
Defending Event-Triggered Systems against
Out-of-Envelope Environments .

Marcus Völp1, Mohammad Ibrahim Alkoudsi2, Azin Bayrami Asl1,
Kristin Krüger2 Júlio Mendonça1, Gerhard Fohler2

1Interdisciplinary Centre for Security Reliability and Trust (SnT), University of Luxembourg
e-mails: marcus.voelp@uni.lu, azin.bayramiasl@uni.lu, julio.mendonca@uni.lu

2Rheinland-Pfälzische Technische Universität Kaiserslautern - Landau
e-mails: alkoudsi@rptu.de, kristin.krueger@rptu.de, gerhard.fohler@rptu.de

Abstract—The design of real-time systems is based on assump-
tions about environmental conditions in which they will operate.
We call this their safe operational envelope. Violation of these
assumptions, i.e., out-of-envelope environments, can jeopardize
timeliness and safety of real-time systems, e.g., by overwhelming
them with interrupt storms. A long-lasting debate has been going
on over which design paradigm, the time- or event-triggered, is
more robust against such behavior.

In this work, we investigate the claim that time-triggered
systems are immune against out-of-envelope behavior and how
event-triggered systems can be constructed to defend against be-
ing overwhelmed by interrupt showers. We introduce importance
(independently of priority and criticality) as a means to express
which tasks should still be scheduled in case environmental design
assumptions cease to hold, draw parallels to mixed-criticality
scheduling, and demonstrate how event-triggered systems can
defend against out-of-envelope behavior.

Index Terms—time-triggered systems, event-triggered systems,
out-of-envelope behavior

I. INTRODUCTION

Real-time computer systems are typically designed to func-
tion within an operational envelope that dictates all possible
behaviors of the environment that encloses them. The spec-
ification of an operational envelope allows for design-time
assurance that the real-time system will behave in a timely
manner if it operates within this envelope [1].

A common argument in the decade-old debate between
the time- and event-triggered paradigms’ experts is the ques-
tion how to cope with out-of-envelope behavior. On one
side, Kopetz’s tremendous achievement of predictable, fault-
tolerant, composable, and modularly certifiable systems, en-
abled by the time-triggered architecture [2], and on the other
side, there have been various attempts [3]–[5] towards achiev-
ing similar properties in event-triggered systems.

In the time-triggered architecture (TTA), all system com-
ponents share a globally synchronized sparse-time base [2],
[6]. All important events and activities, e.g., sampling the
environment and exerting control over it, are internalized to
periodically occurring time points and intervals on this time

This research was funded by the Luxembourg National Research Fund
(FNR) and by the German Research Council DFG through the FNR-Core-Inter
grant ReSAC (C21/IS/15741419). This article appeared in the RTAutoSec
Workshop organized by Monowar Hasan and Mohammad Hamad, which was
co-located to ECRTS 2025. License: CC-BY-SA-4.0

base. Intermediate control algorithms are also set to execute
and communicate their results within predetermined intervals
of sparse time (time-slots), where each task or message gets
a single or multiple exclusive time-slots on the respective
resource. This temporal isolation rules out interference from
other tasks or messages executing in different time-slots.

Therefore, as long as the environment matches the regime
dictated by the specified sparse time-slots, and as long as the
globally maintained time base remains immune to faults and
attacks, we obtain the above properties and the elegance and
beauty of the TTA. However, once the environment moves
beyond this envelope, the situation becomes more complicated.

Event-triggered systems internalize events immediately
when the sensors and devices at the periphery of the system
observe them. Sensors, network interfaces, and other devices
are connected to interrupt lines, which, when raised, signal
the processor to interrupt its current control flow and activate
a corresponding service routine. Such routines in turn handle
the interruption, internalize the event (e.g., by associating it
with a timestamp) and release tasks that are triggered by this
event. The routines then invoke the scheduler to see whether
the released tasks can be scheduled immediately or if their
execution needs to be deferred (e.g. because a higher priority
task is currently running or because resource locking protocols
(such as stack-based ceiling [7]) demand deferred execution).

Immediate internalization makes event-triggered systems
vulnerable to interrupt storms, triggered by faulty sensors
and devices, and to unanticipated events, when environmental
situations are in violation of the assumed operational envelope.
Designers of event-triggered systems typically equate both
situations as undesirable behavior and construct their systems
to avoid both by ignoring events that occur in addition to those
anticipated. This risks missing important deviations from the
norm and taking appropriate actions to keep the system safe,
even when normal operation can no longer be guaranteed.

In this work, we take a different approach and survey what
it takes in event-triggered systems to defend against out-of-
envelope behavior. Our goal is to design a system that will
ultimately be able to respond in a timely and predictable
manner to unforeseen situations while being equipped to
carefully trade-off less important tasks, and to defend itself
against error situations that would overwhelm the system.

ar
X

iv
:2

51
2.

06
33

1v
1

 [
cs

.O
S]

 6
 D

ec
 2

02
5

https://arxiv.org/abs/2512.06331v1

We start in Section II, by giving concrete examples, to
highlight what we mean by out-of-envelope behavior and
discuss how contemporary time- and event-triggered systems
respond to such behavior. We then introduce in Section III a
new feasibility criterion, inspired by mixed-criticality schedul-
ing [8], [9], to ensure systems continue to respond to important
events, even if they can no longer sustain all of their normal be-
havior. We will also discuss why one might want to introduce
importance separate from criticality. Section IV illustrates how
event-triggered systems can defend against being overwhelmed
by out-of-envelope behavior.

Of course, we are not the first aiming to design defensive
event-triggered systems and aspects will have to remain as
open questions, which is why, in Section V and Section VI,
we discuss limitations and open questions and we relate our
work to the works of others, before concluding our work in
Section VII.

II. OUT-OF-ENVELOPE BEHAVIOR

Real-time computer systems interact with their environment
by sensing environmental conditions together with the ob-
servable states of the machines they control. They receive
alarms from specific sensors and influence the environment by
actuating parts of these machines. Failure to do so in a correct
and timely manner often has severe consequences and puts at
risk the safety of the controlled machines, of the people in
their proximity, or of the environment in which they operate.

When designing real-time systems, developers define an
operational envelope, in which they characterize their assump-
tions about the environment and specifically what events they
expect and how frequently and with which separation they
expect them to occur [3]. For example, when controlling
a nuclear plant, sensors reveal whether valves are open or
closed. Other sensors read out the pressure and water level
in the pressurizer and, more generally, dynamic processes are
observed with at least double the frequency of the highest
signal frequency that is to be expected.

In this work, we are primarily interested in external events,
happening at the system’s periphery, such as reactor pressure
levels exceeding a certain threshold, which is observed by
a sensor at an appropriate location. While pressure remains
within certain bounds (i.e., within the envelope), the sensor-
measured pressure values change only rarely and in a contin-
uous manner. Beyond these bounds however, bubbles in the
cooling water may cause fast alterations between low- and
high-pressure situations at the same sensor, indicating a serious
and unexpected situation, which in the case of Three-Mile
Island has already led to a serious incident [10].

Time-triggered systems internalize these signals at pre-
defined and, thanks to the globally synchronized sparse time
base, globally known events. Let Tsample be the pre-defined
sampling period of an observed real-time entity, e.g., a valve
in the nuclear plant. Let tvalve and t′valve denote the time at
which the observed valve changes state to open and closed,
respectively. If the duration t′valve − tvalve is smaller than
Tsample , then the time-triggered system will not be able to

recognize and internalize the opening event of the valve tvalve .
The operational envelope defines that developers do not expect
more frequent events and designing systems according to that
envelope implies that such a behavior will not be considered
by the developed system.

In event-triggered systems, in addition to the possibility of
sampling events, changes are communicated almost immedi-
ately from the sensor to the computer system by means of
raising interrupts at the latter. Interrupts are hardware signals
(delivered over dedicated lines or as PCI and then memory bus
messages) to one of the processors’ interrupt controllers, which
in turn causes the processor to preempt its current task and
enter the operating system’s top-half interrupt service routine.
Once interrupt occurrence is recorded and, for level-triggered
interrupts, the source is masked, the operating system (OS)
decides whether it processes the interrupt immediately or re-
turns to the preempted task for deferred handling in a so-called
bottom half. The critique put forward is that this recording
and masking in the top half together with the kernel entry,
already interferes enough with the scheduled tasks to reduce
predictability and hinder independent certification. In practice,
however, as long as the environment behaves as depicted
in the operational envelope, preemptions can be anticipated
and accounted for in the tasks’ worst-case execution times
(WCETs), in particular if the handling of the remaining part
of the interrupt (the bottom half) can be deferred and scheduled
like regular jobs.

Out-of-envelope behavior happens when unexpected events
occur. Event-triggered systems will then have more interrupts
raised than anticipated or combinations of interrupts that were
not considered. We have already seen that time-triggered
systems are immune to such occasions, since they will not
internalize out-of-envelope behavior, and will proceed as if
none of the missed events have happened. This is where event-
triggered systems have the potential for a more attenuated
response, by continuing to respond also to unforeseen events
and specifically to alarms. It will even be possible to plan for
responses to unlikely event combinations, without reserving
time for these responses in the regular schedule.

Unfortunately, by responding to out-of-envelope behavior,
event-triggered systems also make themselves vulnerable to
increased interference, in case multiple events happen close
together, and specifically to interrupt storms. In fact, naive
implementations, will simply crash event-triggered systems in
such situations due to the kernel stack overflowing when push-
ing interrupted state in an uncontrolled manner. The execution
of high-priority tasks may be delayed when executing the top-
halves of a storm of interrupts pertaining to the execution
of low-priority tasks, leading to deadline misses and risking
safety. Of course there are several works that address this con-
cern albeit within the assumed environmental envelope [11]–
[16]. For instance, Parmer and West [16] schedule bottom
halves in deferable servers to limit the budget bottom halves
may consume within a given amount of time. However, they
dimension the budget to consider only events that have been
anticipated in the system’s operational envelope.

In this work, we also consider out-of-envelope behavior
with the goal of equipping systems with the possibility to
respond to important events, specifically alarms, even if they
happen more frequently than anticipated. At the same time,
our goal is to defend systems against faulty sensors raising
alarms continuously and, in turn, overwhelming the system.

III. OUT-OF-ENVELOPE FEASIBILITY

Our goal is to allow event-triggered systems to remain re-
sponsive to out-of-envelope behavior, while defending against
being overwhelmed. In normal situations, when the environ-
ment behaves as in the assumed envelope, all events should be
internalized, and corresponding tasks released and scheduled,
including the events’ bottom-half handlers in case part of the
immediate event response can be deferred. Once important
events occur more frequently than anticipated, but still within
certain bounds, the system should obtain the possibility to
trade off the handling of less important events and their
corresponding tasks and still inform operators about triggered
alarms and still take the actions that are required to keep the
system safe. However, when exceeding these bounds, sensors
must be considered faulty and should be suppressed to these
bounds, while indicating that more events occurred than could
be internalized.

Since we specifically consider alarms, we assume a classical
mix of sporadic and periodic tasks, as captured in the sporadic
task model. Events (including alarms or the timers firing at
specific points in time) release jobs τi,j of tasks τi in the task
set Γ. Each task is characterized by the tuple (Ci, Di, Ti, Ii),
where for simplicity we assume relative deadlines Di are
implicitly defined by the task’s minimum inter-arrival time Ti

(i.e., Di = Ti). Tasks are feasible if all jobs receive Ci time
between their release ri,j and their absolute deadline ri,j+Di.

In order to characterize the importance of an event, and
hence of the jobs it releases, we introduce an importance
value Ii, which we use to create a total order of importance
for each task. In mixed-criticality systems, importance can
be mapped to criticalities (e.g., by assigning low-criticality
tasks an importance up to a certain level l — tasks with
importance Ii ∈ [0, l) are LO — and high-criticality tasks
a higher value) and Ci and other task parameters may be
criticality-level dependent (e.g., Ci may be a vector Ci(li)
where li is the criticality level of the task). In addition,
importance may be mapped to priorities unless this interferes
with priority assignment (e.g., tasks with a larger period Ti

may be more important than those with a smaller period,
while rate-monotonic scheduling would assign them lower
priorities, which we would like to allow). However, there are
also cases where importance should be handled independently
of criticality and priority. Criticality is commonly used to grant
additional resources to those tasks that are more critical to
maintain the safety of the system. It does not distinguish
internal and external failure modes as to why such a task
would need additional resources. In our work, we are primarily
concerned with internalizing and allowing the handling of
external events, such as the frequent change of pressure levels

when bubbles rise in the cooling water, to then take appropriate
actions. In that sense, events arriving outside the anticipated
envelope may trigger a criticality change, but not necessarily
vice versa. Therefore, in the above model, in normal situations,
all events should be internalized and all tasks be scheduled,
irrespective of their importance.

To capture out-of-envelope behavior, we introduce as addi-
tional parameters for the task-releasing events the number ni

of events and a time-window length Wi in the sense that the
system should still respond to up to ni such events within any
sliding window of length Wi in case the environment leaves
the assumed envelope and issues task-τi-releasing events more
frequently than once every Ti. The fraction ni/Wi gives us
a rate and upper bound within which we still consider event-
internalizing sensors as correct and the environment out of
the anticipated envelope. Beyond this bound, that is, when
the nth

i event occurs within Wi, we raise as additional alarm,
indicating that the event-triggering sensor may be faulty. It is
then up to the system to decide how to respond.

Once a task τi releasing event occurs more frequently than
once within Ti, feasibility changes and requires handling
up to ni events within Wi provided more important events
and the tasks τi they release can still be scheduled. Like
mixed-criticality feasibility, this requirement makes no claims
about less important tasks, but of course we would like to
maintain as many tasks as possible, ordered by importance,
and ideally all of them. We therefore add as additional
constraint that:

Definition 1 (Out-of-Envelope Feasibility): At any time,
system responses for up to ni task-τi-releasing events in every
sliding window of length Wi must be considered and if the
response is to release all instances of τi, then those instances
must be guaranteed to receive Ci time between their release
and deadline before any less important task τj (i.e., Ij < Ii)
is scheduled.

Note that the formulation so far also allows only responding
in exceptional situations, by considering that the normal oc-
currence of a task has already occurred and setting this task’s
period to infinity.

From here, three questions need to be answered, namely
• How should the system respond to more than one releas-

ing event per Ti?,
• How to schedule released tasks so as to guarantee out-

of-envelope feasibility? and
• How to enforce that for all tasks at most ni events are

handled within Wi, respecting the importance Ii and
that the system recognizes important alarms to make the
appropriate adjustments?

In this preliminary work, we shall focus on the third
question, but let us summarize some early conclusions about
the first two questions as well.

Of course, we cannot avoid internalizing all ni events, which
creates ni-fold top-half load within the sliding window of
Wi. However, our formulation of out-of-envelope feasibility

Fig. 1. Internalization and scheduling options for a task, which deviates from
the assumed envelope. Both events need to be internalized and generate top-
half overheads. Depending on the kind of task, out of envelope behavior can
be addressed by releasing all jobs for this event (option 1) or by informing
an already running job (option 2), e.g., by invoking an exception handler in
this task.

does not require releasing all ni tasks, although for some
situations this may be desirable. Alternatively, one could
release some of these tasks, informing them about the out-
of-envelope behavior, which then may result in the tasks
triggering a criticality change to properly respond to out-of-
envelope situations. Figure 1 illustrates these two situations.

Clearly, out-of-envelope feasibility shows similarities to
mixed-criticality feasibility, and we expect some of the results
to carry over immediately. For example, drawing inspiration
from criticality-monotonic scheduling [17], fixed task priority
assignments according to the importance of tasks will guar-
antee that more important tasks are scheduled before less
important tasks will be considered, even in out-of-envelope
situations, provided of course that under this priority assign-
ment the task set remains schedulable in normal situations.

It is also relatively easy to construct a counterexample,
showing that such “importance-monotonic scheduling”, when
releasing all tasks instances upon their releasing event, cannot
be optimal. Consider the two tasks shown in Figure 2. The
first is characterized as τl = (2, 3, Il) and the second as
τh = (2, 6, Ih), with importance Il < Ih. For τh, we consider
an out-of-envelope behavior of nh = 2 in every sliding
window of length Wh = Th = 6. Clearly, releasing the
task twice is an exceptional situation, which however, we
would still like to handle (e.g., to respond to an unanticipated
important alarm sent in short succession). As shown in the
figure, importance-monotonic priority assignment will lead to
a deadline miss, even in normal situations (left). However, if
we would raise the priority of τl’s first job above the priority
of τh, we obtain a schedulable task set in normal situations
(middle), but also in the exceptional situation, where τh is
released twice (right). Remember, in the latter case we can
sacrifice τl’s second job, since it is less important than τh. The
system remains responsive to the unanticipated occurrence of
the second alarm, but cannot retain the full service it had in
normal situations. Also, an alarm is raised indicating that the
sensor triggering this alarm operates at its bound and should
be interpreted with care.

Fig. 2. Example showing that importance-monotonic scheduling is not
optimal. The low-importance task τl misses its deadline, even in normal
situations (left), whereas both jobs of it can meet their deadline if the first
one is higher prioritized than the high-importance task τh (middle). Even if
τh is released outside the anticipated envelope (up to nh = 2 events within
Wh = Th in this example), τh meets all deadlines, at the cost of the less
important second job of τl.

IV. DEFENDING AGAINST OVERWHELMING
OUT-OF-ENVELOPE BEHAVIOR

Ensuring that event-triggered systems will not get over-
whelmed by out-of-envelope behavior requires limiting the
internalization of task-releasing events to at most ni within any
sliding window of length Wi, while providing the operating
system with the signal it needs to adjust the task schedule.
In particular, if a task is released more than once every
Ti, this already constitutes out-of-envelope behavior and may
result in sacrificing the internalization of less important events
and possibly the tasks they release. This is to ensure more
important events, specifically alarms, continue to be processed.

A. Vectored Interrupt Controllers

In this section, we illustrate how vectored interrupt con-
trollers, such as the Advanced Programmable Interrupt Con-
troller (APIC) variants of x86 processors or ARM’s Nested
Vectored Interrupt Controller (NVIC) can be configured to pro-
vide these indicators while protecting from interrupt storms.

Vectored interrupt controllers (VICs) multiplex the pro-
cessor’s interrupt mechanism by providing multiple external
interrupt lines. In addition, they often allow interrupt lines
to be assigned different priorities. In this case, the interrupt
controller features an interrupt-priority level such that lower-
priority interrupts can be masked simply by raising this priority
level above the priority of the line.

In this work, we assume VICs to provide such interrupt
priorities and an interrupt priority level (both ARM’s NVIC
and various x86’s APIC variants do). We further assume that
interrupts can be masked individually and, for simplicity, will
not consider sharing interrupt lines among multiple interrupt
sources. Moreover, we shall assume that the timer interrupt
can be configured to be independent of the above constraints.
This is possible, for example, by giving the timer the highest
interrupt priority. Lastly, we shall assume devices or external
interrupt controllers (e.g., IO-APIC) expose a counter per
interrupt line that is incremented for each event occurring.
Capture compare units already provide various such counters,
albeit not for this purpose.

In the following, we shall continue to talk about priorities
with the implication that these are the interrupt priorities
considered in the VIC. We do not require interrupt priorities
to correlate to task priorities and will divert from the rec-
ommendation to set the interrupt priority level to the priority
of the currently running task. Instead, we shall leverage
this mechanism to control importance and prevent too many
undesired interruptions.

B. Detecting Out-of-Envelope Behavior

If a task were to be released more than ni times within
a sliding window of size Wi, the releasing sensor could be
considered faulty and no further events would need to be
handled and, for that matter, be internalized.

To capture out-of-envelope behavior precisely, we would
have to allow all events to happen and be internalized so as
to record them in ring buffers of size ni, measure their time
of occurrence and compute when the event leaves the task’s
sliding window of length Wi.

C. Defending Against Being Overwhelmed

We mask interrupts to defend against being overwhelmed,
which implies not internalizing such events.

In case the buffer is full, the OS masks the interrupt to
prevent all subsequent occurrences of this event from being
internalized, raises an alarm and sets a timer to the time of the
earliest event in the buffer plus Wi. Being masked, subsequent
events will not be internalized but are still recorded in the
devices’ counters. Once the timer fires, the OS unmasks the
interrupt line of the event to consider further occurrences.

At this point in time, the OS compares the counter at the
device against the value it read when masking the event to
identify whether the sensor is faulty (i.e., more than ni events
occurred in that time). It is then up to the OS whether it will
consider this sensor permanently damaged or resume using
this sensor once the alarm rate drops below ni/Wi.

Unfortunately, for sensors that still operate within the bound
of ni occurrences within Wi, capturing out-of-envelope be-
havior precisely comes at significant costs in terms of top-half
overheads and hence the interference that top-half handling
causes on task execution. In the worst case, this top-half
handling, even if we capture the timestamp of the respective
next event through a capture unit, amounts to Σ

τi∈Γ
ni∆TH ,

where ∆TH denotes the time needed to enter the kernel, record
the timestamp of the event in the ringbuffer, take the decision
to and mask it, and returning from the kernel, since all ni

occurrences of every task-releasing event may occur at once.
Obviously, this is not very feasible. We therefore over-

approximate subsequent events as if they occur with the first,
in case they do not affect the current scheduling decision. That
is, we ignore all but the next occurrence of each event until
when the bottom half is processed, by masking the specific
interrupt in the top half and unmasking it only after the bottom
half finishes executing. Still, multiple events may occur and
the device indicates their number, but we assign all of them
the timestamp of the event that masked them. This reduces the

Fig. 3. Example showing how the interrupt priority level may prevent
internalizing some of the events that have no consequence for scheduling. In
the figure, three tasks (τA, τB , τC) and their events (EA, EB , EC) are shown
that may preempt the currently running task τcurrent . We set the interrupt
priority level to below the importance of the least important task (τB) that
may still preempt τcurrent . This way, τC , whose event importance IC is
lower than or equal to the interrupt priority level gets masked. However, the
event EA of task τA remains enabled, since τA is more important than τB
(although less important than τcurrent).

sliding window during which we do not allow further events to
be internalized and creates more pressure in the system1, but
ensures we do not miss events that we should have handled.

In the same way, we mask events that have no immediate
consequence on the scheduling decision. That is, we raise the
interrupt priority level to prevent internalizing the events of
tasks that would not preempt the current task. These are lower-
important tasks whose next job the scheduler will prioritize
higher than the priority of the current running task. Again,
when lowering this level, we internalize these events with
the timestamp when we masked them and evaluate the device
event counts to identify whether sensor values were off. Notice
that even though this timestamp may be before the actual
release time of the task, the task will not be executed before the
point in time when its releasing event is internalized. Notice
also that the above mechanism is not perfect, because there
may be lower prioritized and less important tasks than the
currently running task, which are still more important than
the task with the minimum importance whose next job will
be higher prioritized. Figure 3 illustrates this point. It would
of course be possible to mask these tasks manually, albeit at
significant costs, in particular if the interrupt controller does
not allow installing and changing interrupt masks for multiple
interrupt lines at once.

V. LIMITATIONS AND OPEN QUESTIONS

Of course, we are not yet at the end of our journey and
several limitations and criticisms remain valid, which raise
open questions and require further research.

For example, one could argue that our differentiation of the
still to be considered out-of-envelope behavior and the bounds
after which we consider sensors to wrongly produce events is
artificial in the sense that we anticipate as out-of-envelope
behavior what should actually be anticipated. We admit this
contradiction and lack of a better definition of what out-of-
envelope behavior actually is, but hope the intuition will be

1Considering events to happen earlier means the system will, at the brink
of the sensor being faulty, sooner unmask interrupts, since the sliding window
ends earlier.

clear. Out-of-envelope behavior is what we did not anticipate
for the normal behavior of the system but which we still might
be afraid to see and therefore plan for.

Focusing on enforcement, we could of course only sketch
some of the scheduling problems that occur when the sys-
tem should remain feasible in out-of-envelope situations. We
therefore leave as an open question, the investigation of
scheduling algorithms that can guarantee schedulability of
the most important tasks when inter-separation constraints are
violated.

Our approach so far completely gives up on inter-separation
constraints once the environment moves out of the anticipated
envelope. This is mainly to capture unanticipated alarms. How-
ever, if arguments about the physical processes demonstrate
that it will be infeasible that events occur more frequently
than once every T out

i , then integrating such bounds in the
task model would greatly improve the schedulable utilization
of the system, even if the out-of-envelope period T out

i is small
compared to the period Ti.

Likewise, our approach so far assumes importance to be a
total order among tasks. It might be interesting to investigate
more well-defined structures that can capture different sets
of tasks that should be sacrificed depending on which event
violates the assumptions made in the system’s operational
envelope.

Being a report on preliminary work, we obviously did not
quantify the overhead of our approach on existing vectored
interrupt controllers, nor did we evaluate the design of VICs
that are specifically designed to capture out-of-envelope be-
havior. For example, the constraints which prevented us from
precisely tracking out-of-envelope events in Section IV vanish
if ringbuffers containing timestamps are maintained in the
VIC. Like capture units, such VICs could record the timestamp
of occurrence of interrupt-triggering events (provided the ni-
element ringbuffer is not yet full) while triggering the pro-
cessor’s interrupt service routine only when the processor is
ready to receive such an interrupt and when it would affect
scheduling decisions (communicated by the masking scheme
we discussed above).

VI. RELATED WORK

In this work, we have already discussed similarities but
also differences to mixed-criticality scheduling [8], whose
state of the art is captured in the review by Davis and
Burns [9]. Importance allows us to define trading off tasks
independent of those that originate from high-criticality tasks
exceeding their low-criticality expectations and we hope its
use to respond to clearly unanticipated situations avoids some
of the misconceptions of mixed-criticality systems [18].

We already mentioned several works to investigate event-
triggered systems and what properties they may retain despite
giving up on internalizing events only according to the globally
synchronized sparse time base. For example, Scheler and
Schroeder-Preikschat [4] ask whether the difference between
event- and time-triggered is just a matter of configuration.

We believe this can be answered only after extending our
observations to the network level.

We likewise mentioned that others have also proposed solu-
tions for defending against interrupt storms (with the purpose
of remaining within the operational envelope, unlike what we
propose — to slightly step out of it and focus on the most
important tasks). For example, Parmer and West [16] describe
a means for predictable interrupt management with the help
of deferrable servers, which, among others, has enabled core-
local reasoning and predictable cross-core communication [19]
in the M3 microkernel [20]. Scheler et al. [11] discuss hard-
ware supported interrupt handling for event-triggered real-time
operating systems. Kim et al. [12] explore interrupt handling
and enforcement in real-time system virtualization. Ley va-
del Foyo et al. [13] propose to integrate interrupt and task
handling. Brinkschulte et al. [15] suggest in a work-in-progress
presentation the notion of interrupt service threads and Elliott
and Anderson [14] propose robust interrupt handling for
multiprocessor systems, by drawing inspiration from GPUs.

VII. CONCLUSIONS

In this work, we raise the question whether real-time
systems can still remain responsive in case unanticipated
and unforeseen combinations of events move them beyond
the operational envelope for which they have been designed.
We distinguish normal situations from situations where such
out-of-envelope behavior occurs and from situations where
faulty sensors overwhelm the system by generating interrupt
storms or event combinations that the system can no longer
sensibly handle. We propose a vectored interrupt controller-
based event internalization and handling scheme that is capable
of defending against the latter, while supporting the two for-
mer. Our scheme can be implemented using existing interrupt
controllers (e.g., on ARM and x86), but would at the same
time greatly benefit from a dedicated capture unit that records
the timestamps of up to ni interrupt-triggering events in per
interrupt-line ringbuffers.

Directions for our future work include evaluating such
hard- and software implementations, further exploring the sim-
ilarities and differences between importance-based schedul-
ing (once the system leaves its operational envelope) and
mixed-criticality scheduling, and investigating whether out-of-
envelope behavior can also be tolerated at the network level.

VIII. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] D. Powell, G. Bonn, D. Seaton, P. Verissimo, and F. Waeselynck,
“The delta-4 approach to dependability in open distributed computing
systems,” in [1988] The Eighteenth International Symposium on Fault-
Tolerant Computing. Digest of Papers, 1988, pp. 246–251.

[2] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[3] D. P. Borgers and W. P. M. H. Heemels, “Event-separation properties
of event-triggered control systems,” IEEE Transactions on Automatic
Control, vol. 59, no. 10, pp. 2644–2656, 2014.

[4] F. Scheler and W. Schroeder-Preikschat, “Time-triggered vs. event-
triggered: A matter of configuration?” in ITG FA 6.2 Workshop on
Model-Based Testing, GI/ITG Workshop on Non-Functional Properties
of Embedded Systems, 13th GI/ITG Conference Measuring, Modelling,
and Evaluation of Computer and Communications, 2006.

[5] M. J. Khojasteh, P. Tallapragada, J. Cortés, and M. Franceschetti, “Time-
triggering versus event-triggering control over communication channels,”
in 2017 IEEE 56th Annual Conference on Decision and Control (CDC),
2017, pp. 5432–5437.

[6] H. Kopetz, “Sparse time versus dense time in distributed real-time
systems,” in [1992] Proceedings of the 12th International Conference
on Distributed Computing Systems, 1992, pp. 460–467.

[7] T. Baker, “A stack-based resource allocation policy for realtime pro-
cesses,” in [1990] Proceedings 11th Real-Time Systems Symposium,
1990, pp. 191–200.

[8] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), 2007, pp. 239–243.

[9] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, pp. 1–69, 2013,
current version: https://www-users.york.ac.uk/∼ab38/review.pdf.

[10] C. Perrow, “Normal accident at three mile island,” Society, vol. 18, 1981.
[11] F. Scheler, W. Hofer, B. Oechslein, R. Pfister, W. Schröder-Preikschat,

and D. Lohmann, “Parallel, hardware-supported interrupt handling in an
event-triggered real-time operating system,” in Proceedings of the 2009
International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, ser. CASES ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 167–174. [Online].
Available: https://doi.org/10.1145/1629395.1629419

[12] H. Kim, S. Wang, and R. Rajkumar, “Responsive and enforced interrupt
handling for real-time system virtualization,” in 2015 IEEE 21st Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications, 2015, pp. 90–99.

[13] L. E. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz, “Integrated
task and interrupt management for real-time systems,” ACM Trans.
Embed. Comput. Syst., vol. 11, no. 2, Jul. 2012. [Online]. Available:
https://doi.org/10.1145/2220336.2220344

[14] G. A. Elliott and J. H. Anderson, “Robust real-time multiprocessor inter-
rupt handling motivated by gpus,” in 2012 24th Euromicro Conference
on Real-Time Systems, 2012, pp. 267–276.

[15] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Ungerer, “Interrupt
service threads - a new approach to handle multiple hard real-time events
on a multithreaded microcontroller,” RTSS WIP Sessions, 08 2000.

[16] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the composite component-based system,” in 2008 Real-Time
Systems Symposium, 2008, pp. 232–243.

[17] T. Fleming and A. Burns, “Extending mixed criticality scheduling,” in
Workshop on Mixed Criticality Systems (WMC), vol. 11, 2013, pp. 7–12.

[18] R. Ernst and M. Di Natale, “Mixed criticality systems—a history of
misconceptions?” IEEE Design and Test, vol. 33, no. 5, pp. 65–74, 2016.

[19] N. Asmussen, S. Haas, A. Lackorzyński, and M. Roitzsch, “Core-
local reasoning and predictable cross-core communication with m3,” in
2024 IEEE 30th Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2024, pp. 199–211.

[20] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. Fettweis,
“M3: A hardware/operating-system co-design to tame heterogeneous
manycores,” SIGARCH Comput. Archit. News, vol. 44, no. 2, p.
189–203, Mar. 2016. [Online]. Available: https://doi.org/10.1145/
2980024.2872371

