Future Generation Computer Systems 177 (2026) 108240

FiBICIS!

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs e

)
Semantic drift evaluation in language and data-specific digital twin

frameworks

Faima Abbasi ¥ #P* Cédric Pruski

2 Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, Esch-sur-Alzette, L-4362, Luxembourg
b FSTM, University of Luxembourg, 2 Av de U'Universite, Esch-sur-Alzette, L-4365, Luxembourg

a, Jean-Sébastien Sottet 22

ARTICLE INFO ABSTRACT

Editor: Prof. Michela Taufer Digital Twin (DT) technology is a key enabler of Industry 4.0, integrating diverse digital models to optimize
processes, enhance decisions, and support predictive maintenance. However, as physical systems evolve, delays
in synchronization can cause semantic drift, leading to discrepancies between digital and real-world entities.
Effective semantic drift management needs DT frameworks that support all modeling layers, i.e., data, model,
metamodel, and ontology, and provide different model management mechanisms. In this paper, we make three
key contributions. First, we define a comprehensive set of requirements to address semantic drift effectively,
drawing on both our understanding of the phenomenon and a real-world use case on mobility. These require-
ments capture the essential characteristics needed to maintain synchronization between the digital and physical
domains as systems evolve. Second, we introduce a set of metrics designed to evaluate the ability of DT plat-
forms to tackle semantic drift, grounded in both the defined requirements and insights of the use-case. Finally,
we apply these metrics to evaluate four existing DT platforms demonstrating their utility for identifying the lim-
itations of current frameworks in handling semantic drift. Through this evaluation, we highlight the strengths

Keywords:
Digital twins
Semantic drift
Digital models

and weaknesses of these platforms, providing a foundation for future improvements in DT infrastructure.

1. Introduction

The DT concept, central to Industry 4.0, represents a dynamic in-
terface between physical and virtual entities, encompassing all prod-
uct attributes and behaviors [1]. A fundamental three-dimensional DT
application consists of three constructs: (i) physical element, (ii) vir-
tual element, and (iii) bi-directional data flow. The virtual element in-
tegrates heterogeneous models, including (i) physics-based, (ii) geomet-
ric, (iii) behavioral, and (iv) machine-learning models. Recent advance-
ments extend this model by incorporating DT data and services [2]. DT
processes multi-temporal, multi-dimensional, multi-source, and hetero-
geneous data. Services, under the everything-as-a-service (XaaS) model,
are central to DT, enabling applications like simulation, monitoring, op-
timization, and health management, while relying on third-party ser-
vices for data, algorithms, and ongoing platform support for software
and model development. DTs are crucial throughout a system’s life cycle,
enabling optimization, monitoring, and diagnostics. However, integrat-
ing heterogeneous digital models from diverse stakeholders is challeng-
ing due to differences in semantics, schema, and syntax. With internet
of things (IoT), big data, and cloud computing, DTs enhance industrial
and scientific systems [2]. DTs harness semantic technologies, i.e., on-

* Corresponding author.

tologies, knowledge graphs, natural language processing, and semantic
web standards, to ensure interoperability and unified system represen-
tation. However, they are prone to semantic drift, arising from evolving
environments, data inaccuracies, and modeling limitations, disrupting
alignment between virtual models and the real world. Semantic drift has
been observed in various fields: (i) machine learning [3], (ii) software
architecture [4], and (iii) semantic web [5] and (iv) model-driven engi-
neering [6], but has yet to be extensively explored in DTs. Addressing
semantic drift in DT involves: (i) identifying changes, (ii) characteriz-
ing their nature, (iii) maintaining consistency across digital models, and
(iv) propagating updates across digital models and interconnected com-
ponents. Robust DT frameworks must effectively manage these phases
across different modelling layers, i,e., data, models, metamodels and on-
tologies, to sustain system and DT integrity. This can be done through
model management mechanisms such as migration, versioning, evolu-
tion and traceability. Collaboration between DT frameworks and mod-
elling experts, managing vertical and horizontal inconsistencies, and se-
curing data are key to manage semantic drift in DTs [7].

This work explores semantic drift in model-driven DTs, considering
diverse models, metamodels, and ontologies across modeling layers. We
introduce a mobility data model for DT setup and evaluate language and

E-mail addresses: faima.abbasi@list.lu (F. Abbasi), cedric.pruski@list.lu (C. Pruski), jean-sebastien.sottet@list.lu (J.-S. Sottet).

https://doi.org/10.1016/j.future.2025.108240

Received 9 January 2025; Received in revised form 30 October 2025; Accepted 1 November 2025

Available online 8 November 2025

0167-739X/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).


https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0009-0001-7484-9256

$\mathcal {S}$


$\mathcal {T}$


$\mathcal {S}$


$\mathcal {T}$


$\overset {\mu }{\Leftrightarrow }$


$\Phi $


$\mathcal {S}_{[{0,t}]}$


$\overset {\mu }{\Leftrightarrow }$


$\mathcal {T}_{[{0,t}]}$


$\mathcal {S}_{[t+1,t+m]}$


$\overset {\Delta \mu }{\Leftrightarrow }$


$\mathcal {T}_{[t+1,t+m]}$


$\Delta \mu $


$\mathcal {S}$


$\mathcal {T}$


$\Phi $


$\mathcal {S}$


$\mathcal {T}$


$\mathcal {T}$


$\mathcal {T}$


$\mathcal {S}$


$\mathcal {I}$


$\mathcal {H}$


$\textbf {E}$


$\textbf {P}$


$\textbf {R}$


$\textbf {E}$


$\textbf {P}$


$\textbf {R}$


$\mathcal {I}_{[{0,t}]}$


$\overset {\eta }{\Leftrightarrow }$


$\mathcal {H}_{[{0,t}]}$


$\mathcal {H}$


$_{[{0,1}]}$


$\neq $


$\mathcal {H}$


$_{[t+1,t+m]}$


$\mathcal {I}$


$\mathcal {I}_{[{0,t}]}$


$\overset {\eta }{\Leftrightarrow }$


$\mathcal {H}_{[{0,t}]}$


$\mathcal {I}_{[t+1,t+m]}$


$\overset {\Delta \eta }{\Leftrightarrow }$


$\mathcal {H} _{[t+1,t+m]}$


$\Delta \eta $


$\mathcal {S}$


$\mathcal {T}$


$\mathcal {S}$


$\mathcal {I}$


$\mathcal {H}$


$\mathcal {O}$


$\textbf {C}$


$\textbf {R}$


$\textbf {I}$


$\textbf {A}$


$\textbf {C}$


$\textbf {R}$


$\textbf {I}$


$\textbf {A}$


$\mathcal {I}$


$_{[{0,t}]}$


$\mathcal {H}$


$_{[{0,t}]}$


$\overset {\eta }{\Leftrightarrow }$


$\mathcal {O}$


$_{[{0,t}]}$


$\mathcal {O}$


$_{[{0,1}]}$


$\neq $


$\mathcal {O}$


$_{[t+1,\infty ]}$


$\mathcal {I}$


$_{[{0,t}]}$


$\mathcal {H}$


$_{[{0,t}]}$


$\overset {\eta }{\Leftrightarrow }$


$\mathcal {O}$


$_{[{0,t}]}$


$\mathcal {I}$


$_{[t+1,t+m]}$


$\mathcal {H}$


$_{[t+1,t+m]}$


$\overset {\Delta \eta }{\Leftrightarrow }$


$\mathcal {O}$


$_{[t+1,t+m]}$


$\Delta \eta $


$\Phi $


$\mathcal {Y}$


$\mathcal {Y}$


$\textbf {m} \mathcal {X}+ \textbf {b} +\epsilon $


$\mathcal {X}$


$\textbf {m}$


$\textbf {b}$


$\epsilon $


$\textbf {m}$


$\mathcal {T}$


$\mathcal {S}$

https://orcid.org/0000-0002-2103-0431
https://orcid.org/0000-0002-3071-6371
mailto:faima.abbasi@list.lu
mailto:cedric.pruski@list.lu
mailto:jean-sebastien.sottet@list.lu
https://doi.org/10.1016/j.future.2025.108240
https://doi.org/10.1016/j.future.2025.108240
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.108240&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

F. Abbasi et al.

data-specific frameworks based on their capacity to identify, character-
ize, and provide any kind of semantic drift support through experiments in
diverse scenarios. We focus on answering the following research ques-
tions:

RQ1 What are essential requirements for DT frameworks to address and
manage semantic drift?

RQ2 What metrics are used to evaluate the capability of DT frameworks
for addressing and managing semantic drift?

RQ3 How do language and data-specific DT frameworks offer robust
support for addressing and managing semantic drift?

We summarize our contributions as follows:

1. We elicit key requirements for identifying, characterizing, and manag-
ing semantic drift, based on a detailed analysis of the phenomenon
and a practical mobility use case with prototypical scenarios.

2. We propose robust metrics, grounded in elicited requirements, to
evaluate DT frameworks’ ability to address semantic drift.

3. We employ these metrics to rigorously assess language and data-
specific DT frameworks, highlighting their limitations in managing
semantic drift.

This paper covers: (i) related work in Section 2, (ii) semantic drift and
preliminaries in Section 3, (iii) requirements and a mobility use case in
Section 4, and (iv) DT framework evaluation metrics, setup, and valida-
tion in Sections 5-7, followed by discussion and conclusion in Sections 8
and 9.

2. Related work

This section explores how incorporating linked data into model-
driven engineering (MDE) mitigates semantic drift in DTs. We high-
light key research contributions in DT evolution and maintenance across
three research areas: (i) data management, (ii) model-driven concepts
and (iii) linked data technologies.

2.1. Data management

Integrating IoT with DTs enables real-time monitoring, predictive
maintenance, and smarter decisions. Effective data management ensures
DTs stay synchronized with physical systems through continuous IoT
streams. Key aspects of data management include [8]: (i) integration
of diverse data sources, (ii) quality assurance, (iii) scalability, and (iv)
security/privacy. Despite these advances, a major challenge, i.e., data
drift, persist, which involves changes in data properties that reduce
model accuracy and DT reliability. In IoT systems, data drift occurs
due to sensor degradation, environmental changes, or operations, un-
dermines DT accuracy. Classification of data drift is given in [9], while
formal definitions are provided in [7]. Recent studies propose advanced
methods to detect and mitigate some variants of drift in DTs. Armijo et
al. [10] use IoT-enabled monitoring and machine learning to detect and
mitigate structural drift and adapt DTs in real time, enhancing health
diagnostics. Hasan et al. [11] introduce a GAN-based feature drift de-
tector for sensor data. For label drift, Tian et al. [12] propose a con-
tinuous learning approach, while Wu et al. [13] address concept drift
using a dynamic ensembling framework. Together, these approaches
improve DT accuracy, fault detection, and adaptability in evolving
environments.

2.2. Model-driven concepts

MDE provides a structured foundation for DT evolution and main-
tenance. This subsection outlines key concepts: (i) model management,
(i) consistency management, and (iii) modeling paradigms, to address
semantic drift in model-driven DTs.

Future Generation Computer Systems 177 (2026) 108240

2.2.1. Model management

In DT ecosystems, effective model management ensures synchroniza-
tion and integrity between DTs and their physical counterparts. DT rely
on models that mirror their physical counterparts, anchored by meta-
models defining their structure and semantics. As DTs evolve, coordi-
nated model and metamodel co-evolution is essential. Effective model
management ensures seamless migration, versioning, traceability, and
automated runtime updates, enabling adaptive and reliable DT main-
tenance [14]. Studies use (i) machine learning [15], (ii) simulations
[15,16], and (iii) federated learning [17] to emphasize the need for DT
model management and evolution, ensuring adaptability, real-time ac-
curacy, and autonomous decisions. TwinLab integrates ML and simula-
tion to enable fast, accurate ROMs [15]; DarTwin applies MDE for modu-
lar DT evolution [16]; and Sun et al. address scalable model training via
federated learning [17]. Metamodels provide the structural and seman-
tic backbone of domain models, evolving iteratively to ensure accuracy
and adaptability. However, metamodel evolution in model-driven DTs
remains underexplored. Lehner et al. [18] address this by introducing
a hierarchical model for consistent schema propagation across types,
properties, and instances. Their fluent API enables runtime modifica-
tions, integrated into a model management framework with an evolu-
tion engine supporting migration, versioning, and data handling, en-
hancing automation and preserving data integrity throughout the DT
lifecycle.

2.2.2. Consistency management

Consistency management ensures alignment, correctness, and coher-
ence between DT models, instances, and their physical counterparts as
they evolve. However, few studies offer robust solutions to address chal-
lenges like data drift, latency, and structural change. Muctadir et al. [19]
propose a graph-based framework utilizing Neo4j and Cypher to man-
age inter-model consistency through unified data storage and rule-based
validation. Validated on autonomous truck docking and Xtext grammar
case studies, the approach effectively addresses heterogeneity and dy-
namic model evolution. In a complementary study, Muctadir et al. [20]
further extend this by ensuring coherence among heterogeneous models
at the same abstraction level. Their method, grounded in MDE princi-
ples, leverages structured model relations and automated validation to
unify DTs and MDE, enhancing cross-domain synchronization and con-
sistency management.

2.2.3. Modeling paradigms

Advanced modeling paradigms, i.e., (i) multi-level, (ii) multi-view,
and (iii) mega-modeling, provide scalable, structured frameworks to
represent complex systems across varying abstractions and semantic
dimensions. Multi-level modeling structures systems across hierarchi-
cal abstraction layers, enabling scalable and semantically rich DT evo-
lution [21]. Liu et al. [22] address proposed an evolutionary con-
current modeling method that captures the semantic, temporal, and
feature-level dynamics of DT processes. Their multi-layered structure
allows independent yet synchronized evolution, ensuring consistency
and adaptability across layers. This promotes efficient co-evolution and
real-time responsiveness. Multi-view modeling creates distinct views fo-
cusing on specific system aspects, exemplified by HoloWoT, which in-
tegrates mixed reality and IoT for dynamic, context-aware DT inter-
faces [23]. A mega-modelling paradigm offers an integrated, multi-
domain view of a system, unifying diverse models, abstraction levels,
and dependencies into a cohesive, synchronized structure. Bucaioni et
al. [24] present an MDE framework for federated DTs in industrial
systems, focusing on integration, validation, and lifecycle continuity.
Combining multi-view modeling, model weaving, and mega-modeling,
it ensures traceability and interoperability between digital models and
shadows. Using UML/SysML and domain specific languages (DSL), the
framework supports automated validation, prediction, and adaptive
evolution.



F. Abbasi et al.

Table 1
Nomenclature.

NOTATION DESCRIPTION

[0,t], [t+1,t+m] Time interval, where {7 | € N}

S System or Physical Element

T Twin or Virtual Element

Ap, An Semantic Drifts

o] Semantic Drift Threshold

I,H,0 Model, Metamodel, Ontology

CEPRILA Concept, Entity, Property, Relation, Individual & Axiom
St & Tio Real-world mapping to Virtual Element

Ty & Hyo Mapping Models layer to metamodel layer

Lo, H 0, & O Mapping Model and metamodel layer to Ontology layer

2.3. Linked data technologies

Linked data technologies, based on standards like resource descrip-
tion framework (RDF) and universal resource identifier (URI), enable
seamless publication and linking of structured, machine-readable data
across distributed systems. Serving as the foundation for ontologies and
knowledge graphs, they provide interoperable frameworks for organiz-
ing and retrieving complex DT information [25]. Ontologies define do-
main concepts, while knowledge graphs represent real-time and histori-
cal states [26-28]. Together, they enhance interoperability, traceability,
and dynamic reasoning critical for evolving DT ecosystems. Ontologies
provide a shared conceptual framework enabling semantic interoper-
ability and structured domain representation [25].

Ontology management, continuous refinement to mirror domain
evolution, is crucial yet underexplored in model-driven DTs [29]. Stud-
ies by Bao et al. [30] and Ren et al. [31] showcase ontology-driven
synchronization and lifecycle governance to maintain accurate, context-
aware DTs. Knowledge graphs, rooted in ontologies, represent intercon-
nected entities and relationships to enable semantic search, contextual
reasoning, and intelligent data integration [32,33]. In DTs, Eduard et al.
[34] propose an automated self-adaptation framework using declarative
lifecycle descriptions and a two-tier MAPE-K loop: one for behavioral
adaptation, another for dynamic architectural restructuring. Leveraging
semantic technologies and knowledge graphs, their approach detects
lifecycle transitions and preserves architectural consistency without ex-
plicit transition modeling. Validated on a greenhouse DT, it outperforms
traditional methods in scalability and efficiency.

Recent studies on DT evolution in MDE reveal gaps: isolated drift
handling, lack of unified real-time frameworks, and limited focus on
data quality and provenance. Federated architectures and automated
adaptation pipelines remain underdeveloped, with co-evolution and
linked data largely manual and weakly integrated.

3. Preliminaries

Semantic drift is defined as a sudden, gradual, incremental, or recur-
ring shift in a DT component’s structure, precision, value, or meaning, poses a
critical threat to model coherence [7]. We formally define semantic drift
in Definition 3.1 along some useful notations in Table 1. It undermines
the alignment of heterogeneous digital models, including ontologies,
software artifacts, and equations. Sustaining DT fidelity thus demands
continual updates and rigorous semantic integration across modeling
layers.

Definition 3.1. (Semantic Drift) Suppose that a system S in the real
world has a twin T with a set of heterogeneous digital models, metamodels
and ontologies, at a time period [0,t]. S in the real world is connected to

its T through a bi-directional data flow, represented by the relation é, ata
given time period [0,t]. Semantic drift occurs above certain threshold ®, at

the time period [t+ 1] to time stamp [t+m] (m can be any number), when
. " Ap
the relation Sy, < Tjo,) changes to Si.1 1yp) © Tjr+114mp> a5 the real world

evolves.

Future Generation Computer Systems 177 (2026) 108240

. ~Normative
r Ontologies change A

Normative concept
definition

Metamodels

Modelling Language
abstract syntax - concepts

stakeholders Models stakeholders
Data model, blue print,
machine learning
Data-Driven
Drift

Data-Driven
Drift

requiring
new
ensor

1

R new [
Physical World sensor ‘

= Data

new data sources,
data sensors information

new sensor or
parameter

Fig. 1. Semantic drift in model-driven DT [7].

Note that, we use Au to demonstrate the semantic drift resulting
from real-world evolution, making S inconsistent with 7. Since minor
changes may not constitute drift, a threshold ® determines when drift
occurs.

A typical DT life cycle consists of [35]: (i) system design and creation
phase, (ii) manufacturing or production phase, (iii) operational phase
and (iv) end-of-life. Understanding semantic drift is a significant part of
the DT life cycle and primarily emerges in operational phase. Further-
more, drift must be actively managed by DT maintainer in maintenance
or evolution phase, a sub-phase overlapping operations, where the DT
is updated, re-calibrated, and refined to preserve fidelity.

We consider four layers of modeling to cover different variants of
drifts, as shown in Fig. 1. These modeling layers range from data collec-
tion up to the ontological layer. Four important constructs are illustrated
by Fig. 1, i.e., (i) data: represents information related to data sources, (ii)
models: represents an abstract system, (iii) metamodels/schema: uses a
specific domain to define the structure and semantics of models, and (iv)
ontologies: at a higher level, they represent the shared understanding of
concepts and relationships within a domain. Data drift can take place at
a lower level, where the system is represented in an abstract way, while
the two upper layers, i.e., metamodels and ontologies, are susceptible
to conceptual drift.

3.1. Data-driven drift

Data acts as an active link to connect the S and 7 of a DT and also
plays a significant role at different levels, from low-level models up to
the ontological description of the system. Data drift is a major cause of
a cascading drift inside heterogeneous models, metamodels, and ontolo-
gies. More detailed examples of data-driven drift are given in [7].

Data influences the models to drift due to the direct connection with
real-world data. Models are specific instances that represent abstract
systems or concepts. Two different types of data drift have been studied
in literature, i.e., (i) label, feature and concept [11,13,361, and (ii) struc-
tural drift [10,37]. Sensor aging, environmental change, or calibration
changes can be potential reasons for the label, feature and concept drift
in DT. This takes place when data captured by sensors changes from
the threshold value for which they have been calibrated. A change in
sensor calibration can even capture improper values, which no longer
serve the intended purpose. Structural drift occurs when the operational
characteristics of sensors are influenced while undergoing maintenance
and repairs. This kind of activity can alter the unit of measurement or
the entire structure of data captured by the sensor. The addition of new
sensors in real-world settings can also be a cause of structural drift.

3.2. Technical conceptual drift

Structural drift is one of the potential reasons for technical
conceptual drift. It occurs when models change arbitrarily over



F. Abbasi et al.

time, influencing change in metamodels. In the context of DT, 7 aims to
simulate and predict the behavior of physical entities, due to the pres-
ence of diverse digital models and metamodels. We can define technical
conceptual drift as follows:

Definition 3.2. (Technical Conceptual Drift) Suppose that a twin T of
a system S is composed of set of heterogeneous digital models T and meta-
models H = (E, P, R), with a set of entities E, properties P, and relations R,

conforming to the relation 1, & Ho,,- Technical conceptual drift occurs
at the timestamp [t+ 1] to time stamp [t+m] (m can be any number), when
Hio.1) # H [1414+m)> due to a change in the underlying model T influenced

n
by the evolving real-world environment, where the relation 1o, < H,
An )
changes to Ly} rvm) © M1, 14m), 1O longer conforming to the real-world

situation.

Note that we use Ay to define technical conceptual drift, between mod-
eling layers, i.e., models and metamodels.

Heterogeneous digital models and metamodels are composed of dif-
ferent elements, which are susceptible to technical conceptual drift
based on the concepts they represent. Some of the significant elements
of heterogeneous digital models and metamodels include: (i) variables,
parameters & constants, (ii) algorithms & rules, and (iii) relations & in-
teractions. Variables, parameters & constants in heterogeneous digital
models and metamodels are affected when new sensors are added to S
or when the format of data is changed. This change is influenced by
structural drift. Changes could also occur in rules (constraints) or behav-
ioral models (algorithms) that are related to the metamodel and models.

This type of drift can make applications less effective in measuring
and governing physical processes or system behavior. Changes can occur
in the direction, strength, and nature of the relationship between different
components of digital models and metamodels due to technical concep-
tual drift. This can lead to discrepancies in how elements are supposed
to interact in DTs with evolving semantics. More detailed examples of
technical conceptual drift are given in [7].

3.3. Knowledge conceptual drift

Technical conceptual drift can further propagate to the ontology
layer. We can define ontology as “formal, explicit, and shared descrip-
tion of concepts in a domain of discourse”. We study drift in knowledge in
the context of ontologies and formally illustrate in Definition 3.3.

Definition 3.3. (Knowledge Conceptual Drift) Suppose that a twin T
of the system S, at period [0,t], consists of a model T and metamodel H
and an ontology ©=(C, R, I, A), with a set of concepts C, relations R,
individuals I, and axioms A, conforming to (Lo, H o) & Oy - Knowl-
edge conceptual drift occurs at the timestamp [t+ 1] to time stamp [t+m]
(m can be any number), when Oy} # O 11 ), due to new concept intro-

. 1

duced by a stakeholder, where the relation (g 1, H ) < Ojp,; changes to
An .

(Tiit p4mp Hir1,04m) © Oleat 4mp as a result of real-world evolution.

We use Ay to denote knowledge conceptual drift between modeling
layers (metamodel and ontology). This drift arises when ontology con-
structs become outdated due to domain changes, stakeholder needs, or
model updates, leading to cross-layer inconsistencies driven by technical
conceptual drift.

The threshold @ (Definition 3.1) governs data-driven drift, such as
label, feature, and concept drift, guiding maintainers on when to propa-
gate updates based on drift severity, domain, and precision. Other drift
types rely on maintainer judgment. Real-world contextualization of se-
mantic drift types in a mobility use case is provided in [7].

4. RQ1: Semantic drift management requirements

This section outlines our mobility use case and elicits the require-
ments for DT frameworks, which will serve as the foundation for estab-

Future Generation Computer Systems 177 (2026) 108240

® Arrival

- ® stop
ime i

Scheduled time
Date > Scheduled date 2

® Departures

Cancelled : : Latitude
Part Cancelled E‘lng(non Longitude
Redirected -
®sus
Nam T
EIS ® Transport
Operator
77 Line
® Train
Type (TER, TGV, RB, RE or IC)
® Anmival New Entity
=
s (B) Departures @@ stop (B) ChargingPoint
Cancelled [ Scheduled time D StationT,
ype
Part Cancelled cheduled date Latitude ChargingState
Redirected Direction Longitude oo
In
New Attributes are added )
in Bus Entity.
New Entities =
(B) Tempsensor|
| —
Value Transport
Vo Erensp
Operator
i
Tram
o
e —
————

(b) Evolved Data Model

Fig. 2. Data model - administration des transports publics.

lishing metrics to assess how effectively DT platforms address semantic
drift.

4.1. Mobility use case

We provide an overview of the real-time mobility data model fol-
lowed by some prototypical scenarios to assess the flexibility of DT
frameworks for managing semantic drift.

4.1.1. Mobility network analysis

In this use case, we use the dataset of the administration des trans-
ports publics (ATP) in Luxembourg, provided by the Mobilitéit API." This
dataset provides information on buses, trams, train routes, and live traf-
fic conditions. It is sourced from the Luxembourg open data portal > and is
updated frequently to provide the most accurate information. The ATP
dataset contains information on 2785 stops, has a size of 11.6 GB with 2
million objects, and is updated every 10 min. A data model representing
the structure of data is given in Fig. 2(a). This data model directly re-
flects the structure of the data sourced from Luxembourg open data portal
and more precisely the board data ,> which has no route explicitly de-
fined. Route-like information is derived from departures and transport
lines. Entities like Arrival and Departure are recorded separately, each
linked to Stops and Transport types (Bus, Tram, Train).

4.1.2. Prototypical scenarios
The primary operator of the Mobilitéit application * is Luxembourg
Ministry. In this sub-section, we present a set of prototypical scenarios

! https://data.public.lu/en/datasets/api-mobiliteit-lu/

2 https://data.public.lu/en/

3 https://cdt.hafas.de/opendata/apiserver/departureBoard?wadl
4 https://www.mobiliteit.lu/en/


https://data.public.lu/en/datasets/api-mobiliteit-lu/
https://data.public.lu/en/
https://cdt.hafas.de/opendata/apiserver/departureBoard?wadl
https://www.mobiliteit.lu/en/

F. Abbasi et al.

Table 2
Overview of prototypical scenarios.

Future Generation Computer Systems 177 (2026) 108240

NAME SEMANTIC DRIFT VARIANT

TARGET ABSTRACTION LAYER

CHANGES

Data Drift

Structural Drift

Structural Drift

Technical Conceptual Drift
Knowledge Conceptual Drift

Scenario 4.1: Bus Route

Scenario 4.2: Bus Arrival Time

Scenario 4.3: Transition in Distance Units
Scenario 4.4: Temperature Sensor
Scenario 4.5: Electric Buses

Model Layer

Metamodel and Ontology Layer
Model Layer

All Abstraction Layers

All Abstraction Layers

Data value needs to be changed

New attributes need to be added

Value of DistanceUnits attribute needs to be changed
New entity needs to be added

New concept needs to be added

to reflect the changes introduced by the Luxembourg Ministry to trans-
portation modes and the infrastructure. Further, we use these scenarios
to elicit requirements and assess the flexibility of DT platforms.

Luxembourg Ministry can change information about the bus route, due
to infrastructure changes, to reflect the real-world environment. This is
illustrated by the Scenario 4.1, enabling us to study data-driven drift
related to changes in data values.

Scenario 4.1. (Bus Route) Suppose that the Ministry decides to change
a specific bus route due to maintenance, repair, or construction along the
route. This information can be updated by altering the line information of a
specific bus route, as illustrated in Fig. 2. This change is limited to the model
layer, as only the data values change.

Luxembourg Ministry provides enhanced passenger experience, im-
proved accuracy, operational efficiency, and data-driven decision-
making through the Mobilitéit application. Predicted bus arrival times
were introduced at each stop, as illustrated in Scenario 4.2, which is
used to study structural drift.

Scenario 4.2. (Bus Arrival Time) The Ministry used regression to predict
the bus arrival time Y as Y = mX + b + ¢, where X is the distance (in kilo-
meters), m is the slope indicating the rate at which the arrival time changes
with distance, b is the intercept representing the baseline arrival time, and ¢
is the error term. This demands updates to metamodel and ontology layer,
requiring new attributes to be incorporated into the bus entity.

After some duration, the Ministry switched the measurement unit, due
to a change in data collection technology as illustrated in Scenario 4.3.

Scenario 4.3. (Transition in Distance Units) The unit shift of distance
measurement from kilometers to meters affects the learning model and re-
quires the slope m to be adjusted for consistency. This change is only limited
to model layer.

The addition of components in the physical environment is a significant
process, as it provides new functionalities to the existing infrastructure
and operating devices. Scenario 4.4 is used to study technical conceptual
drift, which may affect metamodel and ontology.

Scenario 4.4. (Temperature Sensor) The Ministry equips buses with tem-
perature sensors to monitor overcrowding, recording values with units. This
update impacts the model and necessitates a new temperature entity in the
metamodel and ontology layer.

Transportation modes are significant because they directly impact over-
all quality of life, shaping the economy, society, and environment.
Evolving needs and challenges in society, ranging from environmental
to technological concerns, can be addressed through the introduction of
new transportation modes. We provide Scenario 4.5 to study knowledge
conceptual drift.

Scenario 4.5. (Electric Buses) The Ministry introduces electric buses to
combat climate change, reduce emissions and noise. This shift impacts the
metamodel, requiring stop entities to include charging hubs, and is reflected
in the ontology layer first, influencing both model and metamodel layers.

We provide an overview of our prototypical scenarios in Table 2. In
order to use these scenarios to assess the flexibility of DT platforms,
this ATP data model must be extended. We present our extended data
model in Fig. 2(b), which corresponds to Scenarios 4.2-4.5. Scenario
4.1, requires only a change in data values and not in the structure of the
data.

4.2. Requirement elicitation

The essential requirements, capabilities, and prospects of DT frame-
works are given in [38], instantiating ISO23247 standards [39]. In this
sub-section, we address RQ1 by stating and extending requirements
from [38], which are significant for addressing semantic drift in DT
frameworks. We base our proposal on the various definitions of semantic
drift introduced in Section 3 and detailed in [7].

4.2.1. [REQ 1] Basic synchronization

DT frameworks should enable two-way data exchange, supporting
digital shadows, models or full twins to maintain synchronization with
physical counterparts. Basic synchronization ensures that 7 aligns with
S to prevent semantic drift (Definition 3.1). Applied to our use case,
corresponding to Scenario 4.4, the Bus DT processes temperature sensor
data and triggers an alarm when thresholds are exceeded.

4.2.2. [REQ 2] Data integration & management

A DT framework must enable data acquisition from IoT devices, scal-
able storage, and data fusion, while preserving historical and temporal
data to mitigate semantic drift.

1. Historical Data: Preserving historical data ensures consistency
as entities evolve. Historical data is significant in the context
of Definition 3.2. In our use case (Scenario 4.4), integrating
TempSensor into the Bus DT enhances environmental monitoring
while requiring alignment with older models to prevent inaccurate
analysis of operational and temperature-related data.

2. Temporal Data: In DT, time-stamped data preserves both current and
historical states, crucial for addressing data-driven drift, as data val-
ues may change as the environment evolves. In our use case (Fig. 2),
data related to entities like Departures and Arrival changes over
time, enabling analysis of route adjustments or regulations on system
efficiency.

4.2.3. [REQ 3] Modeling proficiencies

Modeling approaches are essential for detecting semantic drift, as
they provide methods to identify changes across abstraction layers
that impact DT performance [40]. A robust DT framework must of-
fer a standardized way to express models, metamodels, and ontolo-
gies, capturing entity complexity with concepts like composition, ag-
gregation, and generalization, while integrating model versioning to
track and preserve the interpretability of historical data amidst struc-
tural changes. Modeling approaches are crucial for defining entities
like TempSensor and ElectricBus (Definitions 3.2 and 3.3), requir-
ing concepts such as aggregation and composition. As shown in Fig. 2,
dynamic evolution in transport systems, including new entities like
ChargingPoint, highlights the need for model versioning to man-
age outdated and current data structures. DT frameworks must sup-
port tools for defining and reusing ontologies to ensure data har-
monization and seamless integration of new concepts, maintaining
adaptability in evolving environments.

4.2.4. [REQ 4] Data validation
The framework must validate data against a schema/metamodel to
ensure structural and semantic accuracy, and to ensure consistency be-



F. Abbasi et al.

tween model and metamodel layer. In our use case (Fig. 2), adding at-
tributes like DistanceCovered and DistanceUnits for bus arrival pre-
dictions requires metamodel verification to maintain model integrity.

4.2.5. [REQ 5] Modifiability

This refers to the ongoing ability to update DT models, metamod-
els, and ontologies, whenever their physical counterparts are modified.
Modifiability is significant in order for any variant of semantic drift to
be addressed, illustrated in Section 3. Applied to our use case, this cor-
responds to Scenario. 4.3, i.e., replacing data collection technology to
measure distance. The new data collection technology will report dis-
tance values by using a different physical unit. This requirement can
also be reflected in Scenario. 4.4 and 4.5 when a new sensor is added to
a Bus to report temperature, and ElectricBus is introduced to replace
fuel-based Bus. This implies modifying the existing model, metamodel,
and ontologies in the DT framework. Additional requirements include
convergence, real-time behavior, automation, interoperability, integra-
tion, security, provisioning, and re-usability, as detailed in [38].

5. RQ2: Evaluation metrics for digital twin framework

In this section, we propose metrics derived from requirements to as-
sess the flexibility of language and data-specific DT frameworks in ad-
dressing semantic drift. The proposed metrics are formulated based on
insights gathered from an analysis of the key contribution made in the
field of DT [38,41,42], which evaluate capabilities like bi-directional in-
tegration, interoperability, intelligence, analytics, and community sup-
port. We also introduce a tiered compliance system for these metrics,
adapted from [41] and ISO 23247:2021-Automation systems and inte-
gration DT framework for manufacturing .° It ranges from non-compliant
(Tier 1) to fully compliant (Tier 4 or maximum level), to facilitate frame-
work comparison in managing semantic drift.

5.1. [M1] Communication

We derive this metric from [REQ 1] and follow the categorization of
DT integration levels as proposed in [43].

e Tier 1: None

e Tier 2: Supports Digital Model

e Tier 3: Supports Digital Shadow
e Tier 4: Supports Full DT

5.2. [M2] Data acquisition, storage, and integration

We derive this metric from [REQ 2]. A DT framework must capture
data from IoT devices, provide scalable storage for large datasets in var-
ious formats, methods, and locations, and integrate data from diverse
sources for a comprehensive view.

e Tier 1: No support for data acquisition, storage, and integration from
IoT devices for maintaining historical and temporal data.

e Tier 2: Partial data acquisition, storage and integration from IoT de-
vices for maintaining historical and temporal data.

e Tier 3: Full data acquisition, scalable storage, and basic integration
from multiple IoT devices for maintaining historical and temporal
data.

5.3. [M3] Entity modeling
This metric, derived from [REQ 3], evaluates whether a DT frame-

work offers a standardized approach for defining, maintaining, and ver-
sioning models, metamodels, and ontologies. It assesses the framework’s

5 https://www.iso.org/standard/78743.html

Future Generation Computer Systems 177 (2026) 108240

ability to support essential modeling concepts, i.e., aggregation, com-
position, and generalization, ensuring comprehensive system represen-
tation. Furthermore, the validation ensures that the framework main-
tains records of both current and historical versions of entities and their
attributes, preserving the integrity and interpretability of data despite
changes over time due to real-world evolution.

e Tier 1: Provides a basic data structure to represent entities corre-
sponding to IoT devices and may allow model versioning to support
the coexistence of different versions of both the model and its meta-
model.

e Tier 2: Provides a standardized language to model real-world enti-

ties with all essential concepts, and may allow model versioning to

support the coexistence of different versions of both the model and
its metamodel.

Tier 3: Allows a standardized method for defining ontologies through

web ontology language (OWL) or RDF, for semantic consistency in

DT. It should also allow ontology versioning, to support the coexis-

tence and maintenance of different versions of both ontology and its

associated metamodel.

5.4. [M4] Data conformance

We derive this metric from [REQ 4]. A DT framework should validate
data against its schema/metamodel to ensure accuracy, consistency, and
alignment with predefined structural and semantic rules.

e Tier 1: Framework does not provide any verification or validation of
data against schema/metamodel.
e Tier 2: Invalid data is detected by the framework.

5.5. [M5] Semantic drift identification and characterization

We derive this metric from [REQ 5]. We evaluate whether a DT
framework provides a method or procedure to identify and character-
ize semantic drift. The identification of semantic drift implies the detec-
tion of changes and elements impacted by change, while characterization
refers to a type of change that has occurred over the course of time.

e Tier 1: No methods for semantic drift identification and characteri-
zation.

e Tier 2: One or more methods to identify semantic drift.

e Tier 3: One or more methods to characterize semantic drift.

5.6. [M6] Semantic drift support

We derive this metric from [REQ 5]. We validate whether a DT frame-
work provides a method or procedure to support the management of
semantic drift against real-world evolution, while ensuring metamodel
modifications without any disruption.

e Tier 1: No way to address any kind of semantic drift.

e Tier 2: Partial support, as methods are available for managing data-
driven drift, i.e., label, feature and concept.

e Tier 3: Full support, as methods are available for managing struc-
tural, technical, and knowledge conceptual drift, provided that data
is validated against the schema/metamodel.

o Tier 4: One or more methods to automatically update changes across
different abstraction layers depicted in Fig. 1.

There are many other metrics given in [41] that can be used to as-
sess the capabilities of the DT framework, but we limit our research to
those metrics that are significant for assessing the flexibility of the DT
to address semantic drift.


https://www.iso.org/standard/78743.html

F. Abbasi et al.

Table 3
Common vocabulary.

Future Generation Computer Systems 177 (2026) 108240

LANGUAGE-SPECIFIC

DATA-SPECIFIC

FIWARE NGSI-LD ECLIPSE BASYX

MODELING LAYER AZURE DT GREYCAT
Ontology - -

Metamodel Model Graph Type Structure
Model Twin Graph Node Definition

Assets & Submodel
Context Data

Schema, Context Structure
Context Data

TWIN GRAPH

MODEL GRAPH

pId: bus-at-stop

bOFOAF c329 48de 83fa e46cadcac6el™

pName: arrives_at

$targetid: stop

> Cancelled:

> PartCancelled:

> Redirected:

False X
Datelime: (@ 2024-04-10T16:35:00Z
False ><

False >

(b) Twin Graph

Fig. 3. DT graph-based representation.

6. Digital twin modeling

This section examines key capabilities of DT frameworks through
the mobility use case, providing insights into their implementation and
offering a common vocabulary (Table 3) for terms across different ab-
straction layers (Fig. 1).

6.1. Language-specific digital twin framework

This kind of DT framework framework uses a shared language struc-
ture tightly integrated with a programming language or DSL, requiring
users to follow specific syntax and semantics. It provides specialized
tools, libraries, and application programming interfaces (APIs) to en-
hance performance and usability for users familiar with the language.
However, such frameworks may face challenges in flexibility and inter-
operability with external systems, require a steeper learning curve, and
incur higher maintenance costs.

6.1.1. Azure DT

This IoT framework enables DT creation using a java-script object
notation (JSON)-based language ,° i.e., DT definition language (DTDL),
defining entities through components like telemetry, properties, and re-
lationships. It employs a graph-based approach to create a twin graph
and a model graph, representing real-world entities, requiring a back-
end for dynamic environments.

6 https://azure.github.io/opendigitaltwins-dtdl/DTDL/v3/DTDL.v3.html

Bus Digital Twin

— <«——— Submodel
Identification
- Submodel
+Name: String Element
Bus <—  Asset

Fig. 4. Eclipse Basyx Bus Asset Representation.

The platform integrates seamlessly with services for data ingestion,
event-driven workflows, and advanced analytics, offering standardized
entity behavior definitions. represents DT corresponding to the mobility
use case on the Azure DT framework. We modeled a twin graph and a
model graph corresponding to the ATP data model using python-SDK,
shown in Fig. 2(a) in Azure DT explorer. A glimpse of the bus entity
DTDL for model and twin graph is given in Listing 1 and Listing 2, while
Fig. 3 represents graph-based representation on Azure DT platform.

6.1.2. GreyCat

GreyCat 7 is offered by DataThings. It is a dynamic, evolving graph-
based platform that integrates large time series and geographical data.
It features an imperative executable language for defining types and
manipulating graph nodes, combining graphs and time series into
a scalable storage system. GreyCat organizes dynamic, unstructured data
into multi-dimensional models known as Many-Worlds Graphs.

7 https://datathings.com/


https://azure.github.io/opendigitaltwins-dtdl/DTDL/v3/DTDL.v3.html
https://datathings.com/

F. Abbasi et al.

Bus Digital Twin

Identification
<«— Asset

+ Name: String

Operational Data [ «——— Submodel

+ DistanceCovered: Integer

+ DistanceUnits: String l&——— Submodel

Element

\

TempSensor

+ Value: Float

+ Units: String

Fig. 5. Bus Asset with the Sensor in the Eclipse Baysx.

It supports real-time data processing, scalability, and flexible appli-
cations like live monitoring, data analytics, and DT solutions.The plat-
form enables DT creation by leveraging historical data for predictions
and simulations, using learning models to continuously refine and en-
sure real-time DT accuracy [44]. We modeled DT with typed structure
and node definition provided by GreyCat, corresponding to the data
model given in Fig. 2(a). Types are significant units in the GreyCat data
structure, which defines aggregated typed fields into named types, later
instantiated as an object, similar to the concept of classes in object-
oriented programming languages. Nodes are also another significant
unit, as GreyCat is an implementation of a graph structure, and the node
constitutes the elements of the graph.

We provide a glimpse into our typed structure and node definition,
focusing on the bus entity in Listings 3 and 4.

6.2. Data-specific digital twin framework

This category encompasses systems that manage DTs through well-
defined data structures, ensuring communication between physical ob-
jects and their digital counterparts. These frameworks prioritize struc-
tured data, often utilizing universal formats like JSON, extensible
markup language (XML) and RDF, rather than being tied to a specific
programming language. By focusing on data organization, validation,
and synchronization, they offer greater flexibility and interoperability
across different platforms, leveraging standardized formats for efficient
data exchange and system integration.

6.2.1. Fiware NGSI-LD

European telecommunications standards institute (ETSI) and the in-
dustry specification group on context information management (ISG
CIM) developed the Fiware ® next generation service interfaces — linked
data (NGSI-LD) [45] specification as an extension of NGSI-V2, incorpo-
rating linked data principles to enhance data model richness and inter-
operability. NGSI-LD, which uses JSON-LD for context representation,
is designed to manage context information essential for creating DTs
of physical entities. By utilizing JSON-LD, NGSI-LD facilitates integra-
tion of heterogeneous data from diverse sources while preserving se-
mantics. Scorpio, an open-source context broker offered by NGSI-LD,
supports the management, access, and discovery of context data, mod-
eling it in a graph structure with entities, attributes, and relationships.
It also provides comprehensive methods, such as create, read, update,
delete and advanced querying and subscription capabilities for interact-
ing with DTs.

We modeled a DT that corresponded to the data model in Fig. 2(a),
using NGSI-LD with scorpio context broker. We illustrate how this was
used in Listing 5 to create an entity in the data model with a curl com-
mand to push the context structure and context data into the context
broker. It should be noted that NGSI-LD does not offer any way to model

8 https://fiware-datamodels.readthedocs.io/en/stable/ngsi-1d_howto/

Future Generation Computer Systems 177 (2026) 108240

abstract entities, composition, and the addition of attributes for a spe-
cific relation. The only way to represent abstract entities and composi-
tion is through an “is_a” and “has” relation.

6.2.2. Eclipse Basyx

This framework supports Java/.NET implementations of the asset
administration shell (AAS) standard, providing infrastructure for AAS
and registry servers via docker containers or JAR executables [46]. The
AAS specification organizes assets, components, capabilities, and rela-
tionships through a hierarchical structure of submodels and properties.
It includes features for creating, updating, and managing AAS objects,
with a graphical user interface (GUI) client supporting OWL, RDF, JSON,
or XML formats. As a comprehensive software development kit (SDK), it
enables integration across various protocols such as transmission control
protocol (TCP) and hypertext transfer protocol (HTTP) via the virtual
automation bus (VAB), ensuring semantic interactions with AAS com-
ponents. The platform supports secure HTTP connections and allows
asset interfaces to trigger operations .°

We modeled the DT corresponding to the data model in Fig. 2(a) as
a Bus AAS according to the context data, the shell that contains a Bus
asset. At the same time, this can be represented by just one submodel,
the Identification submodel, including different submodel elements,
such as name, which is a property recognizing the bus.

We illustrate the representation of the Bus AAS in Listing 6. The Bus
AAS illustrated in Listing 6 and Fig. 4, can be represented in XML, as
shown in Listing 7.

7. RQ3: Semantic drift support in digital twin frameworks

This section addresses RQ3 by presenting experiments that evalu-
ate DT frameworks’ adaptability in managing semantic drift, using the
proposed metrics to assess their effectiveness in maintaining semantic
coherence across modeling layers and dynamic environments.

7.1. Language-specific digital twin framework validation

We consider Azure DT and GreyCat as language-specific DT frame-
works and provide experiments in the context of prototypical scenarios
to validate whether the framework is capable of addressing semantic
drift or not.

7.1.1. Azure DT

This sub-section validates the Azure DT framework’s ability to man-
age diverse semantic drift scenarios, illustrated in sub-section. 4.1.2,
leveraging DTDL’s graph-based modeling of heterogeneous models and
metamodels with adaptive yet constrained updates.

We validate Scenario 4.1 to address data-driven drift (label, feature
and concept). We only need to update the twin graph existing in Azure
DT, shown in Fig. 3(b), as it captures only the real-world data values.
Azure DT provides support for addressing data-driven drift through a
set of methods, i.e., get_digital_twin () and update_digital_twin ().

In the context of the given data model in Fig. 2 and Scenario 4.1,
whenever the Luxembourg Ministry changes the line of a specific bus,
which might be due to ongoing maintenance and repairs along the
routes, relationship attributes and data values corresponding to other
entities, i.e., Stop in our case, are also affected and need to be updated.
A glimpse of this update can be observed in Listing 8.

Structural drift can be categorized under data-driven drift, which
should be addressed in a timely manner. We need to validate Scenario
4.2, to assess whether or not we can address this kind of drift on Azure
DT. Structural drift arises whenever there is a change in the structure of
data. In the context of Scenario 4.2, when Luxembourg Ministry tries to
calculate/predict the bus arrival time at a specific stop, taking into

9 https://projects.eclipse.org/projects/dt.basyx


https://fiware-datamodels.readthedocs.io/en/stable/ngsi-ld_howto/
https://projects.eclipse.org/projects/dt.basyx

F. Abbasi et al.

[M4] Data Conformance
——— Azure DT

[M5] Semanti

C ntity Modelling
Identification & Characterisaticn

[M6] Semanti i ] Data
Acquisition, Storage & Fusion

[M1] Communication

(a) Azure DT

Future Generation Computer Systems 177 (2026) 108240

[M4] Data Conformance
GreyCat

[M5] Semanti

i ntity Modelling
Identification & Characterisaticn

3 1 Data
Acquisition] Storage & Fusion

4
[M1] Communication

(b) GreyCat

Fig. 6. Language Specific DT Framework Comparison.

[M4] Data Conformance
—— Fiware NGSI-LD

C ntity Modelling
Identification & Characterisaticn

[M1] Communication

(a) Fiware NGSI-LD

[M4] Data Conformance
Eclipse Baysx

ntity Modelling
Identification & Characterisaticn

] Data
, Storage & Fusion

4
[M1] Communication

(b) Eclipse Basyx

Fig. 7. Data-Specific DT Framework Comparison.

url = os.getenv('AZURE_URL')
credential = DefaultAzureCredential()
client = DigitalTwinsClient(url, credential)
busId="Bus"
busTwin={
"$metadata”: {
"$model”: "dtmi:example:Bus;1”
3,
"$dtId”:busId,
"Name"”: busId,
"Operator"”: "RGTR",
"Line":650,
}

created_twin = client.upsert_digital_twin(busId,busTwin)

Listing 1. Entity in Twin Graph(Azure DT).

consideration the distance covered, this involves adding new attributes
to the model graph. The addition of new attributes, first on the model
graph and then on the twin graph, is necessary to reflect the real-world
environment. Listing 9 shows a glimpse of our failed experiment to up-
date the model graph.

We observe from Listing 9 that Azure DT provides limited access to
the model graph. We cannot access all the attributes and relationships
of a single entity. Further, Azure DT does not provide any method, i.e.,
update_model (), to add new attributes or relations to the existing enti-
ties on the model graph. Although Azure DT provides methods to update
the twin graph, this is only useful when the model graph is successfully
updated to reflect real-world settings when new attributes are added.
Validating Scenario 4.3 is only useful when we can successfully validate

Scenario 4.2. We can make the same observation for Scenario 4.4 illus-
trating technical conceptual drift, in the event that the ministry decides
to add a new sensor to the bus. This requires the addition of a new com-
ponent on the model graph followed by its addition on the twin graph.
Azure DT does not provide any support to address technical conceptual
drift due to the limitations of methods to update the model graph.

Knowledge conceptual drift is another important semantic drift vari-
ant, which is illustrated by Scenario 4.5, in which the Luxembourg Min-
istry introduced ElectricBus to combat climate change. This concept
should first be reflected on the ontology layer, and then on the meta-
model layer (model graph) and model layer (twin graph).

The Azure DT framework does not offer a standardized way to create
and manage ontologies, whereas DTDL can be integrated with or con-
verted to RDF, to represent ontologies using a back-end. While we can
add this new ElectricBus concept in the form of an entity on a meta-
model layer (model graph), Listing 10 illustrates that we can add a new
entity of ElectricBus extending from Bus, on the model graph, followed
by the creation of a node representing ElectricBus on the twin graph.

At the same time, the creation of ElectricBus requires the creation
of a ChargingPoint at stops, a change not allowed by Azure DT explorer,
as it does not offer a method to update the model graph to add a new re-
lation with existing entities. Complementary information in the context
of the core metrics given in Section 5 for analyzing the DT framework,
is provided as follows:

1. [M1] Communication: Tier 1, if the back-end is not considered. Tier
4, if the back-end is considered.

2. [M2] Data Acquisition, Storage and Fusion: Tier 1 if back-end is not
available, while Tier 3 if back-ends is available, enabling real-time
data acquisition via Azure IoT Hub, storage in data lake, cosmos



F. Abbasi et al.

url = os.getenv('AZURE_URL')
credential = DefaultAzureCredential()
client = DigitalTwinsClient(url, credential)
bus = { "@id": "dtmi:example:Bus;1",
"@type": "Interface”,
"@context"”: "dtmi:dtdl:context;2",
"displayName": "Bus”,
"extends": ["dtmi:example:Transport;1”],
"contents”: [
{
"@type": "Property”,
"name”: "Name",
"schema”: "string”

"@type": "Relationship”,
"name”: "arrives_at”,
"target”: "dtmi:example:Stop;1"”,
"properties”: [
{
"@type": "Property”,
"name”: "DateTime",
"schema”: "dateTime"
}, # Adding other relationship attributes in similar way

"@type": "Relationship”,
"name”: "departs_from”,
"target”: "dtmi:example:Stop;1"”,
"properties”: [
{
"@type": "Property”,
"name”: "Scheduled_DateTime"”,
"schema"”: "dateTime"
}, # Adding other relationship attributes in similar way

3

models = client.create_models([bus])

Listing 2. Entity in Model Graph(Azure DT).

abstract type Transport {
operator: string;
line: int;

3

type Bus extends Transport {
name: String;
arrival: Date;
partcancelled: nodeTime<Status>?;
cancelled: nodeTime<Status>?;
redirected: nodeTime<Status>?;
departure: Date;
direction: String;

3

enum Status{
TRUE;
FALSE;

3

abstract type StatusUtil{
static fn parse(val: String): Status{
if (val == "true") {
return Status::TRUE;
} else {
return Status::FALSE;

Listing 3. Bus Typed Structure.

10

Future Generation Computer Systems 177 (2026) 108240

var bus_by_name: nodeIndex<String, node<Bus>>;
fn main() {
if (bus_by_name == null) {
bus_by_name = nodeIndex<String, node<Bus>>::new(); }
var reader = JsonReader::new("data.json");
if (reader !=null ){
while(reader.available() > @) {
var jsonArray = reader.read() as Array;
for(positionInArray, vObject in jsonArray) {
var v_name = vObject.get("name") as String;
var v_Node = bus_by_name.get(v_name);
if (v_Node==null){
v_Node = node<Bus>: :new(Bus{
name: v_name,
operator: vObject.get("operator”) as String,
direction: vObject.get("direction”) as String,
line: vObject.get("line"”) as int,
partCancelled: nodeTime<Status>::new(),
cancelled: nodeTime<Status>::new(),
redirected: nodeTime<Status>::new(),
arrival: Date::new( ),
departure: Date::new( ),
P; 3
bus_by_name.set( v_name, v_Node);
var iNode = xv_Node;
var cancelled, partcancelled, redirected:
cancelled=StatusUtil::parse(vObject.get("cancelled”) as
String);
iNode.cancelled.set(cancelled);
partcancelled=StatusUtil: :parse(vObject.get ("
partcancelled”) as String);
iNode.partcancelled. set(partcancelled);
redirected=StatusUtil: :parse(vObject.get("redirected")
as String);
iNode.redirected.set(redirected);
var arrival=Date::parse(vObject.get("arrivalDateTime")
as String);
iNode.arrival=arrival;
var departure=Date: :parse(vObject.get("departureDateTime
") as String);
iNode.departure=departure;}}}

Listing 4. Bus Node Definition.

database, and blob storage, with data fusion through graph modeling
and synapse analytics.

3. [M3] Entity Modeling: Tier 2, as metamodel is defined using DTDL,
where version identifiers (e.g., dtmi:example; 1) distinguish entities
in the twin graph and model graph. Updated versions are created by
incrementing the version number, ensuring access to both old and
new models and metamodels.

4. [M4] Data Conformance: Tier 2, as invalid data is detected while cre-
ating a twin graph.

5. [Metric 5] Semantic Drift Identification and Characterization: Tier 1 as
there are no methods to identify any kind of semantic drift automat-
ically.

6. [M6] Semantic Drift Support: Tier 2, as it provides methods to update
twin graphs for addressing label, feature, and concept drift.

In conclusion, while Azure DT allows manual updates to the model graph,
it lacks the capability to propagate these changes to the twin graph, hin-
dering consistency across modeling layers.

7.1.2. GreyCat

DataThings specializes in DT solutions, through GreyCat’s concept
of scalable Many-Worlds Graphs, which integrate graphs and time series
into multi-dimensional models for dynamic data management, as exem-
plified in Listings 3 and 4.

In this sub-section, we validate whether GreyCat is capable of han-
dling different variants of semantic drift. We need to validate Scenario



F. Abbasi et al.

"id": "bus:001",

"type": "Bus",

"name”: {

"type”: "String”,
"value": 650

3,

"arrives”:{
"type":"Relationship”,
"object":"stop:001"

3,

"departs”:{
"type":"Relationship”,
"object":"stop:001"

3,

"is_a":{

"type"”:"Relationship”,
"object":"transport:001"

3,

"@context”: [{"Bus”: "urn:type:bus",

"name”: "unique_uri:name",

"arrives": "unique_uri:arrives"”,

"is_a": "unique_uri:is_a",

"departs”: "unique_uri:departs"},

"https://uri.etsi.org/ngsi-1d/v1/ngsi-1d-core-context-v1.7.
jsonld"]

3

# Curl Query to Add Entity into Context Broker

$headers = @{

"Content-Type"” = "application/ld+json”
}
Invoke-WebRequest -Uri 'http://localhost:9090/ngsi-1d/v1/entities' -
Method Post -Headers $headers -Body (Get-Content Bus.jsonld -
Raw)

Listing 5. Entity Creation(Bus.jsonld).

from basyx.aas import model

bus_asset_information = model.AssetInformation(
asset_kind=model.AssetKind.INSTANCE,
global_asset_id="http://acplt.org/Bus'

)

identifier_bus_aas = 'https://acplt.org/BusAAS'

bus_aas = model.AssetAdministrationShell(
id_=identifier_bus_aas,
asset_information=bus_asset_information

)

identifier_bus_submodel = 'https://acplt.org/identification’

bus_submodel = model.Submodel (
id_=identifier_bus_submodel

)

semantic_reference_line = model.ExternalReference(
(model.Key (

type_=model .KeyTypes.GLOBAL_REFERENCE,
value="http://acplt.org/Properties/BusName'

),)

)

name_property = model.Property(
id_short="'Name',
value_type=model.datatypes.String,
value="Bus-650",
semantic_id=semantic_reference_line

)

bus_submodel . submodel_element. add(name_property)

Listing 6. Bus Asset.

11

Future Generation Computer Systems 177 (2026) 108240

from basyx.aas.adapter.xml import write_aas_xml_file

data_store: model.DictObjectStore[model.Identifiable] = model.
DictObjectStore()

data_store.add(bus_submodel)

write_aas_xml_file(file='BusAAS.xml', data=data_store)

Listing 7. Bus Asset XML Representation.

4.1, to address data-driven drift (label, feature and concept). GreyCat is
not capable of providing support, i.e., methods at runtime, to address
any kind of semantic drift, i.e., data-driven, technical, and knowledge
conceptual drift. Although in the event of technical and knowledge con-
ceptual drift (Scenario 4.4 and 4.5), we can add abstraction and com-
position in a typed structure, it is only done manually, and not via a
specific method, i.e., update_type () or update_node ( ), at runtime.
Complementary information in the context of the core metrics given in
Section 5 for analyzing the DT framework is given as follows:

1. [M1] Communication: Tier 1, as it only provides a way to model DT.

2. [M2] Data Acquisition, Storage and Fusion: Tier 2, as it provides data
integration and management through the concept of Many-World
Graphs.

3. [M3] Entity Modeling: Tier 2, as it uses the GreyCat typed structure
and node definition.

4. [M4] Data Conformance: Tier 2, as it can detect invalid data against
the typed structure and node definition.

5. [M5] Semantic Drift Identification and Characterization: Tier 1, as no
support is provided.

6. [M6] Semantic Drift Support: Tier 1, as no methods are provided to
support any kind of semantic drift management.

In summary, GreyCat provides foundational data integration and mod-
eling support but lacks capabilities for ontology creation and addressing
semantic drift.

7.2. Data specific digital twin framework validation

We consider Fiware NGSI-LD and Eclipse Basyx as data-specific
frameworks and evaluate their capability to address semantic drift
against prototypical scenarios.

7.2.1. Fiware NGSI-LD

We mainly assess the scorpio context broker for any kind of sup-
port for semantic drift. In the context of the properties outlined in
sub-Section 5, NGSI-LD focuses on managing context information, rep-
resenting the state of various entities over time.

We need to validate Scenario 4.1 to address data-driven drift (la-
bel, feature and concept). NGSI-LD is capable of updating the data val-
ues coupled with the schema/metamodel. A view of our updates for
attributes of the Bus entity is provided in Listing 11. To update the data
values of the Stop entity, we need to fetch relations associated with the
Bus entity using the curl command, shown in Listing 12, followed by
an update of the attributes of the Stop entity, similar to that shown in
Listing 11.

We need to validate Scenario 4.2, to address structural drift, which
is a type of data-driven drift. Structural drift should be addressed in
a timely manner, to maintain consistency in DT. The addition of new
attributes in the existing context structure and the context data is illus-
trated in Listing 13. After the addition of attributes, if we need to change
the units of measurement to record distance values as illustrated in Sce-
nario 4.3, we will use the same curl command as in Listing 13, with the
only modifying attribute value being DistanceUnits.

Executing these commands with the Scorpio context broker instance
successfully adds new attributes or modifies existing attributes to the



F. Abbasi et al.

twin=client.get_digital_twin(bus_id)

patch = [
{
"op”: "replace”,
"path”: "/Line",
"value": 551
i
]

client.update_digital_twin(bus_id, patch)

relationships = client.list_relationships(bus_id)
target_id=
related_twin_ids = set()

for relationship in relationships:
target_id=relationship['$targetId']
patch = [
{
"op”: "replace”,
"path”: "/Name",
"value”: "Foetz, Am Brill”
}, # Replacing all attributes in a similar way
]
client.update_digital_twin(target_id, patch)

Listing 8. Twin Graph Updation.

url = os.getenv('AZURE_URL')

credential = DefaultAzureCredential()

client = DigitalTwinsClient(url, credential)
model=client.get_model ("dtmi:example:Bus;1")
print(model) #Returns the metadata and definition

Listing 9. Accessing Model Graph.

electricbus= {
"@id": "dtmi:example:ElectricBus;1",
"@type": "Interface”,
"displayName"”: "ElectricBus"”,
"@context”: "dtmi:dtdl:context;2",
"extends"”: ["dtmi:example:Bus;1"],
"contents”: [
{
"@type": "Property”,
"name":
"schema”: "integer"
3132

models = client.create_models([electricbus])

"BatteryCapacity”,

Listing 10. Extending Model Graph.

bus entity to reflect real-world changes. It should be noted that NGSI-
LD updates the context structure along with the context data, which is
how a data-specific DT works, and provides no validation of whether or
not the new or existing data conforms to the metamodel.

Technical conceptual drift is another important semantic drift vari-
ant, which invokes changes in the metamodel/schema. We validate Sce-
nario 4.4 to address technical conceptual drift. We provide an overview
of our experiment in Listing 14 and 15, in which we added a new com-
ponent to the Bus entity, and then a relation. It should be noted that
NGSI-LD does not provide a standardized way to model composition,
and we therefore added a new entity in the context broker and linked it
with the Bus entity through a has relation.

Similarly to address knowledge conceptual drift, which arises as a
result of a change in the ontology layer, if a new concept such as an
ElectricBus is added by the Luxembourg Ministry to the existing data
model, this change is first reflected in the ontology, then in the meta-
model layer (context structure) and model layer (context data) (Scenario
4.5).

12

Future Generation Computer Systems 177 (2026) 108240

$body = @{
line = @{
type = "Number”
value = 551
}

} | ConvertTo-Json

Invoke-RestMethod -Uri 'http://localhost:1026/v2/entities/urn:ngsi-
1d:transport:001/attrs' -Method Post -ContentType 'application
/json' -Body $body

Listing 11. Update Attributes (Fiware NGSI-LD).

curl 'http://localhost:1026/v2/entities/urn:ngsi-1d:bus:001?attrs=

arrives' -Method GET

Listing 12. Get Relation (Fiware NGSI-LD).

NGSI-LD uses the same method to add new entities to the context
data, as shown in Listing 14, and links them to the bus entity through
an is_a relation, as shown in Listing 15, as NGSI-LD does not provide a
standardized way to model an is_a relation (aggregation). The addition
of a new concept, i.e., ElectricBus, is limited to the metamodel layer
(context structure) as NGSI-LD does not provide support for defining
and maintaining ontologies.

NGSI-LD introduces a range of challenges in data modeling and val-
idation, with the most significant being its flexible approach to data-
schema coupling. This lack of a rigid schema or metamodel hinders au-
tomatic validation of key elements such as required fields or data types,
creating a potential for inconsistencies. The absence of predefined con-
straints, such as limits on value ranges or string lengths, leaves room for
erroneous data to be stored, undermining the integrity and uniformity
of the DT models. This flexibility, while offering adaptability, imposes
additional complexity on developers, who must resort to external tools
to enforce data validation and ensure schema compliance. Complemen-
tary information about the core metrics for analyzing the DT framework
discussed in Section 5 is as follows:

1. [M1] Communication: Tier 4, as it supports a bi-directional flow of
data and services through a feedback loop.

2. [M2] Data Acquisition, Storage & Management: Tier 3, as it enables the
seamless integration of diverse data sources with real-time updates
through data connectors and a context broker, transforming formats
like JSON and XML to NGSI-LD.

3. [M3] Entity Modeling: Tier 1, as it uses an entity attribute relation-
ship (EAR) model for DT modeling, without providing a standard-
ized method for modeling essential concepts, i.e., aggregation, gen-
eralization, composition, and model versioning.

4. [M4] Data Conformance: Tier 1, as it does not support any verification
and validation of data against the schema.

5. [M5] Semantic Drift Identification and Characterization: Tier 1, as it
provides no methods to identify and characterize semantic drift.

6. [M6] Semantic Drift Support: Tier 1 as it provides methods to update
context information but does not provide data validations, which is
necessary for managing drift.

7.2.2. Eclipse Basyx

When working with Eclipse Basyx, the approach follows the AAS
concept, and is therefore mostly oriented towards the manufacturing
industry. We model the DT as illustrated in sub-Section 6.2.2, corre-
sponding to our mobility data model shown in Fig. 2(a). In the context
of the metrics outlined in sub-Section 5, we validate Scenario 4.1, to
address data-driven drift (label, feature and concept). Eclipse Basyx is
capable of updating the context data, which is coupled with assets and
submodels. Eclipse Basyx does not provide a standard way to model ab-
straction. We therefore link the Transport and Bus assets through an



F. Abbasi et al.

$body = @{
distanceCovered = @{
type = "Number”
value = 500
},
distanceUnits = @{
type = "String”
value = km
3,

} | ConvertTo-Json

Invoke-RestMethod -Uri 'http://localhost:1026/v2/entities/urn:ngsi-
1d:bus:001/attrs' -Method Post -ContentType 'application/json'
-Body $body

Listing 13. Add Attributes (Fiware NGSI-LD).

"id": "TempSensor:001",
"type"”: "TempSensor”,
"value": {
"type”: "Number”,
"value”: 30
3,
"units”: {
"type”: "String”,
"value": "Celcius”
3,
"@context”: [{"Sensor”: "urn:type:TempSensor"”,
"value”: "unique_uri:name”,

"units":
},
"https://uri.etsi.org/ngsi-1d/v1/ngsi-ld-core-context-v1.7.
jsonld"]

"unique_uri:units”,

}
# Curl Query to Add Entity into Context Broker

e{
"Content-Type" =

$headers =
"application/ld+json”

}

Invoke-WebRequest -Uri 'http://localhost:9090/ngsi-1d/v1/entities' -
Method Post -Headers $headers -Body (Get-Content Sensor.jsonld
-Raw)

Listing 14. Entity Creation in Fiware NGSI-LD (Sensor.jsonld).

is_a relation, as well as providing a way to address data-driven drift (la-
bel, feature and concept) by updating the value of the 1ine attribute in
the transport asset.

The addition of an is_a relation between the Transport and Bus as-
sets is illustrated in Listing 16, whereas Listing 17, shows our update of
the attribute values of the Transport asset.

We validate Scenario 4.2 for structural drift. We need to add a new
submodel, named operational data, to the Bus asset to predict the
bus arrival time. This can be seen in the submodel, i.e., operational
data, in the Bus asset provided in Listing 18. For Scenario 4.3, we fol-
lowed the same procedure as described in Listing 17 to switch units
of measurements, i.e. from kilometers to meters, changing the value of
DistanceUnits.

We validate Scenario 4.4 for technical conceptual drift. Since Eclipse
Basyx does not provide a standard way of modeling composition, we
needed to add a temperature sensor in the form of a submodel to the Bus
asset. Similarly, we added a submodel for operational data as depicted
in Listing 18.

We validate Scenario 4.5 for knowledge conceptual drift. The
ElectricBus concept must first be reflected on the ontology layer, then
on the metamodel layer (assets, submodels), and finally on the model
layer (context data). According to our observations and experiments,
Eclipse Basyx does not provide a standard way of defining and main-

13

Future Generation Computer Systems 177 (2026) 108240

$body = @{
has = @{
type = "Relationship”
value = "urn:ngsi-1d:TempSensor:001"
}

} | ConvertTo-Json

Invoke-RestMethod -Uri 'http://localhost:1026/v2/entities/urn:ngsi-
1d:bus:001/attrs' -Method Post -ContentType 'application/json'
-Body $body

Listing 15. Add Relation (Fiware NGSI-LD).

relationship_element = model.RelationshipElement(
id_short="is_a",
first=model.ModelReference. from_referable(transport_aas),
second=model.ModelReference. from_referable(bus_aas)

)

bus_submodel. submodel_element.add(relationship_element)

Listing 16. Add Relation (Eclipse Basyx).

Table 4
Comparative analysis of DT frameworks.

Language-specific
Azure DT GreyCat

Data-specific

Metrics Tiers Fiware NGSI-LD Eclipse Basyx

Tier 1 v

Tier 2

Tier 3

Tier 4 v v v
Tier 1

Tier 2 v

Tier 3 v v v
Tier 1 v v
Tier 2 v v

Tier 3

Tier 1 4

Tier2 v/ v v
Tier 1 v v v v
Tier 2

Tier 3

Tier 1 v 4

Tier2 /

Tier 3 v
Tier 4

[M1]

[M2]

[M3]

[M4]

[M5]

[M6]

taining ontologies. It also lacks a proper way of expressing abstraction,
which needs to be added when a new ElectricBus concept is intro-
duced by the Ministry to replace the traditional buses on metamodel
layer (assets, submodels).

Overall, we can summarize that Eclipse Basyx provides only the con-
cept of a submodel, with which we can model different concepts, i.e.,
composition. A submodel concept may provide support to address data-
driven, structural, and technical conceptual drift as Eclipse Basyx pro-
vides methods to add and update the submodel. An illustration of the
Bus asset along with essential submodels is provided in Fig. 5. The com-
plementary information relating to core metrics, given in Section 5 for
analyzing the DT framework, is as follows:

1. [M1] Communication: Tier 4, as it supports full DT.

2. [M2] Data Acquisition, Storage and Fusion: Tier 3, as it provides mul-
tiple protocol support through OPC UA, MQTT, and HTTP REST. It
can manage data from both edge devices and cloud systems. It also
provides data storage and persistence through SQL database (Post-
greSQL) for registering assets and No-SQL database (MongoDB) for
storing events and data.

3. [M3] Entity Modeling: Tier 1, as it uses AAS implementation at the
metadata level, and does not provide ways to model abstraction and
composition, whereas the concept of submodel can be used to model



F. Abbasi et al.

for element in transport_submodel.submodel_element:
if isinstance(element, model.Property) and element.id_short == '
Line':
element.value =
break
data_store: model.DictObjectStore[model.Identifiable] = model.
DictObjectStore()
data_store.add(transport_submodel)

new_line_value

write_aas_xml_file(file='TransportAAS.xml', data=data_store)
Listing 17. Updating Attribute Value (Eclipse Basyx).

operational_bus_submodel = 'https://acplt.org/operational_data'
operational_data_submodel = model.Submodel(
id_=operational_bus_submodel
)
semantic_reference_distanceCovered = model.ExternalReference(
(model .Key (
type_=model .KeyTypes.GLOBAL_REFERENCE,
value="http://acplt.org/Properties/DistanceCovered’
),)
)
distance_Covered = model.Property(
id_short="'Distance Covered',
value_type=model.datatypes.Integer,
value="500",
semantic_id=semantic_reference_distanceCovered
)
semantic_reference_distanceUnits = model.ExternalReference(
(model.Key (
type_=model .KeyTypes.GLOBAL_REFERENCE,
value="http://acplt.org/Properties/DistanceUnits'
),)
)
distance_Units = model.Property(
id_short="'Distance Units',
value_type=model.datatypes.String,
value="km",
semantic_id=semantic_reference_distanceUnits

)
operational_data_submodel.submodel_element.add(distance_Covered)
operational_data_submodel.submodel_element.zdd(distance_Units)

Listing 18. Adding Submodel (Eclipse Basyx).

composition to a limited extent. It also provides model versioning
through AAS as an asset can have multiple versions, enabling users
to manage and track evolved assets.

4. [M4] Data Conformance: Tier 2, as invalid data can be detected
against a schema/metamodel.

5. [Metric 5] Semantic Drift Identification and Characterization: Tier 1, as
it provides no method or procedure for identifying and characteriz-
ing semantic drift.

6. [M6] Semantic Drift Support: Tier 3, as it provides methods to add and
update submodels.

7.3. Results

We present a graphical analysis of key attributes for semantic drift
in DT frameworks, using evaluation metrics from Section 5, ranked on a
1 to 4 tier scale. Fig. 6 and Fig. 7 show spider diagrams of language- and
data-specific DT frameworks, offering a quantitative view of results and
tool coverage for semantic drift. This is complemented by both quali-
tative and quantitative assessments summarized in Table 4. Note that
for Azure DT, we provide a spider diagram when the back-end is fully
available. We can summarize through these spider diagrams that no DT
framework provides a method or procedure for identifying and charac-
terizing semantic drift, however, two of the DT frameworks, i.e., Azure

14

Future Generation Computer Systems 177 (2026) 108240

DT and Eclipse Basyx, provide partial support to address semantic drift
variants.

8. Discussion: Digital twin framework

This section provides qualitative discussion on studied frameworks.
We identify key challenges, benefits, and limitations of language and
data-specific DT frameworks in addressing semantic drift. The DT frame-
works examined exhibit diverse features and functionalities tailored
to various industrial domains, making the selection of the appropriate
framework crucial for successful DT adoption. In our case, the mobility
use case was compatible with all frameworks implemented; however,
each presented unique drawbacks in managing and addressing seman-
tic drift, as discussed in Section 7. Our findings highlight that while no
DT framework currently fully addresses the identification and character-
ization of semantic drift, this presents a valuable opportunity for further
innovation and development in the field. Below, we summarize our ob-
servations regarding semantic drift support across DT frameworks:

1. Eclipse Basyx offers the most robust support for addressing and
managing semantic drift among the platforms evaluated. It excels
in handling structural and technical conceptual drift by enabling up-
dates to submodels through its robust implementation of the AAS
standard. Additionally, it supports the conversion of assets into RDF
and XML, thereby aiding standardization efforts. However, improve-
ments are needed in managing knowledge conceptual drift as some
modeling concepts, i.e., generalization, are missing, and there is lim-
ited support for defining and maintaining ontologies.

2. Azure DT is a powerful tool, particularly when supported by a ro-
bust back-end, and it offers a unified schema/metamodel for defining
DT structures, enhancing compatibility with commercial solutions.
It addresses data-driven drift effectively through updates to the twin
graph. While its support for technical conceptual drift is limited due
to the absence of mechanisms for updating the model graph, Azure
DT allows the conversion of DTDL into RDF, laying a foundation for
semantic standardization. With further enhancement, it has a strong
potential for broader semantic drift management.

3. Fiware NGSI-LD offers effective solutions for managing context in-
formation and supports flexible updates, however, its flexible data
and schema coupling features pose challenges for data validation
and drift management, whereas its versatility presents opportunities
for improvement in the handling of semantic drift variants. Addi-
tionally, it does not provide standardized methods for defining and
maintaining ontologies, which are essential for tackling knowledge
conceptual drift. However, it does facilitate the reuse of existing on-
tologies through URI, which may provide a pathway for managing
knowledge conceptual drift.

4. GreyCat, although not currently equipped to manage semantic drift,
shows promise for future development. As the platform evolves, the
incorporation of mechanisms for handling semantic drift and ontolo-
gies could significantly enhance its value in managing complex se-
mantic scenarios.

We recognize the existence of various other DT frameworks as listed
in [41], both commercial and open-source, that merit further explo-
ration. Our study solely focuses on language and data-specific frame-
works, addressing RQ1, RQ2 and RQ3. This is because effective se-
mantic drift analysis requires frameworks supporting at least three crit-
ical layers: data, model, and metamodel. We also exclude some tools
which do not provide data collection facilities. We further empha-
size that addressing semantic drift is a shared responsibility between
DT frameworks and modeling experts. While frameworks must enable
robust mechanisms for model migration, versioning, traceability, and
automated runtime updates, their efficacy ultimately depends on expert-
driven modeling practices to ensure adaptive and reliable DT evo-
lution and maintenance. Additionally, managing horizontal drift, de-
tailed in [7], which arises from misaligned peer models across sys-



F. Abbasi et al.

tems or domains at the same abstraction layer, is crucial for main-
taining interoperability and integrity in distributed DT ecosystems.
It would be beneficial if such management were supported directly
by DT frameworks through enhanced coordination, synchronization,
and semantic governance mechanisms. Furthermore, Our evaluation re-
vealed that DT frameworks offer limited support for detecting mali-
cious data. Therefore, it is imperative they incorporate scalable seman-
tic drift management for high-volume data streams, complemented by
secure mechanisms ensuring data integrity, access control, and model
provenance.

9. Conclusion

DTs hold transformative potential by mirroring real-world behav-
iors through models, metamodels, and ontologies, enhancing systems-
of-systems with deep insights and optimization. However, dynamic real-
world induces semantic drift, necessitating proactive strategies to pre-
serve DT effectiveness over time. Our research contributes to assess the
effectiveness of DT frameworks in identifying, characterizing, and provid-
ing any level of support for managing semantic drift, addressing RQ1,
RQ2 and RQ3. We provide an elicitation of requirements for managing
semantic drift, informed by a practical mobility use case following a set
of prototypical scenarios. Further, we draw on a set of evaluation met-
rics, from the elicited requirements, to perform a robust evaluation of
language and data-specific DT frameworks for highlighting their practi-
cal value in managing semantic drift.

Our findings show that existing DT frameworks lack clear procedures
for identifying or characterizing semantic drift and offer only limited
support for addressing various drift types. This study focuses on eval-
uating current frameworks without implementing or empirically val-
idating potential solutions, which remains a key direction for future
work.

Looking ahead, we aim to develop flexible and robust solutions for
managing semantic drift across multiple modeling layers, considering
the behavior and execution aspects of DT. These solutions will integrate
model management capabilities to support model synchronization and
evolution, ultimately enhancing the reliability, adaptability, and rele-
vance of DT in dynamic environments.

CRediT authorship contribution statement

Faima Abbasi: Writing — original draft, Visualization, Validation,
Methodology, Data curation, Conceptualization; Cédric Pruski: Valida-
tion, Supervision, Methodology, Investigation, Conceptualization; Jean-
Sébastien Sottet: Validation, Supervision, Funding acquisition, Data cu-
ration, Conceptualization.

Data availability

The data which is used in this research is already available on Lux-
embourg open data portal (link given in research)

Declaration of competing interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

Supported by the Luxembourg National Research Fund (FNR),
project MDDT-SD grant number C22/1S/17153694.

15

Future Generation Computer Systems 177 (2026) 108240

References

[1] S. Abburu, A.J. Berre, M. Jacoby, D. Roman, L. Stojanovic, N. Stojanovic, Cognitive
digital twins for the process industry, in: Proceedings of the the Twelfth Interna-
tional Conference on Advanced Cognitive Technologies and Applications (COGNI-
TIVE 2020), Nice, France, 2020, pp. 25-29.

Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, A.Y.C. Nee, Enabling tech-
nologies and tools for digital twin, J. Manuf. Syst. 58 (2021) 3-21.

A.L. Suarez-Cetrulo, D. Quintana, A. Cervantes, A survey on machine learning for
recurring concept drifting data streams, Expert Syst. Appl. 213 (2023) 118934.

E. Whiting, S. Andrews, Drift and erosion in software architecture: summary and
prevention strategies, in: Proceedings of the 2020 the 4th International Conference
on Information System and Data Mining, 2020, pp. 132-138.

J. Chen, F. Lecue, J.Z. Pan, S. Deng, H. Chen, Knowledge graph embeddings for
dealing with concept drift in machine learning, J. Web Semant. 67 (2021) 100625.
R. Jongeling, J. Fredriksson, F. Ciccozzi, A. Cicchetti, J. Carlson, Towards consis-
tency checking between a system model and its implementation, in: Systems Mod-
elling and Management: First International Conference, ICSMM 2020, Bergen, Nor-
way, June 25-26, 2020, Proceedings 1, Springer, 2020, pp. 30-39.

F. Abbasi, P. Brimont, C. Pruski, J.-S. Sottet, Understanding semantic drift in model
driven digital twins, in: Proceedings of the ACM/IEEE 27th International Conference
on Model Driven Engineering Languages and Systems, 2024, pp. 419-430.

E.B. Ouedraogo, A. Hawbani, X. Wang, Z. Liu, L. Zhao, M.A.A. Al-qaness, S.H. Al-
samhi, Digital twin data management: a comprehensive review, IEEE Trans. Big Data
(2025), 11, pp. 2224-2243.

J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept drift: a
review, IEEE Trans. Knowl. Data Eng. 31 (12) (2018) 2346-2363.

A. Armijo, D. Zamora-Sanchez, Integration of railway bridge structural health mon-
itoring into the internet of things with a digital twin: a case study, Sensors 24 (7)
(2024) 2115.

M.N. Hasan, S.U. Jan, 1. Koo, Wasserstein GAN-based digital twin-inspired model for
early drift fault detection in wireless sensor networks, IEEE Sens. J. 23 (12) (2023)
13327-13339.

R. Gupta, B. Tian, Y. Wang, K. Nahrstedt, TWIN-ADAPT: continuous learning for
digital twin-enabled online anomaly classification in IoT-driven smart labs, Future
Internet 16 (7) (2024) 239.

Y. Wu, L. Liu, Y. Yu, G. Chen, J. Hu, An adaptive ensemble framework for addressing
concept drift in IoT data streams, Authorea Preprints (2023).

J. Michael, L. Cleophas, S. Zschaler, T. Clark, B. Combemale, T. Godfrey, D.E. Khel-
ladi, V. Kulkarni, D. Lehner, B. Rumpe, et al., Model-driven engineering for digital
twins: opportunities and challenges, Syst. Eng. (2025, 659-670, 28 ).

M. Kannapinn, M. Schéfer, O. Weeger, TwinLab: a framework for data-efficient train-
ing of non-intrusive reduced-order models for digital twins, Eng. Comput. (2024).
J. Mertens, S. Klikovits, F. Bordeleau, J. Denil, @. Haugen, Continuous evolu-
tion of digital twins using the dartwin notation, Softw. Syst. Model. (2024), 24,
1405-1426.

W. Sun, S. Lei, L. Wang, Z. Liu, Y. Zhang, Adaptive federated learning and digital
twin for industrial internet of things, IEEE Trans. Ind. Inf. 17 (8) (2020) 5605-5614.
D. Lehner, A. Garmendia, M. Wimmer, Towards flexible evolution of digital twins
with fluent APIs, in: 2021 26th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), IEEE, 2021, pp. 1-4.

H.M. Muctadir, L. Cleophas, M. van den Brand, Maintaining consistency of digital
twin models: exploring the potential of graph-based approaches, in: 2024 50th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA),
IEEE, 2024, pp. 152-159.

H.M. Muctadir, E. Kamburjan, L. Cleophas, M. van den Brand, A consistency man-
agement framework for digital twin models, Available at SSRN 5105174.

T. Kiihne, Multi-dimensional multi-level modeling, Softw. Syst. Model. 21 (2) (2022)
543-559.

J. Liu, Q. Ji, H. Zhou, C. Du, X. Liu, M. Li, A multi-dimensional evolution modeling
method for digital twin process model, Robot. Comput. Integr. Manuf. 86 (2024)
102667.

F. Salama, I. Sezgin, E. Korkan, S. Kabisch, S. Steinhorst, HoloWoT: a first step to-
wards mixed reality digital twins for the industrial internet of things, in: Proceedings
of the ACM/IEEE 27th International Conference on Model Driven Engineering Lan-
guages and Systems, 2024, pp. 318-321.

A. Bucaioni, R. Eramo, L. Berardinelli, H. Bruneliere, B. Combemale, D.E. Khelladi,
V. Muttillo, A. Sadovykh, M. Wimmer, Multi-partner project: a model-driven engi-
neering framework for federated digital twins of industrial systems (MATISSE), in:
Design, Automation and Test in Europe Conference (DATE 2025), 2025.

E. Karabulut, S.F. Pileggi, P. Groth, V. Degeler, Ontologies in digital twins: a sys-
tematic literature review, Future Gener. Comput. Syst. 153 (2024) 442-456.

F. Abbasi, M. Muzammal, Q. Qu, F. Riaz, J. Ashraf, SNCA: semi-supervised node
classification for evolving large attributed graphs, Big Data Min. Anal. 7 (3) (2024)
794-808.

F. Abbasi, M. Muzammal, Q. Qu, A decentralized approach for negative link predic-
tion in large graphs, in: 2018 IEEE International Conference on Data Mining Work-
shops (ICDMW), IEEE, 2018, pp. 144-150.

M. Muzammal, F. Abbasi, Q. Qu, R. Talat, J. Fan, A decentralised approach for link
inference in large signed graphs, Future Gener. Comput. Syst. 102 (2020) 827-837.
J. Persson, S. Johannsen, The design of an ontology management tool (2024).

Q. Bao, G. Zhao, Y. Yu, S. Dai, W. Wang, The ontology-based modeling and evolution
of digital twin for assembly workshop, Int. J. Adv. Manuf. Technol. 117 (2021)
395-411.

Z. Ren, J. Shi, M. Imran, Data evolution governance for ontology-based digital twin
product lifecycle management, IEEE Trans. Ind. Inf. 19 (2) (2022) 1791-1802.

[2]
[3]

[4]

[5]

[6]

71

[81

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]


http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0002
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0002
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0005
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0005
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0006
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0006
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0006
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0006
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0007
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0007
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0007
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0008
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0008
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0008
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0009
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0009
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0010
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0010
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0010
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0011
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0011
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0011
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0012
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0012
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0012
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0013
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0013
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0016
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0016
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0016
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0017
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0017
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0019
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0019
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0019
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0019
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0020
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0020
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0021
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0021
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0021
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0022
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0022
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0022
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0022
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0025
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0025
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0025
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0027
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0027
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0029
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0029
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0029
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0030

F. Abbasi et al.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

F. Abbasi, M. Muzammal, K.N. Qureshi, I.T. Javed, T. Margaria, N. Crespi, Exploiting
optimised communities in directed weighted graphs for link prediction, Online Soc.
Netw. Media 31 (2022) 100222.

L. Vogt, FAIR knowledge graphs with semantic units: a prototype, arXiv preprint
arXiv:2311.04761 (2023).

E. Kamburjan, N. Bencomo, S.L. Tapia Tarifa, E.B. Johnsen, Declarative lifecy-
cle management in digital twins, in: Proceedings of the ACM/IEEE 27th Interna-
tional Conference on Model Driven Engineering Languages and Systems, 2024, pp.
353-363.

G. Pronost, F. Mayer, M. Camargo, L. Dupont, Digital twins along the product life-
cycle: a systematic literature review of applications in manufacturing: [version 2;
peer review: 2 approved, 2 approved with reservations], Digit. Twin 1 (2) (2024) 3.
E.B. Gulcan, F. Can, Unsupervised concept drift detection for multi-label data
streams, Artif. Intell. Rev. 56 (3) (2023) 2401-2434.

K. Wang, L. Zhang, Z. Jia, H. Cheng, H. Lu, J. Cui, A framework and method for
equipment digital twin dynamic evolution based on IEXATCN, J. Intell. Manuf. 35
(4) (2024) 1571-1583.

D. Lehner, J. Pfeiffer, E.-F. Tinsel, M.M. Strljic, S. Sint, M. Vierhauser, A. Wortmann,
M. Wimmer, Digital twin platforms: requirements, capabilities, and future prospects,
IEEE Softw. 39 (2) (2021) 53-61.

16

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

Future Generation Computer Systems 177 (2026) 108240

1. ISO, DIS 23247-1 automation systems and integration—digital twin framework for
manufacturing, Int. Organ. Stand. Geneva Switz. (2020).

F. Steimann, J. Gofner, T. Miick, On the key role of composition in object-
oriented modelling, in: International Conference on the Unified Modeling Language,
Springer, 2003, pp. 106-120.

S. Gil, P.H. Mikkelsen, C. Gomes, P.G. Larsen, Survey on open-source digital
twin frameworks-A case study approach, Softw. Pract. Exper. 54 (6) (2024)
929-960.

Y.K. Liu, S.K. Ong, A. Nee, State-of-the-art survey on digital twin implementations,
Adv. Manuf. 10 (1) (2022) 1-23.

W. Kritzinger, M. Karner, G. Traar, J. Henjes, W. Sihn, Digital twin in manufacturing:
a categorical literature review and classification, IFAC PapersOnline 51 (11) (2018)
1016-1022.

T. Hartmann, F. Fouquet, A. Moawad, R. Rouvoy, Y. Le Traon, GreyCat: efficient
what-if analytics for data in motion at scale, Inf. Syst. 83 (2019) 101-117.

U. Ahle, J.J. Hierro, FIWARE for data spaces, Designing Data Spaces, 395, 2022.
K. Schweichhart, Reference architectural model industrie 4.0 (rami 4.0), An Intro-
duction 40 (2016).


http://arxiv.org/abs/arXiv:2311.04761
http://arxiv.org/abs/arXiv:2311.04761
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0034
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0034
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0035
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0035
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0035
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0036
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0036
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0036
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0037
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0037
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0038
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0038
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0038
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0040
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0040
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0041
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0041
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0041
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0042
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0042
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0043
http://refhub.elsevier.com/S0167-739X(25)00534-5/sbref0043

	Semantic drift evaluation in language and data-specific digital twin frameworks 
	1 Introduction
	2 Related work
	2.1 Data management
	2.2 Model-driven concepts
	2.2.1 Model management
	2.2.2 Consistency management
	2.2.3 Modeling paradigms

	2.3 Linked data technologies

	3 Preliminaries
	3.1 Data-driven drift
	3.2 Technical conceptual drift
	3.3 Knowledge conceptual drift

	4 RQ1: Semantic drift management requirements
	4.1 Mobility use case
	4.1.1 Mobility network analysis
	4.1.2 Prototypical scenarios

	4.2 Requirement elicitation
	4.2.1 [REQ 1] Basic synchronization
	4.2.2 [REQ 2] Data integration & management
	4.2.3 [REQ 3] Modeling proficiencies
	4.2.4 [REQ 4] Data validation
	4.2.5  [REQ 5] Modifiability


	5 RQ2: Evaluation metrics for digital twin framework
	5.1 [M1] Communication
	5.2 [M2] Data acquisition, storage, and integration
	5.3 [M3] Entity modeling
	5.4 [M4] Data conformance
	5.5 [M5] Semantic drift identification and characterization
	5.6 [M6] Semantic drift support

	6 Digital twin modeling
	6.1 Language-specific digital twin framework
	6.1.1 Azure DT
	6.1.2 GreyCat

	6.2 Data-specific digital twin framework
	6.2.1 Fiware NGSI-LD
	6.2.2 Eclipse Basyx


	7 RQ3: Semantic drift support in digital twin frameworks
	7.1 Language-specific digital twin framework validation
	7.1.1 Azure DT
	7.1.2 GreyCat

	7.2 Data specific digital twin framework validation
	7.2.1 Fiware NGSI-LD
	7.2.2 Eclipse Basyx

	7.3 Results

	8 Discussion: Digital twin framework
	9 Conclusion


