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Macroscopic theory of multipartite correlations in permutation-invariant open quantum systems
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Information-theoretic quantities have received significant attention as system-independent measures of cor-
relations in many-body quantum systems, e.g., as universal order parameters of synchronization. In this work,
we present a method to determine the macroscopic behavior of the steady-state multipartite mutual information
between N interacting units undergoing Markovian evolution that is invariant under unit permutations. Using
this approach, we extend a conclusion previously drawn for classical systems that either the extensive scaling
of mutual information is not possible for systems relaxing to fixed points of the mean-field dynamics, or such
scaling is not robust to perturbations of system dynamics. In contrast, robust extensive scaling occurs for a
system relaxing to time-dependent attractors, e.g., limit cycles. We illustrate the applicability of our method on

the driven-dissipative Lipkin-Meshkov-Glick model.
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I. INTRODUCTION

Information theory has attracted attention as a univer-
sal (system-independent) framework to characterize bipartite
and multipartite correlations in many-body quantum systems
[1-3]. In particular, a great deal of interest has been focused on
the partition size scaling of bipartite correlations between the
system partitions in pure [4], thermal [5], and nonequilibrium
steady states [6—11], with different systems exhibiting either
extensive or subextensive scaling. Bipartite correlations have
also been used as a signature of quantum [12,13], thermal
[14], or dissipative [15] phase transitions. Finally, mutual
information and other information-theoretic measures have
been used as universal order parameters of synchronization
in coupled oscillator systems [16-34]. Recently, increasing
research interest has also been devoted to multipartite cor-
relations [35-37]. For example, their extensive scaling was
shown to witness certain quantum [38—40] and dissipative
[41,42] phase transitions, or ergodicity breaking in disordered
quantum systems [43,44]. They have also been analyzed in
the context of work extraction [45,46] or witnessing non-
Markovian dynamics [47].

Characterization of information-theoretic quantities in
many-body quantum systems is often cumbersome, as it re-
quires knowledge of the density matrix of the system, whose
dimension grows exponentially with system size. The problem
can be greatly simplified for permutation-invariant systems,
i.e., systems composed of N interacting units whose states
are invariant under unit permutations. Such systems can be
characterized by a density matrix that grows only polyno-
mially with system size, enabling the determination of the
system’s von Neumann entropy using a recently developed
group theory framework [48]. However, this approach is still
limited to finite system sizes. In our article, we present a
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method enabling one to characterize the asymptotic scaling
of multipartite mutual information in the stationary state of
permutation-invariant open quantum systems that is applica-
ble in the thermodynamic limit of infinite system size. The
proposed approach employs the phase-space description of
open system dynamics [49] together with the group theory
framework mentioned above. Our final result is a simple
formula that enables one to calculate the multipartite cor-
relations using the standard mean-field description of open
quantum system dynamics [50-55]. The applicability of our
theory is demonstrated on a driven-dissipative version of
the Lipkin-Meshkov-Glick (LMG) model [22,56,57]. Apart
from offering methodological tools, our theory allows us
to generalize the conclusion previously drawn for classical
permutation-invariant systems [58]: The extensive scaling of
multipartite mutual information with system size is not robust
to arbitrarily small system perturbations in thermodynamic
equilibrium (e.g., in ground states) or in nonequilibrium sys-
tems relaxing to fixed points of the mean-field dynamics.
However, it can be robust in nonequilibrium systems with
time-dependent attractors, such as limit cycles.

The paper is organized as follows: In Sec. II we present
our theoretical framework, including the main result, Eq. (13).
In Sec. IIT we illustrate our theory with the driven-dissipative
LMG model. Section IV discusses the robustness of extensive
scaling of mutual information. Finally, in Sec. V, we present
our concluding remarks and outline potential directions for
future research. The Appendixes provide detailed descriptions
of the methods used and include some additional discussions.

II. THEORETICAL FRAMEWORK

A. Permutation-invariant dynamics

Our work focuses on permutation-invariant networks
composed of N quantum d-level units (qudits) labeled i,
that is, networks whose dynamics does not change upon

©2025 American Physical Society


https://orcid.org/0000-0002-4891-2792
https://orcid.org/0000-0001-6039-2462
https://orcid.org/0000-0002-2249-4035
https://ror.org/01yzad698
https://ror.org/036x5ad56
https://crossmark.crossref.org/dialog/?doi=10.1103/zwfx-m4nq&domain=pdf&date_stamp=2025-11-21
https://doi.org/10.1103/zwfx-m4nq

PTASZYNSKI, CHUDAK, AND ESPOSITO

PHYSICAL REVIEW E 112, 054137 (2025)

permutation of two units. To realize such a scenario, the units
need to be identical, and each pair of units needs to interact
in the same way. The state of the total system and of the ith
unit are denoted as pr and p;, respectively. The states and
operators in the Hilbert space of a single unit are spanned
by the basis v = {vO,}ff:_l1 of traceless operators v, that form
the Lie algebra of SU(d), plus the identity operator 1,. We

further denote the basis elements of the ith unit as v{” and

define the global operators V, = vazl v¥. The dynamics of

permutation-invariant networks is most commonly described
using the Lindblad equation of the form (we take 7 = 1) [59]

. Ty
dipr = —ilH, pr]+ )~ DlLnl(pr)

N
+ Y va Y D[LP](or). (1)
n i=1

where DI[A](p) = ApA" — ${ATA, p}. Here, the first term on
the right-hand side describes the unitary dynamics, with the
effective Hamiltonian H expressed solely in terms of global
operators V,,.. The second term describes the global dissipative
dynamics, where each jump of type m is associated with the
global dissipation rate I',,, and the Lindblad jump operator L,,,
which is also expressed solely in terms of global operators
V. Finally, the third term describes local dissipation that is
identical for every unit, i.e., every jump of type n in the ith
unit is associated with the same local dissipation rate y,, and
identical local jump operator L) = Y~ c,,v%. We note that
more complex forms of the permutation-invariant Lindblad
dynamics, for example, involving collective operator-valued
transition rates (i.e., the rates depending on the state of the
system), have also been considered in the literature [55,60—
62]. The latter kind of description is necessary to describe
interaction with finite-temperature baths.

B. Phase-space description
We further employ the phase-space description of the sys-

tem dynamics proposed in Ref. [49]. Within this framework,
permutation-invariant states are represented as

or = [ P@rwg s @)

where P(&) is the generalized P-representation of the den-
sity matrix, and pf’N is a product state of N identical states
of individual subsystems. The latter are parametrized by the
generalized Bloch vector & = {El}fsl as [63]

1
PE = E(]ld—f-’é'v)- (3)

The evolution of the distribution P(&), corresponding to Lind-
blad equation (1), is then described by the partial differential
equation [49]

d>—1
0
d,P§) =— E a—&[gz(E)P(E)] + O(1/N), 4
=1

where g;(&) is the /th element of the drift vector g(&) that
corresponds to the mean-field evolution of the generalized

Bloch vector,

di§, = g(&). )

This drift vector can be obtained using the commonly em-
ployed mean-field approach, which has been thoroughly
described in the literature [S0-55]. The terms of order O(1/N)
describe fluctuations that vanish in the thermodynamic limit.
Though not demonstrated explicitly, we expect that this kind
of description can be generalized beyond dynamics given
by Eq. (1) to the aforementioned systems with collective
operator-valued transition rates, as they also admit an exact
mean-field description in the thermodynamic limit [55].

We now aim to determine the stationary state of the system,
described by the stationary P-representation Py (&). That state
corresponds to the long-time asymptotic solution of Eq. (4)
when the long-time limit 1 — oo is taken before the thermo-
dynamic limit N — oo, so that the system reaches a unique
stationary state.! We also focus on the situation where the drift
dynamics (5) has a unique ergodic attractor. Based on previ-
ous results on classical stochastic systems [66—73] [described
by equations of motion for classical probability density that
are analogous in structure to Eq. (4)], we conclude that the
stationary P-representation asymptotically converges with N
to the invariant probability density of the drift dynamics,

lim P(§) = lim l/TdIS(E—Er), (0)
N—oo =00 T Jo

where § is the Dirac delta and &, is the solution of Eq. (5) for
an arbitrary initial state. In fact, such a distribution remains
constant when the system evolves according to Eq. (4) in the
limit N — oo.

When Eq. (5) admits multiple attractors, the stationary dis-
tribution Py (&) corresponds to a statistical mixture of different
attractors. The stationary state is then determined by either
the stochastic jump process between attractors that are well
separated in the state space [74-79], or the diffusion between
adjacent attractors [80]. Detailed analysis of such a case goes
beyond the scope of this study. However, we will return to
this issue when discussing the robustness of extensive scaling
of correlations.

C. Multipartite mutual information

The goal of our theory is to characterize the multipartite
correlations in the stationary state of the system. They are
quantified by the multipartite mutual information defined as
[3,81]

N
=Y S(p)—S(pr), )

i=1

'In the opposite regime, when the thermodynamic limit is taken
first, the system initialized in the product state pg‘i’v stays in the time-
evolved product state pgf’N at all times [64]. In particular, the system
may never reach a stationary state, but rather it may exhibit persistent
periodic, quasiperiodic, or chaotic dynamics. This noncommutativity
of the thermodynamic and long-time limits is known as Keizer’s
paradox [65].
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where S(p) = —Tr(pIn p) is the von Neumann entropy. To
calculate the system entropy, we use the group theory ap-
proach from Ref. [48]. This framework employs Schur’s
lemma to express the density matrix of a permutation-
invariant system in the block-diagonal form

pr = @PA,OA, 3

A

where € denotes the direct sum of matrices, and the blocks
o are defined within different representations A, that is,
permutation-invariant subspaces of the total Hilbert space.
The index A = {A j}?zl is the ordered partition of N into d
integers A; > --- > A4 that describe the shape of the Young
tableau associated with a given representation. For large sys-
tem sizes and after taking the continuous limit, the total

entropy was shown to scale asymptotically as [48]
lim S(pr)/N = f px)s(x)dx, ©)
N—o0

where p(x) = Np, is the probability density of the nor-
malized partition x = A/N, and s(x) = — Z(jzl xjlnx; is an
intensive entropy function, having the form of the Shannon
entropy. Using Eq. (2), the former can be expressed as

plx) = / Po (&) p () dE, (10)

where pg(x) is the distribution p(x) for a given product state
,of’N . As shown in Ref. [82], in the large-N limit, the distribu-
tion pg(x) converges to the Dirac delta distribution §(x — eg),
where ez = {eg, j}j?=l is the set of eigenvalues of pg arranged
in decreasing order. From that we get

Jim S(or)/N = /PSS(E)S(eg)d§= /PSS(E)S(ps)dE, Y

where we used s(eg) = — Z?:l eg jIneg j = S(pg), which
follows from the definition of the von Neumann entropy.
Using Eq. (2), we also get

P = / Po(8)pedé. (12)

Given the assumption of the ergodic dynamics, we can insert
Eq. (6) into Egs. (11) and (12). This yields

'/ N o
Jim = 5(7g) = S(p,). (13)

where (-) = lim;_ oo 77! for(~)dt denotes the infinite-time av-
erage. This is the main result of our work, which enables one
to determine the macroscopic behavior of multipartite mutual
information using the deterministic mean-field dynamics (5).
It generalizes a similar result obtained recently in the context
of classical stochastic systems [58] to the quantum regime.
Let us now discuss the implications of our result for the
scaling of Ij; with system size N. Due to the concavity of
von Neumann entropy SO, prox) = Y, PS(px), which is
valid for arbitrary density operators px and ), pr = 1, we
have S(p;) > S(pr)/N, with equality holding if and only if
Py (&) is the Dirac delta. Consequently, the multipartite mu-
tual information (7) scales subextensively with system size
(i.e., limy_, o Iy /N = 0) when Py (&) is the Dirac delta, which

occurs when the drift dynamics relaxes the system to a sin-
gle fixed point & = const [see Eq. (6)]. Instead, it scales
extensively (i.e., limy_ o Iy /N > 0) otherwise, in particular,
when the mean-field dynamics relaxes the system to a time-
dependent attractor (e.g., limit cycle or chaotic attractor).

III. EXAMPLE: LMG MODEL

We illustrate our theory on the driven-dissipative version
of the LMG model, whose phase diagram has been recently
thoroughly studied in Ref. [57]. It consists of N two-level
units coupled by an isotropic XY interaction and placed in
the transverse magnetic field. The algebra of a single unit
is spanned by the set of Pauli matrices v = o = {0y, 0y, 0},
while the vector & corresponds to the standard Bloch vector
of magnetization components m = {m,, m,, m;}. The system
dynamics is described by the master equation

N
dipr =—ilH, prl+ ~DIV1(pr) + 7 3 DloPl(or),
N i=1 i

(14)

where

H= J(vv +VV)+hV (15)
—4N xVx yVy 2)(7

J 1is the exchange interaction, & is the transverse magnetic
field, I" is the global dissipation rate, y is the local pump-
ing rate, V, = Y n_, o are the global Pauli operators, while
Vi = (V, £iV,)/2 and 0’ = (6 +ioc®)/2 are the global
and local ladder operators, respectively. We note that exper-
imental realizations of this model based on cold atoms in
optical cavities [22] or trapped ions [83,84] have been pro-
posed. In particular, unitary and global dissipation terms of
this model have been realized in state-of-the-art experiments
with cold atoms [85,86]. The local pumping can be realized
via a combination of coherent optical excitation from the
spin-down state to an adiabatically eliminated excited state
and fast spontaneous decay from that state to the spin-up state,
as thoroughly described for the well-known superradiant laser
model [87].
The mean-field equations for this model read [57]

dimy = jmymz + Umym; /2 — ymy /2,
dimy, = —Jmum; — hm, +Tmym; /2 — ym, /2,
dim; = hmy —T'(m} +m3) /2 + y (1 —m). (16)

These equations can be solved analytically for # = 0. For
I' < y, the equations have a stable fixed point at m, = 1 and
m, = m, = 0. As discussed above, this leads to the vanishing
of intensive mutual information I;/N. Instead, for I" > y,
the equations have a limit cycle solution with (up to arbitrary
phase)

Ie _ lc
m, =y,

1

. I |
sin(wt), myC = mxcy cos(wt), m =y/T,

7)

Where m}fy =.F"1«/2y(F —y)and w = Jy/T. ’rhe forma-
tion of the limit cycle may be regarded as an instance of
many-body synchronization, in which spins synchronize their
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FIG. 1. The intensive multipartite mutual information I, /N in
the driven-dissipative LMG model for J = 3y and (a) h =0, (b)
h = 0.5y. The solid green line represents the predictions of our
theory, and dots represent the master equation results for different
system sizes N. Dotted lines are added as a guide to the eye.

precession around the z-axis [22,56,84]. Using Eq. (13), the
intensive mutual information scales then asymptotically as
'/ 2 2
Jim %= b(nk) = b(y/ ()" + (m)).  (8)
where b(x) = — ), [(1 £ x)/2]In[(1 £ x)/2]. For h # 0, the
mutual information can be determined by numerical integra-
tion of the mean-field equations.

We also compare the predictions of our theory with the
master equation results for finite system sizes. The stationary
state of the system is determined using the method from
Ref. [59], while information-theoretic quantities are calcu-
lated using the formalism from Ref. [48]. The details of the
applied methods are presented in Appendix A. Most impor-
tantly, for 4 = 0, the steady-state density matrix is diagonal
in the Dicke basis, and the number of its nonzero elements is
of the order O(N?). This enables us to consider system sizes
up to N = 1600. Instead, for & # 0, the number of nonzero
density matrix elements is of the order O(N?), which limits
our simulations to smaller system sizes N < 320.

In Fig. 1, we present the results for 2 =0 (a) and h # 0
(b). In the former case, our theory predicts the vanishing of
intensive mutual information I;/N in the fixed-point phase
for I < y. In the limit cycle phase for I' > y, it instead takes
a finite value and exhibits a nonmonotonic behavior, reaching
maximum at [' & 1.68y. A similar behavior is observed for
h # 0. The master equation results qualitatively reproduce the
predictions of our theory: for I' 5 y, Iy /N decreases with the

system size N, gradually approaching 0, while for I' 2 y it
increases with N, gradually approaching the theoretical pre-
dictions. In particular, for 2 = 0 and the large system size
N = 1600, I;/N is very close to the theoretical predictions
in the limit cycle phase. We also notice that for & # 0, our
theory results show a notable dip around I' & 2.5y, which is
not visible in finite-size data. As we discuss in Appendix B, it
appears to result from a strong peak in transverse magnetiza-
tion /(my)? + (m,)?, which develops very slowly with N.

IV. ROBUSTNESS OF EXTENSIVE SCALING

As discussed below Eq. (13), the multipartite mutual in-
formation Iy, scales extensively if and only if the asymptotic
stationary distribution Py (&) is not the Dirac delta distribution.
In the case considered thus far, where the drift dynamics (5)
has a unique attractor, this occurs only when this attractor
is time-dependent. We now note that when Eq. (5) admits
multiple attractors, this is also possible when the stationary
state corresponds to a statistical mixture of different fixed
points occupied with a finite probability. However, as previ-
ously discussed for classical stochastic systems [58], such a
situation occurs only when the system dynamics [determined
by unitary and dissipative terms of Eq. (1)] is perfectly tuned.
Otherwise, even when the system admits multiple fixed points,
for N — oo it usually tends to relax to a single most likely
fixed point (occupied with probability 1) via stochastic jumps
from other fixed points corresponding to metastable states (a
phenomenon sometimes called quantum activation) [74-79]. 2
For example, when the system has two fixed points s € {1, 2},
the switching rate from point s to point s’ is proportional to
e N where @, is the escape barrier from the state s [79].
Consequently, the steady-state ratio of the occupancies p;
of the fixed points scales as p,/py o< V@~ As a result,
for N — oo, the system tends to occupy with probability
1 the system with the smaller escape rate (i.e., larger &),
unless the dynamics of the system is perfectly tuned so that
@, = ®,. Apart from such a well-tuned case, Iy /N asymp-
totically vanishes (limy_, o Ijy/N = 0). This means that the
extensive scaling of [y, is not robust to small perturbations of
unitary or dissipative terms of the system dynamics that break
degeneracy of the escape barriers.

This further implies that the extensive scaling of mutual
information is not robust in ground or thermal states, which
can be regarded as fixed points of thermalizing dynamics
(here we assume that time-dependent attractors do not occur
in thermal equilibrium, which has been rigorously proven
for certain classes of classical [88] and quantum [89] sys-
tems). We note that ground-state multipartite correlations have
attracted some attention [35,38-40]. To illustrate that on a
particular example, let us consider correlations in the ground
state of the Hamiltonian (15). For ferromagnetic interaction
J < 0, vanishing transverse field 2 =0, and even N, the
Hamiltonian has a unique ground state, namely the Dicke

2Recall that in our work we take the long-time limit # — oo before
the thermodynamic limit N — oo, so that the system relaxes to a
unique stationary state. For the opposite order of limits, every fixed
point is a stationary state.
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FIG. 2. The intensive multipartite mutual information I; /N in
the ground state of the ferromagnetic (J < 0) LMG model for
different system sizes N. The inset presents a smaller range of h.
Calculation details are presented in Appendix C.

state [90] Viv/2(|1)®N)/\/1W, where |1) is the eigenstate of
o, corresponding to the eigenvalue 1. In the thermodynamic
limit, it can be represented as a uniform mixture of prod-
uct states p&V with m? + m}2 =1, m, = 0. For such a state,
i = 1,/2, and thus the intensive mutual information takes a
finite value I);/N = In2. However, for any finite transverse
field & that breaks the system symmetry, the ground state
converges in the thermodynamic limit to a single product state
2N with m = {—sgn(h), 0, 0} [91], so that I;/N vanishes.
This behavior is illustrated for finite system sizes in Fig. 2. As
shown, I, /N rapidly decays with |k|, the decay being faster
for larger N, witnessing its vanishing in the thermodynamic
limit.

In contrast, in systems that exhibit time-dependent at-
tractors, their existence—and thus the extensive scaling of
Iyy—can be robust to perturbations. This is illustrated by
Fig. 1(b), where the extensive scaling of Ij; is robust to the
presence of the transverse field. In fact, the robustness of
certain classes of time-dependent attractors (encompassing
the system considered) to small perturbations, called struc-
tural stability, has been rigorously proven within dynamical
systems theory [92-97]; see Appendix D for details.

V. CONCLUDING REMARKS

Our article demonstrates the power of the phase-space
approach [49] employed together with the group theory
framework [48] to describe entropy and information in macro-
scopic permutation-invariant open quantum systems. While
here we focus on steady-state correlations, the proposed
method can also be applied in other contexts, including dy-
namical scenarios. In particular, it can be used to generalize
the framework of macroscopic stochastic thermodynamics
[88] to quantum systems, e.g., to describe entropy produc-
tion during quenches between equilibrium states. For the
latter goal, the use of thermodynamically consistent master
equations [98], capable of describing the interaction with
finite-temperature reservoirs, would be necessary. We further
note that bipartite mutual information has been proposed
as a universal order parameter of synchronization between

two oscillators, independent of the microscopic details of
the considered setup [21]. Accordingly, our approach enables
one to quantify multipartite synchronization in permutation-
invariant networks of oscillators, which have recently received
significant attention in both classical [99-113] and quantum
[22,56,84,114,115] contexts. Finally, we emphasize that our
analysis of the robustness of extensive scaling is limited to
permutation-invariant systems. The open question is whether
our conclusions can be generalized to finite-range interacting
[57,116-119] or disordered [56,120] models, where many-
body synchronized phases (reminiscent of limit cycles) have
also been observed.
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APPENDIX A: MASTER EQUATION

Here, we briefly describe the application of the approach
from Ref. [59] to the LMG model considered. This method
employs the fact that the permutation invariant state of N
spins-1/2 can be expressed as [see Eq. (8)]

pr =P (os ® Laim, /dim, ), (A1)
J

whereJ € {N/2 mod 1,...,N/2 — 1, N/2} are the eigenval-

ues of the total angular momentum, and

N!
X +7+1)1(5 )

is the dimension of the permutation-invariant subspace with
given J. The elements of (2J 4+ 1) x (2J + 1) matrices p; are
denoted as 01.7..1! withJ,,J. € {—=J, =J + 1, ..., J}. The den-
sity matrix can then be effectively represented by the vector
lpor) whose [J(2J + D)2 —1)/3+ QI+ 1D)J +J)+J +
J; + 1]th element corresponds to p; ;. ;. The steady state is
given by the stationary solution of the master equation,

dilpr) = Llpr) =0, (A3)

where £ = @, L; + Lioc. Here, the matrices £, describe the
global evolution that preserves the total angular momentum J.
They can be expressed as [123-126]

Ly=—i(loy ®H —Hf ®1241)

dim, = (2J + 1) (A2)

crei Ll et
N7 — 22/+1 _J-

1 ..
- E(J_J—)T ® 1121+1i|7 (A4)

where * denotes the complex conjugate, © denotes the Her-
mitian conjugate, Hy = J(J2 + J2)/N + hly, Jx = J; + i),
and J;,y,z are spin-J operators. The matrix L), describes
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the local dissipation. It is defined such that the generated
evolution d;|pr)) = Lioc|pr)) corresponds to the equations of
motion

1
— E (k)
dz,OJ,JZ,JZ’ - RJ_’_](’JZ_]’JJ_]p‘/+k..]3—1,‘lz'—l
k=—1

— SOV =T = I (AS)
where
N
R, = Lewt 2 (A6a)
N

R, = SAphalt J—fji 11), (A6b)

(-1 Y T T 8—u
Ryvr =305 D ar vy, (A%

with

A= JU =T+ +1), (A7a)
By = /U —JI)J—J. -1, (A7b)
DY = U+ T+ 1)U +J.+2). (A7c)

Numerically, the steady state is determined by solving the
normal equation £7L|pr)) = 0, which is obtained by mul-
tiplying both sides of Eq. (A3) by L', using the conjugate
gradient method described in Refs. [127,128]. The entropy of
the total system is calculated as [48]

Spr) =) psl=Inp; +S(,) +Indim;],  (A8)
J

where p; = Tr(py) and p; = p;/py. The local entropies S(p;)
are calculated using

pPi = %(]12 + (my)o, + (m)'>ay + (m;)o;) (A9)
with

2 “
() = ijTr(pJJx,y,z). (A10)

For h = 0, the stationary matrices p; are diagonal. The
diagonal elements p; ; = p; ;. ;. are given by the stationary
solution of the rate equations

dipry. =—Cipyy +Copri1+Cpyyig—1

+Capry—1+Cspy-iy.-1, (A11)
where
r N
C = ﬁ(l +J —JZ)(J—l-JZ)—i-y(E —JZ>, (A12a)
r
C = N(J — LU+ +1), (A12b)
J—J+DU—-L+2)(X+7+2
CFV( -+ 1)( . +2)(5 )’ (A120)
2(J + DH(2J +3)
J—L+DU+)E+1
c4=y( + DU+ ), (A12d)
2J(J +1)
J+J— DU +I)(5 T +1)
Cs = ) Al2
STV 2720 — 1) (Al2e)

(a)

0.6F
0.5F
0.4f
03f

0.2F

S(pr)/N

0.1F

0.0

(b)

0.6

0.5F

04F

S(pi)

FIG. 3. (a) Scaled total entropy S(pr)/N and (b) local entropy
of a single unit S(p;) as a function of I'/y. The inset in (b) shows
the derivative dS(p;)/dT for a smaller range of I /y . Parameters and
notations as in Fig. 1(b) in the main text. For N — oo, we apply our
theory as S(or)/N = 5(om,). S(pi) = S Bum)-

The total entropy can then be calculated as

S(pr) =Y _ prs(—npy . +Indim)),
JJ.

(A13)

while the local states are given by Eq. (A9) with (m,) =
(my) = 0and (m;) = (2/N)>_; ; J.ps.s.-

APPENDIX B: ORIGIN OF DIP IN I),/N FOR k # 0

In Fig. 1(b) in the main text, presenting the behavior
of multipartite mutual information in the driven-dissipative
LMG model for & = 0.5y, we observed the presence of a
notable dip in our theoretical predictions for Iy, /N that oc-
curs around I'/y ~ 2.5, which is not visible in the finite-size
results. Here we elaborate on the origin of this dip and its
apparent absence for finite system sizes N. To do this, we
first consider the behavior of two individual components of
Iy /N, thatis, S(pr)/N and S(p;) [see Eq. (7) in the main text].
It is presented in Fig. 3. As shown, the scaled total entropy
S(pr)/N gradually converges from above to the predictions
of our theory, which is related to the subextensive scaling of
the first two terms in Eq. (A8) in Appendix A; see Ref. [48]
for details. For large N = 320, we observe a very good quan-
titative agreement between our theory and finite-size results.
For local entropy S(p;), in the limit cycle phase (I'/y Z 1.02),
the predictions of our theory are also close to the finite-size
results for large N = 320. However, they show a minor hump
that occurs in the same region as the dip in Ij;/N (around
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(b)

0.00
0

1 2 3 4

FIG. 4. (a) Longitudinal magnetization (m.) and (b) transverse
magnetization my, = /(m,)> + (m,)? as a function of I'/y (note
the different scales on the y axis). Parameters and notations as in

Fig. 1(b) in the main text. For N — oo, we apply the mean-field
theory as (my) = (m,),.

I'/y = 2.5), and—Ilike this dip—is also not clearly visible for
finite system sizes in the plot of S(p;). However, traces of its
presence become visible in the derivative dS(p;)/dT for large
N = 320; see the inset of Fig. 3(b).

To gain insight into the origin of this hump in S(p;), and
the resulting dip in ); /N, we now consider the behavior of the
magnetization components (m, ,, .), which determine the local
entropy through Eq. (A9) in Appendix A. It is presented in
Fig. 4. First, in mean-field results (N — oo) for the limit cycle
phase, longitudinal magnetization (m.) exhibits monotonic
decay, with only a minor hump observed around I'/y = 2.5.
The finite-size results for large N are mostly very close to the
mean-field behavior.

Much more notable is the behavior of transverse magne-
tization my, = /(m,)> + (my)?. In the mean-field results, it
exhibits a very pronounced peak around I'/y ~ 2.5, where
the dip in Iy /N is observed. In fact, the enhancement of
my, makes the local states p; more pure, reducing the local
entropy S(p;). This explains the origin of the hump in S(p;),
and thus in I, /N. At the same time, the finite-size results
exhibit a gradual, but very slow, emergence of this peak with
increasing N. This slow development of the peak in transverse
magnetization rationalizes why we are unable to observe the
resulting dip in I;; /N in finite-size results.

Finally, we notice that the slow development of the peak
in m,, could possibly be related to the proximity of the con-
sidered region of the phase diagram (I'/y ~ 2.5, h = 0.5y)
to the region where the dynamics becomes chaotic via a
period-doubling bifurcation (for higher values of 4); see Fig. 2

in Ref. [57]. As previously reported, in the chaotic regime,
the strong enhancement of fluctuations by chaos may cause
a strong deviation of the stationary-state properties of the
system from mean-field predictions even for relatively large
system sizes [129—-133]. A detailed exploration of the system
behavior in the chaotic regime is beyond the scope of this
study.

APPENDIX C: GROUND-STATE MUTUAL INFORMATION

To calculate the mutual information in the ground state of
the ferromagnetic LMG model, we first note that the ground
state is pure, so S(pr) = 0. To determine the local entropies
S(pi), we use the fact that the ground state is characterized by
the maximum value of the angular momentum J = N/2 [91].
Consequently, the local states p; are given by Eq. (A9) with

(myy.c) = 28l 18) /N, (ChH

where |g) is the ground state of the Hamiltonian A; = J (sz +
J2)/N + hJ, with J = N/2.

APPENDIX D: ROBUSTNESS
OF TIME-DEPENDENT ATTRACTORS

As discussed in the main text, the existence of time-
dependent attractors of the mean-field dynamics is a sufficient
condition of extensive scaling of the mutual information Ij,.
Consequently, the extensive scaling of Iy, is robust to per-
turbations of the system dynamics when the existence of
time-dependent attractors is also robust. The latter property
is known as structural stability in dynamical systems theory,
where it is defined as robustness of the attractor existence
to small perturbations of the drift vector g(&) [that can re-
sult from perturbation of the unitary or dissipative part of
Eq. (1)]. This property has been proven for several classes
of chaotic attractors [94-97], as well as for a certain class
of periodic orbits, called hyperbolic limit cycles [92,93]. To
verify whether the limit cycle is hyperbolic, one needs to
consider the Jacobian of the mean-field dynamics evaluated
around the time-evolved state &,,

JE) = [a,ézgk(gz)]lgk.lgdz—l'

We focus on a situation where the system exhibits a time-
periodic limit cycle attractor with § = &, where T is the
oscillation period, and we consider the time evolution of the
fundamental matrix M(z),

dM(t) = J(§)M(), (D2)

with M((0) = 1. The hyperbolicity of the limit cycle is then
determined by the eigenvalues of the monodromy matrix
MI(T), called the Flogquet multipliers: the cycle is hyperbolic
if a single Floquet multiplier equals 1, while all others have
moduli different from 1. In particular, for attractive limit cy-
cles, the latter multipliers have moduli smaller than 1.

We can now verify that this property is satisfied for the
limit cycle of the LMG model considered in the main text,
which guarantees the robustness of the extensive scaling of
Iys. For comparison, we note that periodic orbits in the co-
operative resonance fluorescence model [80], which recently
gained significant attention as a paradigmatic example of a

(D1)
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driven-dissipative time crystal [134], are not hyperbolic. Con-
sequently, the periodic oscillations in the latter setup are not

robust, but rather are suppressed by arbitrarily small local
dephasing [59] or local dissipation [120].
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