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ARTICLE INFO ABSTRACT

Keywords: Road traffic is the major source of air and noise pollution. It is also one of the largest contributors to
Sustainable transport anthropogenic greenhouse gas emissions. Transport electrification can significantly reduce these negative
Plug-in electric hybrid vehicles externalities. However, electric buses do not often meet public transport requirements, due to their limited

Battery management

. battery capacity. In contrast, plug-in hybrid electric buses offer a versatile alternative, providing zero-
Urban mapping

Urban public transport emission capabilities that depend on battery capacity, charging frequency, and the distribution of electric

Genetic algorithms drive along a route. However, current electric drive assignment systems are oversimplified, thus not fully

Multi-objective optimization leveraging their potential. This work extends our previous research, which introduced a novel combinatorial
optimization problem aimed at determining optimal electric drive assignment strategies for Plugin Electric
Hybrid (PEH) buses. A large number of bus lines as well as zero-emission and restricted-emission zones are
considered. The objectives are to maximize the buses’ electric range and minimize the overall pollution while
adhering to mandatory zero-emission and restricted-emission zones. In this study, we analyze seventy bus
lines from Barcelona’s urban public bus network (Spain), and tackled this large problem with two parallel
implementations of the Cooperative Co-evolutionary Multi-objective Cellular Genetic Algorithm (CCMOCell).
The strategies provided by both CCMOCell versions are validated against GreenK, a state of the art heuristic
that only focuses on the electric range. Results demonstrate that the obtained solutions achieve up to 7.67%
reduction in carbon dioxide (CO,) emissions, compared to GreenK, at the cost of a slight decrease in terms
of electric range, i.e. 2.28%. However, the strategy found by GreenK is unfeasible, because it exceeds the
pollution threshold established for one restricted-emission zone by 635 CO, kilograms per day.

1. Introduction engine (ICE). PEH buses combine benefits of electrification with un-
constrained driving range (Gallo et al., 2014). Due to the high daily

Since the second half of the 20th century, rapid global urbanization mileage requirement of PT operations, PEH buses are designed to use
has led to a surge in mobility demands (Allen, 2019). Resulting in opportunity charging at layovers. Overall, environmental and societal
a significant rise of greenhouse gas emissions, noise levels and air benefits of PEH buses depend on the distance covered in electric mode
pollution. This increasingly influences the climate, as well as impacts and carbon intensity of electricity generation. However, an important

public health and urban livability. These negative externalities can
be significantly reduced via transportation electrification (Seredynski,
2023). The combination of battery electric vehicles and attractive pub-
lic transport (PT) leads to a sustainable transportation system, allowing
to address major transportation and environmental problems in cities.
However, due to the current limitations in battery capacity, not all
bus operations can be fully electrified (Fiori et al., 2021). To bridge
this gap, alternative solutions such as plug-in electric hybrid (PEH)
buses have been introduced. They have an electric motor (EM), a
small battery that can be charged from the grid, and a combustion

research question remains: how to optimally manage the use of the
limited pure electric driving mode along bus routes, considering both
societal and environmental factors?

A large number of European cities have already deployed PEH
buses on a limited scale, along with green corridors or mandatory
zero-emission zones (mZEZ). These are designated areas where city au-
thorities prohibit noise and emissions, typically situated around highly
polluted locations, as well as near hospitals, schools, parks, or pedes-
trian zones. The current strategies for assigning electric drive to PEH
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buses are relatively naive. They rely on a basic offline plan that utilizes
a first-come, first-served method to determine electric drive locations.
This oversimplified approach does not take advantage of the full po-
tential of tailored electric drive management, which could increase the
distance buses travel in electric mode while simultaneously reducing
pollutants and noise levels, thereby resulting in direct economic and
societal benefits (Seredynski, 2018). Developing an effective assign-
ment strategy is complex because the relationship between the distance
traveled in electric mode and harmful emissions is not straightforward.
For instance, driving uphill with an ICE can lead to increased emissions.
In contrast, using pure electric mode requires a significant amount of
energy. Designating an uphill segment for electric drive can reduce
emissions but may decrease the total distance traveled in electric mode.
Moreover, any strategy selection must take into account the existence
of mandatory green corridors.

Sustainable urban transport cannot exist without a competitive PT.
To make PT an attractive alternative to private cars, it has to deliver
high level of service, i.e. it has to be punctual, frequent and prioritized
in traffic (Seredynski et al., 2020). This requires a significant increase
in the number of buses operating throughout the city. However, the
increase of operating buses can lead to areas where multiple bus lines
converge, resulting in additional traffic, pollution, and noise, which
can reduce livability. In consequence, this work does not only consider
mZEZ but also restricted-emission zones (REZ) for the public transport
buses. These are zones where driving in electric mode is not mandatory,
but the overall pollution and noise levels are regulated to ensure
a healthier urban environment. Some examples where REZs can be
established are dense traffic areas, or zones where lower pollutants
and noise levels are desirable (e.g., near hospitals, schools or parks).
Currently, the driving assignment strategy for the real world deployed
PEH buses is established beforehand, in an offline mode, and it changes
automatically during their operation with no intervention of the bus
driver. Therefore, the consideration of both mZEZ and REZ in the
operation of public PEH buses can be easily implemented, enhancing
the quality of air and livability of cities. However, these policies must
be implemented by administrations to comply with city regulations.

This work is an extension of our previous paper (Aragén-Jurado
et al., 2024), where a novel multi-objective combinatorial optimization
problem is introduced to find optimal drive assignment strategies for
PEH buses to reduce carbon dioxide (CO,) emissions and enlarge their
electric range. In comparison to Ruiz et al. (2023), where one bus
line is optimized at a time, we considered six bus lines that are to be
optimized simultaneously under the presence of both mZEZs and REZs.
The latter are defined so that CO, emissions are restricted to half the
amount of emissions released when all buses traverse them using their
ICE. Therefore, electric drive assignment strategies will promote the use
of the EM in these areas when possible, while targeting the CO, and
electric range optimization in the whole route.

The main contribution of this work is the simultaneous optimization
of drive assignment strategies for a large number of urban buses, under
the presence of both mZEZs and REZs. In particular, we consider the 70
bus lines from Barcelona metropolitan area that are currently operating
in the city. In order to address such a complex problem, we make
use of a parallel Cooperative Co-evolutionary Multi-objective Genetic
Algorithm, based on the well-known Multi-objective Cellular Genetic
Algorithm (MOCell), which has demonstrated to achieve competitive
results with super-linear speedups in a number of problems (Atashpen-
dar et al., 2018; Dorronsoro et al., 2013). We consider two versions of
the algorithm, namely the synchronous one used in our previous pub-
lication (Aragén-Jurado et al., 2024) and an asynchronous one, where
decoupled communications between the islands are allowed in order to
achieve faster convergence and better exploration of the search space.
This algorithm was only applied before to small academic problems
using a short number of parallel islands (up to 12) (Atashpendar et al.,
2018). In contrast, the algorithm is applied in this work to a large-scale
real-world problem with 3,534 variables using 70 islands.
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The paper is structured as follows. Section 2 provides a review of
the existing literature on sustainable urban bus transportation. Follow-
ing that, Section 3 introduces the Sustainable Urban Transportation
(SUTRA) problem. Sections 4 and 5 detail the proposed methodol-
ogy for solving SUTRA and outline the experimental setting, respec-
tively. Finally, Section 6 presents an analysis of the obtained results,
while Section 7 concludes the work and suggests directions for future
research.

2. Literature review

Electro-mobility significantly reduces emissions and noise associ-
ated with transportation. Nevertheless, transitioning an entire city’s
transportation fleet to electric vehicles demands substantial financial
investments. In addition, it raises new challenges, as transportation
systems need to be reconsidered due to the new requirements of
these vehicles and their different behavior or performance. Beyond
this issue, there are several inherent problems that make difficult and
slow progress of electric vehicles in urban areas. The most significant
studies targeting the different challenges in this sector are discussed
in detail below, and those areas where knowledge gaps still exist are
emphasized.

According to Mastoi et al. (2022), a critical factor is the strategic
placement of charging stations, which affects many types of road
transport, such as commercial vehicles (Carra et al., 2022), taxis (Li
et al., 2022b), logistics (Li et al., 2022a), or electric buses (Lopez de
Brifias Gorosabel et al., 2022), as well as PEH buses (Pternea et al.,
2015; Rogge et al., 2015).

One of the main challenges that arise when working with operating
vehicles is to accurately estimate their energy consumption (Vepsalai-
nen et al.,, 2018). In fact, the literature extensively discusses various
factors that have influence in their consumption (Chen et al., 2021;
Fiori et al., 2021), such as driving patterns (Tang et al., 2015; Zhang
et al., 2019), passenger load (Yang and Liu, 2022) or weather condi-
tions (Al-Wreikat et al., 2022; Liu et al., 2018), among others (Heif3ing
and Ersoy, 2011; Zener and Zkan, 2020). A significant concept is
Vehicle Specific Power (VSP), which measures the instantaneous energy
required for the vehicle’s movement and its correlation with emitted
pollutants, fuel consumption, or electric energy use (Ruiz et al., 2023;
Jiménez-Palacios, 1999; Yazdani Boroujeni and Frey, 2014). Therefore,
it is a valuable parameter for modeling PEH buses. The energy con-
sumption model presented in this work integrates concepts from the
ICE consumption models by Sun and Zhu (2014), as well as those by
Larminie and Lowry (2012) for EMs. Additionally, this model intro-
duces a novel regenerative braking factor for a more realistic battery
charging emulation. This consumption model builds upon the emissions
model proposed by Jiménez-Palacios (1999).

The development of techniques that optimize the energy efficiency
of PEH buses is a major issue too. The successful implementation
of PEH bus systems in countries like Luxembourg, Poland, Germany,
and Belgium is noteworthy. Despite these successes, challenges have
emerged that required collaboration among researchers, policymakers,
and operators. A significant research focus in this context is energy
efficiency, particularly through energy management strategies (EMS),
since it highly influences both its lifetime and the performance of the
bus. Several studies aimed to enhance EMS for PEH bus motors using
dynamic programming (Peng et al., 2017). Also, Naser et al. (Sina
et al., 2022) employed a neural network to estimate the optimal state
of charge (SOC) trajectory, while He et al. (2022) utilized a deep
deterministic policy gradient algorithm. Techniques for optimizing bat-
tery lifetime, often relying on dynamic programming, have also been
proposed. Lépez-Ibarra et al. (2020) improved EMS by updating it,
while Du et al. (2018) introduced a battery degradation model and
an algorithm based on Pontryagin’s minimum principle to find the
optimal control strategy. Similarly, Wang et al. (2022) used this ap-
proach to determine the best real-time EMS. A notable research has
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integrated Genetic Algorithms (GAs) with dynamic programming to
optimize velocity profiles and SOC sequences, providing real-time EMS
based on predictive control (Zhang et al.,, 2020). Wu et al. (2019)
used deep reinforcement learning to develop an EMS that considers
driving cycles, traffic constraints, and passengers number. Despite these
progress, Fan et al. (2020) argued that EMS might not adapt well to
dynamic cycles, suggesting a combination of rule-based energy strate-
gies, dynamic programming, equivalent fuel consumption algorithms,
and vehicle drivability. The literature has also targeted fuel economy
improvements by understanding driving behavior (Li et al., 2016).
Hou et al. (2019) introduced a comprehensive approach that considers
both driving behavior and terminal SOC along with fuel consumption.
Finally, studies by Guo et al. (2019) and Li et al. (2016) have explored
regenerative braking technologies.

It should be highlighted the importance of the mZEZs manage-
ment strategies for PEH buses. These strategies aim to enhance bus
performance by improving fuel efficiency and reducing pollutants emis-
sions, while also maximizing environmental benefits for citizens and
improving urban livability. One notable technology in this context
is geofencing, which has been studied for managing zones for PEH
vehicles, including both passenger cars (Storsater and Arvidsson, 2018)
and buses (Seredynski, 2018).

The adaptability of PEH buses transitioning from the EM to ICE
presents an opportunity to improve bus operation performance, focus-
ing on fuel efficiency and emissions reduction, ultimately maximiz-
ing environmental advantages for citizens and city livability. Current
strategies for managing mZEZs rely on simplistic rules like “first come,
first served” (Seredynski, 2019), constraining the dynamic manage-
ment potential. Tailored strategies specific to particular routes can
adjust mZEZs assignments in response to real-time variables such as
weather, traffic conditions, battery charge status, and integration with
intelligent transportation systems (ITS) (Seredynski, 2018). Prioritizing
route segments with low energy consumption has shown to increase
electric range by up to 20%, and cooperative ITS can further alleviate
stop-and-go situations, further improving PEH bus up-time by up to
6% (Seredynski, 2019).

Exploring effective management of electric driving modes for PEH
buses has led to two distinct approaches. In Ruiz et al. (2023), a
multi-objective GA optimizes offline strategies to maximize electric
range and minimize emissions while adhering to mZEZs regulations.
Accurate consumption models and route topography are integral to
this approach, producing a significant increase in electric range and
emissions reduction compared to existing strategies. Deep learning
is used in Aragon-Jurado et al. (2023a) to dynamically respond to
traffic anomalies, learning optimal strategies from offline optimization
and recalculating in real time. This approach achieves high prediction
accuracy and outperforms existing results in emissions reduction and
electric range.

Despite their efficacy in managing mZEZ for PEH buses, exist-
ing approaches consider routes in isolation. Consequently, high dense
traffic areas may result in concentrated pollution and noise because
buses from other routes adopt similar strategies, like using the ICE.
In order to address this issue, a novel concept of restricted emissions
areas was proposed in Aragén-Jurado et al. (2024), aimed at limiting
pollution levels in specific zones. A Cooperative Co-evolutionary Multi-
objective Genetic Algorithm (CCMOCell) was suggested for finding
optimal strategies balancing pollution and electric range while comply-
ing with mZEZ and predefined REZ. The work considered 6 bus lines in
the city center of Barcelona. This paper extends that work by optimiz-
ing the entire public transportation system in Barcelona metropolitan
area. Additionally, an asynchronous version of CCMOCell is considered
to look for better algorithmic performance in the resolution of the
problem.

Table 1 provides an overview of the contributions and limitations of
most relevant existing studies, identifying the aspects covered by pre-
vious research while emphasizing the unique advancements introduced
in the proposed work.
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3. Problem definition

The Sustainable Urban Transportation Problem (SUTRA) generalizes
the multi-objective efficient PEH bus operation problem (MEPBO),
initially defined in Ruiz et al. (2023), where electric drive management
is optimized to reduce the environmental impact of PEH services. In this
work, we adopt the problem definition proposed in Aragén-Jurado et al.
(2023a), where the bus route is divided into segments with constant
bus consumption, and the goal is to decide whether each segment
should be traveled using the ICE or EM, to minimize tailpipe emissions
while maximizing the total distance covered by the EM. Additionally,
some segments are designated as green corridors (e.g., mZEZ), which
must be entirely traveled using the EM. The original problem definition
in Ruiz et al. (2023) allowed switching the propulsion system at any
point within a segment; however, a binary choice (i.e., no changes
are allowed within a segment) was found more appropriate, as it
significantly reduces the size of the solutions space without negatively
impacting the quality of solutions (Aragén-Jurado et al., 2023a).

MEPBO focuses on optimizing bus routes independently, while SU-
TRA optimizes multiple routes at the same time. Along with mZEZs,
SUTRA introduces REZs, a new concept presented in this work. REZs
are defined for heavily polluted or busy urban areas, where public
transport tailpipe emissions are limited to reduce pollution and noise.
These zones are often found in city centers, major transportation hubs,
intersections, and areas with dense traffic. Also, REZs could be estab-
lished in areas where low emissions and noise levels are a priority, as
those near schools, hospitals, or parks.

SUTRA problem is not just solving multiple MEPBO problems si-
multaneously. The challenge lies in the interdependence of tailpipe
emissions across different bus lines within the REZs, making the prob-
lem non-separable and demanding the simultaneous optimization of all
lines. To solve SUTRA, the goal is to determine the optimal electric
drive assignment strategy for all PEH buses involved, in order to
maximize the overall electric driving range f,(X), while minimizing the
tailpipe emissions generated by the ICE f,(X) across all bus lines. This
is done while ensuring compliance with mZEZs and adhering to the
prescribed maximum emission levels within REZs.

The problem is formulated as follows. Let B = {S;.S,,....S,,}
represent the m bus lines to be optimized, and L = {Ly,L,,...,L,}
denotes the p predefined REZs. Each route S; is divided into n; seg-
ments, S; = s"l,sg, ...,s , where each segment sj. is characterized by
the tuple (l;., a}, gz;., rz;., bs}). Ip it, l; represents the segment’s length (in
kilometers), o) is its slope, gz} is a binary variable indicating whether
the segment is part of a mZEZ (gz’. = 1) or not (gz;. = _0), rz; is an
integer identifying the REZ the segment belongs to (rz} € L, with
rz; =0 if it belongs to none), and bs’ is another binary variable
indicating if the segment begins at a bus stop (bs} = 1) or not (bsj. =
0). Segments are defined where driving conditions change or at bus
stops, ensuring constant bus energy consumption within a segment,
as outlined in Ruiz et al. (2023). The energy consumption for each
segment is then estimated using the bus consumption model from Ruiz
et al. (2023), which considers factors like speed, mass, drag coefficient,
route elevation profile, regenerative braking, and vehicle efficiency,
among others.

The mathematical formulation used in this work to model the
problem is formally defined by Egs. (1a) to (1h). In this context, X
denotes a solution, represented as a binary vector, where x’ = 1 means
segment j of route i, s&, is covered using the EM, 0 indicating that ICE
is used.

I_n Eq. (1a), g(x;, sj.) represents the distance traveled using the EM
in s’. It corresponds to the length of the segment if it is decided to be
traveled using the EM, O in other case. In the particular case where
x; = 0 and bs; = 1 (i.e., the segment begins at a bus stop), the bus
starts using its EM, switching to the ICE after /, = 25 meters, the
distance typically needed to reach 15 km/h under normal conditions.
This assumption is based on the fact that the initial rolling phase is
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Table 1
Comparison of most relevant existing studies and contributions of this work.
Literature Real Mathematical mZEZ Bus fleet Heuristics Multi-
instances energy management optimization objective
models strategies
Aragé6n-Jurado et al. (2024), v v v X v v
Ruiz et al. (2023)
Mastoi et al. (2022), Li et al. X v X v X X
(2022a), Vepséldinen et al.
(2018), Chen et al. (2021)
Al-Wreikat et al. (2022), Liu X v X X v X
et al. (2018), HeiRing and
Ersoy (2011), Yazdani
Boroujeni and Frey (2014)
Jiménez-Palacios (1999), Sun X v X X X X
and Zhu (2014), Larminie and
Lowry (2012)
Sina et al. (2022) X v X v X X
Lopez-Ibarra et al. (2020), Fan X v X X v v
et al. (2020), Zhang et al.
(2020), Wang et al. (2022), Li
et al. (2016), Hou et al.
(2019), Guo et al. (2019)
Aragén-Jurado et al. (2023a) v v v X v X
Our work v v 4 v 4 v

a highly polluting and energy-intensive stage of bus operation, which
can be reduced by using the EM, as commonly practiced with hybrid
vehicles.

Eq. (1b) targets the minimization of CO, emissions in all routes,
where p(xj., s;) denotes the CO, emi;sions in kilograms produced in s;,
as formulated in Eq. (1d), where ¢ is the amount of CO, emissions
produced if segment s, is fully traversed with the ICE. Here, we need to
consider that segments starting at a bus stop are not totally traversed
using the ICE, as the first [, meters are covered with the EM. Also,
emissions produced in REZs are weighted twice when computing the
fitness value of the solution, in order to penalize tailpipe emissions in
REZs and guide the algorithm towards less pollutant solutions in these
areas.

m n
Maxf, (%) =) ) g(x},s) (1a)
i=1 j=1
m o n;
Minf,(®) =Y Y p(x!,s) (1b)
i=1 j=1
1L if xi=1
J J
g(x;., sj.) =3 1, if x; =0A stop(s;.) (10)
0  otherwise
i ; i i _ i
e if X = 0OA rz = 0 A not stop(sj)
i _ s : i _ i _ i
€ (1 [5’) if X, = 0OA rz; = 0A stop(sj)
iy — i ; i i i
plx),s) =4 2 e if X = 0OA rzi # 0 A not stop(s})
Lol _ s ; i i i
2 € <1 T ) if x;= oA rz #0A stop(sj)
0 otherwise
(1d)
Constraints:
Vi,j|gz; =1, then x; =1 (1e)

vieL 2

i i
e -(l-x)<7-

>4 an

xl/ s.t. rzj.:l stos.t. rz;:l
SoE! > 0.0 Vi € [1,m].j & [1.n;] 1g
SOE! < S0E,,, Vi € [1,m].j € [1.n;] (1h)

A valid solution to SUTRA problem must satisfy four constraints.
First, all segments s; designated as mZEZ must be traveled exclusively

using the EM (Eq. (1e)). Second, emissions within REZs must not exceed
a predefined threshold for maximum allowable emissions (Eq. (1f)),
which is set to = 0.5 in this study. This threshold limits emissions to
no more than half of what all buses would emit in REZs if they were all
running on their ICE. Third, the State of Energy (SoE) of all buses must
remain positive at all times, as defined by Eq. (1g). Finally, the fourth
constraint states that the SOE must not exceed the maximum battery
capacity, as stated in Eq. (1h).

4. The proposed methodology to solve the SUTRA problem

The following section provides a detailed description of the method-
ology followed in this work. To accurately estimate energy consump-
tion, real topographic data is necessary. First, the methodology to get,
process and aggregate essential information from real data of bus lines
is presented. Subsequently, the multi-objective optimization algorithms
used to solve the problem are introduced, as well as the greedy heuristic
using for comparison purposes.

4.1. Route segmentation

To accurately estimate the bus energy consumption along the route,
the consumption model proposed in Ruiz et al. (2023) is employed.
This model requires various bus parameters and real route data, in-
cluding bus stop locations and the route topography, such as latitude,
longitude, and altitude, in order to provide realistic estimations of the
energy consumption. The efficiencies parameters are set by default
to the values in the literature, however, battery degradation can be
simulated by changing these parameters. Additionally, in order to have
real topological information, digital databases and Digital Elevation
Models (DEMs) are employed. Specifically, a DEM with a 2 m mesh size
(i.e. MDT02-ETRS89-HU31-0420/0421/0448-1/2/3/4 COB2) from the
Spanish Geographic Institute is used to retrieve the altitude of each bus
stop in the studied area.

Information of the bus stops locations is obtained from specific
public transportation databases (TMB, 2025), however it does not
include the precise geometry of the routes. In order to reconstruct
the trajectories followed by buses between stops, and the required
driving maneuvers, two different routing Application Programming
Interfaces (APIs) are used. These APIs enable to determine the path
followed by the bus, as well as data about travel time, distance, and
intermediate locations (primarily intersections). Fig. 1 illustrates the
segmentation methodology applied in this work. Two routing APIs,
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Fig. 1. Route segmentation methodology combining different routing APIs. The coordinates of two consecutive bus stops are given to the routing applications for obtaining the
required maneuvers between these two points. If significant maneuvers or significant slope changes are identified, this piece of route is divided into two segments. The resulting

segmented route is the one used during the optimization phase.

Geoapify (Geoapify, 2024) and Openrouteservice (Openrouteservice,
2024), are employed to accurately segment the initial route, collecting
information on bus route geometries, conditions and features from both
sources to avoid measurement inaccuracies. Initially, the route is split
at every bus stop, indicating the beginning or end of a segment. It
implies that the bus accelerates until the cruise speed is reached, and
then breaks until it stops. This cruise speed is calculated from the avail-
able bus timetabling and double checked with the value obtained from
the APIs. Then, segments can be further split based on the following
criteria:

« Intersections and turns: Significant maneuvers are identified using
the different routing APIs and define new segment boundaries.

« Slope variations: If the slope difference between two consecutive
points exceeds 2%, a new segment is created to account for impact
in the energy demand.

A minimum segment length of 100 meters is enforced to prevent ex-
cessive fragmentation. Independently of the driving mode use, i.e. ICE
or EM, the cruise speed is satisfied in order to comply with the bus
schedules. This segmentation approach ensures that within each seg-
ment the driving conditions are similar, allowing a more precise esti-
mation of energy consumption. Additionally, the segments are overlaid
on the DEM to obtain accurate elevation data. Since terrain variations
influence bus performance, the elevation of the start and end points of
each segment is retrieved from the DEM to refine energy consumption
estimates.

4.2. Cooperative Coevolutionary Evolutionary Algorithms

Cooperative Coevolutionary Evolutionary Algorithms (CCEA) (Pot-
ter and De Jong, 1994) split the main population into subpopulations,
each focused on the optimization of a component of the overall solution
to an optimization problem (e.g., a subset of decision variables). These
subpopulations evolve independently but must cooperate, because the
fitness of an individual depends on the quality of the full solution it
contributes to build. Typically, chromosomes are split across subpopu-
lations, each optimizing a subset of variables. After every generation,
solutions from every subpopulation are combined with the best solu-
tions from the other subpopulations to form a complete solution, which
is then evaluated using the fitness function.

When it comes to multi-objective optimization, there is not one
single best solution, but a set of non-dominated ones. Therefore, islands
in multi-objective CCEAs do not share a single best partial solution, but
a set of them (randomly taken from its local Pareto front). The structure
of a typical multi-objective CCEA is shown in Fig. 2. Each island focuses
on a specific subset of problem variables and shares a set of local best
solutions (i.e., some random ones from its local Pareto front) with all
other islands for evaluation purposes.

In this work, a cooperative coevolutionary version of the Multi-
objective Cellular Genetic Algorithm (CCMOCell) (Dorronsoro et al.,

2013) is used. MOCell (Nebro et al., 2009) is a dominance-based
optimization algorithm that employs a toroidal grid structure to arrange
individuals in its population. An auxiliary population stores the best
non-dominated solutions, determined by the crowding distance metric,
and periodically integrates some of these into the current population
to accelerate convergence speed. Each iteration involves evolving indi-
viduals through selection (within their neighborhood), recombination,
mutation, and replacement. If a newly generated individual is not
dominated by any current solution in the Pareto front, it is included.
After each generation, a feedback mechanism injects solutions from the
Pareto front back into the population. The algorithm continues evolving
until the termination criteria are satisfied.

Algorithm 1 Pseudocode of Synchronous Parallel CCMOCell
1:t<0
2: || i € [1,m] :: setup(PY, i)
3: sync()
4: for i € [1,m] do broadcast(P, i)
solutions within each subpopulation

// Initialize each subpopulation
// Synchronization point
// Share random local partial

5 || i € [1,m] :: evaluate(P, i) // Evaluate solutions in each
subpopulation

6: sync()

7: while not stoppingCondition() do

8: |l i € [1,m] :: generation(P', i) // Perform one generation

9: sync()

10: for i € [1,m] do broadcast(P’, i)
solutions within each subpopulation

11: t—t+1

12: end while

13: mergeParetoFronts() // Merge the Pareto fronts from each
subpopulation into a single one

// Share best local partial

SUTRA is a multi-objective combinatorial optimization problem
with a large number of variables, so a parallel cooperative coevolu-
tionary algorithm as CCMOCell stands as a good approach to address
it. We employ two parallel versions of the CCMOCell algorithm, namely
synchronous (Dorronsoro et al., 2013) and asynchronous (Nielsen et al.,
2012). The pseudocode for the synchronous version is presented in
Algorithm 1. The algorithm begins by simultaneously initializing each
subpopulation with randomly generated individuals (Line 2). Subse-
quently, a synchronization point is reached, where each subpopulation
shares its randomly generated local partial solutions with the others
(Lines 3 to 4). Then, each subpopulation evaluates its individuals in
parallel (Line 5). Another synchronization point is reached in Line 6,
marking the start of the evolutionary loop (Lines 7 to 12). Within the
loop, each subpopulation executes one generation simultaneously (Line
8). Following this, another synchronization point is reached in Line 9,
before the exchange of the best local partial solutions between subpop-
ulations can be made (Line 10). This process continues iteratively until
the stopping condition is met. Finally, the Pareto fronts obtained from
each subpopulation are merged into a single unified front (Line 13).
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Fig. 2. Structure of a multi-objective CCEA. The model is composed of n islands. All islands share a fixed number of solutions from the Pareto front in order to enable the

evaluation of the complete solution to the problem.

The asynchronous version of CCMOCell is similar to the synchronous
one, but removing the synchronization point after every generation
(the one in Line 9). Therefore, each subpopulation evolves its partial
solutions independently, without waiting for the others to finish their
current generation. This approach introduces a higher degree of diver-
sity during the evolution of the algorithm, as solutions can be built
using individuals belonging to different generations from the other
subpopulations.

Each solution is represented as a binary vector with length the
number of segments in the route, where each gene indicates whether
the bus travels a segment of the route using the electric motor (1) or
the combustion engine (0).

To guide the evolution of solutions within both versions of CC-
MOCell, the algorithm employs several genetic operators. For parent
selection, a Binary Tournament operator is employed: two random
individuals from the neighborhood are selected, and the fittest is chosen
as the parent. Recombination is performed using two-point crossover,
where the longest substring from the best parent is used to produce a
single offspring. Mutation is applied by flipping the value of a gene.
The algorithm utilizes a neighborhood structure to promote localized
interactions among solutions while maintaining diversity. When the
archive becomes full, Crowding Distance (Deb et al., 2002) is employed
to discard less promising solutions. To manage the diversity of solutions
across subpopulations, a migration policy is implemented. After each
generation, a fixed number of random solutions from the local Pareto
front of each subpopulation are migrated to a shared memory object.
These solutions become accessible to other subpopulations, which can
use them to build new candidate solutions for evaluation.

4.3. Greenk heuristic

GreenK (Ruiz et al., 2023) is a simple greedy heuristic from the state
of the art designed to maximize the distance traveled using the EM
by prioritizing the electric mode operation in those segments with the
lowest slopes. This approach aligns with the actual strategy currently
used by plug-in hybrid bus operators (Seredynski, 2019). However,
GreenK does not focus on the emissions, nor consider the presence
of REZs, meaning the provided solution may be infeasible for the
specific problem addressed in this work. Despite this limitation, it
serves as a useful reference for assessing the potential electric range of
a solution, as it focuses solely on maximizing the kilometers covered in

electric mode without accounting for tailpipe emissions nor emissions
restrictions.

The GreenK algorithm follows a structured process to optimize the
electric range of a bus. It first assigns all segments within mZEZs
to be traversed in electric mode. Next, it orders the remaining route
segments based on their slope, from downhill to uphill, and processes
them sequentially, prioritizing electric mode usage as long as the SoE
of the battery allows. This ensures that downhill segments, where
energy regeneration occurs, are utilized first, followed by flat and
then progressively steeper uphill segments until the battery is depleted.
Additionally, the heuristic prevents overcharging by ensuring that en-
ergy recovered from downhill segments does not exceed the maximum
capacity of the battery. The pseudocode for GreenK is provided in
Algorithm 2, detailing its step-by-step execution.

5. Experimental setting

The performance of the proposed methods is evaluated consid-
ering 70 real-world bus lines in Barcelona (Spain). The Barcelona
Metropolitan Transport (TMB) offers an online platform with detailed
information of the public transport system of the city, including sta-
tions, bus stops or transport lines, among other aspects (TMB, 2025).
This information includes the geographical coordinates of bus stops,
expressed in terms of their longitude (X) and latitude (Y). In order to
determine the altitude of each (X,Y) point, the DEM used by the Spanish
National Geographical Institute is applied (de Espana, 2025). Finally,
this dataset is further enriched and enlarged with information related
to the geometries of the different bus routes obtained from the APIs.
Thus, obtaining a real reconstruction of the bus transport network of
Barcelona.

From the 101 lines composing the public bus network of Barcelona,
all lines circulating in the city center have been included in this study,
i.e. seventy lines. The remaining ones are less interesting because they
give service to peripheral areas where pollution levels are generally
lower and service less frequent.

Twenty-eight of the selected lines compose the Barcelona Orthog-
onal Bus Network, where the lines are identified by a letter and a
number, depending on whether the line crosses the city horizontally (H
lines), vertically (V lines) or diagonally (D lines). This set of bus lines
creates a square mesh with a large number of junctions. Additionally,
with the aim of building the studied scenario as close as possible to the
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Algorithm 2 Pseudocode of GreenK heuristic

Input
S : Segments composing the route
SoE,,,;: Initial state of energy of the battery

ini*

1: sol = [0,...,0]; SOE = SoE,,; // Variables initialization
2: fors; € S/ s;.z; ==1do // Set all segments in mZEZ to 1
3: sol[i] =1
4: SoE — = computeRequiredEnergy(s;)
5: if SoE > SoE,,,. then // Battery capacity cannot be exceeded
6: SoE = SoE,,,,
7: end if
8: end for
9: OS = orderBySlope(S) // Order all segments from low to high
slope
10: for s; € OS / s;.z; == 0 do // Add segments in order, when
possible
11: kWh = computeRequiredEnergy(s;) // kWh to traverse the
segment
12: if SoE — kWh > SoE,;, then
13: sol[i] =1
14: SoE = SoE — kWh
15: if SoE > SoE,,,, then // Battery capacity cannot be
exceeded
16: SoE = SoE,,,,
17: end if
18: end if
19: end for

Return sol: Proposed strategy for battery management

=
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Number of variables (segments)

Fig. 3. Histogram of the number of variables (segments) that compose each of the bus
routes after the segmentation process.

existing real bus network, forty-two other types of bus lines (numbered
lines) have also been included. They cross the city center, and are
partially overlapped with the previous lines, sharing the defined REZs
with them.

As previously explained in Section 4.1, all bus routes are segmented
to accurately estimate the energy consumption of the bus. The number
of segments depends on the characteristics of each route. Fig. 3 illus-
trates the histogram representing the number of segments that compose
each bus route after segmentation.

The energy consumption model considers regenerative braking, real
topography data, and all the efficiency parameters are those considered
in the literature for operations in normal conditions (Ruiz et al., 2023).
The impact of the degradation of the battery on the performance of
the bus can be analyzed by modifying these efficiency parameters. In
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Fig. 4. Representation of the studied scenario, including the seventy bus lines of
Barcelona, as well as the four predefined REZs (emphasized in red color).

order to be as realistic as possible, and because currently there are no
en-route charging stations in the city of Barcelona, the optimization
algorithm assumes initially full battery, i.e. it considers a charging
station at the depot or at the beginning of the route (a complete
charge only takes a few minutes for PEH buses). However, in previous
works (Ruiz et al., 2024), different charging stations were considered
along the routes, i.e. if their location is known, en-route recharging can
be easily included in the optimization process.

It should be noted that green corridors, i.e. mZEZs, do not exist
in Barcelona yet, so they are artificially established in this work for
those bus route segments near hospitals, schools and parks, because of
the societal benefits they imply. A total of thirty-one mZEZs have been
identified following this criterion within the bus network.

Additionally, to further reduce pollution in dense traffic areas of
the city, several REZs have been established. More precisely, REZs are
located in areas where pollution and noise may adversely affect public
health or quality of life, e.g. close to parks, residential areas, or in
very dense traffic areas where the high levels of pollution reduce the
livability due to very frequent services of many bus lines. So that,
within these zones, the pollution generated must be kept below 50%
of the total emissions produced when all buses are operating with their
ICE. Specifically, four REZs have been defined in strategic areas of the
city, as it is shown in Fig. 4.

The first REZ considered, REZ 1, is located in the heart of the city,
with a large and frequent bus service. The second one, REZ 2, contains a
large recreational area including parks, hills, etc. REZ 3 is a busy district
in the city, e.g. sports areas, faculties, university residences, etc., being
a very suitable location for improving air quality and reducing traffic
noise and emissions, therefore enhancing people’s welfare. Finally, REZ
4 is a popular area in the city, with shopping centers, sports areas,
parks, hospital, etc. It should be noted that many bus lines are crossing
each of the four REZs. Table 2 presents the main characteristics of the
selected REZs, the bus lines affected by their restrictions, the location,
size, as well as the main reason for their selection.
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Table 2
Description of the main features of the four REZs studied.
REZs Districts; Surface Lines crossing REZs REZ description
REZ coordinates (km?)
City center; 23 lines: City Center charac-
Eixample D20, D50, H12, H14, terised by a high
REZ 1 (41.387, 2.166) 4 H16, V13, V15, V17, daily population

(41.399, 2.182)
(41.374, 2.178)
(41.386, 2.198)

V19, V21, V27, 6,
7, 19, 22, 24, 39, 47,
52, 54, 59, 120, 136

density and dense
traffic. It contains a
large recreational area.

Sants-Montjuic;

Predominantly green

(41.365, 2.136) 5 lines: area comprising parks,
REZ 2 (41.373, 2.155) 2.88 V5, 13, 121, gardens, etc. It also

(41.355, 2.146) 125, 150 includes sports facilities

(41.369, 2.174) as stadiums and tracks.

Spotify Camp Nou Busy district hosting

- Les Corts 14 lines: educational institutions

(41.384, 2.110),
(41.389, 2.128),
(41.376, 2.117),
(41.382, 2.129)

1.34

D20, H6, H8, V1,
V3, V5, 6, 7, 33,
34, 52, 54, 59, 175

such as university facul-
ties and student residen-
ces, soccer fields and
other sports facilities.

Sant Andreu;
(41.438, 2.190)
REZ 4 (41.439, 2.208) 0.65
(41.434, 2.191)
(41.437, 2.209)

Key hub of urban
activity because of the
presence of shopping
centers, sports facilities,
parks, and a hospital.

8 lines:
H4, H8, V31, V33,
11, 60, 126, 133

Table 3
Configuration parameters for the experimentation.

Parallel CCMOCell algorithms

Number of subpopulations 70

Number of processes 70

Number of evaluations 100,000 per subpopulation
Population size 100 per subpopulation
Migration policy 5 random non-dominated solutions
Selection operator Binary tournament
Crossover probability 1.0

Crossover operator Two-point crossover
Mutation probability 1/chromosome length
Mutation operator Bit flip

Neighborhood (@)

Archive Crowding distance

The optimization algorithms are configured with a total of seventy
subpopulations, one complete bus line being assigned to each. Despite
the fact that the high differences on the number of segments composing
the routes implies an uneven problem decomposition that negatively
affects runtime performance, the decision was taken based on the
fact that splitting routes between different islands hinders the search
capabilities of the algorithm for this specific problem, worsening its
capacity to find accurate solutions. The reason is that the combination
of partial solutions with others from the different islands in the evalu-
ation process (which are taken from randomly chosen local solutions,
probably specialized in other objectives tradeoffs) introduce significant
changes that likely produce low quality solutions, or even unfeasible
ones due to battery limitations. Regarding the rest of parameters, we
use similar values to those proposed for solving MEPBO (Ruiz et al.,
2023), as detailed in Table 3. Each subpopulation consists of 100
individuals. The termination criterion is set to a maximum of 7, 000, 000
fitness evaluations. The Binary Tournament operator is used for parent
selection. Crossover is performed using a two-point crossover, and
mutation is applied with a probability of 1 divided by the number
of variables. The C9 neighborhood structure (Alba and Dorronsoro,
2008) is applied, which consists of the individual itself and its eight
immediate neighbors (i.e, in its surrounding 3 x 3 grid). To manage
solution diversity, Crowding Distance is used when the archive is full.
Additionally, five random solutions from the local Pareto front of each
subpopulation are migrated to a shared memory object after each
generation.

Comparing the performance of multi-objective algorithms is not a
simple task, as each run of the algorithm reports a set of non-dominated
solutions, known as a Pareto front approximation. To simplify com-
parisons between algorithms, it is common in the literature to rely
on performance metrics that measure the quality of the Pareto front
from some perspective. However, no single metric can comprehensively
capture all aspects of the quality of a Pareto front. Therefore, multiple
metrics must be employed to evaluate specific features of the front.
The two main aspects to consider are the accuracy and diversity of
solutions in the front, as well as the number of solutions composing the
Pareto front. Accuracy reflects how closely the approximated solutions
align with the true optimal ones, while diversity indicates how evenly
solutions are distributed across the front. A well-approximated Pareto
front should have solutions that are both near-optimal and evenly
spaced, avoiding large gaps or overly concentrated regions.

We employ three commonly used metrics in the literature to com-
pare multi-objective algorithms. They are:

* Hypervolume (HV) (Zitzler and Thiele, 1999). This metric accounts
for both accuracy and diversity of solutions. It calculates the
volume in the objective space covered by each solution, relative
to a reference point (typically an anti-global optimum). Higher
HV values indicate better approximated Pareto fronts.

Additive Epsilon (EP) (Zitzler et al., 2003). EP represents the small-
est distance required to shift every solution in the approximated
Pareto front so that it weakly dominates the true Pareto front
(i.e., none of the solutions is worse than those in the true front in
all objectives). Lower EP values are preferred.

Inverted Generational Distance (IGD) (Veldhuizen and Lamont,
1998). IGD measures the distance between solutions in the ap-
proximated Pareto front and their closest counterparts on the true
Pareto front. When the approximated front perfectly matches the
optimal one, this metric takes value 0.

It is important to note that both EP and IGD rely on the true
Pareto front for their calculations. Since the optimal Pareto front is
unknown for the problem at hand, it is approximated by merging all
non-dominated solutions found by the two algorithms across 30 inde-
pendent runs into a pseudo-optimal Pareto front. This approximated
front is then used in the aforementioned metrics as a stand-in for the
true Pareto front. This approach is commonly adopted in the literature
when evaluating the performance of multi-objective algorithms on
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Table 4
Performance of the two algorithm versions (median and interquartile range values).

Synchronous CCMOCell Asynchronous CCMOCell

Quality indicator

HvV 5.11e + 03y 700,01 2.82¢ + 03 10403 v
EP 6.83€ + 00, 01100 5.30¢ + 0l 15,401 v
IGD 1466 + 01, o, 481+ 01, 500401 v

real-world problems (Dorronsoro et al., 2014). Additionally, for the
HV metric, the reference point is constructed by selecting the worst
value for each objective across all Pareto fronts obtained from the
independent runs.

To provide statistical confidence in the conclusions, the Wilcoxon
signed-rank test is applied to compare the results of the two algorithms
on each metric, using a 95% confidence level.

All algorithms are implemented in Python 3, utilizing the JMetalPy
library (Benitez-Hidalgo et al., 2019). The parallel implementation of
CCMOCell takes advantage of the multiprocessing library in Python 3.
To facilitate the efficient information sharing among subpopulations
while minimizing computational overhead, a ShareableList object is
employed. Experiments were conducted on a Huawei TaiShan 2280
V2 server, which features two Kunpeng 920-4826 CPUs, each equipped
with 48 cores running at 2.6 GHz. This server is optimized for massive
parallelism, with a total of 96 ARM computing cores distributed across
four NUMA nodes. The operating system used is Ubuntu 20.04.1 LTS.
To mitigate potential biases from the non-deterministic behavior of the
algorithms, each GA is run independently 30 times.

6. Results and discussions

The main results obtained with the two studied algorithms are
presented in this Section. As it was mentioned along this paper, to
the best of our knowledge, the problem considered has not been ad-
dressed before in the literature. The problem was first introduced in
the work we are extending here (Aragén-Jurado et al., 2024), where a
synchronous CCMOCell implementation using six islands is used to op-
timize a small problem instance considering six bus lines in Barcelona
downtown. In contrast, this work solves the SUTRA problem using two
parallel versions of CCMOCell, both synchronous and asynchronous,
considering the 70 bus lines operating in Barcelona’s metropolitan area.

First, Section 6.1 compares the performance of the different al-
gorithms in terms of the quality of the solutions they obtain. Then,
Section 6.2 performs a detailed analysis of the solutions, paying special
attention to emissions produced and the electric range of the vehicles.

6.1. Comparison of the performance of the algorithms

Next, an analytical comparison of the overall performance of the
two algorithms on the large SUTRA problem instance considered is
provided. The comparison is based on the HV, EP, and IGD values of the
Pareto front approximations, obtained from 30 independent runs. The
results are summarized in Table 4, where the median and interquartile
range values obtained by the two algorithms for the three considered
metrics are shown (best values are highlighted in bold font). Symbol
‘v’ in the rightmost column indicates a statistically significant differ-
ence between the performance of the two algorithms, as determined
by the Wilcoxon signed rank test with 95% confidence.

The obtained results demonstrate that the synchronous version of
CCMOCell clearly outperforms the asynchronous one, with statistically
significant differences in all the cases studied. The reason is that the
uneven division of the problem into subproblems negatively impacts on
the asynchronous version of the algorithm, given that each bus line is
considered to be one subproblem (so there are 70 subpopulations), and
routes can have between 20 and 120 segments, as shown in Fig. 3. This
unequal distribution leads to certain subpopulations evolving much
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slower than others: some subpopulations can approximately perform
6 generations in the same time as the longest routes perform only one.

Regarding the runtime, on average across the 30 independent runs,
the synchronous version takes 26,429.09 seconds to produce results,
while the asynchronous one requires 24, 177.54 seconds. This suggests
that the asynchronous CCMOCell is generally faster than the syn-
chronous version for this problem, achieving a speed up of 1.09.
However, this runtime improvement comes at the cost of solution
quality loss due to the unequal distribution of the problem.

6.2. Performance of the solutions obtained

This section presents an analysis on the quality of the pseudo-
optimal solutions generated by the two multi-objective algorithms. As
already mentioned, GreenK is used for comparison purposes. A simple
greedy heuristic for creating driving assignment strategies only by
prioritizing the selection of the lowest slopes to be traversed with
the EM. This strategy is similar to what current plugin hybrid buses
operators follow nowadays (Ruiz et al., 2023). It is important to note
that GreenK is used as an upper bound reference in terms of the electric
range, but it does not consider the existence of REZs, so its solution may
be unfeasible for the problem considered in this work.

The best non-dominated solutions obtained by the two parallel
versions of CCMOCell algorithm in the 30 independent runs are shown
in Fig. 5(a), together with the solution obtained by GreenK (in green
color). As it can be seen, solutions obtained by both CCMOCell versions
outperform GreenK in terms of the level of tailpipe emissions. Indeed,
the best solution found for the synchronous version is 7.67% better
than GreenK in terms of f, objective. However, it is 2.28% worse than
GreenK in terms of the overall electric range of buses in the city. At
this point, we would like to emphasize that GreenK solution does not
comply with the REZs defined in the city, so this compared solution
is an unfeasible solution for the studied problem, as it exceeds the
CO, emissions in the third considered REZ by 3.03 kilograms. The
mentioned differences can be significantly magnified to up to 635.09
kilograms of CO, considering that the 14 lines traversing REZ 3 make
3,144 trips a day.

In the comparison of the two CCMOCell versions, we found that
solutions in the Pareto front obtained by the synchronous algorithm
dominate all solutions found by the asynchronous one, as illustrated
in Fig. 5(b). The synchronous version increases the kilometers driven
using the EM by up to 8.52%, while simultaneously reducing pollutant
emissions by up to 5.40%. Once again, the negative impact of the
uneven split of the problem into complete bus lines to be optimized
in the subpopulations is evident on the evolution of the asynchronous
CCMOCell. However, its performance is not expected to improve when
using other even partitions that allocate segments of the same route in
different subpopulations, given the strong existing dependency among
the driving assignments of the different segments within the routes.

The existing solutions in the Pareto front reported by the syn-
chronous CCMOCell algorithm highlights the multi-objective nature
of the problem, where deciding which trade-off solution to adopt is
not trivial. The largest difference between solutions in the front in
kilometers driven using the EM is 8.5289, while in the case of the
pondered pollutant emissions it is 5.4067.

To analyze the actual CO, emissions values obtained from each of
the best solutions found, we calculate the real, unweighted kilograms
of CO, emitted by each solution on the Pareto front. Based on these
new emission values, a new Pareto front is built, considering pollutant
emissions and kilometers driven using the EM, retaining only the
non-dominated solutions. This new Pareto front is presented in Fig. 6.

The unweighted emission differences among the best solutions are
significantly lower in Fig. 6, with a maximum difference of 0.6835
kilograms of CO,, highlighting the substantial impact that REZs have on
solution quality. Furthermore, it is important to note that there are solu-
tions with almost identical CO, emissions, differing by approximately



M. Diaz-Jiménez et al.

485 GreenK
CCMOCell
480
CCMOCell Async
475
470
W
465
460
455
7 27
4s0{ =~ Py 4
810 820 830 840 850 860
fa

(a) With GreenK solution

Engineering Applications of Artificial Intelligence 157 (2025) 111179

454 P .
=
4 d
E
453 & §
W0 452 o
[
°
451
-
:
450 CCMOCell ]
é
CCMOCell Async f
449
8l0 815 820 825 830 835 840
fa

(b) Without GreenK solution

Fig. 5. Pareto front approximation of the solutions obtained by the synchronized and asynchronous versions of CCMOCell as well as the mono-objective heuristic GreenK.

433.9 4

433.8

433.7 A

433.6

433.5

Pollutants (Kg CO2)

433.4 1

433.3

836 837 838 839 840

Electric Range (Km)

834 835

Fig. 6. Best solutions found by CCMOCell relative to the value of CO, emissions in
kilograms.

0.0453 kilograms, which can differ by more than 1.2492 kilometers
in electric driving distance. In comparison to GreenK, the solutions
provided by CCMOCell can achieve up to 1.6618 less CO, kilograms
emitted, meaning 295.80 kilograms of CO, a day, considering the 178
return trips every bus perform every day, in average. In terms of cost,
the solutions found may save up to 109.87 liters of fuel per day.

To study the emissions produced by the considered bus network,
the multivariable visualization tool proposed in Aragén-Jurado et al.
(2023b) is used. Fig. 7(a) describes the emission map of the solution
obtained using the GreenK heuristic, while Fig. 7(b) displays the so-
lution found by CCMOCell with the lowest CO, emissions. In these
Figures, every segment of every route is displayed with a color that
varies according to the tailpipe emissions, ranging from dark green
color representing the lowest value (i.e. driven in electric mode), to red
color representing the most polluting segments. The considered REZs
are shaded in red.

As it can be seen, the solution obtained by GreenK (Fig. 7(a)) has
significantly a lower number of dark green segments compared to the
CCMOCell solution, but many of them are close to this dark green
color. While these segments do not emit large amounts of CO,, they still
contribute to battery savings, allowing a higher number of kilometers
driven in electric mode compared to the CCMOCell solution. In the
REZs, we can observe that GreenK has sections with higher emission
values than the CCMOCell solution. This is particularly notable in REZ
2 and REZ 3. Indeed, in the latter, the emissions exceed the allowed
levels.

10

It is important to note that in the northern part of Barcelona, there
are sections where the solution proposed by GreenK emits a significant
amount of emissions, with one section emitting nearly 3 kilograms of
CO,. This section corresponds to an uphill slope, and using the EM
would lead to a substantial loss of battery energy (as proposed by
CCMOCell). However, if the ICE is used, there is a considerable increase
in CO, emissions (as proposed by GreenK). This situation highlights
the complexity of the problem, requiring a trade-off between both
objectives, while also considering the needs of urban residents and
livability within cities.

Finally, in order to show more granularity of this comparison, Fig.
8 shows the detailed solution profiles obtained by both algorithms, in
terms of electric range and pollution, for each bus line in the consid-
ered network. The electric range of the seventy studied bus routes is
displayed in stacked bars. The solution of CCMOCell is represented in
green color and GreenK in red. Similarly, the total number of kg of CO,
for each route is displayed in gray color for CCMOCell and in black for
GreenK.

Fig. 8 shows that GreenK is better in only in 54.28% of the bus
routes, in terms of the electric range. However, the difference is usually
larger than when CCMOCell outperforms GreenK, leading to a larger
total electric range of the network. On the contrary, it can be seen
that CCMOCell is, in general, similar or better that GreenK in terms
of CO, emissions. It should be noted that as previously mentioned, one
of the limitations of GreenK is that the proposed solutions might not
comply with the restricted emissions zones. Indeed, this is the case for
the fourteen lines crossing REZ3 (shadowed in Fig. 8), where the total
emissions generated by GreenK exceed the established level. There are
several bus routes that perform better than GreenK both in terms of
electric range and in terms of emissions, e.g. lines V3, 54, H8 or H2,
among others.

The complexity of the problem can be also highlighted from Fig.
8. It can be seen that there are solutions with a longer electric range
but also a higher level of pollutions, e.g. lines V27, 122, 126, 132, 185
among others. This highlights that using the EM for longer periods does
not necessarily imply lower tailpipe emissions.

7. Conclusions and future works

This work extends our previous paper (Aragén-Jurado et al., 2024),
where the novel Sustainable Urban Transportation problem (SUTRA
problem) was introduced, along with a proposed Cooperative Coevo-
lutionary Multi-objective Genetic Algorithm to solve a small instance.
The main goal of this problem is to optimize electric drive assignment
strategies for a fleet of PEH buses to maximize their overall electric
range while simultaneously minimizing CO, emissions, taking into
account both mZEZs and REZs (or reduced emissions zones, firstly
introduced in this work to limit pollution in designated urban areas).
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Fig. 7. Emission maps caused by the solution obtained by GreenK and the solution obtained by CCMOCell with the lowest total emissions value. REZs are shaded in red.
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Fig. 8. Performance of each bus route in terms of the CO, emissions (in kg) and electric range (in km), considering the solution proposed by both GreenK (red and black colors)
and CCMOCell (green and gray colors). The solution with the lowest total emissions value was selected for CCMOCell. The stacked bars represent the electric range provided by
each method, while the lines indicate the corresponding CO, emissions. The gray shaded area represents the set of lines that cross REZ3, where GreenK solution is unfeasible.

In this study, we simultaneously optimized a total of 70 different bus
routes, corresponding to all bus lines traversing Barcelona city center,
compared to the original six bus lines from our preliminary previous
work.

A state of the art multi-objective optimization algorithm for high
dimensional problems, CCMOCell, was chosen to solve SUTRA problem.
Two different versions of CCMOCell have been considered: a syn-
chronous one, used in the previous work, and an asynchronous version,
where decoupled communication between the islands is allowed. This
aims to achieve faster convergence and better exploration of the search
space. Notably, this algorithm has only been previously applied to small
academic problems, utilizing a limited number of parallel subpopu-
lations (up to 4). Furthermore, the results found by both algorithms
are compared to GreenK, a heuristic from the literature that aims to
identify optimal battery management strategies only focusing on the
maximization of the electric range of the PEH bus.

Results indicate that the strategies proposed by both versions of
CCMOCell save up to 109.87 liters of fuel per day with respect to the
strategy proposed by GreenK. At the same time, the heuristic does not
account for REZs, consequently offering invalid strategies that exceed
the emissions threshold established for the third REZ by more than 3
kilograms of CO, (i.e., over 635 kilograms of CO, per day).

Regarding the performance of the two studied versions of CCMO-
Cell, the synchronous version outperforms the asynchronous version
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with statistical significance for all the three quality indicators consid-
ered (namely, hypervolume, additive epsilon, and inverted generational
distance), at the cost of being 9.31% slower. The asynchronous version
was negatively impacted by the unequal distribution of the problem,
where each parallel island corresponds to the solution variables as-
sociated with a specific bus line. This disparity, although considered
necessary because of the strong dependencies among segments strate-
gies in the same route, leads to some islands evolving significantly
faster than others.

The proposed work provides the optimal driving assignments of
seventy bus lines in an offline fashion, i.e. not accounting for dynamic
changes. Therefore, as future work, we plan to extend our study by
considering the design of an adaptive approach able to dynamically
modify the driving assignment of PEH buses in response to changing
traffic conditions or stochastic effects that can influence the energy
consumption by means of machine learning techniques. In addition,
we will work on other types of electrified buses, such as regular
hybrids and new algorithms and parallel designs to ensure an equitable
distribution of computational load among all processes in order to
solve the problem more accurately and faster, as well as tackling larger
instances. We also aim to extend these techniques beyond buses to other
types of electrified vehicles, such as cars and trucks, for both public and
private transport.
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