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Abstract. We presentHyperion, an end-to-end verifiable e-voting scheme
that allows the voters to identify their votes in cleartext in the final tally.
In contrast to schemes like Selene or sElect, identification is not via (pri-
vate) tracker numbers but via cryptographic commitment terms. After
publishing the tally, the Election Authority provides each voter with an
individual dual key. Voters identify their votes by raising their dual key
to their secret trapdoor key and finding the matching commitment term
in the tally. The dual keys are self-certifying in that, without the voter’s
trapdoor key, it is intractable to forge a dual key that, when raised to
the trapdoor key, will match an alternative commitment. On the other
hand, a voter can use their own trapdoor key to forge a dual key to fool
any would-be coercer.
We provide new improved definitions of privacy and verifiability for e-
voting schemes and prove the scheme secure against these, as well as
proving security with respect to earlier definitions in the literature.
We provide a prototype implementation and provide measurements which
demonstrate that our scheme is practical for large scale elections.

1 Introduction

Many democracies are moving towards voting over the internet, and some, e.g.
Estonia, has fully adopted it. While internet voting has many attractions it
introduces new, poorly understood threats. The internet is inherently insecure
and remote voting introduces coercion threats not present in in-person voting.
To counter these threats, cryptographic mechanisms and protocols have been
proposed. However, designing and analysing such protocols is very challenging,
and we have not reached consensus on rigorous definitions of security properties
such as vote secrecy, verifiability, receipt-freeness, coercion-resistance and dispute
resolution.

A good voting system should not only deliver the correct result w.r.t. the
legitimately cast votes, but also provide sufficient evidence to convince all ob-
servers of the announced result. Ensuring both vote secrecy and verifiability is
complex, and indeed, many technologies sacrifice the latter, forcing the stake-
holders to place total, blind trust in the correct behaviour of the code, for ex-
ample direct-recording electronic (DRE) machines. Such observations motivated
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the development of end-to-end verifiable (E2E V) schemes [21] and the notion
of software independence [28].

E2E V schemes usually involve the creation of an encryption or encoding of
the vote at the time of casting, a copy of which is retained by the voter. Later
the voter can check that her “receipt” appears correctly on an append-only
public ledger called the Bulletin Board (BB). After this, a universally verifiable,
anonymising tally is performed on the posted, encrypted ballots to reveal the
result. Voters can also perform some form of ballot auditing before casting to
gain assurance that their vote is correctly represented in their ballot. Putting
these steps together ensures that the corruption of any vote during recording and
tallying is detectable. Along with mechanisms to prevent ballot stuffing and clash
attacks (ballot collisions) etc. we can detect any inaccuracy in the announced
outcome.

Such schemes, while technically appealing, have at least two drawbacks. First,
the fact that errors can be detected does not guarantee that they will be: it is
essential that sufficient numbers of voters and observers actually perform the
checks diligently and report anomalies. Second, a voting scheme must be easily
understandable and usable by voters and voting officials. The assurance argu-
ment outlined above is rather subtle, and not easy for many voters or stakehold-
ers to digest. Many find the idea of voters having to perform checks on encrypted
ballots unreasonable.

These observations prompted the exploration of more direct and transparent
forms of verification, in particular based on the idea of private tracker numbers
to identify votes in cleartext in the tally. Examples of such schemes include the
CNRS scheme [3], Selene [30] and sElect [25]. Of these, Selene is of particular in-
terest as it provides mitigation of the coercion threats that tracker based schemes
otherwise exhibit: the coercer demands the voter to reveal her tracker. Notably,
the Selene construction has been trialled in elections in The Royal College of
Nursing and The College of Podiatrists in the UK [32] and for elections in the
ESORICS steering committee.

1.1 Contribution

We present a novel, E2E verifiable scheme, inspired by the Selene scheme [30],
that not only provides a highly transparent verification, but also affords voters
a greater sense of privacy than with Selene. Hyperion is significantly more effi-
cient as it greatly simplifies the setup (section 2.2) of Selene, eliminating all the
encryption, mixing, decryption and ZK proofs computations implied by the use
of tracker numbers.

Hyperion, in contrast to Selene, does not publicly reveal trackers, indeed,
we do away entirely with trackers. Instead, the voter identifies her vote in the
tally by identifying the row in the tally containing the commitment that opens,
with her trapdoor secret key and dual key, to a constant, e.g. 1. This is rather
like identifying your house by finding the door that opens to your key. This is
still deniable, but the mechanism is now different: a coerced voter identifies a
commitment paired with the coercer’s required vote and, if necessary computes,
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using her trapdoor key, the fake dual key that opens the chosen commitment to 1.
Doing away with the trackers also improves the situation for coerced voters, since
they do not need to equivocate and lie about trackers that they have seen and
which could have easy-to-remember or characteristic features. As an example, a
voter might accidentally reveal having a tracker with consecutive numbers.

The Hyperion construction has further advantages over Selene. In particular,
variants have been created that exploit the fact that the cryptographic commit-
ments are perfectly randomly distributed to an observer only seeing the bulletin
board. This can be used for quantum-safety against future attackers or even sat-
isfying everlasting privacy (see the long version of this paper [14] where further
variants are explored), and has even been used to construct the first scheme with
everlasting receipt-freeness [26].

Importantly, we also contribute novel definitions, providing a ballot privacy
definition allowing maliciously generated public keys by corrupted voters, and
considering stronger adversaries with access to information about whether vot-
ers verify successfully or not. We also give a definition of verifiability against
a malicious voting board and consider malware on the user side, and we prove
verifiability when either the vote-casting or the vote-verification device is uncor-
rupted. We also provide proofs of security against established definitions in the
literature, especially we prove privacy against a malicious board as in [12, 16].

Finally we provide a prototype implementation along with performance data.

Structure of the Paper We first discuss related work and introduce the nota-
tion used in the paper. We then describe the voter experience in Sec. 2: casting
and verifying a vote and, where necessary, evading the coercer. The precise in-
stantiation used for security proofs is presented in Sec. 3. The remainder of the
paper presents the security definitions for ballot privacy (Sec. 4) and integrity
(Sec. 5) followed by game-based proofs. These definitions are also novel and rep-
resent a contribution to the state of the art in the field. For the ballot privacy
definition, we consider adversaries who get information on whether the verifi-
cation of voters failed or not. Such information can lead to privacy attacks, as
demonstrated in other protocols, and are important to counter in Hyperion. For
verifiability, we craft a definition considering that each voter has two devices –
one for vote casting and one for verification, and we demonstrate that both need
to be corrupted for successful verifiability attacks against Hyperion.

Finally, we include some performance statistics for a prototype implementa-
tion that demonstrate that the scheme is practical for large scale elections, e.g
of the order of a million voters, see App. A.

Related Work Most of the end-to-end verifiable schemes proposed to date
involve a rather indirect verification by the voter: checking that an encryption
of their vote appears on the BB in the input to a (universally verifiable) tally
process. Some recent schemes seek a more direct and arguably more compelling
voter verification process: identifying the vote in plaintext in the final tally. Here
we focus on the latter class.
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Schneier [33], proposes the idea of voters attaching a password to their vote
which is then posted alongside the vote on the BB. Later, [3] elaborate on this
in a boardroom context. sElect [25], is also tracker-based but with the addi-
tional feature of having an accountable tally process. All of these systems are
vulnerable to the obvious threat of the coercer demanding the voter reveal her
tracker. Selene [30] introduced the idea of delayed notification of the trackers to
mitigate the coercion threat, along with constructions to guarantee uniqueness
and deniability of the trackers.

Some adaptations of Selene have been presented in an in-person variant [29,
38] and in a JCJ-like variant [22] which offers greater coercion-resistance. Selene
has been analysed symbolically in [7] and implemented (using a distributed
ledger) in [32].

Hyperion, like Selene, provides a direct and intuitive way for voters to verify
their votes, however, it does away with the need for trackers. This modification
greatly simplifies the setup and, more importantly, voters should feel much more
comfortable about the privacy of their vote. Studies, [15, 2, 37] suggest that some
voters are troubled by having their vote appear publicly beside their tracker. We
hypothesise that voters will be more comfortable with the Hyperion verification,
but this needs to be investigated by a complementary user study.

Selene has the problem that the coercer might claim ownership of a faked
tracker offered by a coerced voter, or that it coincides with one offered by another
victim. Several enhancements to Selene to counter this have been suggested
including adding extra dummy trackers [30] and shrouding parts of the trackers
or votes [23]. The Hyperion construction presented here, combined with a further
innovation: individual bulletin boards, elaborated in the full version of this paper,
provides a more elegant solution.

Regarding the definitions, our verifiability definition builds on [10], which
following [11] is the best choice for our case. Our definition benefits from a
detailed model that allows corruption of vote casting and usage of verification
devices.

For the ballot privacy definition, the state of the art was summarised in the
SoK paper [5] which also presented a game-based definition BPRIV that implies
an ideal functionality under certain conditions and which covers all types of
tally functions. This definition was further extended to considering more general
attacks during vote casting and malicious boards in [12]. Unfortunately, that
definition does not capture schemes where the verification happens after the
tally as in Hyperion. Recently, a new definition was presented in [16] allowing late
verification and which also included a machine-checked proof of ballot privacy for
Selene. Whereas the last definition would be applicable to Hyperion, it does not
capture attacks where the attacker has access to whether the voter’s verification
is successful or not. Since Hyperion allows a direct check of the tallied plaintext
vote, this would immediately cause privacy problems if the adversary manages
to cast a vote on behalf of the voter. However, the BPRIV type of definitions,
especially [16], does not capture these types of attack, and are not well-suited to
do this due to being based on a simulated view. Instead, we here go back to a
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very early definition by Benaloh [4], but update this with inspiration from [16],
also taking into account that the adversary can register maliciously generated
keys.

Notation This paper includes writing program code. Besides standard nota-

tion for assigning ‘ ← ’ and random sampling ‘ ↞ ’, we will also use X ∪← Y as

shorthand for X← X∪Y. Similarly, we write m
q← n shorthand for m← m qn.

Security games invoke an efficient adversary A with access to some oracles. The
games terminate when executing Stop with · command. Each game is asso-
ciated to a certain winning probability. We write Pr[G(A)] for the probability
that game G invoked with adversary A stops with ⊤. Game codes will be com-
pacted by introducing the instructions Require · which stands for ‘ if not · then
Stop with⊥ ’ and Promise · which stands for ‘ if not · then Stop with⊤ ’.

2 Details of the Scheme

In this section, we describe the main variant of Hyperion. We note that the
Hyperion verification mechanism is versatile and could be incorporated in an
existing voting scheme. For concreteness, we present it as a self contained scheme.
A protocol flow diagram can be found in the long version of this paper [14] (Fig.
7) along with additional details.

2.1 Parties Involved

Election Authority (EA). Performs the general election setup, i.e. defines the
election parameters, the ballot styles etc. and sets up the initial Bulletin Board.
Bulletin Board (BB). We consider an append-only board with a consistent
view for all participants.
Voters. Each voter i is identified uniquely with an id i and holds two secret
keys: a signing key used to authenticate the ballot and a verification trapdoor
key used to verify the plaintext vote. These keys can be stored on two different
devices/apps that assist the voters in casting and verifying their votes.
Registration Authority. Identifies the eligible voters and posts their public
keys on BB.
Tally Tellers (TT). Are responsible for setting up a shared (threshold) public
election key pkEA which will be used for encryption. They also perform a verifi-
able decryption during the tally phase.
Mix-Tellers. Is a set of mix tellers that perform a verifiable parallel mix in
order to anonymise the votes.

2.2 The Setup

The election authority publishes the relevant details of the election including
a cryptographic setup of a secure prime order group on the BB. A set of tally
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tellers create a threshold public key pair for the election (skEA, pkEA) and pub-
lishes pkEA. We assume here that each eligible voter holds a valid private signing
key with corresponding certification key pk i published along with unique voter
identifiers id i on BB. The unique identifiers enable universal eligibility verifia-
bility. We trust the registration authority to set this up correctly3. Note that the
setup here is much simpler than that of Selene which requires additional verified
generation, encryption and mixing of tracking numbers.

2.3 Voting

Each voter generates an ephemeral trapdoor key xi using her device. The public
component hi := gxi will be registered during vote casting, along with a Zero
Knowledge Proof of Knowledge (ZKPoK) of xi. For all proofs that follow, we
assume that these proofs are non-malleable and include binding to a unique elec-
tion identifier and the public election key pkEA. The proofs here should also be
bound to the identity id i of the voters to prevent the public keys from being
copied. In our case a simple Schnorr proof [34] is sufficient, made non-interactive
via the (strong) Fiat-Shamir transformation [18, 6] and including all the neces-
sary information in the hash for non-malleability.

Voting proceeds as follows: voter i sends her trapdoor key hi along with a
ZKPoK of xi, an encryption {vi}pkEA

of her vote vi (e.g. ElGamal [17]) and
the well-formedness ZK proofs of encryption, i.e. a proof of the vote be in the
correct space and a proof of plaintext-knowledge4. Recall that these proofs are
non-malleable and bound to the voter id i to prevent vote copy attacks5 [13].
The encryption scheme should support verifiable mixing and together with the
ZKPs be IND-1-CCA (see App. A in [14]). We denote the concatenation of the
ZK proofs by Πi. Registering the (ephemeral) trapdoor keys at the same time
as casting the vote avoids the need for an extra registration phase. All of this is
signed, sent to the EA and appended next to the appropriate pk i on the BB (for
brevity sign(m) means the signature with the message m included):

id i, pk i, signi({vi}pkEA
, hi, Πi)

2.4 Tallying

Once the voting phase has closed, ballots posted to the BB with valid signa-
tures and proofs are identified. For these, the Tally Tellers now take each public
trapdoor key hi and privately raise this to a fresh, random, secret ri, encrypt it
and post the output on BB together with ΠTT

i , a ZKPoK of honest construction
with knowledge of ri and the encryption random coins.6 For ElGamal this proof

3 In Estonia, each voter has her keys integrated in her identity card.
4 A simple choice is Chaum-Pedersen proofs of discrete log equality using OR Sigma
protocols for the different vote choices.

5 Vote copy attacks would undermine coercion resistance with plaintext verification.
6 This can easily be distributed over the Tally Tellers for ElGamal. For instance, each
TTj posts {hri,j

i }pkEA
together with the appropriate ZKPoK, then these ciphertexts
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can be efficiently implemented, see e.g. [8]. The Tellers keep the corresponding
gri (dual key) terms secret, for the verification phase. The BB now contains, for
the rows with valid ballots, the following:

id i, pk i, signi({vi}pkEA
, hi, Πi), {hri

i }pkEA
, ΠTT

i

The pairs ({vi}pkEA
, {hri

i }pkEA
) are shuffled in parallel by a verifiable mix-net and

verifiably decrypted to obtain the final Tally Board

vi, h
ri
i

together with the ZKP of correct parallel mixing and decryption, e.g. using
Verificatum [36]. If an element hri

i = 1 an error is output which only happens
with negligible probability if at least one Tally Teller is honest.

2.5 Notification and Verification

After a suitable delay we move to the notification phase: gri dual key is sent7 to
voter i over a private channel at a randomly chosen time during the notification
period. The voter raises this to her secret trapdoor key xi and finds the match
among the h

rj
j terms, so identifying her vote in the tally column.

2.6 Coercion Mitigation

Suppose a coercer instructs voter i to submit the vote v∗.8 Voter i identifies a
row in the tally that contains the pair (vk, h

rk
k ) s.t. vk = v∗. Using her trapdoor

key xi, she computes the fake dual key that when raised to xi will match this

row (hrk
k )x

−1
i .

As with Selene, care has to be taken in designing the notification channel
to avoid a coercer being able to observe the notification of the real dual key. In
contexts in which we anticipate extreme coercion, where for example the coercer
demands access to the channel, coerced voters could be provided with means to
request a fake dual key be sent over the channel instead of the real one.

We note that the vote casting method presented here is not fully coercion-
resistant, but is software-dependent receipt-free, i.e. like Helios [1] would rely
on the vote-casting device or app not leaking the randomness used in the vote
encryption. However, Hyperion can be combined with different forms of vote-
casting to achieve better receipt-freeness e.g. using the BeleniosRF construction,
[9]. Also, better coercion-resistance can be achieved providing protection against
a coercer even trying to vote on behalf of the coerced voter, e.g. by holding the
signing key, for example using JCJ style credentials [24], see [22] but at the cost
of an interactive vote verification.

are multiplied together to obtain {hri
i }pkEA

where
∑

j ri,j = ri. Each Teller then
keeps gri,j .

7 With multiple Tally Tellers, TTj can send gri,j to the voter or they can be collected
and sent to the voter under encryption of hi.

8 This presumes that some votes v∗ are cast by other voters otherwise it will, in any
case, be evident that voter i did not cast v∗. For techniques to deal with the situation
of unpopular candidates, see [23, 31].



8 Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

2.7 Dispute Resolution

It is possible when verifying that a voter either fails to find the matching term
or finds it but the associated vote does not match the vote they cast. The voter
should notify this to the appropriate authority for the matter to be investigated.

Possible causes:

1. The voter’s ballot was not correctly posted to the BB.
2. The voter’s device did not encrypt the correct vote.
3. The voter’s ballot was not correctly processed during the mixing and tallying.
4. The gri term was corrupted.

Regarding the first, we should remark that voters should be encouraged to check
the presence of their ballot on the BB before tallying starts, as with other E2E
V schemes. Early detection of such problems makes them easier to resolve, but
Hyperion (and indeed Selene) is less reliant than conventional E2E verifiable
schemes on such checks being performed diligently.

It is of course possible that a voter claims falsely to have found a problem
in which case we hit dispute resolution problems: it is not clear whether the
problem is with the system, the voter’s device or the voter, either lying or mis-
remembering. We will discuss mechanisms to resolve disputes in Section 7.4.

3 Hyperion Instantiation

We will here present the algorithms, EASetup, Setup, ValidCred, Vote, ValidBallot,
Tally, GetSecret, Publish, Verify, VerifyVote and VerifyBallot, which we will use in
security games, and how they are instantiated for Hyperion.

EASetup sets up the secure cyclic DH group (of prime order) (G, g) and
creates the threshold public and secret keys (pkEA, skEA). Setup uses the EA keys
to generate for each id a “unique” signing key pair (sk , pk ) along with the proof
of well-formedness; the voter also picks a random exponent xi and computes
hi := gxi along with Πxi

the proof of knowledge of xi bound non-malleably to
the voter id i. The previous algorithms should be randomized when generating
the keys. ValidCred outputs ⊤ if Πxi is valid, and ⊥ otherwise. Vote extracts hi

from pk and Πxi , encrypts the vote v with ElGamal encryption scheme using
pkEA, generates the proof of well-formedness and plaintext knowledge Πv which
is bound to the voter id i, and signs these elements using sk . It finally outputs
the signed elements along with the signature as a ballot blt and an empty state
st . ValidBallot verifies the correctness of the signature using pk and the validity
of Πv and Πx: if both verifications pass, then the function outputs ⊤, otherwise,
it outputs ⊥.

The Tally function has two main jobs, first computing the mix-net inputs
while updating the BB, and second inserting some computed values to the de-
cryption mix-nets and outputting the result along with the vote count. In its first
functionality, Tally extracts hi from BB, picks a random exponent ri for each
row i, computes hri

i , gri , internally stores gri , then, it computes the encryption
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{hri
i }pkEA

with the proof of knowledge of ri and correct encryptionΠTT
i and sends

({hri
i }pkEA

, ΠTT
i ) to BB. In the second functionality, the pair ({hri

i }pkEA
, {vi}pkEA

)

are put through the mix-net and decryption to output (h
rσi
σi , vσi , Πmix, Πdec) as

the final tally.
Further, GetSecret outputs gri . VerifyVote extracts hri

i from the bulletin
board, raises the input gri to the secret key input xi and outputs the equality
check. Publish outputs the verifiable mix and the decryption of (vi, h

ri
i ) along

with the BB.
Finally, Verify will verify all public evidence on BB, VerifyBallot will generally

verify that a ballot appears correctly on BB for a given voter, however in Hype-
rion this can often be relaxed to check that some valid ballot has appeared for
the given voter id which we denote VerifyVoted. In the privacy game we ignore
this and it will always output ⊤. By ρ we denote the election result function.

In our privacy games we choose ρ to compute the array of votes created by
extracting, from each element in the input array, the last submitted vote in the
concatenated sequence.

4 Ballot Privacy

In this section, we introduce the game-based definition of ballot privacy Ballot-Priv.
In this definition, we take into account voters having secret credentials sk i and
capture privacy leaks from verification, especially plaintext verification (as in
Hyperion, Selene and the Estonian e-voting system).

Even though ballot privacy is a fundamental property in secure voting, it
is hard to come up with a generic definition which supports standard proof
techniques and encompasses large classes of voting systems and tally functions. A
good overview of game-based definitions can be found in [5], which also concludes
with a privacy definition (BPRIV) for general tally functions. BPRIV is however
not directly applicable to the current context of post-tally verification. Instead
we take advantage of Hyperion having a simple tally function, namely revealing
all plaintext votes. This means we can use a much earlier definition as starting
point, namely Benaloh’s definition [4], which was rewritten in modern game-
based notation in [5].

Figure 1 is a rework of Benaloh’s definition, with inspiration from [12] and es-
pecially [16], allowing voters to hold secret key material and adding a verification
phase. This verification phase has the potential to introduce privacy attacks, if
the adversary has access to whether the verification was successful or not. This
is a realistic real-world scenario even without compromised parties since voters
might share a failed verification with others, perhaps even on social media.

For transparency and to detect wide-spread attacks such behaviour should
even be endorsed, and hence better not invalidate privacy.

We also want to model robust voting systems in which the voting process
proceeds even if individual verification fails (as would probably happen in larger
elections). In the case where a covert attacker model against privacy is preferred,
the definition can easily be updated to only let an adversary win the game
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if verification attempts are successful, which interestingly can still lead to an
information leak of the vote. In the Ballot-Priv definition, Figure 1, we assume
a trusted BB and secure channels between the voters and BB, meaning that
an honest ballot will arrive unchanged to BB. We also assume an initial setup
giving each voter a unique identity id i.

Game Ballot-Privb(A)
00 SK,PK, ST,V0,V1 ← [ ]⊥
01 HV,DV← {}
02 (pkEA, skEA)← EASetup()
03 stA ← A1(pkEA,PK)
04 b′ ← A2(stA)
05 Stop with b = b′

Oracle1 HonestSetup(id)
06 (sk , pk )← Setup(id , skEA, pkEA)
07 Promise ValidCred(id , pk , pkEA)
08 SK[id ]← sk ; PK[id ]← pk

09 HV ∪← {id}; DV
\← {id}

Oracle1 DishonestSetup(id , pk )
10 Require id /∈ HV
11 Require ValidCred(id , pk , pkEA)
12 PK[id ]← pk
13 DV ∪← {id}

Oracle2 LoR(id , v0, v1)
14 Require id ∈ HV
15 sk ← SK[id ]; pk ← PK[id ]
16 (blt , st)← Vote(pkEA, id , sk , pk , v

b)
17 Promise ValidBallot(BB, blt)

18 V0[id ]
q← v0; V1[id ]

q← v1

19 ST[id ]
q← st ; BB[id ]

q← blt

Oracle2 Tally()
20 Require ρ(V0) = ρ(V1)
21 Return Tally(BB, skEA, pkEA,PK)

Oracle2 VerifyVote(id)
22 Require id ∈ HV ∪DV
23 pk ← PK[id ]
24 s← GetSecret(id , pk , skEA, pkEA,BB)
25 if id ∈ DV then Return s
26 (r, π)← Tally() � scheme dependent
27 sk ← SK[id ]; st ← ST[id ]
28 Return VerifyVote(id , sk , st , s,BB, r, π)

Oracle2 Board()
29 BB′ ← Publish(BB)
30 Return BB′

Oracle2 Cast(id , blt)
31 Require id ∈ HV ∪DV
32 Require ValidBallot(BB, blt)

33 BB[id ]
q← blt

Oracle2 VerifyBlt(id)
34 Require id ∈ HV
35 sk ← SK[id ]; pk ← PK[id ]
36 st ← ST[id ]
37 Return VerifyBallot(id , st , sk , pk ,BB)

Fig. 1. The game-based security definition of Ballot Privacy. The adversary wins if
it distinguishes the left world from the right one, by guessing bit b. In line 16, the
Left-or-Right (LoR) oracle either inputs the left vote v0 or the right one v1 based on
the bit b. We divide our adversary into A1 and A2 in 03, 04 and assume that they
respectively have access to the oracles sub-indexed by 1 and 2.

First, in line 02, the EA prepares the master keys that are used to generate
the voters credentials (lines 06-09), to verify a voter’s credentials (lines 07, 11),
to allow the voting process (line 16), to tally the BB (line 21) and to allow the
generation of the voters’ verification secrets (line 24).

Lines 10-13 give the adversary the possibility to dynamically register dis-
honest credentials for some voters: lines 09 and 10 prevent the adversary from
registering a set of credentials as both honest and dishonest at the the same
time e.g. by calling HonestSetup on a specific id and then DishonestSetup on
the same id , causing the voter to be honest and dishonest at the same time.
Notice that, for a voter id ∈ ID, checks of honesty occur in lines 14, 25, 34.

Line 17 ensures that the ballots created in the left or right voting oracle are
well-formed. Notice that in lines 18-19, the elements are concatenated to the
history: this provides more generality then just overwriting the previous value
using the← operator to accommodate elections that take into consideration the
whole history of vote submissions.
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In line 20, the ρ function guarantees that both V0 and V1 have the same
count: this preventsA from trivially winning by querying LoR(v0, v1), LoR(v0, v0)
and then querying Tally(). Additionally, A is capable of querying the ballot cast-
ing oracle (31-33), the board publishing oracle (29-30), the ballot verification
oracle (34-37) and the vote verification oracle (22-28). The ballot verification or-
acle and the vote verification oracle, both, can provide the adversary with extra
information about the honest and dishonest voters (secret s and/or verification
output).
We define the advantage of the adversary AdvBallot-Priv

A := |Pr[Ballot-Priv0(A)]−
Pr[Ballot-Priv1(A)]|. The generality of this type of Benaloh definition is lim-
ited to certain types of result functions, see [11], which however is fulfilled
for Hyperion where we output all votes after mixing. Especially, we notice
that, a necessary condition on ρ is that it should fulfill the following relation
ρ(V0) = ρ(V1) =⇒ ρ(V0 q V′) = ρ(V1 q V′). Probably the definition could be
extended to general cases, with an assumption of extraction properties of the
ballots.

Theorem 1. For all A playing Ballot-Priv (Fig. 1 instantiated with Hyperion,
there exists adversaries B, C, D, E, F such that the following relation holds:

AdvBallot-Priv
A ≤ AdvZKB + AdvEUF−CMA

C + AdvMix
D + AdvZK

′

E + Advpoly-IND-1-CCA
F

Further, in the long version [14] we also prove that our scheme satisfies
du-mb-BPRIV against a malicious board from [12, 16]:

Theorem 2. For all A playing du-mb-BPRIV [16] instantiated with Hyperion,
there exists adversaries B, D, D′, E, F such that the following relation holds:

Advdu-mb-BPRIV
A ≤ AdvZKB + AdvMix

D + AdvMix
D′ + AdvZK

′

E + Advpoly-IND-1-CCA
F

The main difference for the bounding is that du-mb-BPRIV does not capture
attacks for the verification success seen as a side-channel to the adversary, and
hence the ballot signatures are not necessary.

4.1 Proof of Ballot Privacy

We now prove that our scheme meets Ballot-Priv property. In order to do so,
we instantiate the algorithms as described in section 3. We use game hopping
technique to bound the adversary advantage. Since oracles can be called multiple
times by the adversary, we will suppress pre-factors in the advantage bounds.
We note by G0 the instantiated Ballot-Priv game: AdvBallot-Priv

A = AdvG0

A .
In the first game hop, we remove line 07 in G1. In fact under the assump-

tion stated in Section 2.2 we have that line 07 will always pass, and thus
AdvG0

A = AdvG1

A .
In G2, by the zero knowledge property, the proofs Πx and Πri are simulated for
honest voters. This is possible since these proofs are created by the challenger.
Now, the adversary cannot extract any information from the simulated proofs
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and AdvG1

A ≤ AdvG2

A +AdvZKB (AdvZKB is the advantage of B to distinguish simu-
lation from real proofs).
In game G3, we modify line 31 to require id ∈ DV only. In this case, because of
the requirement in 32, when casting a ballot for an honest voter, the adversary
has to be capable of forging a valid signature for the honest voter. If the signature
scheme is existentially unforgeable, we have AdvG2

A ≤ AdvG3

A + AdvEUF−CMA
C .

In the fourth game G4, we replace the verification step on line 28 to always out-
put success. Because our scheme is correct, and since the adversary is not capable
of submitting ballots on behalf of honest voters, then we have AdvG3

A = AdvG4

A .
In game G5, we modify line 21 in the tally oracle: rather than picking ri at
random for each voter and computing hri

i then encrypting the computed value,
we sample a uniformly random group element gi and then encrypt it. Since we
are working in a cyclic group of prime order, then the distributions of gi and hri

i

are exactly the same for all registered voters i, thus AdvG4

A = AdvG5

A . 9

In the next game G6, we modify again line 21, by replace the secure mix-net by
its ideal functionality. We thus have AdvG5

A ≤ AdvG6

A + AdvMix
D .10

In G7, analogously to G2, we simulate the decryption proofs Πdec for all the
ciphertexts output by the mix-net. Further, for the honest voters, the decryp-
tion values for the plaintext votes are taken from the calls to the LoR oracle.
Due to the correctness of the encryption scheme, the adversary’s advantage is

AdvG6

A ≤ AdvG7

A + AdvZK
′

E .
In the final game hop, we require that the mix-nets in G8 output the honest votes
(taken from the LoR oracle) concatenated with the decryption of the dishonest
votes. The views in the left world and the right world should be the same, thus
we require the decryption mix to output ρ(Vb) concatenated with the dishonest
votes. We have that AdvG8

A = AdvG7

A .

Finally, we argue that the advantage of the final game is exactly Advpoly-IND-1-CCA
F

in poly-IND-1-CCA since we can remove all simulated proofs. The label is the id
of the voters. We assume that the the encryption scheme with the non-malleable
proofs of plaintext knowledge including the id satisfy poly-IND-1-CCA security.
We conclude the following:

AdvBallot-Priv
A ≤ AdvZKB + AdvEUF−CMA

C + AdvMix
D + AdvZK

′

E + Advpoly-IND-1-CCA
F

5 Integrity

5.1 Correctness

We first note that the scheme satisfies correctness in the sense that if the voting
protocol is run honestly, the tally will give the correct result on the intended votes

9 We can allow the adversary to have the dual key gri for all voters in line 28 and
still prove security of the scheme under the DDH assumptions: hi := gxi adversary
cannot distinguish (gxi , gri , gxi·ri) and (gxi , gri , gi).

10 Alternatively, we could model the mix-net as a re-encryption mix with a NIZKP,
and use IND-CPA of the encryptions of gi to ignore these ciphertexts.
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and all voters will verify correctly. This assumes correctness of the underlying
zero-knowledge proofs, signatures, mix-net and correctness of the encryption
scheme. This could be relaxed to non-perfect correctness if needed.

5.2 Verifiability

For an overview of verifiability definitions see [11], especially we will use the
definition in [10]. This is because the specific voting-casting construction that
we instantiate Hyperion with here is close to Helios-C (i.e. Helios with signatures)
presented and proven verifiable in [10].

The election schemes in [10] are defined via algorithms Setup = EASetup,
Credential = Setup, Vote, VerifyVoteCGGI, Validate = ValidBallot, Tally, Verify,
where we have indicated by which algorithms they correspond to in our scheme,
see Sec. 3. Verify will simply check all proofs on BB. The main difference is in
VerifyVote: in Helios-like constructions this corresponds to checking that your
actual ballot blt has appeared on BB. Here, it corresponds to performing the
Hyperion verification and will involve getting the dual key from the EA. Since
we will define security against a malicious BB, we further need that the voters
check that a valid vote was registered under their id , but without having to
check which specific cryptographic ballot is recorded (for improved usability).
We denote this VerifyVoted. As in [10] we consider schemes without vote updates
for simplicity.

In [10] combined individual and universal verifiability is defined against a
malicious BB. This means the board is completely malicious up until the Tally,
where it will be output by the adversary, and there will be a unified view of BB.
This also models that vote casting channels might not be secure. The definition
is via a game ExpverbA for which the adversary has negligible chance in creating
a valid BB and tally where it is not true that 1) the vote count will contain the
honest verifying voters’ votes, 2) for the non-verifying honest voters their votes
can maximally be deleted, and 3) there is maximally one vote per corrupted voter
in the tally. To count this it is assumed that the result function ρ allows partial
tally. The main assumption is that the Registration Authority is honest i.e.
signing keys are setup honestly and not leaked and are existentially unforgeable,
EUF-CMA. This will also hold for Hyperion.

Theorem 3. Hyperion will satisfy Verifiability against a dishonest bulletin board
[10] if the signing keys are not leaked, the signature scheme is EUF-CMA and
the ballot verification is via VerifyVoted, i.e. the voter only checks if a valid vote
was cast.

The proof follows as for Helios-C, however, we use mix-nets instead of homo-
morphic tally, which still ensures one-vote per voter due to the soundness of the
mixes. Also, we can replace VerifyVoteCGGI with VerifyVoted since the adversary
cannot forge a signature.11

11 Since we are in a single pass setting this is particularly simple. With vote updates
more care needs to be taken. Either we need to assume an append only board or that
a vote update number is included in the signature and remembered by the voter.
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However, this did not take into account the actual Hyperion verification check
which also allows a voter to verify if the vote intent was captured directly in the
tally. We now extend the verifiability definition to fully incorporate this. The
main point will be that an honest checking voter can rely on her vote being
counted correctly if either her signing key or Hyperion secret key is not com-
promised. In particular, we get a resistance against malware if we have separate
devices for vote casting (containing the signing key) and vote verification (con-
taining the Hyperion key), and not both devices are corrupted.

We now introduce a verifiability definition against a malicious voting bulletin
board in the presence of malware with separate vote casting and vote verification
devices. We stress that in the definition it is only the vote casting part of the
bulletin board which is determined by the adversary, the registered public keys
cannot be altered for honest devices.12

The security is defined via the experiment Verif-MBM in Fig. 2, where the
advantage of the adversary is AdvVerif-MBM

A = Pr[Verif-MBM(A) = 1] The ma-
licious bulletin board and corrupted authorities are modeled by the adversary
outputting the bulletin board as well as the tally result and proofs in line 05. Hc

and Dc respectively denote the voter IDs with honest and corrupted vote cast-
ing devices which have registered public verification keys and hence constitute
the eligible voters. Correspondingly, Hv and Dv are the voter IDs with honest
and corrupted vote verification devices. We split the algorithm Setup into a part
for the signing key and for the verification key denoted respectively Setupc and
Setupv, and we do the same split for the ValidCred algorithm.

Vi denotes the set of voters intending to vote and Vi captures their intended
vote, with V the allowed vote space. VChkd denotes the voters who make success-
ful verification checks. Failing checks would lead to complaints and the adversary
loses the game. As in [10], the set of voters who are going to check can be input
to the game to capture that not all voters verify. For simplicity we assume only
voters with a vote intention will try to verify. Those who check will try to do
both VerifyVote and VerifyBallot which we here simplify to VerifyVoted.13

We assume VerifyVoted is unaffected by malware since it just requires access
to BB (and could be delegated). For VerifyVote, if the voter’s verification device
is corrupted, or the voter is not registered for verification, the check will be
assumed successful.

For uncorrupted devices, since EA is corrupted, the adversary can choose
which dual key the voter receives. We do not need a corrupted category since
if both devices are corrupted and the voter does not perform verifications then
the voter is completely controlled by the adversary. A stronger version can let
the adversary choose the election setup, but here it is honestly created.

12 In practice this can be secured in a full malicious board setting by forwarding the
public keys to proxies at registration time, who will check later that these appear
correctly.

13 The definition can use VerifyBallot by defining which part of the voter state the
adversary can control.
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Game Verif-MBM(A)
00 SKc,PKc ← [ ]⊥
01 SKv,PKv, ST,V← [ ]⊥
02 Hc,Dc,Hv,Dv,Vi ← {}
03 (pkEA, skEA)← EASetup()
04 stA ← A1(pkEA,PK)
05 (BB, r, π, stA)← A2(stA)
06 Require Verify(BB, r, π)
07 for id ∈ VChkd ∩ Vi
08 Require VerifyVoted(id ,BB)
09 if id ∈ Hv then:
10 sk ← SKv[id ], s← A3(stA)
11 v ← V[id ]
12 Require VerifyVote(id , sk , v, s,BB, r, π)
13 Require r = ⊤
14 M← VChkd ∩ (Hc ∪Hv)
15 a← |VChkd ∩ Dv|
16 b← |Dc \ (VChkd ∩Hv)|
17 Require
18 ∃n ∈ {a, . . . , b}
19 ∃v1, . . . , vn ∈ V � vote set
20 ∃S ⊆ (Vi \ VChkd) ∩Hc

21 s.t. r= ρ([V[j]]j∈S) ⋆ ρ([vj ]
n
j=1) ⋆ ρ([V[j]]j∈M)

22 Stop with ⊤

Oracle1 HonestCastSetup(id)
23 Require id /∈ Dc

24 (sk , pk )← Setupc(id , pkEA)
25 Promise ValidCredc(id , pk , pkEA)
26 SKc[id ]← sk ; PKc[id ]← pk
27 Hc

∪← {id}

Oracle1 DishonestCastSetup(id , pk )
28 Require id /∈ Hc

29 Require ValidCredc(id , pk , pkEA)
30 PKc[id ]← pk
31 Dc

∪← {id}

Oracle1 HonestVerSetup(id)
32 Require id /∈ Dv

33 (sk , pk )← Setupv(id , pkEA)
34 Promise ValidCredv(id , pk , pkEA)
35 SKv[id ]← sk ; PKv[id ]← pk
36 Hv

∪← {id}

Oracle1 DishonestVerSetup(id , pk )
37 Require id /∈ Hv

38 Require ValidCredv(id , pk , pkEA)
39 PKv[id ]← pk
40 Dv

∪← {id}

Oracle2 Vote(id , v)
41 Require id ∈ Hc ∪ Dc

42 Vi ∪← {id}; V[id ]← v
43 if id ∈ Hc then
44 sk ← SK[id ]; pk ← PK[id ]
45 (blt , st)← Vote(pkEA, id , sk , pk , v)
46 ST[id ]← st
47 Return blt

Fig. 2. The game-based definition of verifiability against a malicious voting board and
malware. The indices on the oracles denote which adversary can use them. We use
sub-index v to denote verify, c for cast and i for intended.

Note that this definition does not capture the probability of detecting the
presence of malware, but the guarantee given to a successfully verifying voter
and what votes the adversary can choose for the rest. In particular, the adversary
will win if he can output a valid BB and tally and manages to either 1) change
the vote of a voter who has at least one honest device and who verified (line
14), or 2) for voters with honest vote casting devices, he manages to stuff votes
or change a cast vote in another way than simply deleting it (line 20), or 3) for
the remaining eligible voters can cast more than one vote per voter (line 18).
The lower bound on votes in the last category comes from the voters with both
devices being corrupted, and who are successfully verifying, will know that some
vote arrived on their behalf, but not which plaintext vote it contains. Finally, in
line 21 the ⋆ denotes the combination of partial tallies in the result function ρ.

The verifiability of Hyperion relies on the computational 1-Diffie-Hellman
Inversion Problem (1-DHI) [27] for a cyclic prime order group of order q and
generator (G, g).

Definition 1 (Computational 1-DHI). Given gx ∈ G with x ↞ Zq compute

g1/x. Under the 1-DHI assumption the advantage Adv1−DHI
A

= Pr[x ↞ Zq : g1/x = A(gx)] is negligible for all PPT algorithms.
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If we use ballot verification VerifyBallot via VerifyVoted, i.e. the voter only checks
if a valid vote was cast, then we have the following theorem

Theorem 4. With EUF-CMA signatures, sound mix-nets, encryption correct-
ness, simulation-sound extractability [19, 6] for the proofs of knowledge and under
the 1-DHI assumption, the advantage in verifiability against a malicious BB and
malware, AdvVerif-MBM

A is negligible.

The proof can be found in App. B.

6 Conclusion

We present a new end-to-end verifiable scheme, inspired by the Selene tracker
based scheme, that provides a similar, highly transparent, intuitive way for vot-
ers to verify their vote: by identifying their vote in cleartext in the tally. Our
new construction however allows us to achieve this without the need for trackers
and allows us to neatly avoid the tracker collision problem that undermined the
Selene scheme. The collision threat however could re-emerge as collision of com-
mitments rather than trackers. This prompts and enables a further innovation,
described in the full version of this paper: the idea of individual voter views, that
entirely avoids the collision threat of Selene and should afford voters a greater
sense of privacy. Voters should feel more comfortable with Hyperion as it does
not involve the public posting of all the tracker numbers paired with the votes.

While we do not advocate the use of Hyperion for high-stakes elections, we
do believe that it is well suited to many less critical contexts. The transparency
of the verification and the underlying simplicity of the constructions should be
appealing to many stakeholders: the voters, the election officials, the candidates
etc. The individual views version introduces some additional computation and
complexity, but is efficient for small elections, and in any case could be done on
demand when a voter seeks to verify their vote.

We have proven that the system satisfies ballot privacy and verifiability, the
latter even under partial malware corruption of the voters’ vote casting and
verification devices. In the full version, [14], we sketch how the Hyperion scheme
can be made everlasting private, see lso [26], or post-quantum secure. We also
outline some possible variants of the core scheme, including the individual BB
views, the re-introduction of trackers and the use of return or confirmation codes
to address dispute resolution.

Future work will include full analysis of the current scheme and detailing the
variants and formally proving them. We will also perform focus groups and user
trials to gauge user response and preferences amongst the variants and w.r.t. to
Selene.
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A Implementation

We implement and instantiate Hyperion 14 in Python, using the GNU Multiple
Precision Arithmetic library, and evaluate its performance on a server equipped
with a 32 core AMD EPYC 7302P CPU clocked at 3 GHz and 256 gigabytes of
RAM. The implementation is parameterized by the P-256 curve. An implemen-
tation of a Terelius-Wikström mixnet [35, 20] was employed for parallel shuffling
in the tallying phase. Analogously, we also implement and instantiate Selene15

in order to compare the performance of both schemes; these measurements are
provided in App. E of [14]. Table 1 presents measurements collected during the

Phase N = 1000 N = 10000 N = 100000

Setup 0.0004s 0.0005s 0.0005s
Voting 0.0085s 0.0090s 0.0160s
Tallying (Mix) 42.205s 1541.62s 6886.90s
Tallying (Decrypt) 5.4640s 33.889s 1092.32s
Coercion-Mitigation 0.0008s 0.0008s 0.0007s
Individual Views 14.091s 256.72s 3498.16s

Table 1. Execution times of each phase of the Hyperion scheme in seconds.

course of 3 trial runs of the Hyperion scheme for 1000 voters, 10000 voters, and
100000 voters. We comment that though this is a prototype implementation,
the mixnet code has been parallelised to run faster on multi-core systems. The
explicit ZKPs employed in our implementation can be found in [14].

B Proof of Verifiability, Theorem 4

We here give a short proof, the finite advantage bound can easily be inferred. The
proof is done without reference to whether a CRS or RO setup is used. By line
06 and 13 in Fig. 2 we can assume that the adversary outputs a valid BB with
a result and valid proof. Since the mix-net proofs validate, by the soundness of
the mix-net proofs, decryption proofs and correctness of the encryption scheme,

14 https://github.com/hyperion-voting/hyperion
15 https://github.com/hyperion-voting/selene
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we have that the resulting multiset of votes are equal to the plaintext inputs.
For honestly cast ballots we have correctness and they will validate if added to
BB. Also, honestly generated key will validate. All votes will be in the correct
vote space, this can either be directly checked after decryption or derived from
the soundness of the ballot proof of well-formedness.

For all voters in Hc we have valid signatures if they cast votes and by EUF-
CMA the adversary cannot forge any signature. Hence for Hc no votes can be
stuffed and cast votes can never be altered, only deleted. Thus for successfully
checking voters with honest vote casting device, VChkd ∩ Hc, all votes has to
appear unaltered (remember VChkd ⊆ Vi i.e. the checking voters are part of the
voters intending to vote), this proves the VChkd ∩ Hc part of line 14. For the
remaining cast votes from voters in (Vi \ VChkd) ∩ Hc the adversary can choose
which to delete, ensuring line 20.

We can now consider the voters with a malicious vote-casting device Dc. If
these voters are not checking, we have no guarantees. If they check and have a
corrupted verification device, then there has to be a ballot for their id due to
VerifyVoted, however there is no guarantee which vote it contains. This explains
the lower bound on the number of maliciously created ballots in line 18.

Finally, we need to consider voters successfully verifying with an uncorrupted
verification device. We want to show that they will be able to verify their plain-
text vote, hence proving the VChkd ∩Hv part of line 14 and the upper bound in
line 18. We first simulate the ZKPoKs of xi for the honestly registered Hyperion
keys hi = gxi .

We will give a proof by contradiction, i.e. we assume that a voter in VChkd∩Hv

will get pointed to another vote than her intended vote by the Hyperion verifi-
cation with some non-negligible advantage AdvA. We will use this to create an
adversary against computations 1-DHI. To this end, we take a 1-DHI challenge
gx and use this as the key for a random voter in VChkd ∩ Hv with a simulated
proof. Since the key gx is indistinguishable from random this voter will be tar-
geted by the attack with probability at least 1/|VChkd ∩Hv|.

For all the voters with corrupted casting devices, we now extract their secret
keys xi from the ZKPoKs using the simulation sound extractability (for the
honest verification devices, we know their secret keys). Let α denote the dual
key term sent by the adversary to the voter. By the soundness of the ZKPoK
for the encryption of the elements hri

i , the soundness of the mix-net and the
correctness of the encryption, the output commitments are all of the form hri

i .
We further extract all ris from the ZKPoKs. If the voter gets pointed to

another vote we have that αx = hri
i = gxiri for some i with xi ̸= x. We don’t

know which i this is, but we guess at random between the k choices. Hence we
can compute α1/(xiri) which will be equal g1/x with a non-negligible probabil-
ity AdvA/(|VChkd ∩ Hv| · k) breaking the computational 1-DHI assumption and
concluding the proof.


