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Abstract: Wireless powered communication networks (WPCNs) provide a sustainable
solution for energy-constrained IoT devices by enabling wireless energy transfer (WET)
in the downlink and wireless information transmission (WIT) in the uplink. However,
their performance is often limited by interference in uplink communication and inefficient
resource allocation. To address these challenges, we propose an RSMA-aided WPCN frame-
work, which optimizes rate-splitting factors, power allocation, and time division to enhance
spectral efficiency and user fairness. To solve this non-convex joint optimization problem,
we employ the simultaneous perturbation stochastic approximation (SPSA) algorithm, a
gradient-free method that efficiently estimates optimal parameters with minimal function
evaluations. Compared to conventional optimization techniques, SPSA provides a scalable
and computationally efficient approach for real-time resource allocation in RSMA-aided
WPCNs. Our simulation results demonstrate that the proposed RSMA-aided framework
improves sum throughput by 12.5% and enhances fairness by 15-20% compared to con-
ventional multiple-access schemes. These findings establish RSMA as a key enabler for
next-generation WPCNs, offering a scalable, interference-resilient, and energy-efficient
solution for future wireless networks.

Keywords: rate-splitting multiple access (RSMA); wireless powered communication net-
works (WPCNs); wireless energy transfer (WET); wireless information transmission (WIT);
sum throughput maximization; fairness optimization; simultaneous perturbation stochastic
approximation (SPSA); interference management; energy efficiency; resource allocation

MSC: 94-08; 94-10

1. Introduction

The rapid evolution of 6G networks aims to deliver seamless connectivity, ultra-
reliable low-latency communication (URLLC), and enhanced mobile broadband (eMBB),
and support massive machine-type communications (mMTC) [1,2]. A crucial aspect of 6G
is the integration of low-power Internet of Things (IoT) devices, which will be widely used
in applications such as smart cities and industrial automation [3-5]. However, these devices
face significant challenges due to limited energy resources. Frequent battery replacement
is often impractical, especially for devices deployed in remote or hard-to-reach locations.
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This highlights the urgent need for efficient energy management strategies to prolong their
operational lifetimes [6,7].

1.1. Wireless Powered Communication Networks

Wireless powered communication networks (WPCNs) offer a promising solution to
the energy constraints of low-power IoT devices [8-11]. In WPCNs, devices harvest energy
from dedicated power sources, such as energy transmitters (ETs), and use this energy for
uplink communication. This eliminates the reliance on frequent battery replacements by
leveraging wireless energy transfer. As a result, WPCNs present a sustainable energy solu-
tion for low-power IoT devices, making them a viable option for 6G applications [12,13].
However, the performance of a WPCN relies on the coordinated design of energy har-
vesting and data transmission. Achieving the desired quality of service (QoS) requires
optimizing the time allocation between wireless energy transfer (WET) and wireless infor-
mation transmission (WIT) [14,15]. This allocation directly impacts the network’s energy
efficiency and overall throughput. In addition, advance applications such as 4K video
streaming, virtual reality (VR), and augmented reality (AR) are central to 6G’s promise,
but these applications demand exceptionally high data rates, low latency, and seamless
connectivity [16-18]. VR and AR, in particular, involve immersive experiences where
even minor delays or insufficient bandwidth can significantly degrade the user experi-
ence. Similarly, 4K video streaming requires stable, high-throughput channels to ensure
uninterrupted playback and maintain video quality. To meet these demands, efficient
resource allocation strategies in multiple-access channels (MAC) become critical. In 6G
networks, multiple-access technologies enable multiple users or devices to share limited
communication resources such as frequency, time, or space. These channels ensure the
delivery of high data rates to multiple users simultaneously while managing interference
and optimizing spectral efficiency.

1.2. Rate-Splitting Multiple Access

Rate-splitting multiple access (RSMA) emerges as a promising candidate to address
these challenges in multiple-access networks [19,20]. Unlike traditional multiple-access
schemes like time-division multiple access (TDMA) or orthogonal multiple access (OMA),
RSMA allows users to split their messages into common and private parts. These parts
are transmitted over superimposed signals, enabling the network to manage interference
more effectively. RSMA leverages successive interference cancellation (SIC) at the receiver
to decode signals in a hierarchical manner, achieving a balance between spectral efficiency
and user fairness [21,22]. By allocating power dynamically and managing interference
flexibly, RSMA offers the capacity to support the high data rates required by 6G applications
while ensuring robust performance in multi-user environments. This integrated design of
RSMA and multiple-access technologies establishes the foundation for optimizing energy
and information transmission, enabling 6G networks to meet the stringent demands of
modern applications.

1.3. Related Works

WPCNs have been extensively studied to address energy constraints in modern
communication systems. Significant focus has been placed on throughput maximization
by optimizing resource allocation strategies. For instance, Ju et al. proposed a time
allocation framework to maximize system throughput by balancing WET and WIT [15].
Energy beamforming, another key aspect, was explored in [23-25], where directional
energy transmission enhanced the efficiency of power delivery to devices in WPCNs.
In the context of multiple-access techniques, non-orthogonal multiple access (NOMA) has
been integrated into WPCNs to improve spectral efficiency [26,27]. Other works include
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incorporating hybrid multiple-access schemes, such as the integration of TDMA and
FDMA [28], and of NOMA and TDMA [29], to optimize energy and throughput trade-offs
in WPCNs. These studies collectively highlight the advancements in WPCNs, focusing
on innovative methods to optimize energy efficiency and communication performance in
energy-constrained networks. However, no prior research has investigated the performance
of WPCNs integrated with RSMA.

RSMA has been widely explored for its ability to optimize spectral efficiency and
manage interference in wireless networks. Clerckx et al. laid the foundation of RSMA,
showcasing its superiority over traditional multiple-access techniques like NOMA and
SDMA in multi-user MISO systems with imperfect channel state information (CSI) [19].
Mao et al. extended this work, demonstrating how RSMA enables simultaneous wire-
less information and power transfer (SWIPT) in multi-antenna systems, optimizing both
communication and energy harvesting performance [30]. Further, Camana et al. explored
RSMA in cognitive radio settings, integrating SWIPT to optimize power allocation and
beamforming, achieving improved energy and data trade-offs [31]. The integration of
RSMA into intelligent reflecting surface (IRS)-assisted SWIPT networks has also been in-
vestigated, where dynamic beamforming and rate splitting significantly enhanced energy
efficiency and throughput [32].

While most of the early focus was on downlink RSMA, recent studies have highlighted
the importance of RSMA in uplink communications. In uplink scenarios, RSMA enables
users to transmit their messages in non-orthogonal modes while addressing inter-user
interference effectively through message splitting and SIC. Abbasi et al. introduced coop-
erative RSMA (C-RSMA), leveraging amplify-and-forward relaying and rate-splitting to
improve throughput and fairness compared to NOMA [33]. Khisa et al. developed a joint
beamforming and power allocation framework for C-RSMA, demonstrating superior SINR
and performance over baseline schemes using successive convex approximation (SCA) [34].
Xiao et al. proposed an RSMA-enabled coordinated direct and relay transmission (CDRT)
scheme, optimizing power allocation to enhance the reliability and throughput of far users
while maintaining fairness for near users [35]. These works highlight uplink RSMA’s
potential in managing interference and optimizing performance in multi-user networks.
Please refer to Table 1 for a summary of the related works.

Table 1. Comparison of existing works and our proposed approach.

Reference Technique Objective Key Limitation How Our Work Addresses Lim-
itation
[15] Time allocationin ~ Maximizes throughput by =~ Does not address interfer- Our work integrates RSMA for
WPCNs balancing WET and WIT  ence and fairness issues interference mitigation and fair-
ness enhancement
[24] Energy beamform- Improves power transfer Limited by multi-user in- Our joint optimization of RSMA-
ing in WPCNs efficiency terference and inefficient based power allocation over-
resource allocation comes these issues
[26] NOMA-based Enhance spectral effi- Suffers from high inter- RSMA effectively manages inter-
WPCN ciency user interference in uplink  ference using rate splitting
[30] RSMA for SWIPT  Optimizse energy harvest- Focuses only on downlink Our work extends RSMA to

ing and data rate trade-offs

RSMA, no uplink extension

WPCN s in the uplink
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Table 1. Cont.
Reference Technique Objective Key Limitation How Our Work Addresses Lim-
itation
[33] Cooperative Improve fairness and No consideration of We integrate RSMA into WPCNs
RSMA in uplink throughput using amplify- energy harvesting in while optimizing energy effi-
and-forward relaying WPCNs ciency
Our Proposed RSMA-aided Optimizes throughput, Addresses all limitations Joint optimization of RSMA pa-
Work WPCN fairness, and energy above rameters in WPCNSs using SPSA
efficiency

1.4. Motivation and Contributions

Building upon the challenges outlined above regarding the need for efficient resource
allocation in WPCN:s, this work investigate a key gap in the literature, the integration of
advanced multiple-access techniques to optimize both energy transfer and uplink com-
munication. While traditional approaches have been extensively explored, they fall short
in terms of flexibly managing interference and ensuring an optimal trade-off between
throughput and fairness. RSMA has proven to be an effective approach for interference
management and resource allocation in traditional wireless systems. Despite its demon-
strated potential in improving throughput and fairness, no prior work has explored the
integration of RSMA into WPCNSs. The absence of such studies motivated us to investigate
how RSMA can enhance WPCN performance by jointly optimizing the energy transfer and
uplink communication processes.

The main contributions of this paper are summarized as follows:

*  We propose an RSMA-aided WPCN framework for a two-user system, where WET
occurs in the downlink and RSMA is applied in the uplink WIT. This design ex-
ploits RSMA’s interference management capabilities to enhance uplink communica-
tion efficiency.

e Two distinct optimization problems are formulated: (a) maximizing the sum through-
put to improve overall network efficiency and (b) optimizing fairness to ensure bal-
anced resource allocation among users. These problems are addressed by jointly
optimizing the rate-splitting factors and time allocations for the WET and WIT phases.
The non-convex nature of these problems is tackled using the simultaneous pertur-
bation stochastic approximation (SPSA) method, which provides an efficient and
scalable solution.

e Through comprehensive numerical simulations, we analyze the trade-offs between
sum throughput and fairness optimization objectives, providing critical insights into
the applicability of RSMA in WPCNSs. Our results demonstrate RSMA’s potential to
achieve balanced performance in energy and communication efficiency, underscoring
its relevance for next-generation WPCNs.

2. System Model

In this section, we provide a detailed description of the system model used to analyze
the performance of RSMA in a WPCN. As shown in Figure 1, the network comprises a
hybrid access point (H-AP) equipped with a single antenna. There are two users, denoted
as {Uj, Uy}, and each is equipped with a single antenna. The system operates in two
distinct phases with energy harvesting on the downlink and data transmission on the
uplink. The H-AP serves two primary functions by acting as an energy transmitter (ET)
in the downlink phase, where it transmits energy signals to the users, allowing them to
harvest energy for their uplink data transmission operations, and as a receiver in the uplink
phase, where it collects the data transmitted by the users. Users U; and U, harvest energy
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from the H-AP during the downlink phase and then use the harvested energy to transmit
their data to the H-AP during the uplink phase.

The communication links between the H-AP and the users, denoted as &y, hy, are
modeled using quasi-static, flat-fading channels. The channel coefficients incorporate both
large-scale path loss and small-scale fading effects. Specifically, we define the channel
coefficient for user U; as

=81, ie{1,2) (1)
vl

where g; represents small-scale fading, d; is the distance from the H-AP, and S is the
path-loss exponent. This formulation explicitly captures the impact of distance on both
energy harvesting and uplink transmission. We assume that the channel conditions remain
constant during each transmission coherence interval but may vary between different
transmission intervals. We assume reciprocal channels, meaning the channel gain remains
the same for both downlink and uplink transmissions for each user, which is a reasonable
assumption in time-division duplex (TDD) systems. Without loss of generality, we assume
that |h1|? > |hy|?. The key system parameters and their descriptions are summarized in
Table 2 for clarity.
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Figure 1. The RSMA-aided wireless powered communication network (WPCN) framework. The hy-
brid access point (H-AP) first transmits energy to users Uy and U, via wireless energy transfer (WET),
followed by wireless information transmission (WIT) in the uplink. Each user employs RSMA, where
messages are split into two parts, optimally allocated for power and transmitted to the H-AP.

Table 2. List of parameters and their descriptions.

Symbol Description Unit
h; Channel coefficient between H-AP and user i -
Py Transmit power at the H-AP dBm
E; Energy harvested by user i Joules
i Energy conversion efficiency of user i -
T Time allocated for downlink energy harvesting Seconds
Tu Time allocated for uplink transmission Seconds
pi Transmit power of user i in uplink Watts
o; Power allocation coefficient for RSMA for user i -
Tij Signal-to-Interference-plus-Noise Ratio (SINR) of stream s;; -
R; Achievable rate of user i bps/Hz
a? Variance of additive Gaussian noise at H-AP dBm
L(x) Objective function in optimization problem -
Ay, Cx SPSA step size and perturbation constant -
Ay Perturbation vector in SPSA optimization -

N Number of iterations in SPSA algorithm -
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2.1. Phase 1: Downlink Energy Harvesting

During the downlink phase, the H-AP transmits an energy signal with power P4.
The users receive this energy and convert it into usable power through an energy harvesting
mechanism. The signal received at U; is expressed as

where z; represents the noise at U; during the energy harvesting phase, which is typically
negligible due to the high power of the energy signal. The energy harvested by U; is
given by

Ei = nitaPalhi|?, i€ {1,2} 3)

where 7; denotes the energy conversion efficiency of Uj;, representing the efficiency of the
user’s energy harvesting circuitry, and t; is the duration of the energy harvesting phase.
This harvested energy E; is stored in the user’s battery and will be used during the uplink
transmission phase.

2.2. Phase 2: Uplink Data Transmission Using RSMA

In the uplink phase, U; and U, use the energy harvested during the downlink phase to
transmit their data simultaneously to the H-AP. We apply the RSMA technique to manage
the uplink transmissions and mitigate interference. The transmit power available for each
user in the uplink is derived from the energy harvested during the downlink phase. This is
mathematically expressed as

TPa|hi?
pi:7’lzd Alhil

. , 1e€{1,2} 4)

where T, is the duration of the uplink phase.

¢ T, determines how efficiently the harvested energy is allocated for uplink transmission.

e  Theratio %i determines how much energy is allocated for uplink transmission relative
to the total harvested energy.

* Increasing 7, results in more energy harvested, but it also reduces the available time
for data transmission, creating a trade-off.

This equation highlights the fundamental trade-off between energy harvesting and
data transmission duration, which is a critical aspect of system design in WPCNSs. For
further details on similar optimization frameworks, refer to [15]. We split the messages of
U; and U, denoted as x; and xp, respectively, into two sub-messages that are independently
encoded into streams {s11,512} and {sy1,522}. These streams are then assigned specific
power levels and superposed at U; and U,. The received power at the H-AP is determined
by the transmit power of each user and their respective channel gains. Since each user
transmits a superposition of sub-messages in the uplink, the received signal at the H-AP is
given by

ya = Vearpihisi + 4/ (1 —aq)pihisiz + aapahosy + 4/ (1 — a2) pahosan +2z4,  (5)

where the equation elements are defined as follows:

*  pp and p; are the transmit powers of U; and Uy, respectively, which depend on the
harvested energy.

* Iy and h;y are the respective channel coefficients of the users.

. 0 < a1, 3 <1 control the sub-messages.
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* 1z, represents the additive white Gaussian noise at the H-AP with zero mean and
variance 2.
e sj,j€{11,12,21,22} satisfies IEI[|5]-|2] =1.

The received power at the H-AP for user U; can be expressed as
Preceived,i & pi'hi|2r S {1'2} (6)

From this equation, it is evident that a stronger channel gain /; leads to a higher received
power at the H-AP, improving the signal decoding performance. However, due to in-
terference and noise, optimal allocation of a7 and «; is required to balance the trade-off
between throughput and interference mitigation. The parameters a7 and «, control the
power allocation between sub-messages in the RSMA-based uplink transmission. Their
values significantly impact the SINR at the H-AP, directly affecting the achievable rates of
the users. To ensure an optimal trade-off between throughput and fairness, we optimize «
and ay using the SPSA algorithm. This allows dynamic adjustment of power allocation in
response to changing channel conditions. Mathematically, the optimal values of 1 and ap
are determined as follows:

2
o, a3} = argmax ¥ Riar, a2) %
1,02 i=1

where R; represents the achievable rate for user U;, and the constraints 0 < aq,a; <1
ensure feasible power allocation. The SPSA algorithm iteratively updates a; and a; based
on gradient approximations, making it computationally efficient for real-time optimiza-
tion. This optimization ensures efficient interference management, leading to improved
SINR, fair resource distribution between sub-messages, and better adaptability to dynamic
channel conditions. By jointly optimizing &, &y, and the time allocation parameters,
the RSMA-based system achieves superior performance compared to traditional schemes.

RSMA Decoding Process at the H-AP

The H-AP applies RSMA and executes the successive interference cancellation (SIC) to
decode the messages in the order of s1; — sp1 — 512 — s22. The SINR for s11 at the H-AP
is expressed as

‘lel|h1|2 (8)

11 =
(1= a1)p1|ln[* + aapa|ha|* + (1 — a2) pa| o |* + 02

After successfully decoding and removing s, the H-AP decodes s,. The SINR of s;1 is
expressed as

wopa|ha ©)
(1= a)prlif? + (1 = az)palha* + 02

Y21 =

Similarly, after successfully decoding s»; and subtracting it, the SINR of s1, is expressed as

(1—ay)pi|m|? (10)
(1 — az)p2|h2|2 + 02

Y12 =

Similarly, after successfully decoding s1, and subtracting it, the SINR of s, is expressed as

1—u hy|?
Y2 = (2# (11)
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The achievable rates of users U; and U, in RSMA are computed using the Shannon capacity
formula:
Ry = 7 logy (14 711) + T logy (1 + 712), (12)

Ry = Ty log, (1 + 721) + Tulog, (1 + 722), (13)

Each SINR term represents the quality of the received signal at the H-AP.

3. Problem Formulation and Network Resource Optimization

In this section, we formulate two distinct optimization problems to address critical
challenges in RIS-aided RSMA-enabled WPCNSs, the sum throughput optimization problem
and the fairness problem. For each problem, we jointly optimize the power allocation
coefficients for RSMA and the time allocation between the WET and WIT phases. These
formulations aim to investigate the trade-offs between maximizing the system’s sum
throughput and ensuring fairness by maximizing a minimum throughput among users.

3.1. Sum Throughput Maximization Problem

In this problem, the objective is to maximize the total uplink throughput of the system
by jointly optimizing the rate-splitting coefficients for the split messages and the time
allocations for the downlink and uplink phases. The optimization is conducted under the
constraint that all the harvested energy during the downlink phase is fully utilized for

. .. . T Palli)?
uplink communication, i.e., p; = w;l e {1,2}.

P1 M’Ia‘(rzlja%m Ri+R; (14a)
subjectto T;+ 1, <1 (14b)
0<w,ap <1 (14¢)

>0 7=>0 (14d)

Constraint (14b) ensures that the total time allocation for the downlink (energy harvesting)
and uplink (data transmission) phases does not exceed the overall time frame, normal-
ized to 1. This enforces realistic partitioning of time resources between the two phases.
Constraint (14c) ensures that it remains within feasible bounds. This parameter determines
how power is divided between the split messages of U; in the RSMA-based uplink transmis-
sion. Finally, constraint (14d) ensures that all the optimization variables are non-negative,
which aligns with practical physical limitations on time allocations.

3.2. Fairness Problem

Here, we address the fairness problem in uplink WIT. The primary objective is to
maximize the minimum throughput for U; and Uy, thereby ensuring fairness across the
network. The optimization problem is formulated as

P2 max min(Ry, Rp) (15a)
&1,62,T4,Ty
subject to  (14b)—(14d) (15b)

This problem ensures balanced resource allocation while considering the limitations im-
posed by energy harvesting and channel conditions. The focus on fairness addresses
disparities in user throughput caused by variations in channel quality and energy harvest-
ing efficiency, promoting equitable access to network resources.
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4. Simultaneous Perturbation Stochastic Approximation
(SPSA)-Based Solution

P1 and P2 represent non-convex objective functions and include non-convex con-
straints, primarily due to the highly coupled optimization variables, i.e., time allocations,
and the RSMA-based split power coefficients. Their non-linear inter-dependencies, com-
bined with strict system constraints, make conventional optimization techniques impracti-
cal. Therefore, we propose utilizing the simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm as a robust and efficient solution framework. SPSA is a stochastic
optimization algorithm that is well suited for high-dimensional problems with noisy objec-
tive functions. Unlike gradient-based methods, SPSA estimates the gradient of the objective
function using a small number of noisy measurements, making it computationally effi-
cient and scalable. This feature is particularly advantageous for non-convex optimization
problems like P1 and P2, where the exact gradients are difficult to compute.

SPSA operates by approximating the gradient of the objective function L(x) using
stochastic perturbations. Unlike traditional gradient-based methods that require explicit
derivative calculations, SPSA uses only two evaluations of the objective function per itera-
tion, irrespective of the number of optimization variables. This makes it computationally
efficient and scalable, particularly for non-convex problems in high-dimensional spaces.

The process begins by initializing the optimization variables:

xo = (a1, 00, T4, T (16)

where these variables are chosen to satisfy the system constraints. For instance, the time
allocation variables 7; and T, are subject to the constraint (14b). The RSMA coefficients
a1 and &y must satisfy (14c). These constraints ensure that all variables remain physically
feasible within the operational limits of the system.

At each iteration k, SPSA estimates the gradient of the objective function using a
stochastic perturbation vector:

A=D1, Deasee o Brul” (17)

where each component A ; is randomly drawn from a symmetric Bernoulli distribution
(£1). The objective function is evaluated at two perturbed points:

Ly = L(xx+ kD), L— = L(x¢ — ckly) (18)

where ¢y is a perturbation constant that scales the perturbations. The gradient is then
approximated as
Li—L_

AL 19
20, ‘ (19)

& =

where A,:l denotes the element-wise inverse of the perturbation vector. This estimated
gradient guides the iterative update of the optimization variables as follows:

Xpy1 = Xk — A8k (20)
where ay, is the step size, defined as

ax = m (21)
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with a, A,y > 0 being tunable parameters. This step size decreases over iterations to ensure
convergence. To maintain feasibility, the updated variables are projected back onto the
constrained region defined by the system’s physical and operational limits.

The stochastic perturbations in SPSA introduce randomness that allows the algorithm
to explore the solution space effectively, avoiding local optima. As the algorithm progresses,
the step size reduces, refining the search and ensuring convergence to a near-optimal
solution. The termination criteria are based on either the stability of the objective function,

IL(x¢1) — L(xx)| <€ (22)

or reaching a maximum number of iterations. These conditions ensure computational
efficiency while achieving high-quality solutions.

The application of SPSA to RSMA-enabled WPCNs offers several advantages. The pro-
posed method summarized in Algorithm 1 efficiently handles the coupled, non-linear
nature of the optimization variables, balancing system throughput and fairness. Its stochas-
tic nature makes it robust to noise and fluctuations in channel conditions, which are
inherent in wireless networks. Additionally, its low computational cost makes it practical
for real-time implementation in dynamic environments.

Algorithm 1 Proposed solution based on SPSA for solving P1 and P2

1: Input: Objective function L(x), initial values xo = [a1, &, Ty, 7T, step size schedule ay,
perturbation scale ¢y, maximum iterations kmax, tolerance e.
2: Initialization: Set iteration k = 0. Initialize x; within feasible bounds:

0<y+7m <1l 0<a,a <L

3: while k < kmax and |L(xx11) — L(x¢)| > e do
4. Generate a random perturbation vector Ay = [Ag1, Ak, .- - ,Akrn]T, where Ap; ~
{-1,1}.

5. Compute perturbed objective function values:
Ly = L(xg +cxDr), L— = L(xx — crAg).

6:  Estimate the gradient:
Ly —L_

AT
ZCk k

8k =
where A~ ! denotes the element-wise inverse of Ay.
7. Update the optimization variables:

Xg41 = Xk — A8k,

with g = ﬁ, where a, A, v > 0 are tunable parameters.

8:  Project x;1 onto the feasible region:
0<y+wm<1l 0<a,a <1

9:  Increment iteration counter: k = k + 1.
10: end while
11: Output: Optimized variables x* = x.

5. Simulation Results and Discussion

To validate the proposed RSMA-aided optimization framework for WPCNs, simu-
lations were performed under realistic and practical system settings. The channel model
adopted is Rayleigh fading, capturing the random nature of wireless propagation. U; and
U, are deployed at distances of 100 m and 200 m, respectively, from the hybrid access



Mathematics 2025, 13, 888

11 of 17

point (H-AP). The channel incorporates path loss effects with a path loss coefficient of 3,
simulating the attenuation experienced over a distance. The H-AP transmits with a fixed
power of 30 dBm during the downlink phase, while the noise variance is set at —100 dBm
to model typical environmental noise in wireless communication systems.

The proposed optimization framework leverages the SPSA algorithm to address the
non-convex nature of the resource allocation problem. The key parameters for the SPSA
algorithm were configured as perturbation size, c = 0.1, ensuring the perturbations remain
small and controlled for efficient gradient estimation. The step size decay parameters
v = 0.602 define the rate of decay for the step size, balancing convergence speed and
accuracy. The initial step size was a = 0.002, providing a stable starting point for iterative
updates in the optimization process. The simulations were designed to evaluate the
performance of the RSMA-aided solution in terms of key metrics such as sum throughput
and fairness. Comparisons were made against benchmark schemes as follows:

¢ RSMA (Rate-Splitting Multiple Access):
RSMA shows the proposed scheme where the power allocation coefficients and time
allocation for the users are both optimized using the SPSA algorithm.
e FPRSMA (Fixed Power RSMA):
FPRSMA is a variation of RSMA where the power allocation coefficients for the users
are fixed and equally divided (x; = 0.5, ap = 0.5). However, the time allocation is
dynamically optimized using the SPSA algorithm to maximize system performance.
*  NONRSMA (Non-RSMA, Time-Division Multiple Access):
NONRSMA represents a scheme that adopts a time-division multiple access (TDMA)
approach for uplink data transmission. In this scheme, time allocation between users is
optimized using SPSA, but RSMA principles (e.g., power splitting) are not employed.
*  OMA (Orthogonal Multiple Access):
OMA represents a fully orthogonal scheme where time allocation is fixed and prede-
fined. Unlike the other schemes, OMA does not incorporate SPSA-based optimization,
serving as a baseline for comparison.

Figure 2 depicts the convergence behavior of the proposed SPSA-based optimization
algorithm under two different transmit power levels of the H-AP. The results demonstrate
that the algorithm converges efficiently within approximately 50 iterations for both transmit
power levels, reflecting the effectiveness of the SPSA method in addressing non-convex
optimization problems. For P; = 40 dBm, the objective function stabilizes at approximately
13.5 bps/Hz, while for P; = 30 dBm, it converges to around 12 bps/Hz. This illustrates
the significant impact of increased transmit power on achievable throughput, with higher
power enabling better network performance. The proposed algorithm’s rapid convergence
and stable results confirm its robustness in optimizing resource allocation in RSMA-aided
wireless powered communication networks.

Figure 3 shows the solution to P1 and demonstrates the relationship between the sum
throughput (in bps/Hz) and the transmit power of the H-AP (in dBm) for four different
schemes, RSMA-P1, FPRSMA-P1, NONRSMA-P1, and OMA. The results highlight the
superior performance of RSMA-P1, which involves optimizing both power allocation
coefficients and time allocation using the SPSA algorithm. FPRSMA-P1, using fixed power
allocation and time optimization, achieves slightly lower throughput. NONRSMA-P1,
a TDMA-based scheme with optimized time allocation, performs moderately but remains
significantly below RSMA-based schemes. OMA, with fixed power and time allocations,
consistently achieves the lowest throughput. The figure demonstrates that as the H-AP
transmit power increases, all schemes experience improved throughput. However, RSMA-
P1 outperforms the others significantly, showcasing the effectiveness of RSMA-based
optimization in improving system performance under varying power levels.



Mathematics 2025, 13, 888

12 of 17

14
135 B = L Sy B —— - b
~
N 7
/

E 13- 7 a
2] 7
& !
o 1251 ]
= I
8 ____________________
S 12r - B
St L -
< 7’
el /

115 d
g /
2 /
S , — — =Py =40dBm [
= 1l :
< - — =Py =30dBm

10.5 b

10 I I I I I I I I

0 20 40 60 80 100 120 140 160 180 200
Iterations

Figure 2. Convergence of proposed SPSA-based algorithm for different transmit power levels.
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Figure 4 illustrates the throughput of U, (in bps/Hz) as a function of the transmit
power of the H-AP (in dBm) for P1 and P2. RSMA-P1 optimizes the sum throughput of
the system, achieving a steady increase in Uy’s throughput as the transmit power grows.
RSMA-P2, which optimizes the minimum throughput to enhance fairness between users,
significantly improves U,’s throughput, particularly at higher power levels, surpassing
RSMA-P1. This demonstrates the effectiveness of RSMA-P2 in ensuring balanced re-
source allocation between users. In comparison, NONRSMA-P1, a TDMA-based scheme
focused on sum throughput optimization, shows limited improvement in Uy’s throughput,
reflecting the inefficiency of non-RSMA schemes in managing interference and allocat-
ing resources effectively. NONRSMA-P2, which optimizes the minimum throughput for
fairness in TDMA, provides better throughput for U, than NONRSMA-P1 but remains
significantly below the RSMA-based schemes, particularly at higher transmit power levels.
The figure highlights the superiority of RSMA-based schemes over NONRSMA schemes in
improving Uy’s performance. RSMA-P2, in particular, demonstrates remarkable fairness
by ensuring higher throughput for Uy, even as the system prioritizes minimum through-
put optimization.
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Figure 4. Throughput of U; versus transmit power at H-AP for different schemes.

Figure 5 illustrates the sum throughput (in bps/Hz) as a function of the distance
between U; and U, (in meters). RSMA-P1 achieves the highest and most consistent
throughput, demonstrating its efficiency in handling interference and resource allocation
regardless of user distance. FPRSMA also maintains a nearly constant throughput but
performs slightly worse due to fixed power allocation. NONRSMA-P1 shows a decreasing
trend as distance increases, reflecting its limited ability to manage interference and adapt
resource allocation. OMA performs the worst, with significant throughput degradation,
as orthogonal resource allocation and fixed scheduling fail to handle the challenges of
increasing user separation. The figure highlights the robust performance of RSMA-P1
compared to other schemes.
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Figure 5. Sum throughput versus distance between U; and U, for different schemes.

Figure 6 illustrates the throughput of U, (in bps/Hz) as a function of the distance
between U; and U, (in meters) for four schemes: RSMA-P1, RSMA-P2, NONRSMA-
P1, and NONRSMA-P2. As the distance between users increases, the throughput of
U, decreases across all schemes due to increased path loss and weakened interference
management. RSMA-P1 achieves the highest throughput for U, at shorter distances,
while RSMA-P2 performs better at larger distances, prioritizing fairness and balancing
resource allocation. NONRSMA-P1 and NONRSMA-P2 exhibit significant degradation in



Mathematics 2025, 13, 888

14 of 17

throughput with increasing distance, reflecting the limitations of TDMA-based approaches
in handling interference and optimizing resource allocation. These results emphasize
the superiority of RSMA in maintaining higher throughput and fairness under varying
user separations.
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Figure 6. Throughput of U, versus distance between U; and U, for different schemes.

Figure 7 illustrates the sum throughput (in bps/Hz) as a function of the transmit
power at the H-AP (in dBm). RSMA-P1, which optimizes the sum throughput, achieves
the highest performance across all transmit power levels, highlighting its efficiency in
resource allocation and interference management. In contrast, RSMA-P2, which focuses
on maximizing the minimum throughput for fairness, provides slightly lower overall
throughput but ensures better resource distribution among users, particularly benefiting
those with weaker channel conditions. NONRSMA-P1 and NONRSMA-P2, representing
TDMA-based schemes, perform significantly worse due to their limited ability to handle
interference and allocate resources effectively. The trade-off between P1 and P2 reflects
opposing objectives: P1 maximizes efficiency but sacrifices fairness, while P2 prioritizes
fairness at the cost of reduced overall throughput. These results emphasize the superiority
of RSMA schemes in achieving higher sum throughput and balancing the trade-off between
fairness and efficiency.
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Figure 7. Sum throughput versus transmit power at H-AP.
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6. Conclusions

In this paper, we proposed a novel RSMA-aided framework for WPCNss to address the
dual challenges of energy efficiency and interference management in uplink communica-
tions. By integrating RSMA into the WIT phase and optimizing resource allocation jointly
with WET, we investigated two key optimization problems: sum throughput maximization
and fairness optimization. These non-convex problems were effectively addressed using
the SSPSA method, which proved efficient in handling the complex joint optimization of
rate-splitting factors and time allocation. Our numerical results demonstrated the trade-offs
between the two objectives, highlighting RSMA’s capability to achieve both high spectral
efficiency and fairness under practical WPCN settings. Furthermore, the simulations val-
idated RSMA’s superior performance over traditional multiple-access schemes in terms
of throughput, fairness, and energy efficiency. These findings establish the potential of
RSMA as a promising approach for enhancing WPCN performance, paving the way for its
adoption in next-generation wireless networks, especially in energy-constrained scenarios.
Future work could explore extending this framework to multi-user and multi-antenna
WPCNs, as well as investigating adaptive RSMA strategies for real-time resource allocation
under dynamic network conditions.
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