) the energy variation of the
system X during a transition induced by the dissipator; this
implies that the dynamics is detailed balanced and will relax to
equilibrium. However, at the level of the master equation for
the dressed qubit (149), the r.h.s. of (156) not only contains
the difference of energies of the system (i.e., ±
), but also
the laser’s energy. The fact that the term ωL remains even
after we have traced out the degrees of freedom of the laser
results directly from assumption 2. Indeed, this assumption
allows us to neglect the variations of the number of photons
in the laser during a transition between a state of | j(n)〉 →
|i(n ± 1)〉 (i, j ∈ {1, 2}) and justifies the mapping (29), which
in turn leads to the simple product structure of the operators
(120). This product structure then allows us to trace out the
dressed laser DL without changing the rates in the dissipator
of the master equation. During this procedure, the variation of
the number of photons is treated as an underlying degree of
freedom which is traced out and does not appear explicitly in
the dynamics, but leaves a fingerprint in the thermodynamics
through the term ωL in (156), which is at the origin of the non-
conservative force (153). As a consequence, the steady-state
solution of LaF is a nonequilibrium steady state, as can be
checked by noticing that the entropy production rate is strictly
positive in the steady state (see Appendix I).

3. Weak and intermediate coupling: Bloch master equation

We now consider the weak-driving regime defined in (140).
Provided that G±(ν) are smooth on the intervals [±ωL −

,±ωL + 
], we may replace

G±(ωL ), G±(ωL ± 
) ≈ G±(ωA) ≡ G± (157)

in (142), which yields the tilted master equation dt ρ̂
λ
DA(t ) ≡

LaB
λ (ρ̂DA(t )) (see Appendix J for the explicit expression).

When the counting fields are set to zero, it is equal to

d ρ̂DA(t )

dt
= LaB(ρ̂DA(t ))

= −i[ĤDA, ρ̂DA(t )] + G+Dσ̂− (ρ̂DA(t ))

+ G−Dσ̂+ (ρ̂DA(t )), (158)

where we recall that σ̂+ = |b〉〈a| = σ̂
†
−. The regime of validity

of (158) can be extended to the intermediate-driving regime
in (140) since, in this regime, the condition δ0 > 
−1 is still
satisfied. The notation aB stands for autonomous Bloch equa-
tion, since we will see, in Sec. V, that (158) is equivalent to
the optical Bloch master equation [3,5], usually derived in the
nonautonomous picture.

It is straightforward to check that LaB
λ (see Appendix J)

satisfies the condition (107). This implies the second law, at
the level of the rates [31],

dt SDA − βBQ̇ � 0. (159)

Setting λDA = λDL = λB = λ, we find that LaB
λ is not λ in-

dependent, which means that the strict energy conservation
(109) is not satisfied, hence that the first law of thermodynam-
ics does not hold at the fluctuating level.
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We obtain Q̇, ẆDL, and dt EDA by taking the derivatives in
λB, λDL, and λDA of Tr[LaB

λ (ρ̂DA)],

Q̇ = − ωA[G+Pb(t ) − G−Pa(t )]

− g

2
(G+ + G−)Re(Pab(t )), (160)

ẆDL = ωL[G+Pb(t ) − G−Pa(t )], (161)

dt EDA = − δ(G+Pb(t ) − G−Pa(t ))

− g

2
(G+ + G−)Re(Pab(t )), (162)

with

Pb(t ) ≡ 〈b|ρ̂DA(t )|b〉

= 1

2
+ δ

2

[P2(t ) − P1(t )] − g



Re[P21(t )],

Pa(t ) ≡ 〈a|ρ̂DA(t )|a〉

= 1

2
− δ

2

[P2(t ) − P1(t )]

g



+ Re[P21(t )],

Pba(t ) ≡ 〈b|ρ̂DA(t )|a〉

= g

2

[P2(t ) − P1(t )] + δ



Re[P21(t )] + iIm[P21(t )],

Pab(t ) ≡ 〈a|ρ̂DA(t )|b〉. (163)

One can check, using the identity (123), that the above ex-
pressions are consistent with (146), (147) and (148). We also
check that the first law is satisfied,

dt EDA = Q̇ + ẆDL. (164)

C. Nonautonomous qubit

As showed in Sec. III C 2, and summarized in Fig. 6, the
evolution of the dressed qubit (in the autonomous description)
is equivalent to the evolution of the qubit in the rotating frame
(in the nonautonomous description). This remains true at the
level of master equations. Specifically, the nonautonomous
counterparts of the generalized Bloch equation (142) and
of the autonomous Bloch (158) and Floquet (149) master
equations can be obtained simply by using the correspon-
dence (40). This leads to the following relation between the
autonomous master equations and there nonautonomous ver-
sions,

L̃G,F,B( ˆ̃ρA(t )) = e−iωL σ̂zt/2

{
LaG,aF,aB[ρ̂DA(t )]

− i
ωL

2
[σ̂z, ρ̂DA(t )]

}
eiωL σ̂zt/2, (165)

where we use “G” for generalized Bloch, “F” for Floquet,
and “B” for optical Bloch. See Fig. 6 for a summary of the
correspondences.

We now examine the thermodynamics in the qubit picture,
similarly as in Sec. III where we focused on the dressed

qubit picture. We therefore derive tilted master equations with
counting fields on the laser and bath, λ = (λL, λB). We leave
out the qubit part, since measuring ĤA + V̂ (t ) is difficult in
practice and deriving a tilted master equation with a counting
field on ĤA + V̂ (t ) is technically cumbersome. The nonau-
tonomous master equations with counting fields λ = (λL, λB)
can be obtained using the substitutions ŝλ

z,± → ŝλ
z,±(t ), where

ŝλ
z (t ) ≡ g

2

e−i(λL−λB )ωL/2�̂z

(
t + λL

2

)
,

ŝλ
+(t ) ≡ −
 − δ

2

e−iλLωL/2eiλB (ωL−
)/2�̂+

(
t + λL

2

)
,

ŝλ
−(t ) ≡ 
 + δ

2

e−iλLωL/2eiλB (ωL+
)/2�̂−

(
t + λL

2

)
,

(166)

with

�̂z(t ) ≡ |u2(t )〉〈u2(t )| − |u1(t )〉〈u1(t )|,
�̂+(t ) ≡ |u2(t )〉〈u1(t )|,
�̂−(t ) ≡ |u1(t )〉〈u2(t )|. (167)

To see this, let us treat ĤL, ĤB separately. The tilted master
equation dressed with the counting field λB can be obtained di-
rectly from the autonomous equations (142), (149) and (158),
by setting λ = (0, 0, λB) in those equations and using the
identity (165). For ĤL, we use the identity ĤL = ĤDL − ωL

2 σ̂z.
Since [ĤDL, ωL

2 σ̂z] = 0, we may measure them separately, us-
ing counting fields λDL, λσ ; then, setting λL = λDL = −λσ

yields the tilted master equation dressed with the counting
field λL for ĤL. The convenience of this approach is that,
since ωL

2 σ̂z only acts on the Hilbert space of the qubit, the
terms eiλσ ωL σ̂ /2 can be factorized out of the Kraus operators
when tracing out the Hilbert spaces HL, HB, similarly as the
situation in (105) (but for HDL, HB). The exponential term
e−iωLλL comes from counting ĤDL, while the shifts in the
operators �̂F

z (t ), �̂F
±(t ) are due to counting ωL

2 σ̂z.

1. Generalized Bloch equation

Using (142), (165), and (166), we obtain the generalized
Bloch equation with counting fields λ = (λL, λB),

LG
λ ( ˆ̃ρA(t )) (168)

= −i[ĤA(t + λL/2) ˆ̃ρA(t ) − ˆ̃ρA(t )ĤA(t − λL/2)]

+DGλ
+ ( ˆ̃ρA(t )) + DGλ

− ( ˆ̃ρA(t )), (169)

where we note

ĤA(t ) ≡ ĤA + V̂ (t ). (170)

In the weak-driving regime,

DGλ
+ (ρ̂ ) = T̂ λ

+ (t )ρ̂T̂ −λ†
+ (t ) − 1

2 (T̂ (λL,0)†
+ (t )T̂ (λL,0)

+ (t )ρ̂ + ρ̂T̂ (−λL,0)†
+ (t )T̂ (−λL,0)

+ (t )),

DGλ
− (ρ̂ ) = T̂ λ†

− (t )ρ̂T̂ −λ
− (t ) − 1

2 (T̂ (λL,0)
− (t )T̂ (λL,0)†

− (t )ρ̂ + ρ̂T̂ (−λL,0)
− T̂ (−λL,0)†

− (t )),
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with

T̂ λ
± (t ) =

∑
α=+,−,z

√
G±(ωα )ŝλ

α (t ). (171)

The expression of the dissipators in the strong-driving regime
corresponds to the Floquet equation, given in the next
section in (174) and Appendix L. The expression in the
intermediate-driving regime is obtained from the autonomous
generalized Bloch equation in that regime, given in Ap-
pendix G, by using (165) and (166).

The heat is the same as in the autonomous case, and the
rate of the work ẆL is given in the Appendix K.

2. Floquet master equation

The strong-coupling limit in the nonautonomous descrip-
tion leads to the Floquet quantum master equation [5,7]. We
obtain it from (149), using the correspondence (165),

LF ( ˆ̃ρA(t )) = −i[ĤA + V̂ (t ), ˆ̃ρA(t )] + DF ( ˆ̃ρA(t )), (172)

where the dissipator is obtained by replacing the operators �̂z,
�̂± in (150) by �̂z(t ), �̂±(t ), defined in (167).

The tilted Floquet master equation with counting fields λ =
(λL, λB) is obtained by performing the secular approximation
in (168),

LF
λ ( ˆ̃ρA(t )) = − i[ĤA(t + λL/2) ˆ̃ρA(t ) − ˆ̃ρA(t )ĤA(t − λL/2)]

+ DF
λ ( ˆ̃ρA(t )). (173)

The dissipator DF
λ is decomposed as

DF
λ ≡DF

λ,+ + DF
λ−,

DF
λ+ = γ0,↓DFλ

0,+ + γ1,↓DFλ
1,+ + γ2,↑DFλ

2,+,

DF
Fλ− = γ0,↑DFλ

0,− + γ1,↑DFλ
1,− + γ2,↓DFλ

2,−. (174)

The full dissipator is given in Appendix L. It is straightforward
to check that LF

λ satisfies the symmetries (113) and (114). The
dissipator also satisfies the symmetry

DF†
0,λL,λB+iβB

(. . .) = DF
0,λL,λB

(. . .), (175)

which, as explained under (152), implies the following steady-
state work fluctuation theorem, this time for WL,

p(WL )

p(−WL )
� eβBWL . (176)

We may now obtain the rate of the work ẆL,

Ẇ F
L ≡ − 1

i
∂λL Tr

[
LF

λ ( ˆ̃ρA(t ))
]|λ=0

=ẆDL + Tr
[ωL

2
σ̂zLF ( ˆ̃ρA(t ))

]
= Tr[dtV̂ (t ) ˆ̃ρA(t ))] + ωL(γ0↓ − γ0↑) + ωL

g




× Re[P21(t )]

(
γ0↓ + γ0↑ + γ1↓ + γ1↑ + γ2↓ + γ2↑

2

)

+ ωLP1(t )

[
γ2↑ − γ1↑ + δ




(
γ2↑ + γ1↑

)]

− ωLP2(t )

[
γ2↓ − γ1↓ + δ




(
γ2↓ + γ1↓

)]
. (177)

where P21(t ) ≡ 〈2|ρ̂DA(t )|1〉 and where P1,2(t ) were defined
in (144). Notice that Tr[dtV̂ (t ) ˆ̃ρA(t )] may be rewritten as

Tr[dtV̂ (t ) ˆ̃ρA(t )] = −gωLIm(〈2|ρ̂DA|1〉)

= −gωLIm(〈b|ρ̂DA|a〉), (178)

similarly to the unitary case (51).

3. Bloch master equation

In the nonautonomous picture, the weak- or intermediate-
driving regimes correspond to the regimes of validity of the
optical Bloch master equation [3,5]. Using (165) with (158),
we obtain the optical Bloch master equation [3]

LB( ˆ̃ρA(t )) = − i[ĤA + V̂ (t ), ˆ̃ρA(t )]

+ G+Dσ̂− ( ˆ̃ρA(t )) + G−Dσ̂+ ( ˆ̃ρA(t )). (179)

From the discussion in Sec. V B 3, we deduce that the Bloch
master equation satisfies the symmetry (113) as well as the
first law (55).

The optical Bloch master equation dressed with the
counting fields λ = (λL, λB) is obtained by performing the
approximation G±(ν) → G± in (168),

d ρ̂λ
A

dt
≡ LB

λ ( ˆ̃ρA) (180)

= −i[H̃A + V̂λL (t + λL/2), ˆ̃ρA]

+ G+DλB

�̂
( ˆ̃ρA) + G−DλB

�̂† ( ˆ̃ρA), (181)

where DλB is in fact equal to by setting to the dissipator of LaB

with λ = (0, 0, λB). We can then obtain the rate of the work,
ẆL = 1

i ∂λL Tr[ρ̂λ
A], and we find

ẆL = Tr[dtV̂ (t ) ˆ̃ρA(t )] = −gωLIm(〈b|ρ̂DA|a〉). (182)

The heat is the same as in (160); we may decompose it as

Q̇ = ωA[(n + 1)Pa(t ) − nPb(t )] + γ gRe[Pab(t )]

= Tr[LB( ˆ̃ρA)ĤA] + Tr[LB( ˆ̃ρA)V̂ (t )], (183)

which then gives the first law

dt ẼA = Tr[(ĤA + V̂ (t ))LB(ρ̂A(t ))] + Tr[dtV̂ )ρ̂A(t )]

= Q̇ + ẆL. (184)

VI. QUANTUM MAPS VS REDFIELD EQUATION

In the Sec. V, we derived the Bloch and Floquet equa-
tion using the formalism of quantum maps and the Kraus
operators (117). We saw that this procedure preserves the
fluctuation theorems. However, the Bloch equation is usually
derived using the Redfield equation [2,5,43]. We show in this
short section that, although both procedures result in the same
equation in the absence of counting fields, the tilted master
equations differ, and that the Bloch equation derived from the
Redfield method breaks the symmetry (107).

To see this, we repeat the derivation of the Bloch equa-
tion via the Redfield equation, which can be found in
Ref. [2,5], but adding here the counting fields. The first step is
to write the Liouville equation in the interaction picture, with
counting fields, which is done by taking the time derivative of
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ρ̂λ(t ) in (76), and going to the interaction picture with respect
to ĤX + ĤB,

d ρ̂λI (t )

dt
= −i

[
V̂ λ

AB(t )ρ̂λI (t ) − ρ̂λI (t )V̂ −λ
AB (t )

]
. (185)

The system X evolves over a timescale ≈γ −1
max. Assuming that

the relaxation time τB of the heat bath B satisfies τB � γ −1
max,

we can coarse-grain the dynamics over a timescale δ0 such that
τB � δ0 � γ −1

max. Integrating (185) over δ0 and re-injecting the
solution in (185) yields, assuming [V̂AB(0), ρ̂I

AL(0)] = 0, an
equation similar to the Redfield master equation,

d ρ̂λ
X

dt
= − TrB

[
1

δ0

∫ t+δ0

t
dt ′

∫ t ′

t
duV̂ λ/2

AB (t ′)V̂ λ/2
AB (u)ρ̂λ

X (u) ⊗ ρ̂B + ρ̂λ
X (u) ⊗ ρ̂BV̂ −λ/2

AB (u)V̂ −λ/2
AB (t ′)

− V̂ λ/2
AB (t ′)ρ̂λ

X (u) ⊗ ρ̂BV̂ −λ/2
AB (u) − V̂ λ/2

AB (u)ρ̂λ
X (u) ⊗ ρ̂BV̂ −λ/2

AB (t ′)

]
. (186)

In the weak-coupling limit, we can perform the Born-Markov approximation [2] and replace ρ̂(u) ≡ ρ̂X (t ) ⊗ ρ̂B. We then do the
change of variable τ = t ′ − u in the second integral; since τB � δ0, we replace the upper bound of the second integral by +∞,
and we obtain, finally,

d ρ̂λ
X

dt
= − TrB

[
1

δ0

∫ t+δ0

t
dt ′

∫ +∞

0
dτV̂ λ/2

AB (t ′)V̂ λ/2
AB (t ′ − τ )ρ̂λ

X (t ) ⊗ ρ̂B + ρ̂λ
X (t ) ⊗ ρ̂BV̂ −λ/2

AB (t ′ − τ )V̂ −λ/2
AB (t ′)

− V̂ λ/2
AB (t ′)ρ̂λ

X (t ) ⊗ ρ̂BV̂ −λ/2
AB (t ′ − τ ) − V̂ λ/2

AB (t ′ − τ )ρ̂λ
X (t ) ⊗ ρ̂BV̂ −λ/2

AB (t ′)

]
. (187)

The key difference between (187) and the master equa-
tion (127), obtained from a perturbative expansion of (101),
is the final approximation made for the Redfield: replacing
the upper bound of the second integral by +∞. We did not
make this approximation in Sec. IV, see Eqs. (127) to (131).
This approximation is known to break the positivity of the
Redfield equation [2]. We also showed in a previous work
that it breaks a fluctuation theorem in the case of a quantum
system connected to heat baths [31]. The same happens here,
in the presence of the laser: to see this, suffices to finish the
calculation of the Bloch equation, using the approximation
G±(ν) ≈ G±; details are provided in the Appendix M. The
expression of the Bloch equation with counting fields is then

d ρ̂λ
DA

dt
≡ LaB,red

λ

= −i
[
ĤDA, ρ̂λ

DA

] + G+Dλ
ŝ

(
ρ̂λ

DA

) + G−Dλ
ŝ†

(
ρ̂λ

DA

)
,

(188)

with

Dλ
ŝ (ρ̂ ) = − 1

2

(
ŝ†
λDA,0,0ŝλDA,0,0ρ̂ + ρ̂ ŝ†

−λDA,0,0ŝ−λDA,0,0
)

+ 1

2
eiωLλB ŝλDA,λDL,0ρ̂ ŝ†

−λ

+ 1

2
eiωLλB ŝλρ̂ ŝ†

−λDA,−λDL,0, (189)

Dλ
ŝ† (ρ̂) = − 1

2

(
ŝλDA,0,0ŝ†

λDA,0,0ρ̂ + ρ̂ ŝ−λDA,0,0ŝ†
−λDA,0,0

)
+ 1

2
e−iωLλB ŝ†

λDA,λDL,0ρ̂ ŝ−λ

+ 1

2
e−iωLλB ŝ†

λρ̂ ŝ−λDA,−λDL,0. (190)

The explicit expressions in (189) allow us to see directly that
the symmetry (107) is not satisfied. See also Fig. 7 for a
numerical check.

The positivity can however be restored by applying the
secular approximation [2]. The secular approximation also
restores the fluctuation theorems [31]. Note that the Floquet
master equation with counting fields is identical with both
methods, as a consequence of the secular approximation.

VII. STEADY-STATE SOLUTIONS

Here, we briefly discuss and compare the steady-state solu-
tions for thermodynamics quantities predicted by the Floquet
and Bloch master equations.

First, we point out that the rates ẆL and ẆDL become equal
in the steady-state: In both the Floquet and Bloch master
equations, we have

Ẇ ss
L = Ẇ ss

DL. (191)

This result is obtained by replacing the steady-state solu-
tions of the Floquet and Bloch master equations, given in
Appendixes I and N, in (153) and (177) (Floquet) and (161)
and (182) (Bloch). This result was expected, since, at the
microscopic level, WL and WDL only differ by the expectation
value of ωL

2 σ̂z, which vanishes in the steady-state since it is a
state variable.

We make a second observation, that, in the common regime
of validity of the Floquet and Bloch master equations, charac-
terized by ωL, ωA 
 
 
 γmax, with the assumption that the
spectral density �(ν) is smooth, the steady-state expectation
values of heat Q̇ss and work Ẇ ss

L can equivalently be obtained
from either equation. More precisely, using the steady-state
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FIG. 8. Steady-state moment-generating functions for the work WDL (top) and heat Q (bottom), for increasing driving values (from left to
right). The parameters are D = 1000, β = 100/D and γ0 = 0.1

√
D, δ = 10−8D, and ωA = 0.02D. The values of the laser-qubit coupling are

such that g/γmax = 0.8 for the weak driving, g/γmax = 8 for the intermediate regime, g/γmax = 800 for the common regime of validity, and
g/γmax = 2000 for the strong-driving regime.

solutions given in Appendixes I and N in (153), (155), (161),
and (160), we find

Q̇ss,F − Q̇ss,B

�ωL
= − 1/2

δ2+
2

g2

(
1 + 2 δ2+
2

γ 2(2n+1)2

) , (192)

Ẇ ss,F
L − Ẇ ss,B

L

�ωL
= δ2/g2 + �

2
(2n + 1)2/4g2

1 + 2 δ2

g2 + �
2 (2n+1)2

2g2

, (193)

where the superscripts F and B stand respectively for Flo-
quet and Bloch, where � ≡ G+/(n + 1) with n ≡ nB(ωL ),
and where we approximated γ0↓, γ1↓, γ2↑ ∼ G+/4 and
γ0↑, γ1↑, γ2↓ ∼ G−/4. Since ωL, ωA 
 
 
 γmax and γmax =
G+, and since 
 ∼ g, we find that

Q̇ss,F − Q̇ss,B

�ωL
= O

(
γ 2

max

g2

)
, (194)

Ẇ ss,F
L − Ẇ ss,B

L

�ωL
= O

(
γ 2

max

g2

)
. (195)

Let us now show that variations of the order γ 2
max/g2 are too

small to be captured by the Floquet and Bloch master equa-
tions in the common regime of validity. Given that the master
equations were obtained from a perturbative expansion, to
second order, of Ŵ λI

μ,ν (t + δ0, t ) defined in (117), the accuracy
of the master equations is of the order δ2

0γ
2
max. In the com-

mon regime of validity, δ0 needs to satisfy 
 
 δ−1
0 
 γmax.

Choosing for example δ−1
0 = √

γmax
, it follows that

Q̇ss,F − Q̇ss,OB

�ωL
= Ẇ ss,F

L − Ẇ ss,OB
L

�ωL
= o

(
δ2

0γ
2
max

)
, (196)

hence Q̇ss,F = Q̇ss,OB and Ẇ ss,F
L = Ẇ ss,OB

L up to negligible
corrections.

We highlight that the equivalences (196) assume that the
spectral density �(ν) is “smooth enough” on the interval
[ωA − 
,ωA + 
]. If this was not the case, we expect the

Floquet and Bloch master equation to predict different rates
for ẆL.

We conclude with a few plots of the heat and work moment
generating functions, from times t = 0 to the steady state, for
different values of the driving strength, see Fig. 8. The initial
density matrix is |b〉〈b|. We observe that, in the weak- and
intermediate-driving regimes, the generalized Bloch equa-
tion coincides with the Bloch equations (derived whether from
the Redfield equation or from the Kraus operators), but not
with the Floquet master equation. In the common regime of
validity, all the master equations give the same result, except
at large λDL where the Redfield Bloch equation slightly di-
verges. In the strong-driving regime, the generalized Bloch
equation matches instead with the Floquet master equation.

VIII. SUMMARY

In Secs. IV and V, we developed a toolbox for deriving
quantum master equations for coherently driven systems. In
this section, we briefly sum up the results of most practical
use.

(1) The generalized Bloch equation is valid at all driving
regimes, thermodynamically consistent [satisfies the sym-
metries (107), (113) and the laws of thermodynamics on
average], and fully consistent in the strong drive regime. The
Floquet master equation is valid at strong driving (
 
 γmax)
and is fully consistent. The Bloch equation, derived from the
maps, is valid at weak (
 < γmax) and intermediate (
 ∼
γmax) driving and in the common regime of validity (ωA, ωL 


 
 γmax) and satisfies the symmetries (107), (113) and the
laws of thermodynamics on average, but not the strict energy
conservation. See Table I for a summary.

(2) At the unitary level and at the level of quantum master
equations for the qubit, the evolution of the dressed qubit (in
the autonomous description) is equivalent to the evolution in
the rotating frame (in the nonautonomous description). See
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Fig. 6 for a summary of the unitary operations connecting the
autonomous and nonautonomous pictures.

(3) The work source for the dressed qubit is the dressed
laser; the work source for the qubit is the laser. The laws of
thermodynamics in both approaches are summarized in Fig. 3.

(4) In their common regimes of validity, the Bloch and
Floquet master equations predict similar steady-state thermo-
dynamics, on average (194), (195), and at the level of moment
generating functions, see Fig. 8.

IX. CONCLUSION

In this work, we analyzed the thermodynamics of a qubit
interacting with a coherent, macroscopic, electromagnetic
field, in the weak-, intermediate-, and strong-driving (140)
regimes. We point out that our method can be readily extended
to d-level qubits and collective sets on qubits. A summary
of the result is presented in Fig. 3 and Table I. We derived
two symmetries (81) and (94), which serve as criteria of
thermodynamic consistency for quantum master equations,
and translate them into the symmetries (107) and (113) at the
level of the master equations. We derived a master equation,
the generalized Bloch equation, valid in all drive regimes
and satisfying (107) and (113). The generalized Bloch equa-
tion also satisfies the strict energy conservation condition at
strong drives, making it fully consistent in this limit. The
Floquet master equation corresponds to the restriction of the
generalized Bloch equation in the strong drive regime, while
the Bloch master equation is obtained by performing an ad-
ditional approximation in the weak- or intermediate-driving
regimes, which preserve the symmetries (107) and (113).
We also pointed out the importance of using quantum maps
rather than the Redfield equation when deriving master equa-
tions, since the Redfield equation breaks the symmetries (107)
and (113).

The present work could be useful for assessing the energy
cost of qubit manipulation using coherent light sources, in the
spirit of Ref. [44]. Furthermore, our findings are relevant in
the context designing and optimizing autonomous heat en-
gines [45–47] using far from equilibrium states of radiation
as work sources, in the spirit of Ref. [48]. Our findings could
also be relevant for studying energy fluctuations in hybrid
optomechanical systems [40,49] where the development of the
precision of such systems [50] might allow one to measure
work fluctuations directly. More generally, our framework
could be easily adapted to models in low-temperature solid-
state physics to study the interaction between phonons and
defects of the material (often modeled as two-level systems),
which reproduces Jaynes-Cummings-like physics [51]. In the
context of work measurement schemes in cold atoms sys-
tems, our findings complements the method developed by
Refs. [52,53] using coherent light as a probe to reconstruct the
work statistics from homodyne detection: in these works, the
laser is solely seen as a probe, and the work transferred by the
laser is not taken into account. Applying our results to these
schemes could yield a complete thermodynamic description
of work measurement in cold atom setups. Finally, our results
should motivate further investigation of the thermodynamics
of nonequilibrium steady states generated when coherent light
drives a system out of equilibrium. Such states have been

studied in mesoscopic physics, in setups where coherent light
propagates through random scattering media [54–56], and
have been shown to yield fluctuation-induced forces, but a
thorough thermodynamic description of these features is still
lacking.
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APPENDIX A: LASER AS A WORK SOURCE

Assume that ρ̂L(0) is either a coherent state or a Poisson
state, and that the final state is not far from ρ̂L(0); we write it
in the form

ρ̂L(t ) = ρ̂L(0) + εr̂, (A1)

with Tr[r̂] = 0 and ε small. Consider now the relative entropy

D[ρ̂L(t )||ρ̂L(0)] = Tr[ρ̂L(t ) ln ρ̂L(t )] − Tr[ρ̂L(t ) ln ρ̂L(0)].

(A2)

Substituting (A1) in (A2) and expanding the logarithm to
second order in ε, we find that

D[ρ̂L(t )||ρ̂L(0)] = O(ε2). (A3)

On the other hand, we have the identity

D[ρ̂L(t )||ρ̂L(0)] = −�SL + Tr[(ρ̂L(0) − ρ̂L(t )) ln ρ̂L(0)]

= −�SL − εTr[r̂ ln ρ̂L(0)]. (A4)

We now show that Tr[r̂ ln ρ̂L(0)] is negligible both for a
coherent state and a Poisson state. We begin with the case
of a Poisson state. As discussed in Sec. II, a Poisson
state is equivalent to a Gibbs state at infinite temperature
β−1

L → +∞, which implies that Tr[r̂ ln ρ̂L(0)] ∝ −βL, hence
Tr[r̂ ln ρ̂L(0)] ≈ 0.

In the case of a coherent state, the logarithm of ρ̂L(0) is in
fact ill defined; to fix this issue, let us introduce

ρ̂η ≡ D̂(α)[|0〉L〈0|L + e−ηÂ]D̂†(α), (A5)

where

Â ≡ e−η
∑
N�1

|N〉L〈N |L, (A6)

such that ρ̂L(0) = limη→+∞ ρ̂η [recall that
D̂(α)|0〉L〈0|LD̂†(α) = |α〉L〈α|L]. Then,

Tr[r̂ ln ρ̂η] = ηe−η〈0|D̂†(α)r̂D̂(α)|0〉 = O(ηe−η ), (A7)

where we used Tr[r̂] = 0 and the fact that |〈0|D̂†(α)r̂D̂(α)|0〉|
is bounded. Hence, taking the limit η → +∞ and using (A3)
and (A4), we obtain finally that

�SL = O(ε2). (A8)
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To complete the proof, it is sufficient to notice that

�EL = Tr[ĤL(ρ̂L(t ) − ρ̂L(0))] = O(ε). (A9)

APPENDIX B: CORRESPONDENCE BETWEEN THE
FLOQUET AND THE DRESSED QUBIT BASES

1. Proof of (40)

To prove the relation (40), it is sufficient to show that the
states e−iωL σ̂zt/2| j〉, j = 1, 2 are solutions of the eigenvalue
problem (39). This is straightforward using the facts that

eiωL σ̂zt/2(ĤA + V̂ (t ))e−iωL σ̂zt/2 = ĤDA + ωL

2
σ̂z, (B1)

and

−i∂t e
−iωL σ̂zt/2| j〉 = −ωL

2
σ̂ze

−iωL σ̂zt/2| j〉. (B2)

Indeed, replacing |u j (t )〉 = e−iωL σ̂zt/2| j〉 in (39), and applying
eiωL σ̂zt/2 on both sides of the equality, we obtain(

ĤDA + ωL

2
σ̂z − ωL

2
σ̂z

)
| j〉 = ε j | j〉, (B3)

which is true when choosing ε1 = −

2 , ε2 = 


2 . Note that
this feature can be generalized for any system with SU(2)
symmetry described by Pauli operators σ̂x, σ̂y, σ̂z.

2. Proof of (45)

We now show that the relation (40) implies that the evo-
lution of the system in the dressed basis, in the autonomous
picture, is equivalent to the evolution in the rotating frame, in
the nonautonomous picture.

We start with the simple case where the bath is not taken
into account. In the autonomous picture, the total Hamiltonian
is then given by ĤX = ĤDA + ĤDL, and we assume that the
initial density matrix is factorized:

ρ̂(0) = ρ̂DA(0) ⊗ ρ̂DL(0), (B4)

hence

ρ̂(t ) = e−it ĤX ρ̂DA(0) ⊗ ρ̂DL(0)eitĤX . (B5)

Is then straightforward to obtain that

ρ̂DA(t ) = TrDL[ρ̂(t )]

=
∑

j, j′=1,2

e−it (ε j−ε j′ )ρ̂
j j′
DA(0)| j〉〈 j′|, (B6)

where ρ̂
j j′
DA(0) ≡ 〈 j|ρ̂DA(0)| j′〉. On the other hand, in the

nonautonomous picture, we have

ˆ̃ρA(t ) = T←[e−i
∫ t

0 dsĤA+V̂ (s)] ˆ̃ρA(0)T←[ei
∫ t

0 dsĤA+V̂ (s)]. (B7)

Using Floquet theory [7], we can write the propagator in the
Floquet basis

T←[e−i
∫ t

0 dsĤA+V̂ (s)] =
∑
j=1,2

e−itε j |u j (t )〉〈u j (0)|. (B8)

Using (40), we may replace |u j (t )〉 = e−iω j σ̂zt/2| j〉 in (B8),
and, using the definition (41), we obtain

ˆ̃ρrot(t ) =
∑

j, j′=1,2

e−it (ε j−ε j′ ) ˆ̃ρrot j j′
A (0)| j〉〈 j′|. (B9)

Comparing with (B5), it is then sufficient to assume that
ρ̂DA(0) = ˆ̃ρrot(0) to conclude that the two density matrices
coincide at all times.

Let us now turn to the general proof of (45), when the
coupling with the bath is taken into account. It is convenient
to go in the interaction picture. In the autonomous case, the
density matrix of the total system in the interaction picture
with respect to ĤX + ĤB is given by

ρ̂I (t ) = Û †
0 (t, 0)ρ̂(t )Û0(t, 0) = Û I (t, 0)ρ̂(0)Û I†(t, 0),

(B10)

with Û0(t, 0) = e−it (ĤX +ĤB ) and

Û I (t, 0) ≡ T [e−i
∫ t

0 dsV̂AB (s)], (B11)

where V̂AB(t ) is the Hamiltonian V̂AB in the interaction picture,
given by

V̂AB(t ) ≡ eiĤ0tV̂ABe−iĤ0t . (B12)

To compute V̂AB(t ), we express the operators σ̂− ⊗ IL, σ̂+ ⊗
IL in the eigenbasis of ĤX (27). In this basis, the operator σ̂− ⊗
IL writes

σ̂− ⊗ IL = |a〉〈b| ⊗
∑
NL

|NL〉〈NL|

=
∑

n

(√

 − δ

2

|1(n − 1)〉 +

√

 + δ

2

|2(n − 1)〉

)

×
(√


 + δ

2

〈1(n)| −

√

 − δ

2

〈2(n)|

)

= Ŝz + Ŝ+ + Ŝ−, (B13)

where

Ŝz = g

2

(|2〉〈2| − |1〉〈1|) ⊗

∑
n�0

|n − 1〉〈n|

≡ ŝz ⊗
∑
n�0

|n − 1〉〈n|,

Ŝ+ ≡ −
 − δ

2

|2〉〈1| ⊗

∑
n�0

|n − 1〉〈n|

≡ ŝ+ ⊗
∑
n�0

|n − 1〉〈n|,

Ŝ− ≡ 
 + δ

2

|1〉〈2| ⊗

∑
n�0

|n − 1〉〈n|

≡ ŝ− ⊗
∑
n�0

|n − 1〉〈n|, (B14)

with

ŝz ≡ g

2

(|2〉〈2| − |1〉〈1|) ≡ g

2

�̂z,

ŝ+ ≡ −
 − δ

2

|2〉〈1| ≡ −
 − δ

2

�̂+,

ŝ− ≡ 
 + δ

2

|1〉〈2| ≡ 
 + δ

2

�̂−, (B15)
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and where �̂z = |2〉〈2| − |1〉〈1|, �̂+ = |2〉〈1| = �̂
†
−, as de-

fined in the main text in (120) and (121). The term σ̂+ ⊗ IL

is obtained by taking the Hermitian conjugate of (B13). We
therefore obtain

V̂AB(t ) = (Ŝz(t ) + Ŝ−(t ) + Ŝ+(t ))B̂†(t ) + H.c., (B16)

with

Ŝz(t ) = e−iωLt Ŝz,

Ŝ+(t ) = e−i(ωL−
)t Ŝ+,

Ŝ−(t ) = e−i(ωL+
)t Ŝ−. (B17)

Let us assume that the dressed laser is initially in a Poisson
state (5). The generalization to a coherent state is straightfor-
ward using the fact that the distribution e−|α|2/2 αN√

N!
is peaked

around N = |α|2 in the macroscopic limit |α| 
 1. Since the
density matrix is initially factorized (31), the evolution of the
density matrix of the dressed qubit, obtained after tracing out
the degrees of freedom of the dressed laser DL and of the bath,
is given by the quantum map [2],

ρ̂I
DA(t ) ≡ TrDL,B[ρ̂I (t )]

=
∑
κ,κ′

Ŵ I
κ,κ′ (t, 0)ρ̂DA(0)Ŵ I

κ,κ′ (t, 0), (B18)

where the sum runs over the pairs κ = (μ, n), κ′ = (ν, n′),
with

Ŵ I
κ,κ′ =

√
ηνξn〈n, μ|Û I (t, 0)|n′, ν〉, (B19)

where ξn = e−|α|2 |α|2n/n!, and with {|ν〉} the eigenstates of
ĤB of eigenvalues ν and ην = e−βBων /ZB. At this stage, we
do not want to carry out the trace over the bath (this is the
object of Secs. IV and V). However, we now use the fact that
the expectation value of the product of operators B̂†, B̂ over
the Gibbs state ρ̂B is nonzero only when there is the same
number of repetition of B̂† and B̂. This allows us, after writing

the exponential in (B11) in a series, to deduce that the only
relevant terms are such that the partial trace over DL is equal
to one. Indeed, the relevant terms are those with an equal
number of B̂† and B̂, which, given the form of V̂AB(t ) and
(B14), implies that the operator acting on DL is the identity
(since a product of the same number of

∑
n |n − 1〉〈n| and∑

n |n〉〈n − 1| is the identity). Therefore, we obtain

ρ̂I
DA(t ) = TrB[Û I,red(t, 0)ρ̂DA(0) ⊗ ρ̂BÛ I,red†(t, 0)], (B20)

where the reduced propagator Û I,red(t, 0) is

Û I,red(t, 0) = T [e−i
∫ t

0 dsV̂ I,red
AB (s)], (B21)

with

V̂ I,red
AB (t ) = (e−iωLt ŝz + e−i(ωL−
)t ŝ+ + e−i(ωL+
)t ŝ−)B̂†(t )

+ H.c. (B22)

Let us now turn to the nonautonomous picture. The goal is
to show that the evolution of the qubit in the rotating frame
is equivalent to that of the dressed qubit (in the autonomous
picture), given by (B20). We therefore go to the interaction
picture, here with respect to ĤDA + ĤB (since the degrees of
the freedom of the laser have already been traced out),

ˆ̃ρrot,I ≡ ˆ̃U I (t, 0) ˆ̃ρrot(0) ˆ̃U I†(t, 0), (B23)

where
ˆ̃U I (t, 0) ≡ T [e−i

∫ t
0 dsV̂ ′I

AB (s)], (B24)

with

V̂ ′I
AB(t ) = eit (ĤDA+ĤB )V̂ ′

AB(t )e−it (ĤDA+ĤB ), (B25)

where V̂ ′
AB(t ) is given in (43). Using (B13) and comparing

with (B22), it is straightforward to check that

V̂ I,red
AB (t ) = V̂ ′I

AB(t ), (B26)

which concludes the proof.

APPENDIX C: FIRST LAW IN THE ROTATING FRAME

We provide here details on the derivation of (70). From the definition of Ẽ rot
A (t ), conservation of energy yields

dt Ẽ
rot
A (t ) = Q̇ + Tr[dtV̂

′
AB(t ) ˆ̃ρrot(t )]. (C1)

Then, using the definition ˆ̃ρrot(t ) = eiωL σ̂zt/2D̂†(αe−iωLt )ρ̂(t )D̂†(αe−iωLt )e−iωL σ̂zt/2, we obtain

Tr(dtV̂
′

AB(t ) ˆ̃ρrot(t )) = Tr(iωL[σ̂z, V̂ ′
AB] ˆ̃ρ(t )) = Tr(iωL[σ̂z, V̂AB + V̂AL + g(σ̂+α(t ) + σ̂−α(t )∗)]ρ̂(t ))

= iωLTr(σ̂z[V̂AB + V̂AL, ρ̂(t )]) + Tr(dtV̂ (t )ρ̂(t ))

= −ωLTr(σ̂zdt ρ̂(t )) − iωL Tr([σ̂z, ĤA + ĤL + ĤB]ρ̂(t ))︸ ︷︷ ︸
=0

+Tr(dtV̂ (t )ρ̂(t )) = ẆDL, (C2)

where in the last equality we used (57) and (64). Replacing in (C1), we obtain the first law (70).

APPENDIX D: PROOF OF SYMMETRY (81)

We begin by justifying (80). In the macroscopic limit |α| 
 1, the Poisson distribution effectively becomes equivalent to a
Gaussian distribution,

e−|α|2 |α|2N

N!
∼ 1√

2πσ
e− (N−μ)2

2σ2 , (D1)
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where σ ≡ |α| and μ ≡ |α|. In turn, a Gaussian state can be understood as a Gibbs state, by rewriting

1√
2πσ

e− (N−μ)2

2σ2 = 1

Z (βDL )
e−βDLE (N ), (D2)

where βDL ≡ 1/σ 2 = 1/|α|2, E (N ) ≡ (N − μ)2/2, and Z (βDL ) ≡ ∑
N −βDLE (N ), which leads to (80).

Let us now prove (81). Using (79) and (80), we can write the generating function of the forward (76) and time-reversed (77)
processes explicitly,

G(λ, t ) = 1

Z
Tr[Û (t, 0)e−iλDAĤDA−iλDLĤDL−iλBĤB e−βDAĤDA−βDLĤ ′

DL−βBĤBÛ †(t, 0)eiλDAĤDA+iλDLĤDL+iλBĤB ], (D3)

GR(−λ + iβ, t ) = 1

Z
Tr[Û †(t, 0)eiλDAĤDA+iλDLĤDL+iλBĤB eβDLĤDL e−βDLĤ ′

DLÛ (t, 0)e−iλDAĤDA−iλDLĤDL−iλBĤB e−βDAĤDA−βDLĤDL−βBĤB ],

(D4)

where Z = ZDAZ (βDL )ZB. Since, in the limit βDL → 0,

eβDLĤDL e−βDLĤ ′
DL → I, (D5)

we may replace e−βDLĤDL by e−βDLĤ ′
DL . Using finally the cyclic property of the trace, it is then straightforward to check that

GR(−λ + iν, t ) = G(λ, t ), (D6)

where ν = (βDA, βDL, βB), which proves the fluctuation theorem (81).
Note also that, by linearity, the theorem (81) can readily be extended to the case where the system is weakly coupled to many

heat baths like B, as long as the baths do not interact with each other.

APPENDIX E: WORK FLUCTUATION THEOREM IN THE NONAUTONOMOUS PICTURE

We prove here the relation ˆ̃ρR(t ) = ˆ̃ρ(−t ). Let us consider first, for simplicity, the case where the bath is not taken into
account, such that the total Hamiltonian is ĤA + V̂ (t ). Using (B8), the density matrices of the forward and backward processes
write

ˆ̃ρA(t ) =
∑

j, j′=1,2

e−it (ε j−ε j′ )|u j (t )〉〈u j (0)| ˆ̃ρA(0)|u j′ (0)〉〈u j′ (t )|,

ˆ̃ρR
A (t ) =

∑
j, j′=1,2

eit (ε j−ε j′ )|u j (0)〉〈u j (t )| ˆ̃ρR
A (0)|u j′ (t )〉〈u j′ (0)|. (E1)

Using now (40), the fact that ei ˆωLσ zt/2V̂ (t )e−iωL σ̂zt/2 = V̂ (0), we notice that, given the initial conditions (93), we have

〈u j (0)| ˆ̃ρR
A (t )|u j′ (0)〉 = eit (ε j−ε j′ )〈u j (t )| ˆ̃ρR

A (0)|u j′ (t )〉
= eit (ε j−ε j′ )〈 j| ˆ̃ρA(0)| j′〉
= 〈u j (−t )| ˆ̃ρA(−t )|u j′ (−t )〉, (E2)

from which we deduce that

ˆ̃ρR
A (t ) = ˆ̃ρA(−t ). (E3)

The generalization to the case where the bath is taken into account is obtained by repeating the reasoning, tracing out first the
degrees of freedom of the bath and introducing Kraus operators as in (B18).

APPENDIX F: DERIVATION OF THE MASTER EQUATION (132)

We provide details on the derivation of the master equation (132).
The tilted operator V̂ λ

AB(t ) in (118) is simply obtained using the expression (B16) and the identities ei(λDAĤDA+λDLĤDL )|1, n〉 =
ei(−λDA
+λDLnωL |1, n〉, ei(λDAĤDA+λDLĤDL )|2, n〉 = ei(λDA
+λDLnωL |2, n〉, and eiλBĤB b̂ke−iλBĤB = e−iλBωk b̂k .

Let us now introduce

dλ
mn,m′n′ (t ) =

∑
μ,ν

ηνTrS
[
σ̂ †

mnŴ
λI
μ,ν (t + δ, t )

]
TrS

[
σ̂m′n′Ŵ −λI†

μ,ν (t + δ, t )
]

=
∑
μ,ν

ην〈En, μ|T→{e−i
∫ t+δ

t dsV̂ λ
AB (s)}|Em, ν〉〈Em′ , ν|T→{ei

∫ t+δ

t dsV̂ −λ†
AB (s)}|En′ , μ〉, (F1)

062205-25



ARIANE SORET AND MASSIMILIANO ESPOSITO PHYSICAL REVIEW A 111, 062205 (2025)

which leads to (125). A perturbative expansion to second order in V̂ λ
AB then yields (127). Since {σ̂mn} form an orthogonal basis,

the only terms σ̂mn which remain in (127), and
∑

mn TrX [σ̂mn]σ̂mn = I, we can rewrite (127) as

Lλ

(
ρ̂I

X (t )
) = 1

δ0

∑
α,α′=z,+,−

∫ t+δ0

t
ds

∫ t+δ0

t
ds′TrB

[
B̂†

λB
(s)ρ̂BB̂−λB (s′)

]
e−i(ωαs−ωα′ s′ )Ŝλ

αρ̂X (t )Ŝ−λ†
α′

+ 1

δ0

∑
α,α′

∫ t+δ0

t
ds

∫ t+δ0

t
ds′TrB

[
B̂λB (s)ρ̂BB̂†

−λB
(s′)

]
ei(ωαs−ωα′ s′ )Ŝλ†

α ρ̂X (t )Ŝ−λ
α′

− 1

2

1

δ0

∑
α,α′

∫ t+δ

t
ds

∫ s

t
ds′TrB

[
B̂†

λB
(s)B̂λB (s′)ρ̂B

]
e−i(ωαs−ωα′ s′ )Ŝλ

α Ŝλ†
α′ ρ̂X (t )

− 1

2

1

δ0

∑
α,α′

∫ t+δ0

t
ds

∫ s

t
ds′TrB

[
B̂λB (s)B̂†

λB
(s′)ρ̂B

]
ei(ωαs−ωα′ s′ )Ŝλ†

α Ŝλ
α′ ρ̂X (t )

− 1

2

1

δ0

∑
α,α′

∫ t+δ0

t
ds

∫ t+δ0

X
ds′TrB

[
B̂†

−λB
(s)B̂−λB (s′)ρ̂B

]
e−i(ωαs−ωα′ s′ )ρ̂X (t )Ŝ−λ

α Ŝ−λ†
α′

− 1

2

1

δ0

∑
α,α′

∫ t+δ0

t
ds

∫ t+δ0

s
ds′TrB

[
B̂−λB (s)B̂†

−λB
(s′)ρ̂B

]
ei(ωαs−ωα′ s′ )ρ̂X (t )Ŝ−λ†

α Ŝ−λ
α′ , (F2)

where Ŝλ
z , Ŝλ

+, Ŝλ
− are the operators (120) in the Heisenberg picture,

Ŝλ
z ≡ e−iωLλDL/2Ŝz, Ŝλ

+ ≡ e−i(ωLλDL−
λDA )/2Ŝ+, Ŝλ
− ≡ e−i(ωLλDL+
λDA )/2Ŝ−. (F3)

Performing the double integrals then leads to (132). We write explicitly the double integral in first line of the r.h.s. of (F2)
(the other terms have similar forms),

1

δ0

∫ t+δ0

t
ds

∫ t+δ0

t
ds′TrB

[
B̂†

λB
(s)ρ̂BB̂−λB (s′)

]
e−i(ωαs−ωα′ s′ )Ŝλ

αρ̂X (t )Ŝ−λ†
α′

=
∑

k

|gk|2(nB(ωk ) + 1)eiλBωk δ0 sinc

(
ωk − ωα

2
δ0

)
sinc

(
ωk − ωα′

2
δ0

)
Ŝλ

αρ̂X (t )Ŝ−λ†
α′ ei(t+δ0/2)(ωα′−ωα ). (F4)

APPENDIX G: EXPRESSION OF THE GENERALIZED BLOCH EQUATION WHEN � < γmax < 2�

When 
 < γmax < 2
, the terms of (127) involving the jump operators Ŝ+ and Ŝ− are removed. We obtain

LG
λ

(
ρ̂λ

DA

) = −i
[
ĤDA, ρ̂λ

DA

] + DGλ
+

(
ρ̂λ

DA

) + DGλ
−

(
ρ̂λ

DA

)
,

with

DGλ
+ (ρ̂ ) =

∑
α=+,−,z

G+(ωα )ŝλ
αρ̂ ŝ−λ†

α +
√

G+(ωz )G+(ω+)
(
ŝλ
+ρ̂ ŝ−λ†

z + ŝλ
z ρ̂ ŝ−λ†

+
) +

√
G+(ωz )G+(ω+)

(
ŝλ
+ρ̂ ŝ−λ†

z + ŝλ
z ρ̂ ŝ−λ†

+
)

− 1

2

[ ∑
α=+,−,z

G+(ωα )ŝ†
α ŝα +

√
G+(ωz )G+(ω+)

(
ŝ(λDA,λDL,0)†

z ŝ(λDA,λDL,0)
+ + ŝ(λDA,λDL,0)†

+ ŝ(λDA,λDL,0)
z

)

+
√

G+(ωz )G+(ω−)
(
ŝ(λDA,λDL,0)†

z ŝ(λDA,λDL,0)
− + ŝ(λDA,λDL,0)†

− ŝ(λDA,λDL,0)
z

)]
ρ̂

− 1

2
ρ̂

[ ∑
α=+,−,z

G+(ωα )ŝ†
α ŝα +

√
G+(ωz )G+(ω+)

(
ŝ(−λDA,−λDL,0)†

z ŝ(−λDA,−λDL,0)
+ + ŝ(−λDA,−λDL,0)†

+ ŝ(−λDA,−λDL,0)
z

)

+
√

G+(ωz )G+(ω−)
(
ŝ(−λDA,−λDL,0)†

z ŝ(−λDA,−λDL,0)
− + ŝ(−λDA,−λDL,0)†

− ŝ(−λDA,−λDL,0)
z

)]
,

DGλ
− (ρ̂ ) =

∑
α=+,−,z

G−(ωα )ŝλ†
α ρ̂ ŝ−λ

α +
√

G−(ωz )G−(ω+)
(
ŝλ†
+ ρ̂ ŝ−λ

z + ŝλ†
z ρ̂ ŝ−λ

+
) +

√
G−(ωz )G−(ω+)

(
ŝλ†
+ ρ̂ ŝ−λ

z + ŝλ†
z ρ̂ ŝ−λ

+
)

− 1

2

[ ∑
α=+,−,z

G−(ωα )ŝα ŝ†
α +

√
G−(ωz )G−(ω+)

(
ŝ(λDA,λDL,0)

z ŝ(λDA,λDL,0)†
+ + ŝ(λDA,λDL,0)

+ ŝ(λDA,λDL,0)†
z

)
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+
√

G−(ωz )G−(ω−)
(
ŝ(λDA,λDL,0)

z ŝ(λDA,λDL,0)†
− + ŝ(λDA,λDL,0)

− ŝ(λDA,λDL,0)†
z

)]
ρ̂

− 1

2
ρ̂

[ ∑
α=+,−,z

G−(ωα )ŝα ŝ†
α +

√
G−(ωz )G−(ω+)

(
ŝ(−λDA,−λDL,0)

z ŝ(−λDA,−λDL,0)†
+ + ŝ(−λDA,−λDL,0)

+ ŝ(−λDA,−λDL,0)†
z

)

+
√

G−(ωz )G−(ω−)
(
ŝ(−λDA,−λDL,0)

z ŝ(−λDA,−λDL,0)†
− + ŝ(−λDA,−λDL,0)

− ŝ(−λDA,−λDL,0)†
z

)]
,

where λ = (λDA, λDL, λB).

APPENDIX H: EXPRESSION OF LaF WITH COUNTING FIELDS

In the strong qubit-laser-coupling limit defined in (140), the product of sinc functions (131) is nonzero only in the case α = α′,
which is equivalent to the secular approximation in (142). The resulting master equation is

LaF,X
λ

(
ρ̂λ

X

) = − i
[
ĤX + ĤLS, ρ̂

λ
X

] − 1
2

{
G+(ωL )Ŝ†

z Ŝz + G+(ωL − 
)ŝ†
+Ŝ+ + G+(ωL + 
)ŝ†

−ŝ−, ρ̂λ
X

}
− 1

2

{
G−(ωL )ŝz ŝ

†
z + G−(ωL − 
)ŝ+ŝ†

+ + G+(ωL + 
)ŝ−ŝ†
−, ρ̂λ

X

} + G+(ωL )eiωLλB ŝλ
z ρ̂

λ
X ŝ−λ†

z

+ G+(ωL − 
)ei(ωL−
)λB ŝλ
+ρ̂λ

X ŝ−λ†
+ + G+(ωL + 
)ei(ωL+
)λB ŝλ

−ρ̂λ
X ŝ−λ†

−

+ G−(ωL )e−iωLλB ŝλ†
z ρ̂λ

X ŝ−λ
z + G−(ωL − 
)e−i(ωL−
)λB ŝλ†

+ ρ̂λ
X ŝ−λ

+ + G−(ωL + 
)e−i(ωL+
)λB ŝλ†
− ρ̂λ

X ŝ−λ
− , (H1)

where the Lamb shift contribution is

ĤLS = I+(ωL )Ŝ†
z Ŝz + I+(ωL − 
)Ŝ†

+Ŝ+ + I+(ωL + 
)Ŝ†
−Ŝ− + I−(ωL )ŜzŜ

†
z + I−(ωL − 
)Ŝ+Ŝ†

+ + I−(ωL + 
)Ŝ−Ŝ†
−,

with

I+(ω) ≡ Im

(
1

2

∫ +∞

0
dτTr[B̂(τ )B̂†(0)ρ̂B]eiντ

)
, (H2)

I−(ω) ≡ Im

(
1

2

∫ +∞

0
dτTr[B̂†(τ )B̂(0)ρ̂B]eiντ

)
. (H3)

As explained in the main text, the Lamb shift contribution may be neglected.
It is straightforward to trace out the degrees of freedom of DL, which gives the master equation (149),

LaF
λ

(
ρ̂λ

DA

) = − i
[
ĤDA, ρ̂λ

DA

] − 1

2

{
γ0,↓�̂†

z �̂z + γ2,↑�̂
†
+�̂+ + γ1,↓�̂

†
−�̂−, ρ̂λ

DA

}
− 1

2

{
γ0,↑�̂z�̂

†
z + γ2,↓�̂+�̂

†
+ + γ1,↑�̂−�̂

†
−, ρ̂λ

DA

} + γ0,↓eiωL (λB−λDL )�̂zρ̂
λ
DA�̂†

z

+ γ2,↑ei
λDA−iωLλDL+i(ωL−
)λB�̂+ρ̂λ
DA�̂

†
+ + γ1,↓e−i
λDA−iωLλDL+i(ωL+
)λB�̂−ρ̂λ

DA�̂
†
− + γ0,↑e−iωL (λB−λDL )�̂†

z ρ̂
λ
DA�̂z

+ γ2,↓e−i
λDA+WiωLλDL−i(ωL−
)λB�̂
†
+ρ̂λ

DA�̂+ + γ1,↑ei
λDA+iωLλDL−i(ωL+
)λB�̂
†
−ρ̂λ

DA�̂−. (H4)

From (H4), it is clear that LaF
λ satisfies the strict energy conservation condition (109).

APPENDIX I: STEADY STATE OF LaF

As explained in the main text, the fixed point of LaF is defined by LaF (ρ̂ss
DA) = 0, which implies dt EDA = 0. Replacing in

(154) leads to

Pss
1 = γ1,↓ + γ2,↓

γ1,↑ + γ2,↑
Pss

2 , (I1)
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where Pss
1 , Pss

2 denote the values of P1(t ), P2(t ) in the steady state. Combined with the normalization condition, Pss
1 + Pss

2 = 1
we obtain

Pss
1 = γ1,↓ + γ2,↓

γ1,↓ + γ2,↓ + γ1,↑ + γ2,↑
, Pss

2 = γ1,↑ + γ2,↑
γ1,↓ + γ2,↓ + γ1,↑ + γ2,↑

. (I2)

The resonances vanish in the steady state, as can be seen directly from the form of LaF .
Substituting now in (155) yields

Q̇ss = −ωL(γ0,↓ − γ0,↑) − 2ωL
γ1,↓γ2,↑ − γ1,↑γ2,↓

γ1,↓ + γ2,↓ + γ1,↑ + γ2,↑
. (I3)

Using (145) and recalling that G+(ω) > G−(ω) for all ω, we deduce that Q̇ss < 0. Replacing now in (108) and using the fact
that, in the steady state, dt SDA = 0, we obtain that the entropy production rate of the dressed qubit, defined in (62), is strictly
positive in the steady state,

dt S
ss
DA − βBQ̇ss > 0. (I4)

APPENDIX J: EXPRESSION OF LaB WITH COUNTING FIELDS

Assuming that G± are smooth enough in the range [ωL − 
,ωL + 
], we replace G±(ωL ), G±(ωL ± 
) ≈ G±(ωA) ≡ G± in
(142). Tracing out DL, which is straightforward using (120), we obtain the tilted master equation LaB

λ ,

LaB
λ

(
ρ̂λ

DA

) = − i
[
ĤDA, ρ̂λ

DA

] + G+Dλ
+
(
ρ̂λ

DA

) + G−Dλ
−
(
ρ̂λ

DA

)
, (J1)

with

Dλ
+(ρ̂) =

⎛
⎝ ∑

α=+,−,z

eiλBωα/2ŝλ
α

⎞
⎠ρ̂

⎛
⎝ ∑

α=+,−,z

e−iλBωα/2ŝ−λ
α

⎞
⎠†

− 1

2

⎛
⎝ ∑

α=+,−,z

ŝλ
α

⎞
⎠†⎛⎝ ∑

α=+,−,z

ŝλ
α

⎞
⎠ρ̂ − 1

2
ρ̂

⎛
⎝ ∑

α=+,−,z

ŝ−λ
α

⎞
⎠†⎛⎝ ∑

α=+,−,z

ŝ−λ
α

⎞
⎠, (J2)

Dλ
−(ρ̂) =

⎛
⎝ ∑

α=+,−,z

eiλBωα/2ŝλ
α

⎞
⎠†

ρ̂

⎛
⎝ ∑

α=+,−,z

e−iλBωα/2ŝ−λ
α

⎞
⎠

− 1

2

⎛
⎝ ∑

α=+,−,z

ŝλ
α

⎞
⎠
⎛
⎝ ∑

α=+,−,z

ŝλ
α

⎞
⎠†

ρ̂ − 1

2
ρ̂

⎛
⎝ ∑

α=+,−,z

ŝ−λ
α

⎞
⎠
⎛
⎝ ∑

α=+,−,z

ŝ−λ
α

⎞
⎠†

, (J3)

where the operators ŝλ
+,−,z were defined in (122).

APPENDIX K: ẆL FOR THE GENERALIZED BLOCH EQUATION

The rate ẆL for the generalized Bloch equation is, in the weak and intermediate regimes,

ẆL = ẆDL + Tr

[
ωL

2
σ̂zLG(ρ̂ )

]
, (K1)

with

Tr

[
ωL

2
σ̂zLaG(ρ̂ )

]
= −gωLIm[P21(t )] + ωL

2
Tr[σ̂zDG

+(ρ̂ )] + ωL

2
Tr[σ̂zDG

−(ρ̂ )], (K2)

where

Tr[σ̂zDG
+(ρ̂)] = − g2

4
2

(√
G+(ωL )G+(ωL − 
)


 − δ



+

√
G+(ωL )G+(ωL + 
)


 + δ




)

+ P1(t )

[
− g2

2
2

√
G+(ωL )G+(ωL − 
)


 − δ



+ δ



G+(ωL − 
)

(

 − δ

2


)2
]

+ P2(t )

[
− g2

2
2

√
G+(ωL )G+(ωL + 
)


 + δ



− δ



G+(ωL + 
)

(

 + δ

2


)2
]
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+ [P21(t ) + P12(t )]

(
g

2


)3

[4G+(ωL ) + 2
√

G+(ωL + 
)G+(ωL − 
)]

+ P21(t )

[
g



G+(ωL − 
)

(

 − δ

2


)2

+ δg

2
2

√
G+(ωL )G+(ωL + 
)


 + δ




]

+ P12(t )

[
g



G+(ωL + 
)

(

 + δ

2


)2

− δg

2
2

√
G+(ωL )G+(ωL − 
)


 − δ




]
,

and

Tr[σ̂zDG
−(ρ̂)] = − g2

4
2

(√
G−(ωL )G−(ωL − 
)


 − δ



+

√
G−(ωL )G−(ωL + 
)


 + δ




)

+ P1(t )

[
− g2

2
2

√
G−(ωL )G−(ωL + 
)


 + δ



− δ



G−(ωL + 
)

(

 + δ

2


)2
]

+ P2(t )

[
− g2

2
2

√
G−(ωL )G−(ωL − 
)


 − δ



+ δ



G−(ωL − 
)

(

 − δ

2


)2
]

− [P21(t ) + P12(t )]

(
g

2


)3

[4G−(ωL ) + 2
√

G−(ωL + 
)G−(ωL − 
)]

− P21(t )

[
g



G−(ωL + 
)

(

 + δ

2


)2

− δg

2
2

√
G−(ωL )G+(ωL − 
)


 − δ




]

− P12(t )

[
g



G−(ωL − 
)

(

 − δ

2


)2

+ δg

2
2

√
G−(ωL )G−(ωL + 
)


 + δ




]
. (K3)

In the strong-driving regimes, it is equal to the rate obtained with the Floquet master equation, in (177).

APPENDIX L: DERIVATION OF THE FLOQUET MASTER EQUATION DRESSED WITH COUNTING FIELDS

We give here the full expression of (173). Following the method explained in the main text, we obtain

DFλ
0,+( ˆ̃ρA) = e−iωLλL eiωLλB�̂F

z (t + λL/2) ˆ̃ρA�̂F
z (t − λL/2) − 1

2 �̂F
z (t + λL/2)�̂F

z (t + λL/2) ˆ̃ρA

− 1
2

ˆ̃ρA�̂F
z (t − λL/2)�̂F

z (t − λL/2), (L1)

DFλ
0,−( ˆ̃ρA) = eiωLλL e−iωLλB�̂F

z (t + λL/2) ˆ̃ρA�̂F
z (t − λL/2) − 1

2 �̂F
z (t + λL/2)�̂F

z (t + λL/2) ˆ̃ρA

− 1
2

ˆ̃ρA�̂F
z (t − λL/2)�̂F

z (t − λL/2), (L2)

DFλ
1,+( ˆ̃ρA) = e−iωLλL ei(ωL+
)λB�̂F

−(t + λL/2) ˆ̃ρA�̂F
+(t − λL/2) − 1

2 �̂F
+(t + λL/2)�̂F

−(t + λL/2) ˆ̃ρA

− 1
2

ˆ̃ρA�̂F
+(t − λL/2)�̂F

−(t − λL/2), (L3)

DFλ
1,−( ˆ̃ρA) = eiωLλL e−i(ωL+
)λB�̂F

+(t + λL/2) ˆ̃ρA�̂F
−(t − λL/2) − 1

2 �̂F
+(t + λL/2)�̂F

−(t + λL/2) ˆ̃ρA

− 1
2

ˆ̃ρA�̂F
+(t − λL/2)�̂F

−(t − λL/2), (L4)

DFλ
2,+( ˆ̃ρA) = e−iωLλL ei(ωL−
)λB�̂F

+(t + λL/2) ˆ̃ρA�̂F
−(t − λL/2) − 1

2 �̂F
−(t + λL/2)�̂F

+(t + λL/2) ˆ̃ρA

− 1
2

ˆ̃ρA�̂F
−(t − λL/2)�̂F

+(t − λL/2), (L5)

DFλ
2,−( ˆ̃ρA) = eiωLλL e−i(ωL−
)λB�̂F

−(t + λL/2) ˆ̃ρA�̂F
+(t − λL/2) − 1

2 �̂F
+(t + λL/2)�̂F

−(t + λL/2) ˆ̃ρA

− 1
2

ˆ̃ρA�̂F
+(t − λL/2)�̂F

−(t − λL/2). (L6)
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APPENDIX M: REDFIELD EQUATION WITH COUNTING FIELDS

We give here the first and last terms of the tilted master equation (187),

− TrB

[
1

δ0

∫ t+δ0

t
dt ′

∫ +∞

0
dτV̂ λ/2

AB (t ′)V̂ λ/2
AB (t ′ − τ )ρ̂(t ) ⊗ ρ̂B

]

= − 1

δ0

∫ t+δ0

t
dt ′[G+(ωL )ŜzŜ

†
z + G+(ωL − 
)Ŝ−Ŝ†

− + G+(ωL + 
)Ŝ+Ŝ†
+

+ G+(ωL − 
)ei
t ′
ei
λDA/2ŜzŜ

†
− + G+(ωL + 
)e−i
t ′

e−i
λDA/2ŜzŜ
†
+

+ G+(ωL )e−i
λDA/2e−i
t ′
Ŝ−Ŝ†

z + G+(ωL )ei
λDA/2ei
t ′
Ŝ+Ŝ†

z

+ G−(ωL )Ŝ†
z Ŝz + G+(ωL − 
)Ŝ†

−Ŝ− + G+(ωL + 
)Ŝ†
+Ŝ+

+ G−(ωL − 
)e−i
t ′
e−i
λDA/2Ŝ†

z Ŝ− + G−(ωL + 
)ei
t ′
ei
λDA/2Ŝ†

z Ŝ+

+G−(ωL )ei
λDA/2ei
t ′
Ŝ†

−Ŝz + G−(ωL )e−i
λDA/2e−i
t ′
Ŝ†

+Ŝz
]
ρ̂(t ), (M1)

and

TrB

[
1

δ0

∫ t+δ0

t
dt ′

∫ +∞

0
dτV̂ λ/2

AB (t ′ − τ )ρ̂(t ) ⊗ ρ̂BV̂ −λ/2
AB (t ′)

]

= 1

δ0

∫ t+δ0

t
dt ′[eiωLλDL

(
G−(ωL )e−iωLλB Ŝzρ̂(t )Ŝ†

z

+ G−(ωL − 
)e−i(ωL−
)λB e−i
λDA Ŝ−ρ̂(t )Ŝ†
− + G−(ωL + 
)e−i(ωL+
)λB ei
λDA Ŝ+ρ̂(t )Ŝ†

+

+ G−(ωL )e−iωLλB e−i
λDA/2ei
t Ŝzρ̂(t )Ŝ†
− + G−(ωL )e−iωLλB ei
λDA/2e−i
t Ŝzρ̂(t )Ŝ†

+

+ G−(ωL − 
)e−iλB (ωL−
)e−i
λDA/2e−i
t ′
Ŝ−ρ̂(t )Ŝ†

z + G−(ωL + 
)e−iλB (ωL+
)ei
λDA/2ei
t ′
Ŝ+ρ̂(t )Ŝ†

z

+G−(ωL − 
)e−iλB (ωL−
)e−2i
t ′
Ŝ−ρ̂(t )Ŝ†

+ + G−(ωL + 
)e−iλB (ωL+
)e2i
t ′
Ŝ+ρ̂(t )Ŝ†

−
)

+ e−iωLλDL
(
G+(ωL )eiωLλB Ŝ†

z ρ̂(t )Ŝz

+ G+(ωL − 
)ei(ωL−
)λB ei
λDA Ŝ†
−ρ̂(t )Ŝ− + G+(ωL + 
)ei(ωL+
)λB e−i
λDA Ŝ†

+ρ̂(t )Ŝ+

+ G+(ωL )eiωLλB ei
λDA/2e−i
t Ŝ†
z ρ̂(t )Ŝ− + G+(ωL )eiωLλB e−i
λDA/2ei
t Ŝ†

z ρ̂(t )Ŝ+

+ G+(ωL − 
)eiλB (ωL−
)ei
λDA/2ei
t ′
Ŝ†

−ρ̂(t )Ŝz + G+(ωL + 
)eiλB (ωL+
)e−i
λDA/2e−i
t ′
Ŝ†

+ρ̂(t )Ŝz

+G+(ωL − 
)eiλB (ωL−
)e2i
t ′
Ŝ†

−ρ̂(t )Ŝ+ + G+(ωL + 
)eiλB (ωL+
)e−2i
t ′
Ŝ†

+ρ̂(t )Ŝ−
)]

. (M2)

Performing the approximation G±(ν) ≈ G±, we obtain

d ρ̂λ
DA

dt
≡ LaB,red

λ

= −i
[
ĤDA, ρ̂λ

DA

] + G+Dλ
ŝ

(
ρ̂λ

DA

) + G−Dλ
ŝ†

(
ρ̂λ

DA

)
, (M3)

with

Dλ
ŝ (ρ̂) = − 1

2

(
ŝ†
λDA,0ŝλDA,0ρ̂ + ρ̂ ŝ†

−λDA,0ŝ−λDA,0
) + 1

2 eiωL (λB−λDL )(ŝλDA,0ρ̂ ŝ†
−λDA,−λB

+ ŝλDA,λB ρ̂ ŝ†
−λDA,0

)
,

Dλ
ŝ† (ρ̂) = − 1

2

(
ŝλDA,0ŝ†

λDA,0ρ̂ + ρ̂ ŝ−λDA,0ŝ†
−λDA,0

) + 1
2 e−iωL (λB−λDL )

(
ŝ†
λDA,0ρ̂ ŝ−λDA,−λB + ŝ†

λDA,λB
ρ̂ ŝ−λDA,0

)
, (M4)

where

ŝλDA,λB = ŝz + ei
(λDA/2−λB )ŝ+ + e−i
(λDA/2−λB )ŝ−. (M5)

The explicit expressions (189) allow us to see directly that the symmetry (107) is not satisfied. It is also clear that the strict
energy conservation condition (109) is not satisfied.
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APPENDIX N: STEADY STATE OF LaB

The fixed point of LaB, defined by LaB(ρ̂ss
DA) = 0, is

Pss
b = 1

G+ + G−

⎛
⎜⎝G− + 1

2

G+ − G−

1 + 2 δ2

g2 + (G++G−)2

2g2

⎞
⎟⎠, Pss

ba = −
δ(G+−G−)
g(G++G−) + i (G+−G−)

2g

1 + 2 δ2

g2 + (G++G−)2

2g2

. (N1)
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