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Landau theory relates phase transitions to the minimization of the Landau functional (e.g., free energy
functional), which is expressed as a power series of the order parameter. It has been shown that the critical
behavior of certain physical systems can be described using Landau functionals that include nonanalytic terms,
corresponding to odd or even noninteger powers of the absolute value of the order parameter. In particular,
these nonanalytic terms can determine the order of the phase transition and the values of the critical exponents.
Here, we show that such terms can also shape the finite-size scaling behavior of fluctuations of observables
(e.g., of energy or magnetization) or the response functions (e.g., heat capacity or magnetic susceptibility) at the
continuous phase transition point. We demonstrate this on two examples, the equilibrium molecular zipper and

the nonequilibrium version of the Curie-Weiss model.
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I. INTRODUCTION

Landau theory of phase transitions [1] is one of the corner-
stones of modern statistical mechanics and condensed matter
physics. It explains the mechanism of equilibrium phase tran-
sitions by postulating the minimization of the free energy
functional, also referred to as the Landau functional. 1t as-
sumes that this functional can be expanded as a power series
of a macroscopic order parameter ¢ (e.g., magnetization for
magnetic systems). Depending on the presence of the cubic
term (ox¢?) and the sign of the quartic term (cc¢?) of the
expansion, the phase transition may be either continuous or
discontinuous. For continuous phase transitions, the theory
predicts universal scaling of the order parameter close to the
critical temperature 7. It is described by a power law ¢
(1 — T/T.)P¥, with the mean-field critical exponent ,BMF =
1/2. While the quantitative applicability of the Landau theory
(including the predicted values of the critical exponents) is
confined to mean-field models, it gave rise to a more advanced
Landau-Ginzburg-Wilson theory [2] that takes into account
fluctuations of the order parameter, which are relevant for
finite-dimensional systems. The concept of the Landau func-
tional has been further generalized to nonequilibrium systems
[3] using methods of large deviation theory [4,5].

Standard Landau theory assumes that the Landau func-
tional is an analytic function of the order parameter. However,
it was shown that certain physical systems can be described
using Landau functionals containing nonanalytic terms, e.g.,
related to odd, and even noninteger powers of the absolute
value of the order parameter, or expressed as its logarithmic
function. This has been observed for thermal and quantum
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phase transitions in the presence of soft modes (e.g., in liquid
crystals or quantum ferromagnets) [6] and nonequilibrium
Ising models [3,7]. Similar nonanalytic terms have also been
encountered in the theory of periodically sheared soft mat-
ter [8]. In this paper, we add another example, namely, a
generalization of the molecular zipper model [9]. Signifi-
cantly, the nonanalytic terms of the Landau functional can
determine the critical behavior of the system, including the
order of the phase transition and the values of the critical
exponents.

Genuine phase transitions, associated with the nonanalytic
behavior of the order parameter, strictly speaking, occur only
in the thermodynamic limit of the infinite system size. As a
consequence, critical exponents may be difficult to determine
directly using simulations and experiments on finite systems.
This problem is often dealt with employing finite-size scal-
ing theory [10-12] to extract the values of critical exponents
from the finite-size scaling behavior of observables and re-
sponse functions [13-15]. Here, we show that in systems
with nonanalytic Landau functionals, the nonanalytic terms
can determine the finite-size scaling of fluctuations of the
system observables (e.g., of its energy or magnetization) and
the response functions (e.g., the heat capacity or magnetic
susceptibility) at the phase transition point. This provides a
way to detect their presence by analyzing finite-size systems.
We demonstrate this on two examples: a generalization of
the molecular zipper proposed by Kittel [9] as a toy model
of the unwinding transition in DNA, and the nonequilibrium
Curie-Weiss model coupled to two baths with different spec-
tral densities, which has previously been used to illustrate the
concept of nonequilibrium Landau functionals with nonana-
lytic terms [3].

The paper is organized as follows: in Secs. II and III we
present the models considered and discuss their finite-size

©2025 American Physical Society
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FIG. 1. Scheme of the molecular zipper with n = 10 closed links
and N —n = 10 open links. The scheme corresponds to the case
of g =2, with open links taking two orientations: “inward” and
“outward”.

scaling behavior, while in Sec. IV we present the conclusions
that follow from our results.

II. MOLECULAR ZIPPER

A. Equilibrium thermodynamics

We first consider a generalization of the molecular zipper
model proposed by Kittel [9] to qualitatively describe the
DNA denaturation. It later received interest in other contexts,
such as large deviation theory [16,17], nonequilibrium dy-
namics and thermodynamics [18], or melting of thin films
[19]. In our discussion, we do not aim to describe the be-
havior of any particular real-world system, but rather treat
the molecular zipper as a toy model of an equilibrium phase
transition. This might provide insight into the behavior of
more complex equilibrium systems with nonanalytic Landau
functionals, such as the systems with soft modes [6]. We also
notice that many elements of the model description are shared
with our previous work focusing on its dynamical properties
[20] (however, the case analyzed there exhibited a discontinu-
ous rather than a continuous phase transition). We reproduce
them here to make the paper self-contained.

The model consists of a double-stranded macromolecule,
rigidly connected at one end, stabilized by N parallel links
that can be either closed or open (Fig. 1). The ith link can
close only if the i — 1 preceding links are also closed. Closing
the ith link decreases the energy of the system by ¢;. (This
generalizes the original model, where all energies €; were
equal to each other). The energy of the system with n closed
links is equal to

E,,:—Zn:fi. (1)
i=1

It is also assumed that the link can be opened in g different
energy-degenerate ways (e.g., open links can be oriented in
different directions). The system with n closed links corre-
sponds then to g™~ different microscopic configurations
of the system. The Boltzmann entropy of the system with n
closed links is thus equal to

S, =kglng™ ™" = (N — n)kgIng. )

We further define the free energy functional of the system

F, =E, —TS,, where T is the temperature. The probability
that n links are closed is given by the Boltzmann distribution

—BF,
e
e 3)
" SN e BEn

To ensure that the equilibrium free energy of the model is
extensive with system size, we take the energies of the closed
links €; to be parameterized by a scale-invariant function f(x),

€ = f(li\/) . “)

We then consider the limit of the large system size N and
parametrize n with the rescaled variable ¢ = n/N € [0, 1]. We
define the free energy density functional

_n 5
9= )

Taking a continuous limit of Eqgs. (1) and (2), the free energy
density functional can be expressed as

F
F(g)= lim = for
N—oo N

q
Flg)= - /0 F@dx —(1— ksTlng.  (6)

Comparing Egs. (3) and (5), we observe that the probability
that n links are closed exhibits the large deviation property

pu o e NPT )

where 8 = 1/(kgT'). For large N, the probability distribution
becomes narrowly focused around the minimum of F(gq).
Thus, the average number of closed links scales asymptoti-
cally as

1\/1Ln;o<n>eq/N = {eq » (8)
where
Geq = arg min F(q) C)
q€l0,1]

is the value of g minimizing F(q). Minimization is restricted
here to the domain of ¢, that is, the interval [0, 1].

We further focus on a particular model where the energies
of closed links are given by the function

fx) =€l —x"), (10)

where @ > 0. Using Eq. (6), the free energy density functional
can be expressed as

6qot-H
]—'(q):(kBTlng—e)q—f-a 7 —kgTIng. (11)

Notably, its second term becomes nonanalytic at ¢ = 0 when
o is a noninteger number.

Minimizing F(g) over g, we find that the system exhibits
a continuous phase transition at the critical temperature

€
= , 12
kglng 12)

with the order parameter g.q behaving as
0 for T>T,. 03
Ta=101-L)" for T<T,. (13)
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FIG. 2. Temperature-dependence of the order parameter g.q for
different values of the parameter «.

Thus, the parameter « determines the critical exponent of the
phase transition 1/« (which here characterizes the scaling of
Geq for all T < T, not only close to T;). The temperature de-
pendence of geq is plotted, for a few values of «, in Fig. 2. We
note that the observed behavior contrasts with the previously
considered version of the model [9,16-20] where the phase
transition was discontinuous. This is due to the chosen form of
the energy function f(x), which here decreases monotonically
with x, while in the cases studied previously it was either
constant or monotonically increasing.

Let us here note that, in the model considered, the param-
eter g admits only positive values. Thus, the nature of the
studied phase transition differs from the commonly known
symmetry-breaking phase transitions where, at the phase tran-
sition point, a single minimum of the free energy density
functional splits into two degenerate ones, corresponding to
a positive and negative value of the order parameter. Such
transitions can only occur when the Landau functional is an
even function of the order parameter, which is not the case
here. In fact, the symmetry of the system considered is always
broken, since the molecule is rigidly connected at one end.

Finally, we analyze the order of the phase transition accord-
ing to the Ehrenfest classification. Within this framework, the
transition is of the jth order if the jth temperature derivative
of the free energy is the lowest, which is discontinuous at
the critical temperature 7. Since the equilibrium free en-
ergy scales in the thermodynamic limit as limy_. o Feq/N =
F(qeq). We get

i Feq —kgT Ing forT > T,.,

m — = atl

N—oo N —5(—F) —kgTlng forT <T,.
(14

We find that the phase transition is of the jth order if

1 1
— o< —. 15
—iSe< (15)
We recall that in our model the phase transition is continuous,
so that j > 2. In particular, for « = 1/(j — 1), the jth deriva-
tive of the free energy is discontinuous but finite at 7 = T...
Otherwise, it is divergent. Thus, by tailoring the exponent «,

. @=0.5 /
&
..... = *®
1000 = a=1 N *® 4
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FIG. 3. The variance of the number of closed links at the critical
point T = T, as a function of the system size N, plotted on the log-log
scale, calculated exactly (dots) and using the approximate formula
(19) (lines).

one can modify the order of the phase transition (in principle,
to an arbitrary value).

B. Fluctuations of the number of closed links

We now turn to the main topic of the paper, namely, the
finite-size scaling of fluctuations at the phase transition point
(i.e., for T = T.). First, we consider the variance of the num-
ber of closed links,

(An?) = (n?) — (n)?, (16)

where the moments of » are calculated as
N
(') = punt (17)
n=0

with p, given by Eq. (3). In the continuous limit, the moments
of n can be approximated using Eq. (7) as

(n*y ~ N* Jo g7 dg
fooo g_/SN]:(q)dq

Here we extend the integration range up to oo, since for
large N the exponential function exp[—BN F(g)] decays very
quickly with g. We note that, at T = T, the term of F(gq) that
is linear in ¢ vanishes, and only the term proportional to g®*!
remains. The integral yields the approximate formula

a % 3 2
iy s BTG = P
1
I'(z)

where I is the gamma function. This formula implies that the
variance of the number of closed links follows the power-law
scaling with the system size, with the exponent determined
by the parameter «. In Fig. 3 we compare this approximate
formula (lines) with the exact finite-size results (dots). We can
observe a perfect agreement.

(18)

. (19)

C. Energy fluctuations and heat capacity

Let us now consider the variance of the system energy

(AE*) = (E*) — (E)*, (20)
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FIG. 4. The energy variance at the critical point 7 =T, as a
function of the system size N, plotted on the log-log scale, calculated
exactly (dots) and using the approximate formula (26) (lines).

where the moments of energy read

N
(E') =) paEy; - @)
n=0

We further note that the energy variance is related to the heat
capacity via the formula
I(E)

2\ 20N
(AE?) = kgT TR (22)

Taking the continuous limit, the moments of energy can be
approximated as

yido daE(@)te T

(EX) T dge v F@ (23)
where
E@)= lim 2 for g=2 (24)
N—oo N N
is the energy density functional which can be calculated as
q th+1
E(q) = —/ f)dx = —€<q - ) . (25
0 o+ 1

This yields an approximate expression for the energy variance,

(AE?) ~ A\N#T + AN+ + As, (26)
with
a1\ it 2
4 - <)M Er ) — M@ ]
1= 2 )
M)
o o+ 4z (In2)~ ST (L + L) on
g Jra+1) ’
62
Az

~ @+ Dn2)y2

It appears that the second and third terms in Eq. (26) are still
important for N of the order of 10%. In Fig. 4 we compare the
obtained approximate formula for the energy variance (lines)
with the exact finite-size results (dots). We can again observe
a perfect agreement.

III. NONEQUILIBRIUM CURIE-WEISS MODEL
A. Model

We now consider a nonequilibrium open system with an
effective nonanalytic Landau functional, which was originally
proposed in Ref. [3]. It is based on the Curie-Weiss model, a
paradigmatic model of the paramagnetic-ferromagnetic tran-
sition [21]. It consists of N spins that interact via the all-to-all
Ising interaction. The energy of a particular spin configuration
can be written as

J N N
E:—ﬁZmUj—h;ai, (28)

ij=1

where J > 0 is the ferromagnetic Ising interaction, and 4 is
the magnetic field. Spins o; are here the classical random vari-
ables with values £1. The total magnetization of the system
can be defined as M =), 0, € {—N, —N +2,...,N}. Due
to the all-to-all nature of the coupling, the energy of the system
can be written in terms of the total magnetization,

Ey = —LM2 — hM (29)

Y '

The system interacts with two thermal baths i € {1, 2} with
the temperatures 77 and 75. It is also assumed that each bath
is coupled with an equal strength to each spin, and that they
induce a Markovian flipping of individual spins. Then, the
dynamics of the system can be described by a classical master
equation for probabilities p), that the system has magnetiza-
tion M [22],

P =Y Wy me2puza — Wuzampu) (30)
T

where Wy, is the transition rate from the state with mag-
netization M to the state with magnetization M + 2. The
equation can be rewritten in the matrix form

p=Wp, €19

where p = (p_n, p—~n+2, ..., py)” is the vector of state prob-
abilities, and W is the rate matrix with the off-diagonal

elements W, and the diagonal elements Wy, = — Zl £k Wik.
The stationary state of the system p* is given by the condition
WpH=0. (32)

The transition rates can be further decomposed as a
sum of contributions associated with each bath: W1,y =
Wy + w2 +2 - The individual contributions can be writ-
ten as

NFM

WAl;Ii2,M = Tci(ﬂia Eyi2 — Ey), (33)

where C;(B;, w) is the correlation function of the bath. Follow-
ing Ref. [3], we use a model of correlations functions with a
power-law spectral density of the bath,

Yilw/21*n(Biw) for

w=>0,
Ci(Bi, o) = {Vilw/2|°"'[1 +n(—piw)] for

w <0, (34

where n(x) = [exp(x) — 1]7! is the Bose-Einstein distribu-
tion. This corresponds to the excitation (relaxation) of the
system for w > 0 (w < 0), induced by the bosonic bath
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with the spectral density y;|w/2|%. Such models with power-
law spectral densities of the bath (called Ohmic for o; = 1,
sub-Ohmic for ; < 1, and super-Ohmic for ¢; > 1) are com-
monly considered in the theory of open quantum systems
[23,24]. In particular, Ref. [3] proposed to realize different
exponents «; by using d;-dimensional bosonic baths with dis-
persion relations w o k%, k being the wave vector, so that
o; = d;/z;. We also emphasize that to observe the phenomena
described later, it is enough that the power-law scaling of the
spectral density given by Eq. (34) occurs in the low-frequency
range, rather than for all frequencies w [3].

B. Nonequilibrium Landau functional

Since the model is out of equilibrium, its state cannot
be determined by minimizing the free energy functional.
Nevertheless, the stationary state probabilities obey the large
deviation principle [4,5] similar to Eq. (7),

P o e NV (35)

where V (m) is the nonequilibrium quasipotential (also called
rate function), which is a function of the rescaled magneti-
zation m = M/N. This quasipotential plays the role of the
Landau functional. For the model considered, it can be cal-
culated as [25]

w-_(q)

1 m
ok 5/_1 dqln wi(g)’

with the scaled transition rates w4 (m) defined as

(36)

W, (1Fm) <
wi(m) = lim M;z’M = ;Ci[ﬂi,ﬂFZ(Jerh)]-
(37)

Equation (36) can be derived by using the detailed balance
condition Wy y42P%» = Wars2,mP)y to express the station-
ary probabilities as [25-28]

s« Wonio -NWonya N2 Wy m—o

Pu ="
M = P_N
W_n, v W_nio N4 .- - Wuom

Wym—2
W—> (38)

M-2.M

W_ni2,—n

:pS‘Nexp<1n +---+1In

—N,—N+2
Taking the limit N — oo, using the relation between a limit of
the Riemann sum and a definite integral, and noting Eq. (35),
we get Eq. (36).

Let us now take op > «; and denote v = ap — ;. We
further focus on the case of 4 = 0 (the generalization to finite
h will be considered in Sec. IIIF). Then, the quasipotential
V (m) can be expanded around m = 0 as [3]

1 1;
V(m) = 5(1 - Fl)mz + Blm|*™" + 0(m*), (39)

where

v+1
v2(kgT?) (Tz _ ]) , 40)

T ykTIQ+ )\ Ty

and T, = J/kg is the critical temperature of the equilibrium
Curie-Weiss model. Notably, the expansion includes the non-
analytic term proportional to |m|**". This term appears only
out of equilibrium, as it vanishes for 71 = T5. Physically, it

is related to different low-energy behavior of the spectral
densities of the baths.

Let us note that in our paper we use the exact formula
for the quasipotential [Eq. (36)], while in Ref. [3] it was
calculated using the Fokker-Planck equation. It is known that
the latter approach incorrectly evaluates the quasipotential
away from its minima and saddle points [5,27-31]. How-
ever, we verified that the methods agree with respect to both
the quadratic and nonanalytic terms of the expansion. The
discrepancy appears only for higher-order terms, which are
inconsequential for the later results.

C. Critical behavior of the system

Let us now briefly summarize the results of Ref. [3] con-
cerning the critical behavior of the system considered. We
focus on the case of v € (0, 2), where the nonanalytic term
dominates over the quartic term. We also take 7, > Tj, so that
the system exhibits a continuous phase transition (otherwise
it is discontinuous). We denote the position of the global
minimum of V (m), which corresponds to normalized (divided
by N) stationary magnetization of the system, as my:

mo = arg min V (m). 41
me[—1,1]

As implied by Eq. (39), the magnetic ordering of the sys-
tem is determined only by the lowest temperature 7;. This
is because for o < ay the bath 1 is more strongly coupled
to the low-energy excitations of the system. For T} > T, the
system is in the paramagnetic state, with a single minimum
of V(m) at mp = 0. In contrast, for 7} < T, the system has
two degenerate minima at mq = =£|myg|, which correspond to
the opposite magnetization states. Thus, at T} = T, the sys-
tem undergoes a symmetry-breaking phase transition. For 7}
smaller but close to T, the stationary magnetization exhibits a
power-law scaling

Tc_Tl 1/v
mol o (=) - (42)

Thus, the nonanalytic term of the Landau functional deter-
mines the critical exponent of the phase transition B = 1/v,
which is in general larger than the equilibrium mean-field
critical exponent By = 1/2. In Fig. 5 we present the exact
dependence of the stationary magnetization mg on tempera-
ture 77. As shown, the parameter v affects the magnetization
behavior near the critical point 77 = T, in agreement with
Eq. (42), as well as far from the critical point. We can also
see that for 7] — 0 the normalized magnetization m( does not
tend to 1 due to the disordering effect of the bath 2.

In analogy to the molecular zipper, the nonanalytic term
also determines the order of the phase transition. Since the
system is out of equilibrium, the order is no longer defined
by the behavior of free energy. Still, we may define the order
of phase transition by the behavior of the order parameter: the
transition is of jth order if the (j — 1)th derivative of |mg| over
T; is the lowest, which is discontinuous at the phase transition
point 7} = T. Thus, the transition is of the jth order when

1 1

— K _ 43
j—l\v<j—2 (43)
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FIG. 5. The normalized stationary magnetization as a function
of the bath temperature 7; for different values of the parameter v.
Parameters: oy = 1, T, = 1.257,, y» = i J .

which is analogous to Eq. (15) for the molecular zipper. As for
the zipper, j > 2, since the considered phase transition is con-
tinuous. We note that Ref. [3] used another convention, which
distinguished only second- and third-order phase transitions.

D. Magnetization fluctuations

Let us now analyze how the nonanalytic term of the Landau
functional influences the scaling of fluctuations at the phase
transition point 7y = T, h = 0. First, we consider the magne-
tization moments defined as

(M) =" pyM*. (44)
M

They can be calculated using stationary probabilities given
by Eq. (38). In numerical calculations, this allows one to
study systems consisting of millions of spins. As implied by
Eq. (29), for h = 0, the second moment of the magnetization
is related to the average energy as
J
Ey=—— . 45
(E) N< ) 45)
Going to the continuous limit, we can approximate the mag-
netization moments as

vk [, mEe™ NV dm

k
(M > f_oooo g_NV(m)dm

(46)

Since the behavior of the exponential function exp[—NV (m)]
is dominated by the leading order of m, we can replace V (m)
with the nonanalytic term B|m|>™". The solution yields

k 14k
vty ~ LD gt F(ZT”) L@
2 M(517)

One can observe that in the case considered, the odd moments
of M vanish because of the Z, symmetry of the model (that is,
the symmetry with respect to the magnetization reversal M —
—M). We also note that when the nonanalytic term is absent
or the quartic term of the Landau potential dominates (i.e.,
v > 2), the even moments obey a universal scaling relation
(M*y x N¥ .

108}

10

]04,

. v=05 | | | ®)

o 131
E = y=1 e o o
~ ° (]
= 12} LI
% e v=1l5 * LI
RN . fe e
~ [}
L
= 10 e e T L
g 09 * . .
jon . *
[o% - . o * *
< 08fF "= e o " ¢
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FIG. 6. (a) The second moment of magnetization (M?) at the
critical point 7} = T as a function of the system size N, plotted on
the log-log scale, calculated exactly (dots) and using the approximate
formula (47) (lines). (b) Ratio of approximate and exact results for
(M?), plotted on the log-linear scale. Parameters as in Fig. 5.

The exemplary finite-size scaling of the second moment
of magnetization (M?) (dots), compared to the above approx-
imation (lines), is plotted in Fig. 6(a). As shown, Eq. (47)
correctly describes the character of the power-law scaling.
This confirms the effect of the nonanalytic term of the Landau
functional on the finite-size scaling of fluctuations of magneti-
zation. However, as shown in Fig. 6(b), forv =0.50rv = 1.5
the difference between the approximate and exact results is of
the order of 10% even for systems consisting of millions of
spins. This may be related to higher-order terms of the Landau
functional that are neglected in our approximation.

E. Binder cumulant

To further illustrate the effect of the nonanalytic term, let
us analyze the parameter known as the Binder cumulant. It is
defined as [14,32]

v=1- ) (48)
N 3(M2)2
This parameter quantifies the kurtosis of the magnetization
probability distribution. Its peculiar feature is that, with in-
creasing system size, it asymptotically converges to a certain
finite value. Using Eq. (47), it can be approximated as

_TER)rGs)

2
3(535)

(49)
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FIG. 7. The Binder cumulant at the critical point 7} = T, as a
function of the system size N, plotted on the log-linear scale, calcu-
lated exactly (dots) and using the approximate formula (49) (lines).
Parameters as in Fig. 5.

which characteristically depends only on the parameter v, and
not on the system size nor the amplitude of the nonanalytic
term. The exact scaling of the Binder cumulant (dots) com-
pared with the above approximation (lines) is presented in
Fig. 7. As shown, Eq. (49) well approximates the asymptotic
value of the Binder cumulant. However, similarly to the be-
havior of (M?), the convergence to the asymptotic value is
quite slow for v = 0.5 or v = 1.5. Additionally, the Binder
cumulant for v = 0.5 exhibits a characteristically nonmono-
tonic behavior, going first below the asymptotic value and then
approaching it from below.

F. Magnetic susceptibility

Finally, let us analyze the finite-size scaling of the magnetic
susceptibility, i.e., the response of average magnetization to
the magnetic field, evaluated at the phase transition point. It is

defined as
(M)
X=\|— , (50)
oh /),
and can be calculated as
Py )
X = M < . (28

For finite system sizes, the derivatives of probabilities p5y can
be obtained as [25]

ap™ oW
i LT 4 (52)

where the probability vector p™ and the rate matrix W were
defined below Eq. (31), and WP is the Drazin inverse of the
rate matrix (see Refs. [33,34] for its definition and properties).
For an alternative method to determine the static response of
the stationary state, see Refs. [35,36].

Let us now go to the continuous limit. We now denote
the nonequilibrium quasipotential as V (m, k), explicitly in-
dicating its dependence on the magnetic field. The magnetic

= 108}
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FIG. 8. The ratio of the magnetic susceptibility at the critical
point 7} = T, approximated using Eq. (56) to the exact susceptibility
given by Eq. (51), plotted as a function of the system size N. The
results are represented by dots and plotted on the log-linear scale.
The lines are added for eye guidance. Parameters as in Fig. 5.

susceptibility can be approximated using Eq. (47) as

9 f_oooomefNV(m,h)dm
x~N 9h foo NV g,
—00 h=0

V2 [ me NV 08, oV (m, hydm

XNV (0
[ e NV O dm

o0 =NV (m,0) 4 )
me ml 9
N ffoo |: / e—NV(m,h)dm:| ’

[, e—J\IV(m,O)dm]2 oh _
(53)
where we denoted
oV (m, h)
Op=oV (m, h) = |:(8—h] . (54)
h=0

The second term in the last expression in Eq. (53) vanishes be-
cause of 2 me~NV"0dm = 0. The derivative 3oV (m, h)
can be expanded at 7} = T as

m
kgT,

Inserting this into Eq. (53), subtracting the higher orders in
m, which can be neglected for large N, and comparing the
resulting expression with Eq. (46), we find that the magnetic
susceptibility can be related to the magnetization second mo-
ment as

oV (m, h) = — +O(m**). (55)

(M)
x= kT,

Thus, even though the system is out of equilibrium, the mag-
netic susceptibility and the second moment of magnetization
are related via an equilibriumlike formula. However, we note
that this holds only asymptotically for large N rather than
exactly, as in the equilibrium case.

Let us now explore the validity of the formula (56) for a
finite N. This is presented in Fig. 8. Due to the necessity of
calculating W2, our study is now limited to smaller systems,
with N of the order 10°. As shown, for the cases presented,

(56)
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this approximation overestimates the magnetic susceptibility
only by a few percent, with the agreement improving with
N. Thus, we may infer that Eq. (56) becomes asymptotically
exact in the thermodynamic limit. Furthermore, the approxi-
mation works better for higher values of v, since the higher
orders of expansion (55) are then less important. Therefore,
for large N, the magnetic susceptibility obeys the same scaling
as the second moment of magnetization. As shown before, the
latter can be approximated using Eq. (47), and thus depends
on the parameter v, which characterizes the exponent of the
nonanalytic term of the Landau functional.

IV. CONCLUSIONS

We have shown that the nonanalytic terms of the Landau
functional can determine the finite-size scaling of fluctuations
and response functions at the continuous phase transition
points. This was demonstrated on the equilibrium molecular
zipper model and the nonequilibrium version of the Curie-
Weiss model. In particular, using large deviation theory, we
derived approximate analytic power-law formulas describing
the finite-size scaling, whose scaling exponents are deter-
mined by the nonanalytic terms of the Landau functional. For
the molecular zipper model, we observed a very good agree-
ment between those formulas and the exact results even for
relatively small systems. For the nonequilibrium Curie-Weiss
model, these formulas also accurately describe the scaling
exponents. However, the approximate and exact values of the
fluctuations and responses differ slightly, but notably, even for
relatively large systems. This might be ascribed to the effect
of the higher-order terms of the Landau functional.

The demonstrated explicit relation between the power-law
scaling exponents of fluctuations or responses and the nonan-
alytic terms of the Landau functional may allow determining
the presence and form of these nonanalytic terms — that can

shape the critical behavior of the system in the thermodynamic
limit — through measurements or simulations of finite-size
systems. However, we emphasize that our study focused on
mean-field models, for which the Landau theory is exact. The
open question is whether our conclusions can be generalized
to finite-dimensional systems. The latter may encompass equi-
librium systems with soft modes, whose Landau functional
include nonanalytic terms [6], or nonequilibrium spin lattices,
analogous to the model analyzed in Sec. III. On the one hand,
an affirmative answer to that question is supported by the fact
that the behavior of systems near criticality can be effectively
captured using the renormalization group techniques. These
methods build upon Landau theory, refining it to account for
spatial correlations [2]. On the other hand, in nonequilibrium
spin lattices, it has been questioned whether the effect of
nonanalytic behavior of spectral densities—responsible for
the formation of nonanalytic Landau functionals—might be
suppressed by the discrete nature of the effective magnetic
field acting on spins (which is determined by the discrete
configuration of a few neighboring spins) [3]. However, a
later study provided some evidence that nonanalytic Landau
functionals may in fact play a role in shaping magnetization
fluctuations also in finite-dimensional lattices [7].
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