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ABSTRACT The success of NASA’s Mars Helicopter Ingenuity has paved the way for aerial planetary
exploration with future mission concepts that will require advanced autonomous capabilities to enable
long-range navigation. In the absence of a Global Navigation Satellite System (GNSS) on Mars, a critical
capability is localization within the global frame to eliminate pose estimation drift, which typically
involves registering onboard images to orbital maps - e.g. derived from High-Resolution Imaging Science
Experiment (HiRISE) data. However, the registration process poses several challenges including texture-
less terrain, illumination variations, and most relevant to Ingenuity, large resolution difference between low
altitude observations and HiRISE. With current registration methods using template-matching and hand-
crafted features struggling under the aforementioned challenges, we turn our attention to deep learning-
based image matchers that have shown impressive generalization potential, but failed to be widely adopted
for space applications due to the lack of large-scale annotated datasets for training. In this paper, we
present a Map-based Localization (MbL) system for Ingenuity that incorporates a state-of-the-art deep
image matcher model. We justify the feasibility of this approach for future missions by demonstrating a
training strategy that: 1) rapidly adapts the deep image matcher in a self-supervised manner using minimal
amount of Ingenuity navigation images, 2) generalizes to previously unseen flights, and 3) is robust to the
large resolution difference and outperforms prior template and hand-crafted registration methods in terms
of localization accuracy.

INDEX TERMS Deep Learning, Map-based Localization, Mars exploration, Mars Helicopter, Vision-based
Navigation

I. INTRODUCTION
NASA’s Mars Helicopter Ingenuity was a resounding success
as a technology demonstration, proving that Unmanned
Aerial Vehicles (UAVs) can fly in the thin Martian atmo-
sphere. This success is encouraging rotorcraft-enabled sci-
ence on Mars and enables new mission concepts such as the
Mars Science Helicopter (MSH) [1] and Dragonfly [2], by
offering several advantages compared to rovers. First, aerial
vehicles can significantly increase the area of operations,
facilitating science investigations multiple kilometers away
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from the landing site in a short period of time. Second, rovers
are restricted by the terrain that they can safely traverse.
They have difficulty climbing slopes more than 30◦ and
run the risk of getting stuck when traversing fine-grained
sand. Aerial assets, on the other hand, are able to avoid
troublesome surfaces and land on steep slopes and high
elevation terrain.

In spite of its success flying seventy two flights, Inge-
nuity was limited in several ways. It lacked a safe landing
site detection capability, which required engineers to target
landing sites with a low risk of landing hazards [3]. The
local position estimator relied on a Laser Range Finder
(LRF), which limited the maximum altitude of flights to
24m [4]. The local position estimator also assumed a flat
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FIGURE 1. Perseverance’s selfie with Ingenuity (left). Ingenuity was deployed in April 2021 as a flight tech demo and went on to complete 72 flights on
Mars. Examples of the resolution difference, posing a significant challenge for registration, between two Ingenuity navigation images (outlined in red
and blue colors) and a 100m × 100m crop of the HiRISE map (right). Detailed features such as rocks and small elevation changes which are visible in
the navigation images are very difficult to associate to the map without taking into consideration the overall context of the scene.

Martian surface [5], which became limiting as Ingenuity
began flying over more complex terrain [3]. Without a global
position estimate, engineers needed to downlink landing
images from the previous flight to re-localize Ingenuity
before the next flight could be performed to avoid drift
from the onboard state estimator from accumulating. The
downlink and manual relocalization is time consuming and
can hinder performance evaluation. Many of these limitations
were partially addressed throughout the mission through
software updates [3], but an on-board global localization
capability was never introduced.

In the absence of a Global Navigation Satellite System
(GNSS) on Mars, on-board navigation images need to be
registered to a global reference frame provided by orbital
maps created using either the High-Resolution Imaging
Science Experiment (HiRISE) [6] or the Context Camera
(CTX) [7] from the Mars Reconnaisance Orbiter (MRO). For
Ingenuity, the registration process was performed manually.
At the end of each flight, a human annotator would align the
navigation image to the HiRISE map. This process provided
accurate poses of the UAV only at the landing sites of each
flight, with the on-board visual odometry system producing
a position error drift of 2 - 12% depending on the difficulty
of the terrain during flights of up to ∼700m distance [8]. The
MSH mission concept is planning for long-range traverses
of ∼10km where drift is going to be substantially higher.
Therefore, periodic drift correction, performed online by
registering navigation images to orbital maps, is crucial for
enabling safe long-range navigation. The frequency of this
operation depends on factors such as the amount of drift, the
speed of the UAV, and the mission safety requirements.

However, there are several challenges to registering an
on-board image to the orbital map. First, the UAV flights
will not always occur at the same time of day as when the
orbital map was captured, causing variations in lighting and
shadow casting that can significantly alter terrain appearance.
Second, scale variation between the map and the on-board
navigation image may prove a challenge when matching
terrain features, especially when the UAV is operating at
low altitudes. Finally, the terrain may be relatively bland

or it may contain repetitive patterns (e.g., dune fields) both
hindering the identification of distinctive features necessary
for registration.

Current methods rely primarily on template-matching
techniques, such as Normalized Cross Correlation (NCC) [9],
or on classical hand-crafted features, such as the Scale
Invariant Feature Transform (SIFT) [10] to solve the reg-
istration problem. Specifically, template-matching was part
of the Lander Vision System (LVS) [11] for the Mars2020
mission due to its low latency and accurate results when
on-board images are ortho-corrected. SIFT showed robust
matching in an early study towards a Map-based Localization
(MbL) system for a future Mars Helicopter [12]. However,
both of these applications made assumptions with regards
to scale and illumination variations and underperformed in
the absence of texture-rich terrain. While these classical
approaches to registration are somewhat robust to scale
variation, in-plane rotation, and linear brightness changes
(such as intensity shift), they tend to struggle in low-texture
situations and under non-linear lighting changes (such as
shadows). Specifically for local hand-crafted features, these
limitations stem mainly from two sources: 1) They are
constructed from local information, and 2) they cannot be
tuned to specific data distributions and as a result they may
ignore useful patterns in the data.

On the other hand, deep learning-based methods have
recently shown impressive performance gains across a wide-
range of challenging vision tasks such as image recogni-
tion [13], object detection [14], semantic segmentation [15],
and monocular depth estimation [16]. This recent success
has been fueled by the emergence of Transformers [17]
that has also led to the introduction of powerful vision
foundation models [18]. For image registration, deep learn-
ing has also provided a principled framework for formu-
lating a data-driven supervised-learning task for training
robust image matchers [19]–[21]. In contrast to classical
methods, deep learning-based approaches are capable of
deriving discriminative representations for features by con-
suming large amounts of data that can bridge appearance
variation including scale, observation angle, and, also, non-
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linear lighting changes. In spite of their advantages, one of
the shortcomings of data-driven methods is that they often
exhibit poor performance in dissimilar or out-of-distribution
data compared to the model’s training data domain. Space-
based domains, such as aerial and orbital imagery, are out-of-
distribution for many publicly available models, which are
typically trained on human-built environments [22]. There
is a lack of appropriate large-scale annotated datasets with
which these models could be fine-tuned to register on-board
UAV images to a reference map.

In this work, we provide a solution for global localization
of UAVs on Mars. We focus, specifically, on investigating
a fine-tuned, deep learning-based image matcher as part of
a Map-based Localization (MbL) system for Ingenuity. We
recognize the large resolution difference between navigation
images captured at low altitude (8m - 12m) and imagery
from HiRISE captured from orbit (see Fig. 1) as the most
challenging aspect of this problem that local hand-crafted
features are unable to resolve. To address this challenge, we
propose to use the Transformer-based LoFTR model [19] that
can learn discriminative representations for feature matching
by incorporating context from the entire image. In addition,
we devise a training strategy that reduces the dependency
on large-scale in-domain annotated datasets by first pre-
training on rendered data and then fine-tuning on a small
number of Ingenuity images in a self-supervised manner. The
proposed LoFTR-based MbL system is intended to provide
periodic drift corrections for the on-board visual odometry.
We evaluate our approach by performing pose estimation on
independent navigation frames and demonstrate its superior
performance over standard template-matching registration
approach for flight systems. In summary, our contributions
are as follows.

• An MbL framework incorporates a state-of-the-art deep
image matching model that can robustly register Inge-
nuity navigation images to HiRISE maps.

• A training strategy for rapidly fine-tuning such a deep
model on the Ingenuity navigation images.

• Evaluation of our framework in terms of localization
accuracy on the Ingenuity flights with 89.4% accuracy
at 5m and an almost perfect 99.8% Acc@ 10m.

• Ablation studies show the generalization ability of the
model to unseen flights and its capacity to adapt using
minimal data for fine-tuning.

II. RELATED WORK
Map-based localization techniques have been extensively
studied for UAVs in earth-based applications, leveraging the
abundance of geo-referenced satellite imagery and GNSS-
based ground truths. In contrast, research into onboard MbL
strategies for Mars has been mainly focused on Terrain
Relative Navigation (TRN) for Entry, Descend, and Landing
(EDL), or on rover-based navigation, with limited attention
given to aerial platforms. This is partially due to the scarcity
of annotated image datasets that bridge the scale differ-

ence between orbital and surface imagery, leaving a critical
gap in the altitude range relevant to aerial applications.
The successful deployment of Ingenuity sparked interest in
vision-based localization methods for UAV in GNSS-denied
extraterrestrial environments.

In this section, we categorize existing work based on the
image registration methods used in map-based localization
pipelines. We first examine template-matching techniques,
highlighting successful real-time operations during EDL and
rover navigation on Mars, as well as recent research efforts
for UAVs. We then review traditional hand-crafted feature
matching methods adopted in space applications, followed
by learning-based approaches.

A. TEMPLATE MATCHING
MbL in space applications has traditionally been driven
by template-matching methods, aligning an ortho-rectified
onboard image with a geo-referenced orbital map to com-
pute pixel-wise similarity estimates. The process typically
relies on similarity measures such as Normalized Cross-
Correlation [9], Phase-Correlation [23], and Mutual Infor-
mation [24]. The Mars2020 Lander Vision System (LVS)
successfully performed onboard and autonomous global lo-
calization on Mars during the mission’s EDL phase [11].
Their TRN pipeline integrated a coarse-to-fine template-
matching approach to register the navigation camera images
onto a CTX map (6 m/pixel) of the Jezero crater landing
site. The geological diversity of the site, chosen to maximize
scientific return, resulted in complex terrain morphology
with potential hazards, making autonomous TRN the most
critical component for a safe and precise landing [25].

Global localization has also been successfully executed
onboard the Perseverance rover with the Censible framework
proposed by Nash et al. [26]. The method consists of regis-
tering an ortho-mosaic of panoramic stereo images collected
by the rover’s navigation camera onto a HiRISE map (0.25
m/pixel) using a modified census transform [27]. Census is
a template-matching non-parametric transform that depends
on the relative ordering of pixel intensities. By ensuring
sub-meter localization accuracy, their approach demonstrated
performance on par with human-in-the-loop localization. A
global localization approach for autonomous planetary rovers
is also proposed in Geromichalos et al. [28], where the
error drift produced by the onboard simultaneous localization
and mapping (SLAM) algorithm is corrected by registering
the generated local map onto a global orbital map using
template-correlation.

Although template matching proved successful and reli-
able in the aforementioned cases, it is generally sensitive to
lighting, viewpoint and in-plane rotation variations, necessi-
tating correction steps. A phase-correlation-based pipeline
for UAV global localization on HiRISE maps has been
proposed by Wan et al. [23] to improve robustness to lighting
variations throughout the Martian day. However, the method
requires relatively large overlap between the template and
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the map, imposing strict constraints on scale invariance. Ad-
ditionally, template pre-processing is still needed to handle
view-point and rotation changes.

B. HAND-CRAFTED FEATURE MATCHING
Feature keypoints are typically detected in high-contrast
regions of an image, such as corners, edges or blobs.
Hand-crafted feature-matching relies on manually designed
detectors and descriptors to identify features with built-in
invariance to scale, view-point, rotation or lighting.

Popular hand-crafted features such as SIFT [10], ORB
[29], SURF [30] have been investigated for MbL in UAV
applications. SIFT is one of the most widely used local hand-
crafted descriptors that encodes the orientation and magni-
tude of image gradients around keypoints. SURF builds on
SIFT by accelerating its feature computation, while ORB
combines a FAST detector [31] with a BRIEF descriptor [32]
to offer a fast and rotation-invariant alternative.

The performance of these features for UAV global local-
ization was assessed in the work of Brockers et al. [12],
which proposed an autonomous on-board pipeline to register
simulated aerial images on Mars onto a HiRISE map. SIFT
was demonstrated to achieve the highest localization accu-
racy, showing robustness to scale and view-point changes.
However, its performance was negatively impacted by low
sun elevation angles, where learning-based methods, such as
SuperPoint [33], showed better performance.

C. LEARNING-BASED APPROACHES
Deep learning profoundly transformed the image matching
problem, surpassing traditional computer vision methods in
modern UAV visual localization tasks. By leveraging Con-
volutional Neural Networks (CNNs) and transformer-based
architectures, learning-based methods can extract highly
discriminative and robust feature representations, learning
hierarchical features and pixel-wise contextual relationships
directly from image data.

Several deep learning-based frameworks have been intro-
duced to enhance image matching accuracy with greater
robustness to variations in scale, illumination, and view-
point. Among the popular self-supervised methods, Su-
perPoint [33] uses CNNs to jointly detect keypoints and
generate corresponding descriptors. SuperGlue [34] refines
SuperPoint feature matching by employing a graph neural
network with attention mechanisms. LoFTR [19] introduced
a Transformer-based [17] detector-free paradigm, which can
leverage the global context provided by Transformers in
a coarse-to-fine strategy to produce pixel-wise semi-dense
correspondences in low-texture areas of the images. Robust
and dense matching under challenging real-world variations
is also tackled by RoMa [20], which utilizes features from
the DINOv2 [18] vision foundation model, and DKM [21],
which estimates a dense warp to pixel-wise matches.

Extensive research has explored learning-based strategies
for Earth-based UAV global localization, where navigation

images are registered to geo-referenced satellite imagery. The
abundance of data fostered the adoption of deep-learning
methods into existing pipelines to enhance robustness in
challenging conditions. Surveys on deep learning for UAV
localization [35], [36] and related applications in GNSS-
denied scenarios [37] provide comprehensive reviews of
this evolving field. In contrast, deep learning-based MbL
on Mars remains largely unexplored, partially due to the
limited volume of real aerial imagery, which constrains
extensive model training. Recent efforts, such as JointLoc
[38], have proposed vision-based UAV localization on Mars
using SuperPoint and LightGlue [39], but primarily rely
on purely synthetic datasets from artificial environments. In
this work, we integrate LoFTR into our MbL pipeline for
Ingenuity. To address the data scarcity issue, our training
strategy leverages high-fidelity simulated datasets, generated
from HiRISE Digital Terrain Models (DTMs) and ortho-
projected images, combined with real Ingenuity imagery.

III. PROBLEM DESCRIPTION
We address the problem of global localization for UAVs in
the Martian environment. For this work, we consider the task
of Map-based Localization for Ingenuity flights as a blueprint
for future UAV concepts for Mars exploration. We note that
we focus specifically on MbL and consider the integration
with VIO as part of a state estimator outside the scope this
work.

Ingenuity is equipped with a nadir-pointing navigation
camera that produces images Iraw at 640×480 resolution.
Each image is undistorted using the CAHVOR [40] camera
model and then orthoprojected on the map to get the navi-
gation image Inav, used in our MbL system. The reference
map Imap, is an ortho-image with equirectangular projection
created from HiRISE observations with 0.25m/pixel resolu-
tion. The size of the map is approximately 20km × 20km
and depicts the Jezero crater landing site for the Mars2020
mission.

During each flight, the on-board Visual Inertia Odometry
(VIO) system produces relative position and orientation
estimates [8]. The VIO estimate is propagated from the
starting position, which is manually annotated before the
flight, to produce an initial noisy global position, tvio ∈ R2,
that serves as a position prior to identify a local map search
area, Imap(tvio), in the MbL system.

Given a registration algorithm, G, that produces correspon-
dences between Inav and Imap(tvio), our objective is to
estimate the drift-free 2D global position:

tnav = H
(
G(Inav, Imap(tvio))

)
(1)

where H is a function representing an MbL pipeline that
uses an affine transformation to align the navigation image
to the local area of the map.
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FIGURE 2. Overview of the Map-based Localization pipeline. Using the position prior from VIO, tvio, we select a local search area Imap(tvio) on the
map to register the orthoprojected Ingenuity navigation image, Inav . This is obtained by first undistorting the raw image, Iraw , with a CAHVOR camera
model and then warping the undistorted image, Iund, on the map. The registration is carried out by matching the navigation image on a set of crops, C,
of the search area using a fine-tuned LoFTR model. The model is pretrained using a large rendered dataset followed by fine-tuning on a small set of
navigation images in a self-supervised manner. Finally, once a set of matches, F , is established between the search area and Inav , we estimate an
affine transformation, R̂, t̂, that aligns the navigation image to the map.

IV. MbL SYSTEM FOR UAVs ON MARS USING DEEP
IMAGE MATCHING
We aim to define a registration algorithm, G, and an MbL
pipeline, H, from Eq. 1 that can address the large scale
difference present between the Ingenuity navigation images
at low altitudes (8-12m) and the HiRISE map. Following the
details about Ingenuity’s camera specifications [41], at these
altitudes the resolution would be between 0.028m/pixel and
0.042m/pixel. Since HiRISE resolution is 0.25m/pixel the
scale factor is ∼9 at 8m altitude and ∼6 at 12m altitude.
Due to this large scale difference, detailed terrain features
that are visible in the navigation images are either absent or
appear as coarse blobs in the map.

Registration methods using hand-crafted features, such as
SIFT [10], frequently fail on this task as they depend on
local appearance similarity to establish matches. Template-
matching methods such as the Census transform [27] have
shown some level of robustness to this problem when using
larger templates that allow capturing high-level structural
information, but they suffer in the presence of texture-
less terrains. In contrast, the transformer-based LoFTR [19]
model learns how to combine information in a global image
context when composing pixel-wise feature representations.
This allows the model to exploit discriminative features or
structural patterns in a larger area and thus be more robust
to texture-less terrain or large resolution difference.

Therefore, we use a fine-tuned LoFTR model as the reg-
istration algorithm in the MbL system. Prior to registration,
the navigation image is orthoprojected into the map frame.
The system then attempts to register it using LoFTR on a
sequence of local map crops. The crops are dynamically
selected given the initial global position estimate from VIO
and the dimensions of the orthoprojected image. From this
sequence, all matches are collected and filtered, before a 2D
transformation is estimated that aligns the navigation image
to the map. An overview of this process is shown in Fig. 2.

The subsections describing the different parts of our
method are organized as follows. First, in Section A, we
discuss background information regarding Transformers [17]
and LoFTR [19] that contextualizes our choice of the reg-
istration algorithm. Then, in Section B, we present our
approach for fine-tuning LoFTR on the Ingenuity flights, and
finally in Section C, we describe the steps taken in our MbL
pipeline.

A. PRELIMINARIES

1) OVERVIEW OF TRANSFORMERS
Originally developed for neural language processing prob-
lems, Transformers [17] have been increasingly and widely
employed in computer vision tasks due to their simplicity
and ability to learn meaningful associations within long
sequences of data. At the core of these architectures lie the
attention layers that learn contextual relationships between
elements within an input data sequence (self-attention) or
across different data sequences (cross-attention).

Given the input sequences F i, F j ∈ RN×D made of N
vectors of dimension D, these are projected into distinct
representation subspaces referred as Query, Q = F iWQ ∈
RN×Dk , Key, K = F jWK ∈ RN×Dk , and Value, V =
F jWV ∈ RN×Dv , using the learnable weight matrices WQ,
WK ∈ RD×Dk and WV ∈ RD×Dv . In the case of self-
attention, F i = F j , while cross-attention applies otherwise.

The attention mechanism measures the relevance of each
key vector in K to each query in Q with similarity scores
computed from the dot-products QKT /

√
Dk. Applying the

softmax function yields the attention weights representing
the contribution of each value vector in V to the resulting
weighted sum. Thus, the attention function can be expressed
as:

Att.(Q, K, V ) = softmax

(
QKT

√
Dk

)
V (2)
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Intuitively, the attention layer produces a new context
vector for each query in Q that retrieves relevant informa-
tion from all the input elements in relation to that query.
In image matching, input sequences correspond to feature
maps extracted from the images by CNN backbones. A
Transformers-based approach like LoFTR offers the ad-
vantage of providing local features with context-rich and
pixel-position-dependent representations that can effectively
capture long-range dependencies between the pixels. This
learned behavior enables dense feature matching in texture-
less or repetitive regions, where most detector-based methods
often fail to produce consistent keypoints.

2) LOCAL FEATURE MATCHING WITH TRANSFORMERS
(LoFTR)
LoFTR [19] produces semi-dense pixel-wise matches be-
tween two images IA and IB . The method leverages Trans-
formers with self- and cross-attention layers to process
feature maps from a ResNet-18 [42] backbone at two scales
F̃A ∈ RH

8 ×W
8 ×d and F̂A ∈ RH

2 ×W
2 ×d, where H,W denote

height and width of IA and d is the feature dimension.
Feature maps are produced from IB with the same process.

The transformed feature maps can rely on representations
capturing the image’s global context to ensure more reliable
matches than those produced solely by the CNN backbone.
By following a coarse-to-fine approach, the transformed
features are first matched at the coarse level to produce a
set of predicted matches according to a confidence threshold
and mutual-nearest-neighbor criteria. The coarse matches are
then refined within local windows cropped from the higher
resolution feature maps and a set of fine-level matches is
generated with associated confidence scores.

Instead of directly applying the vanilla dot-product at-
tention mechanism, LoFTR incorporates linear-attention lay-
ers [43] that exploit an Exponential Linear Unit (ELU) op-
erator and the associativity property of matrix multiplication
to bring the cost complexity from O(N2) down to O(N),
with N being the number of feature vectors composing each
input sequence.

While any Transformer-based method would be suited as
our registration algorithm, we choose LoFTR as a proof-
of-concept model for two reasons. First, it has a good
performance vs. computational complexity trade-off, and
second, it is a modular approach that lends itself favorably
to future development.

B. TRAINING LoFTR FOR INGENUITY FLIGHTS
One of the biggest hurdles in training deep learning-based
models, is that a large-scale dataset with high-quality an-
notations is typically necessary, which is extremely time-
consuming to obtain, especially when annotations are created
with manual labor. For example, LoFTR [19] was trained
on the MegaDepth [22] dataset that contains around 1M
terrestrial in-the-wild image pairs. In order to avoid manually
annotating the images, Structure-from-Motion (SfM) was

FIGURE 3. Examples from the rendered training set used to pretrain the
model that show an orthographic map from HiRISE (left) and simulated
navigation images (right).

used to retrieve the camera poses and project points between
images to create ground-truth correspondences. In the case
of fine-tuning an existing pretrained model, this requirement
can be reduced to thousands or tens of thousands of training
samples, which still requires a sizeable annotation effort.

In our case, we also have another fundamental restriction.
There is a limited number of Ingenuity navigation images
that can be used for training. At best, long flights have
around 170 frames after frames with less than 8m of altitude
are filtered out. The 8m threshold was selected because it
was the minimum flying altitude of Ingenuity and to avoid
frames during ascent and descent. Moreover, even if we had a
large number of images, there are several challenges towards
obtaining good quality ground-truth correspondences: 1)
The VIO poses are too noisy to produce pixel-accurate
projections between images, 2) SfM with classical hand-
crafted features typically fails due to frequent low-texture
terrain, and 3) the large scale difference between navigation
images and the map makes manually finding corresponding
features to annotate extremely difficult and time-consuming.

Therefore, we devise a strategy that involves two main
steps: 1) Training a LoFTR model on a large scale dataset
of Mars created in simulation, and 2) Fine-tuning that model
on a much smaller number of Ingenuity navigation image-
map pairs that are annotated with pseudo-labels from the
off-the-shelf LoFTR model.

1) PRETRAINING WITH RENDERED DATA
For the first step, we follow the example of prior work [44]
which uses the open-source simulation software, Blender, to
generate a large-scale dataset of the Martian surface with
the goal of addressing large illumination variation. We use
Blender to render the publicly available1 HiRISE map of the
Jezero crater (14km × 6km) with custom camera properties
and lighting.

We generated a dataset comprised of a rendered ortho-
graphic map and a large number of nadir-pointing simulated

1https://www.uahirise.org/dtm/ESP 045994 1985
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navigation images up to 200m altitude using a perspective
camera (see Fig. 3). To create a training set, we divide
the map into a set of smaller map crops and pair them
with navigation images that have at least 25% overlap. Each
navigation image can be paired with more than one map
crop. These pairs have known navigation camera poses and
map crop coordinates, which are used to produce ground-
truth correspondences for each training pair. Following this
strategy, we randomly sampled observations across different
combinations of three altitudes and 12 lighting conditions
that resulted in approximately 150K navigation-map training
pairs. These pairs were used to further train the off-the-shelf
LoFTR model as an intermediate step to bridge the domain
gap between its initial training on MegaDepth data and real
navigation camera data..

We note that this intermediate training on the large sim-
ulated dataset is not meant to directly solve the registration
problem for the Ingenuity navigation images, but rather for
the model to obtain a suitable initial representation that can
be rapidly fine-tuned. Even though the HiRISE rendered
images visually differ from the Ingenuity navigation images
in terms of resolution and brightness, we found experimen-
tally that this intermediate training allows the model to learn
tailored representations for HiRISE maps which are needed
to register Ingenuity images and reduce the domain gap
between Ingenuity and HiRISE.

2) SELF-SUPERVISION USING PSEUDO
CORRESPONDENCES
The next step is to fine-tune the model on a small number
of Ingenuity navigation images. Unlike the rendered data
where ground-truth correspondences are known and can
be used as supervision, we only have noisy estimates for
most navigation image poses based on VIO. Instead of
using these noisy estimates, we adopt a self-supervised
approach by relying on the generalization ability of the
off-the-shelf LoFTR model and obtain pseudo ground-truth
correspondences between navigation images and the map
from several Ingenuity flights. We wish to note that this
approach is inspired by tools such as AnyLabeling [45]
which uses foundation models to produce semi-automatic
annotations.

Our procedure is as follows. First we run the model
on navigation-map pairs to obtain initial sets of matches.
For each example, we perform homography estimation with
RANSAC and set the inlier reprojection error threshold to
a strict value of 1 pixel. If the number of inliers exceeds a
certain threshold (empirically set to 15) then we keep the
homography matrix to be used for creating pseudo ground-
truth during the training procedure. A visual inspection also
ensures that incorrect homography estimations are excluded
from training. This approach allows us to select 177 naviga-
tion images with good homography estimations. These are
used to form 550 training pairs with map crops. Another
105 pairs are held out for validation. Using these pairs, we

fine-tune the model directly on Ingenuity data. In practice,
this process can be repeated multiple times, with every
iteration using the fine-tuned model from the previous round
in order to obtain the initial sets of matches. However, we
found experimentally that for our particular domain a single
iteration proved sufficient.

C. MbL PIPELINE

Our objective is to register a navigation image from Inge-
nuity and produce a position estimate with respect to an
orbital map. To do so, the MbL pipeline H from Eq. 1
can be realized in two ways: 1) Orthoproject (warp) the
undistorted navigation image, Iund, on the map using the
onboard state-estimator rotation and altitude prior, followed
up by matching and estimating a 2D affine transformation,
and 2) Establish 2D-3D correspondences between Iund and
the HiRISE DTM and solve a Perspective-n-Point (PnP)
problem to get the pose. A drawback of option 1 is that in
the absence of a depth image, the orthoprojection assumes a
flat terrain and it is susceptible to noise in the VIO attitude
estimate (pitch and roll). The max absolute error on these
estimates has been shown as 3◦ for Ingenuity [8], with more
recent work [46] showing further improvements.

Regardless, we adopt option 1 for the following reasons.
First, the orthoprojection roughly aligns the navigation image
to the map’s rotation and size which simplifies parts of the
MbL process and enables a more efficient matching process
(e.g., choosing the proper size and number of the map crops,
see Fig. 2). Second, a disadvantage of option 2 is that the
HiRISE DTM has 4 times lower resolution in elevation
measurement or post spacing (1 m/post [47]) than the texture
map pixel resolution, which would have resulted in noisy
3D coordinates for our matches. This problem is exacerbated
when considering MbL using orbital DTMs from CTX which
have much lower resolution (20 m/post [48]). Therefore,
option 1 lends itself more favorably towards future work
using CTX. In addition, Ingenuity implements a terrain fol-
lowing algorithm enabled by frequent altitude measurements
from the onboard LRF. Therefore, we are not concerned with
estimating the vertical component (as there is no drift) and
focus on the 2D position.

1) REFERENCE FRAME DEFINITION
We define three reference frames involved in our MbL
pipeline, as illustrated in Fig. 4.

a) Map frame M

A Mars surface-fixed map frame is defined as a East-North-
Up (ENU) coordinate system with origin on the map center.
The horizontal xy plane aligns with the map projection
plane, m, defined by the equirectangular projection used in
the HiRISE map adopted for the Jezero crater site.
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FIGURE 4. Reference frames adopted in the MbL pipeline.

b) Camera frame C

The Ingenuity camera frame is defined with its origin at the
camera’s optical center. The Z-axis points towards the scene
along the optical axis, through the center of the image plane
π. The X-axis points to the right along the image width, and
the Y-axis completes the orthogonal set.

c) VIO-aligned frame M ′

The pose prior estimate, (Rvio
MC , |tvioMC), from Ingenuity’s

onboard VIO provides the orientation and position of the
camera with respect to the map, in terms of the rotation
matrix Rvio

MC ∈ R3×3, and the translation vector, tvioMC ∈ R3

in map coordinates. Rvio
MC is used to rotate the camera

frame C onto a reference frame M ′ that is approximately
aligned with M .

The angular misalignment between the map plane,
m′, estimated by the VIO (parallel to the xm′-ym′ axes)
and the HiRISE map projection plane m, is affected
by noise in the attitude estimate, however we note that
VIO attitude estimate remains significantly more accurate
than the position estimate tvioMC . The latter is solely used
to identify a local search area within the HiRISE map
during the registration process. Specifically, its horizontal
component, tvio ∈ R2, defines the center of the search
region Imap(tvio).

2) NAVIGATION IMAGE PREPROCESSING
Given an observation from the Ingenuity navigation camera,
the corresponding prior attitude estimate, Rvio

MC , from the
VIO, and the range measurement from the onboard LRF,
the raw image Iraw is pre-processed in two steps. First, it is
undistorted with a CAHVOR camera model [40] and second,
it is warped onto the map projection plane m’ estimated with
the VIO attitude prior.

The raw navigation image, Iraw, is corrected for radial
distortion using Ingenuity’s CAHVOR camera model and an
undistorted image, Iund, is produced along with the related
intrinsics matrix K. Iund is then warped to the plane m′.
Under the assumption of nadir flights over flat terrain, we
can approximate the z-coordinate, z, of the terrain points P
in the camera frame C corresponding to the corners of Iund,
using the LRF measurement (Fig. 4). The warping process
first back-projects the four corner points in homogeneous
pixel coordinates, Pπ of Iund, from the image plane π to
the camera frame C, and then transforms them in the frame
M ′, using the rotation matrix Rvio

MC :

P = zRvio
MCK

−1Pπ. (3)

Next we get the ortho-projected points Pm′
on the plane

m′ by scaling the x and y coordinates of P using the map
pixel size (0.25m). It is worth noting that any parallel plane
to xM ′-yM ′ can be used due to the intrinsic independence
of the orthographic projection from the the z-coordinate
in M ′. The four pairs of corner points on the undistorted
image plane, Pπ, and on the VIO-aligned map plane Pm′

are used to estimate the homography HPm′Pπ between the
two planes. Using the maximum and minimum values of
the projected points Pm′

we can determine the expected
height hnav and width wnav of the projected navigation
image. Finally, the estimated homography is applied to the
undistorted image to produce the warped navigation image
Inav = HPm′Pπ (Iund) where Inav ∈ Rhnav×wnav .

3) REGISTRATION AND POSITION ESTIMATION
The registration process of the navigation image involves
applying the deep image matcher on a set of local map
crops C = {c1, ..., cN} and producing a set of matches
with the map F = G (Inav, C) that will be used to estimate
Ingenuity’s position.

The set C is dynamically determined for each navigation
image by two factors. First, given the 2D noisy position
estimate tvio we can significantly narrow down the search
region within the HiRISE map to a 100m × 100m local
map area, Imap(tvio), centered at tvio. Even though the
uncertainty of the VIO position estimate [8] and the short
range of Ingenuity’s flights would allow for a smaller search
area, we decided on this conservative scenario that would
account for drift in longer flights of a potential future
mission.

The second factor is the size of the Inav as estimated
during the orthoprojection on the map. We divide the local
map area into overlapping map crops where each ci ∈
Rhnav×wnav and with a minimum overlap of 64 pixels
(empirically selected) with each neighboring crop. Each ci
is paired with Inav and processed by the fine-tuned LoFTR
to produce an initial set of matches. Using the confidence
of the model for each match we keep only the top k=100,
which is a good trade-off between keeping good matches and
reducing the computational burden. After matching with all
map crops, we pool together all matches and further refine
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FIGURE 5. Examples of sparse manual annotations (magenta), dense annotations (blue), and VIO positions (red) projected on map crops from HiRISE
(left and middle). The dense annotations are interpolated between the manual ones. The crops are 800m × 800m. The drift from VIO is clearly noticeable
with the landing site of each flight located at the direction of largest divergence with respect to the annotations. Examples of the manually placed
tie-points during the annotation process (right).

the set with a strict confidence threshold of 0.95 to obtain
our final set of matches F . We require this last step in order
to eliminate bad matches from any ci that do not actually
have overlap with Inav. The final step is to estimate an
affine transformation R̂, t̂, using RANSAC to eliminate any
outliers in F , that aligns Inav with the 100m × 100m local
map area. In practice, the final 2D position estimate tnav is
obtained by applying the affine transformation on the pixel
coordinate that corresponds to Ingenuity’s projected location
within Inav.

V. EXPERIMENTAL EVALUATION
We evaluate our Map-based Localization pipeline on several
Ingenuity flights. Besides using the VIO estimate as a prior
to select the search region within HiRISE, the localization
results reported are not part of a state estimator but rather
independently estimated for each image using our MbL
approach. For our experiments we use navigation images2

from flights 9, 10, 11, 15, 20, 21, and 25. Only images
taken with at least 8m altitude are considered. We chose
these early Ingenuity flights due to their visual difficulty with
low-texture terrain frequently containing repetitive patterns
of dune fields. Details about these flights are reported in
Table 1, while some of the flight trajectories over the HiRISE
map can be seen in Fig. 5. More information on all Ingenuity
flights can be found in the publicly available flight log3.

For both LoFTR and the reported baselines, during po-
sition estimation we remove outliers by running RANSAC
for 5000 iterations and setting the inlier reprojection error
threshold to 1 pixel. Our main evaluation metric is the
localization accuracy @5m, which is the percentage of
queries with position error at or below 5m. The 5m threshold
was chosen because of the global localization performance

2https://mars.nasa.gov/mars2020/multimedia/raw-images/
3https://science.nasa.gov/mission/mars-2020-perseverance/

ingenuity-mars-helicopter/

requirements for a Mars rotorcraft [3]. We also plot the
Cumulative Distribution Function (CDF) of the localization
accuracy up to 10m.

We designed experiments to showcase the viability of
using a deep learning-based image registration model for
the purpose of global localization of Ingenuity, and by
extension for any future Mars rotorcraft with similar mission
conditions. First, in subsection A, we compare directly to
other baselines on localization accuracy to demonstrate the
improvement achieved by using LoFTR and the potential
for correcting the VIO drift. We also demonstrate the gen-
eralization ability of the model by comparing two variations
of our model that differ in the number of flights used for
fine-tuning. Second, in subsection B, we investigate the
impact our intermediate training step using the rendered
dataset of the Martian environment. In subsection C, we
investigate the amount of fine-tuning training data required
for domain adaptation. Subsection D provides insight into
how the model learns to incorporate context by visualizing
the learned attention weights. In subsection E, we conduct
an analysis to determine a confidence metric over the quality
of the localizations. Finally, in subsection F we investigate
the ability of the model to predict match scores that correlate
with accurate matches, while in subsection G we discuss the
computational requirements of LoFTR.

During the experiments, our approach of training, first
with the rendered dataset, and then fine-tuning on Ingenuity
flights is referred to as LoFTR-Fine, with variations of
the method defined in their respective experiment sections.
Table 2 shows the datasets used to train each model. Any
model with the suffix “-Single” was fine-tuned only on flight
9, and the suffix “-All” refers to the model trained on a
small set of images from all flights. All fine-tuned models
presented in our evaluations were trained only for 5 epochs
on their respective training sets with short training times
between 10-20 minutes on an NVIDIA RTX 3080 laptop
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TABLE 1. Details regarding the Ingenuity flights used in our experiments. LTST refers to Local True Solar Time on Mars where 12:00 (noon) occurs when

the Sun is highest in the sky. The Nr Images corresponds to the number of navigation images with at least 8-m altitude, while Nr Training Images refers

to the number of images selected for creating pseudo ground-truth correspondences during fine-tuning of the model.

Flight Sol Horizontal Distance (m) Start LTST Max Altitude (m) Nr Images Nr Training Images
9 133 625 12:36 10 169 30

10 153 233 12:10 12 167 34
11 163 383 12:42 12 165 31
15 254 407 12:25 12 162 31
20 362 391 10:40 10 163 21
21 375 370 10:40 10 132 15
25 403 704 10:38 10 169 15

TABLE 2. Datasets used to train the models in our experiments. Rendered

refers to the large-scale dataset we generated using a HiRISE map in

Blender. The order of training is always MegaDepth → Rendered →

Ingenuity.

MegaDepth [22] Rendered Ingenuity

LoFTR-Scratch-Fine ✓

LoFTR-Pre ✓

LoFTR-Pre-Fine ✓ ✓

LoFTR-Fine ✓ ✓ ✓

GPU. We observed empirically that longer training times led
to overfitting and performance degradation. For fine-tuning
LoFTR, we follow the training procedure (loss definitions,
loss weights etc.) as described in [19].

Finally, we plan to release the undistorted Ingenuity nav-
igation images we used in our experiments along with our
trained models upon publication.

1) INGENUITY FLIGHT POSITION ANNOTATION PROCESS
Currently there are no publicly available, reliable, ground-
truth annotations for Ingenuity flights. While we produced
pseudo correspondences to fine-tune LoFTR in Section IV.B,
those are probably not reliable enough to produce positional
ground-truth suitable for evaluating the MbL pipeline. Fur-
thermore, manual annotations to a reference map require a
careful and time-consuming process. In order to evaluate our
approach, we produced a sparse set of manual annotations
for the flights listed in Table 1, and then propagated the
manual annotation results to the rest of the non-annotated
images.

Images from Ingenuity’s navigation camera were first
geometrically corrected using the CAHVOR camera model
to produce cropped, undistorted versions without the fisheye
lens effect. A sparse subset of images taken at approximately
50m intervals was selected and imported into Geographic
Information System (GIS) software, along with a geograph-
ically referenced HiRISE image basemap. Tie-points were
manually assigned to visible surface features such as rocks,
albedo variations, and intersecting ripple crests that are
uniquely distinguishable in both the HiRISE and Ingenuity
images. A perspective projection transform was then applied

using each image’s tie-points to warp it to the map coordinate
system with an accuracy of ≤ 1 basemap pixel (25 cm).

Upon completing tie-points and transformations for each
flight, the helicopter’s shadow position was marked in each
of the manually referenced images. Because the sun was
not directly overhead, an offset was applied uniformly to
all images per flight to denote the nadir position directly
underneath the helicopter. The projection of the helicopter’s
shadow onto underlying terrain contains some additional
uncertainty due to unresolved topographic variability, but
is estimated to be less than 1 m. The coordinates of these
nadir positions were recorded, along with the corresponding
elevation values interpolated from the 1 m/pixel HiRISE
DTM. Vehicle heading for each position was measured
clockwise relative to north based on the orientations of
shadows from Ingenuity’s footpads and/or rectangular solar
array with an accuracy of ≤ 2◦.

To create approximate dense image position annotations
between sparse manual ones, we applied an affine transfor-
mation of the VIO trajectory coordinates in each segment,
aligning them with the corrected manual annotations. Exam-
ples of the manual and the final dense annotations used to
evaluate our approach are shown in Fig. 5.

A. COMPARISON TO BASELINES AND MODEL
GENERALIZATION
In this first experiment, we compare both quantitatively
and qualitatively to the most relevant image registration
baselines for our MbL task that includes a template-matching
approach, a classical hand-crafted feature, a learning-based
approach, and the original LoFTR model:

• Census [27]: Census was successfully used in the re-
cently introduced rover global localization system [26].
For our experiments, we adopt the global-to-local
Census transform pipeline proposed in [49] that first
matches the image to the entire map in order to get
a coarse localization estimate, followed by matching
local patches to refine the initial estimate.

• SIFT and DenseSIFT [10]: SIFT is a popular descriptor
that has demonstrated robust performance in initial
MbL studies for a future Mars rotorcraft [12]. We inves-
tigate its performance following the keypoint detector
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FIGURE 6. Localization accuracy results between baselines and our
LoFTR-Fine variants on all flights (top) and on the most challenging
flights of 21 and 25 (bottom). LoFTR-Fine-Single and LoFTR-Fine-All were
fine-tuned only on navigation images from flight 9, and all flights
respectively, while LoFTR-Pre is the off-the-shelf LoFTR [19] model.

by Lowe’s algorithm [10] and via densely sampling
SIFT descriptors over the image at 8-pixel intervals.

• LoFTR-Pre [19]: We compare to the original LoFTR
model that was trained on the MegaDepth [22] dataset
and has not been exposed to any data from the Martian
environment.

• LightGlue [39]: A deep image matcher approach that
uses Superpoint [33] to extract keypoints and also uti-
lizes Transformers to aggregate image context. We eval-
uate LightGlue as a lightweight alternative to LoFTR.
It employs an adaptive stopping mechanism to reduce
inference time and it is also trained on the MegaDepth
dataset.

TABLE 3. Our MbL pipeline using LoFTR-based registration has the

potential for significant VIO drift correction. The LoFTR-Fine-Single error

represents the mean of the frames with ≤ 5-m error over each flight to

avoid including outliers from our independently estimated localization.

Flight VIO Drift (m / %) LoFTR-Fine-Single Error (m / %)

9 44.4 / 7.1 1.9 / 0.3
10 4.6 / 2.0 2.8 / 1.2
11 24.2 / 6.3 1.2 / 0.3
15 25.8 / 6.3 2.6 / 0.6
20 11.3 / 2.9 1.3 / 0.3
21 45.5 / 12.3 2.6 / 0.7
25 63.9 / 9.1 2.4 / 0.3

We use two variants of our model that were trained on
the rendered dataset and then fine-tuned using the pseudo
ground-truth correspondences. LoFTR-Fine-All is fine-tuned
on a subset of images from all flights (177 navigation
images that form 550 training pairs with map crops), while
LoFTR-Fine-Single is fine-tuned only on images from flight
9 (30 navigation images, 61 training pairs). Our motivation
for LoFTR-Fine-Single is to demonstrate the ability of the
model to generalize to flights not used during training. This
represents a more realistic scenario during a mission, where
data from previous flights can be used to quickly adapt a
model to be used in future flights on unseen terrain. We note
that for the purpose of our evaluation, we tested all baselines
on all navigation images regardless whether they were used
during the self-supervision approach in Section IV.B. This
only affects LoFTR-Fine-All and we found experimentally
that the effect on the evaluation is minimal (0.3% higher
when including all navigation images). This can be justified
by the fact that we used only pseudo correspondences and
only 15% of the 1127 navigation images from all flights were
part of the self-supervised training with pseudo annotation.

The CDF of the localization accuracy over all flights is
shown in Fig. 6 (top). SIFT fails to identify repeatable
keypoints due to the very large scale difference between
navigation image and map and barely carries out any suc-
cessful registrations. DenseSIFT, which does not rely on
a handcrafted keypoint detector, greatly outperforms SIFT
but still falls short of the learning-based methods due to
its dependency on local appearance similarity to establish
matches.

While Census outperforms LightGlue and is on par with
the LoFTR-Fine variants for accuracies roughly below 3m,
its performance reaches a plateau relatively quickly with
an Acc@5m of 79.0% and Acc@10m of 82.2%. On the
other hand, LoFTR-Fine-Single and LoFTR-Fine-All have a
much higher ceiling, achieving a 9.6% and 10.4% Acc@5m
improvement over Census, and show an almost perfect
Acc@10m of 98.2% and 99.8% respectively.

To further drive this point, we also show the CDF of
the localization accuracy on the most challenging flights of
21 and 25 (based on the terrain and Census performance)
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FIGURE 7. Reconstructed Ingenuity flights using localization estimates from Census, LoFTR-Fine-Single, and LoFTR-Fine-All. The latter is much more
consistent and rarely estimates a position far outside of the path, Census clearly fails on challenging parts of the terrain, while LoFTR-Fine-Single only
struggles on a portion of flight 25 where Ingenuity was flying above texture-less terrain. Note that LoFTR-Fine-Single was fine-tuned using only a small
subset of navigation images from flight 9. The map crop dimensions are 800m × 800m.

in Fig. 6 (bottom). Census performance drops significantly
on these flights with a 19.3% and 24.7% Acc@5m gap to
LoFTR-Fine-Single and LoFTR-Fine-All respectively, while
the two LoFTR-Fine variants maintain high Acc@10m of
93.2% and 99.3%. This suggests that Census can perform
accurate registration when conditions are ideal (e.g., when
terrain has discriminative textures), but it is less robust in
more challenging cases frequently observed during flights.

The position estimations across entire flights for Cen-
sus, LoFTR-Fine-Single, and LoFTR-Fine-All are plotted in
Fig. 7. We can visually observe that Census frequently has

wrong localizations outside the expected path of Ingenuity,
usually in the presence of challenging terrain. In contrast,
our two LoFTR-Fine variants are more consistently accurate
in reconstructing Ingenuity’s path. Finally, qualitative image
matching examples are shown in Fig. 8.

1) CORRECTING THE VIO DRIFT
Since we evaluate our MbL pipeline independently of a state
estimator, our estimations lack a temporal component and
are thus not directly comparable to the VIO. Regardless, we
provide some intuition of the potential VIO drift correction
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FIGURE 8. Matching examples between the navigation image (right of every pair) and the map crop (left of every pair) during Ingenuity flights. From left
to right, we show matches from Census, LoFTR-Pre, and LoFTR-Fine-Single. The color scheme shows the LoFTR model confidence for each match
between 0 and 1 (see color bar), and the depicted matches are before geometric verification (e.g., RANSAC) takes place. Census does not return
normalized confidence values so all matches are shown in the same color. LoFTR-Fine-Single is more consistent on finding accurate matches over a
variety of terrains even though it was trained only over a single flight.

that the LoFTR-based registration can achieve. Specifically,
Table 3 shows the VIO drift error at the end of each
flight, along with the mean position error across the flight
from our LoFTR-Fine-Single model. We note that the mean
error is estimated on frames with ≤5m position error as
we make the assumption that outliers will be discarded by
the state estimator. It is evident that our MbL system has
the potential to significantly decrease the position error of
Ingenuity caused by VIO drift, given frequent updates to the
state estimator.

B. IMPACT OF THE PRETRAINED MODEL
In this section, we investigate the importance of our in-
termediate training step using the large rendered dataset.
We compare three options fine-tuned on a single flight.
LoFTR-Fine-Single follows our intermediate training strat-
egy, LoFTR-Pre-Fine-Single uses the off-the-shelf LoFTR
model trained on MegaDepth [22] with no intermediate
training, and LoFTR-Scratch-Fine-Single initializes LoFTR
with the backbone of the model using the original ResNet-
18 [42] weights trained on ImageNet [50] and the rest of
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FIGURE 9. Investigation over the impact of the pretrained model. We
compare our LoFTR-Fine-Single that was pretrained using our rendered
dataset to LoFTR-Pre-Fine-Single that used the off-the-shelf model, and to
LoFTR-Scratch-Fine-Single that was trained from scratch. The top figure
shows results on all flights while the bottom focuses on the most
challenging flights 21 and 25. Our intermediate training on the rendered
data is shown to have a clear advantage over fine-tuning the model
directly on Ingenuity images, especially for flights with more challenging
terrain.

the model layers initialized with random weights. Neither
MegaDepth or the intermediate training is used for LoFTR-
Scratch-Fine-Single.

The results are illustrated in Fig. 9. We notice a large
performance gap of 11.2% on Acc@5m between LoFTR-
Fine-Single and both LoFTR-Pre-Fine-Single and LoFTR-
Scratch-Fine-Single baselines on all flights, and 16.3% and
26.4% gaps respectively for the more challenging flights
21 and 25. These gaps highlight the need for pretraining
on a large relevant training set, especially when the target
domain (in this case, the Ingenuity flights) has very limited
data available for fine-tuning. Interestingly, the performance

FIGURE 10. Investigation over the effect of using different amounts of
Ingenuity training data during fine-tuning. The top figure shows results on
all flights, while the bottom focuses on the most challenging flights 21
and 25. The availability of small amounts of data (e.g., 10%) can still have
impact over LoFTR-Pre with data availability having larger impact on the
more challenging flights.

of LoFTR-Pre-Fine-Single drops compared to LoFTR-Pre
(see Fig. 6) even though the former was trained with a few
Ingenuity images. This indicates that in the absence of the
intermediate training, it is difficult to learn an appropriate
model directly on a handful of images with pseudo annota-
tions.

Furthermore, LoFTR-Pre-Fine-Single and LoFTR-Scratch-
Fine-Single show identical performance (on all flights) in
terms of localization accuracy even though LoFTR-Pre-
Fine-Single was pretrained on a large dataset. However, in
practice the model trained from scratch produces more high
confident outliers during matching that are filtered out during
RANSAC. Indeed, the results on flights 21 and 25 illustrate
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FIGURE 11. Each row shows a separate example of how Transformer
blocks in LoFTR-Fine-All incorporate context from the image when
estimating the feature representation for the center blue point. The
heatmap of the attention weights is shown to the right, while the top 50
locations with the highest attention weights are shown to the left (green
points). The model learns to focus on discriminative locations in the
image and suppresses information from feature-less terrain (top) and
repeated dune patterns (bottom).

that training from scratch is not ideal for challenging sce-
narios.

C. EVALUATION OVER THE AMOUNT OF TRAINING DATA
We are interested in quantifying the impact of data scarcity
on model performance. How does the model performance
degrade when fewer training samples with pseudo ground-
truth correspondences are available for fine-tuning? In one
plausible scenario, the model needs to be adapted very
swiftly from a small number of navigation images. To
investigate the adaptability of the model to a small fine-
tuning set, we fine-tune the LoFTR-Fine model by randomly
sampling subsets of 10%, 25%, 50%, and 75% of the 445
training pairs collected from all flights.

The results in Fig. 10 show that even when using only
10% of the data (44 training examples), there is a noticeable
increase in performance from LoFTR-Pre of 4.6% for all
flights and 7.8% for flights 21 and 25. This indicates that
the intermediate training with the rendered dataset provides
excellent initialization such that the model can adapt quickly
with minimal amounts of training samples. It is also worth
noting that the increase in data availability has larger impact
on the localization accuracy of the more challenging flights
since the model needs more examples to adapt to feature-less
or repetitive terrains.

FIGURE 12. Inlier threshold is one way of selecting flights with high
confidence in their localization estimate. The precision plot (top) shows
the percentage of flights, where a localization was selected, using the
inlier threshold, and it was within the error bound. The recall plot
(bottom), shows the percentage of flights, where a good localization
exists, and it was selected. Both plots show the results on a validation
dataset. Vertical bars at x = 20 and x = 90 highlight specific values
representing a low-precision/high-recall and a high-precision/low-recall
regimes.

D. VISUALIZATION OF MODEL FEATURES
Due to the large complexity of deep learning-based models,
it is difficult to interpret model output. Visualizing features
from intermediate layers of the model [51] can provide useful
information as to the learned representation. We visualize
such features from our LoFTR-Fine-All model in Fig. 11 to
offer insight into how the transformer blocks in LoFTR learn
to incorporate information from the cropped map images
when estimating the feature representation for a particular
point. It is evident that the model focuses on more salient
areas of the map while assigning less weight to texture-less
regions.
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E. CONFIDENCE ANALYSIS
Global localization estimates can only be used in flight if
their accuracy falls within the mission’s error tolerance;
otherwise, they risk compromising the mission. However,
the way MbL is integrated into flight operations influences
the required balance between precision and recall. In this
section, we explore how a secondary confidence metric, such
as the number of inliers obtained when estimating the affine
transformation in the final step of the MbL process, can help
optimize this trade-off based on mission requirements.

One application of MbL is as a drop-in replacement
for human-in-the-loop post-flight localization. In Ingenuity
operations, global localization was performed post-flight due
to the need for image downlink and manual annotation.
Automating this process requires 100% precision, as errors
would propagate to subsequent flights. However, as shown in
Fig. 6 (top), our model achieves only 89.4% precision at a 5-
meter error tolerance, falling short of this strict requirement.

To address this, a secondary confidence metric, which
correlates with accuracy, can be employed to further refine
the localizations until they satisfy the precision requirement.
High-confidence estimates can be trusted by the flight sys-
tem, while lower-confidence ones can be flagged for human
review without jeopardizing the mission. For example, Fig.
12 illustrates how setting an inlier threshold impacts pre-
cision and recall. An inlier threshold of 90 ensures 100%
precision at a 5-meter error tolerance, but only 3% of lo-
calizations meet this criterion, requiring human intervention
98% of the time. If a more lenient 10-meter tolerance is
acceptable, no thresholding is needed, allowing 100% of
autonomous localizations to be used.

MbL can also provide mid-flight global localization up-
dates to correct VIO drift in real time. In this mode, the
system prioritizes recall over precision, as frequent updates
refine the position estimate through a Kalman filter. A higher
number of measurements, even with some noise, ensures
robustness. By adjusting the inlier threshold, we can control
the trade-off between precision and recall. As illustrated in
Fig. 12, setting the threshold to 20 results in 90% precision
and 97% recall at a 5-meter error tolerance, making it
suitable for mid-flight updates where noisy measurements
are smoothed by the Kalman filter.

The number of inliers from the affine transformation
estimation serves as a strong confidence metric because
it directly reflects the geometric consistency between the
matched navigation image and map features. A higher inlier
count indicates that more correspondences align well under
the estimated transformation, suggesting a more reliable lo-
calization estimate. Conversely, a low inlier count may signal
mismatches, poor feature alignment, or insufficient visual
overlap, making the estimate less trustworthy. However the
number of inliers also depends on the number of features
detected in the image, which could be low even if the
geometric consistency is high.

FIGURE 13. Match scores as a function of residuals produced by the
LoFTR-Fine-All model for each match. The residuals correspond to the
reprojection error in pixels after the RANSAC-based alignment process.
High score values correlate well with low residuals, suggesting that the
model is able to predict good matches with high confidence.

F. MODEL MATCH SCORE ANALYSIS
The LoFTR model learns to output a score for every pre-
dicted match that reflects the probability of soft mutual
nearest neighbor matching. In this experiment, we investigate
the correlation of this score with the actual quality of the
matches between the Ingenuity navigation image and the
map. The quality of each match is assessed based on its
reprojection error in pixels (residual) after the RANSAC-
based alignment process during MbL. In Fig. 13 we plot the
match scores as a function of the residuals, where yellow
values correspond to higher density of points. Each point
corresponds to an individual match collected from all flights
using our model LoFTR-Fine-All.

We observe that the highest density is situated at the
intersection of high confidence values and low residuals (top
left of the plot). Specifically, we find that out of all matches
with ≥ 0.8 score, 66.8% of them have a residual ≤ 1px and
98.2% have a residual ≤ 5px. The corresponding numbers
for matches with ≥ 0.9 score are 74.2% with residual ≤ 1px
and 99.3% with ≤ 5px. This suggests that the model scores
are calibrated and can predict accurate matches with high
confidence. A few outliers where high scores correspond to
high residuals and low scores correspond to low residuals can
be attributed to texture-less terrains or terrains with repeated
patterns. In both cases, the model was not able to compose a
discriminative representation that can lead to either a wrong
match, or a correct match with high ambiguity.
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G. COMPUTATIONAL REQUIREMENTS
We report the LoFTR runtime as 122ms ± 3ms estimated
over 100 trials on an NVIDIA RTX 3080 laptop GPU. This
runtime accounts for a forward pass of the model that takes
two images at 640×480 resolution as input and produces
the set of matches and their scores. We choose to report
the forward pass runtime because the overall MbL runtime
depends on other external factors such as the size of the
map search area and the size of the map crops. Additionally,
we report the LoFTR runtime on the NVIDIA embedded
hardware Jetson AGX Xavier as 606ms ± 11ms, and note
that newer edge devices (e.g., Jetson AGX Orin) offer higher
performance. The reported numbers are computed using
the Python implementation without using any optimization
frameworks (e.g., TensorRT) that can reduce inference run-
time by multiple factors. We note that MbL does not need
to run in real-time and its frequency depends on how often
the VIO drift needs to be corrected as dictated by mission
requirements.

VI. CONCLUSION
In this paper, we present a Map-based Localization system
that overcomes the large resolution difference between the
Ingenuity navigation images and the HiRISE map by in-
corporating a deep image matcher. Our main insight is that
Transformer-based models are robust to this challenge by
learning to integrate global image context. To resolve the
issue of limited data available for training such a model, we
bootstrap the learning process with a large rendered Martian
dataset, followed by fine-tuning on a small set of Ingenuity
images with pseudo annotations.

Our experimental results show that our MbL approach
significantly outperforms Census transform-based template
matching in localization accuracy, while the classical hand-
crafted feature SIFT fails on this task. In addition, our
model generalized well to unseen flights and rapidly adapts
to this domain even when a minimal number of training
images were available. Our deep image matcher model not
only outperformed classical methods convincingly, but it did
so with minimal dependency on in-domain training data
which has always been a prohibiting factor for adopting deep
learning models in space applications.

The success of our approach in a realistic mission scenario
highlights the potential of deep learning for planetary navi-
gation and localization. We believe this work will encourage
broader adoption of deep learning in space applications and
inspire further research into its viability for future missions.

FUTURE WORK
A useful direction of our work would be to investigate the
performance of our approach using orbital map products
created by CTX [7] instead of HiRISE. CTX maps pose
a harder registration problem due to their much lower
resolution (6m / pixel), but they provide approximately 99%
coverage of Mars. In addition, future missions might conduct

flights during different times of day. With the vast majority
of orbital data being collected during a limited time range
(afternoon), the registration algorithm has to be robust to
different lighting conditions. Furthermore, we are currently
integrating our MbL pipeline with VIO as part of a state
estimator, in order to demonstrate the potential of our method
for online drift correction. Finally, we plan to work on
reducing the inference time on edge devices using techniques
such as quantization and distillation.
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