
HAL Id: hal-05148383
https://hal.science/hal-05148383v1

Submitted on 7 Jul 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

TATA: Benchmark NIDS Test Sets Assessment and
Targeted Augmentation

Omar Anser, Jérôme François, Isabelle Chrisment, Daishi Kondo

To cite this version:
Omar Anser, Jérôme François, Isabelle Chrisment, Daishi Kondo. TATA: Benchmark NIDS Test Sets
Assessment and Targeted Augmentation. ESORICS 2025 - 30th European Symposium on Research
in Computer Security, Sep 2025, Toulouse, France. �hal-05148383�

https://hal.science/hal-05148383v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

TATA: Benchmark NIDS Test Sets Assessment
and Targeted Augmentation

Omar Anser1, Jérôme François1,2, Isabelle Chrisment1, and Daishi Kondo3

1 Inria, Université de Lorraine, CNRS, LORIA, Nancy, France
{firstname.lastname}@inria.fr

2 SnT - University of Luxembourg, Luxembourg
{firstname.lastname}@uni.lu

3 Information Technology Center, The University of Tokyo, Japan
daishi.kondo@nc.u-tokyo.ac.jp

Abstract. Research works on Network Intrusion Detection Systems (NIDSs)
using Machine Learning (ML) usually reports very high detection rate,
often well above 90%. However, these results typically originate from
overly simplistic NIDS datasets, where the test set, often just a subset
of the overall dataset, mirrors the training set distribution, failing to rig-
orously assess the NIDS’s robustness under more varied conditions. To
address this shortcoming, we propose a method for Test sets Assessment
and Targeted Augmentation (TATA). TATA is a model-agnostic ap-
proach that assesses and augments the quality of benchmark ML–based
NIDS test sets. First, TATA encodes both training and test sets in a
structured latent space via a contrastive autoencoder, defining three
quality metrics (diversity, proximity, and scarcity) to identify test set
gaps where the ML-based classification is harder. Next, TATA employs
a reinforcement learning (RL) approach guided by these metrics, config-
uring a testbed that produces realistic data specifically targeting these
gaps, creating a more robust test set. Using CIC-IDS2017 and CSE-CIC-
IDS2018, we observe a positive correlation between higher metric values
and increased detection difficulty, confirming their utility as meaningful
indicators of test set robustness. With the same datasets, TATA’s RL-
based augmentation significantly raises detection difficulty for multiple
NIDS models, revealing previously overlooked weaknesses.

Keywords: NIDS · ML · Data quality · Data augmentation.

1 Introduction

In Network Intrusion Detection System (NIDS) research, Machine Learning
(ML) and Deep Learning (DL) have become foundational tools (throughout
this paper, NIDS refers exclusively to systems that use ML or DL). Benchmark
NIDS datasets play a crucial role in the design and comparative evaluation of
these systems. For instance, LUCID [3] (a state-of-the-art DDoS detector) used
ISCXIDS2012 [34], CIC-IDS2017 [33] (IDS2017), and CSE-CIC-IDS2018 [33]
(IDS2018); both ADA [35] (an adaptive NIDS with minimal data requirements)

2 Anser et al.

and FlowTransformer [25] (a transformer-based model capturing intricate traf-
fic patterns) utilized UNSW-NB15 [26]. FlowTransformer additionally relied on
NSL-KDD and IDS2018. Although these datasets are widely adopted, they can
contain errors and biases in data collection, labeling, post-processing, and even
after publication [4, 21, 20].

Besides, one of the key issues with NIDS datasets is their simplicity [6, 1, 7],
often illustrated by minimal heterogeneity among traffic that shares the same
label identifying the different types of attacks or benign flows. Flood et al. [7] use
Principal Component Analysis (PCA) to analyze the DoS Hulk labeled flows in
IDS2017, showing that its training and test subsets exhibit near-complete overlap
in feature-value distributions. They attribute this phenomenon to both IDS2017
and IDS2018 being generated using automated tools with limited attack explo-
ration. Consequently, concerns arise about the relevance of these largely used
datasets—particularly their test sets, often just subsets of the same data—for
evaluating an NIDS, since their limited heterogeneity may lead to an overesti-
mation of detection performance and fail to meaningfully reflect the system’s
robustness under operational conditions [36].

Existing metrics can analyze intrinsic dataset characteristics to quantify its
overall quality [7, 6], while ignoring the downstream NIDS-classification task. For
instance, they highlight issues such as mislabeled flows, dubious labeling assump-
tions, and near-duplicate attacks. Others evaluate a dataset from a classification
perspective, assessing how challenging it is for a NIDS to separate the training
labeled traffic to build its decision boundaries [22, 21, 4] without examining the
later testing stage which relies on a test set and its quality to challenge the sys-
tem. Prior studies in non-NIDS domains propose methods for assessing test set
quality [17, 14, 30], then extend these efforts with augmentation strategies [31,
32] to better challenge the models. Yet most of these approaches rely on model-
dependent indicators (e.g., neuron activation), which can be impractical when
the NIDS model is unknown or closed-source. Moreover, this model-centric focus
does not provide a comprehensible view of how much the distribution of a test
set is aligned relative to the training set. To the best of our knowledge, only two
studies address the problem of test set augmentation in the NIDS domain [7, 6],
but their solutions are manual and thus not generalizable across NIDS datasets.

Given these challenges, we aim at answering two research questions:
RQ1. How can we assess the quality of test sets in challenging NIDS models,
ensuring a robust evaluation of their detection capabilities?
RQ2. How to augment these test sets to better evaluate the robustness and
real-world applicability of NIDS models?

To address these questions, we introduce a method for Test sets Assessment
and Targeted Augmentation, TATA. TATA tackles RQ1 by defining compre-
hensive quality metrics to evaluate a test set relative to a training set, without
relying on model internals. TATA trains a contrastive autoencoder [11, 16] to
increase both inner and intra-label separability of the training set in the latent
space, thus approximating the decision boundaries. Once trained, the autoen-
coder additionally projects the test data points, enabling the measuring of di-

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 3

versity (captures the range of test data points, reflecting whether the test set
broadly spans the feature space or remains redundant), proximity (how test
data points lie close to differently labeled training data points, indicating how
borderline they are for classification), and scarcity (how uniformly test data
points are spread across the decision boundaries, ensuring multiple boundary
regions are tested). Higher values imply a more challenging test for the NIDS.

Addressing RQ2, TATA uses Reinforcement Learning (RL) [37]. The RL
agent iteratively generates configurations, such as network conditions (e.g., band-
width constraints or latency) or traffic patterns (e.g., bursty or steady flows).
Using these on a testbed, real traffic is generated, unlike model-based data aug-
mentation techniques (e.g., Generative Adversarial Networks, or GANs), which
remains synthetic. To improve the quality of the test set, this generation is
guided by the predefined quality metrics. Once trained, the agent can be applied
to multiple NIDS test sets without retraining, a practical transferability that
could pave the path to an easier generalization.

We evaluate TATA on the IDS2017 and IDS2018 datasets, showing that diver-
sity, proximity, and scarcity effectively quantify a test set’s challenging aspects.
For example, we examine how changes in proximity correlate with detection per-
formance for the three NIDS models used in this paper (Random Forest (RF),
Support Vector Machine (SVM), and a Deep Neural Network (DNN)). We use
these metrics to guide TATA’s RL-based test set augmentation on IDS2018,
applying the learned strategy to IDS2017. TATA increases the original metrics
(diversity, proximity, scarcity) by approximately 437%, 190%, and 136% respec-
tively by generating benign traffic only, which in turn reduces each model’s
macro-averaged F1-score (macro-F1) by nearly 30 points, exposing previously
overlooked NIDS weaknesses hidden by the original test split. Beyond IDS2017
and IDS2018, we conducted a broader temporal and comparative analysis across
multiple network-intrusion datasets showing that the test set quality is far from
being satisfactory for research on NIDS.

2 Related Work

Research on test set quality assessment (RQ1) and augmentation (RQ2) has
been prominent in DL, software engineering, and software testing fields. Table 1
categorizes the main studies, as identified in the literature, into Neuron Cov-
erage, Surprise Coverage, and Mutation Testing, linking them to RQ1
and/or RQ2 while highlighting limitations. Notably, only one study, under mu-
tation testing, addresses both RQ1 and RQ2, while others focus solely on RQ1.
Additionally, two uncategorized methods [7, 6] address only RQ2. All categorized
methods share a common limitation: requiring model access, a critical issue in
the NIDS domain where access is often restricted, for example assuming com-
mercial products.

Neuron coverage methods interprets higher neuron activations as broader
model exploration, with [30] introducing neuron coverage (NC) as a metric that
measures the proportion of neurons activated by a test set. However, these ap-

4 Anser et al.

Table 1: Methods & limitations for test set assessment (RQ1) & augmentation (RQ2)

Method
category Studies RQ1 RQ2 Limitations

Neuron
coverage

[30, 24,
23] ✓ ✗

– Need for model access
– Ignores training–test alignment

– High sensitivity to hyperparameters
– Not adapted to non NN models

Surprise
coverage

[17, 40,
18] ✓ ✗

– Need for model access
– Not adapted to non NN models – Only proximity-based analysis

Mutation
testing

[13, 38,
14] ✓ ✗

– Need for model access
– Lack of adaptability to model changes – Ignores training–test alignment

Mutation
testing [31] ✓ ✓

– Same limitations as [13, 38, 14]
– Needs a new training run per dataset

– Use of a data generator that may pro-
duce unrealistic data points

N/A [7, 6] ✗ ✓ – Focus solely on increasing proximity – Manual and unguided test set augmen-
tation

proaches offer limited insight into how training and test sets align, require deli-
cate hyperparameter tuning [12], and are limited to neural networks, excluding
widely used NIDS models (e.g., RF). Other methods [10, 41, 5] employ simi-
lar coverage criteria for RQ2 but remain primarily fuzzing-based, focusing on
stress-testing with diverse or adversarial inputs that lack semantic or real-world
coherence, contrasting with our emphasis on realistic test set augmentation.

Surprise coverage methods assess how unexpected a test data point is by
comparing its activation pattern (i.e., hidden-layer outputs of a neural network)
with those of the training set. Various implementations (e.g., distance-based or
likelihood-based) share the core idea that test data points whose the activations
deviate substantially from the training set are considered surprising [17]. This
category mainly focus on proximity in activation space and thus overlook other
test set problems unlike our method that also incorporates scarcity and diversity
considerations, leading to a more comprehensive evaluation.

Mutation testing introduces modifications to the model and its training set,
producing mutants whose detection rate (the mutation score) indicates test set
quality. A higher mutation score means a more robust test set. These solutions
relies on mutation operators specific to each model, requiring new operators
whenever the model changes. They also evaluate test sets in isolation, without
relating them to the training set. Riccio et al. [31] extend prior mutation testing
work [14] with test set augmentation but, in addition to mutation-testing limits,
these approaches depend on human-interpretable, image-based generators [32],
which are unsuited to the complex, non-visual nature of network traffic. Their
approach requires re-training on each new dataset, further limiting its reusability.

Two NIDS-oriented works [7, 6] are not categorized in Table 1, yet each in-
cludes a subsection discussing test set augmentation (RQ2). Flood et al. [6] pro-
pose a complexity metric capturing spatial and temporal diversity, while Flood
et al. [7] use heuristics to quantify dataset quality, both focusing on overall
dataset aspects (rather than explicit test–train alignment as excepted in RQ1).
They augment IDS2017 by replaying DoS-Hulk traffic on a testbed [2], randomly
sampling page sizes and attacker bandwidths. Capturing traffic on a live testbed
preserves protocol semantics, a strategy we also adopt, unlike fully synthetic

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 5

GAN outputs (e.g., NetShare [42]), diffusion models (e.g., NetDiffusion [15]),
or simple feature-jittering [39], which can break flow coherence. However, their
procedure remains manual, unguided, and purely random, as the configuration
values are chosen without reference to any quality metric; consequently, the
added data points may leave key coverage gaps unaddressed in the latent space.

TATA addresses the gaps identified: it evaluates test data points in relation
to the training set through diversity, proximity, and scarcity, then augments the
test set via RL with realistic network traffic data points to better assess the NIDS
robustness. It is model-independent, requires no model access, and, in principle,
the trained RL agent can be applied to new NIDS datasets without retraining.

3 Test sets Assessment and Targeted Augmentation

3.1 TATA Overview

TATA operates on a labeled NIDS training set (Dtrain) and test set (Dtest), each
containing network traffic data points (x, lk), where x is a high-dimensional
feature vector including information about traffic flow (e.g., the number of
bytes exchanged), and lk ∈ L = {l1, . . . , ln} is the label (e.g., benign or a
type of attack). Fig. 1 outlines TATA using an illustrative example with L =
{Benign, Attack-1, Attack-2}. TATA proceeds in three steps: (i) a preliminary

Training set

Test set

Encoder Decoder

Structured latent space
Reconstructed

Contrastive autoencoder

Structured latent space

Preliminary phase: optimized latent representation for training set

Phase 2: test set augmentation

Phase 1: test set quality assessment

Structured latent space

Current test set
quality assessment

RL agent

Generated network traffic
data points

Real services
and user-like

activities

Testbed

Assessing whether test set meets
the following criteria:

 2. Containing test data points close
to their (proximity)
 3. Ensuring adequate coverage
across all possible (scarcity)

 1. Including a diverse range of test
data points (diversity)

Current agent view

1. Training
2. Deployment

Learned configuration

Trained RL agent

Trial and error configuration

Input

Input

Output

Network
traffic

Encoder

Encoder

Freezing
trained
encoder
weights

Fig. 1: TATA, a method to assess and augment the quality of a test set

phase that constructs a structured latent space from Dtrain, (ii) phase 1 that

6 Anser et al.

assesses Dtest’s quality, and (iii) phase 2 that augments Dtest. L is the set of
labels that the NIDS must classify.

The preliminary phase provides the latent space foundation by training a
contrastive autoencoder with encoder f , parameterized by θ, on Dtrain. Dur-
ing training, the contrastive objective [11, 16] shapes the latent space into well-
separated clusters, each containing encoded training data points with similar
labels and closely aligned input feature values, while preserving reconstruction
accuracy. This process yields a trained f that encodes each x ∈ Dtrain into a
latent representation z = f(x;θ), forming Ztrain = {z | z = f(x;θ), x ∈ Dtrain}.
We determine the number of clusters in Ztrain using the silhouette score, then
apply k-means to assign each z ∈ Ztrain to a cluster Ci,lk (where i is the cluster
index and lk is the majority label among its members). All clusters form the set
C knowing that a single label may correspond to multiple clusters (e.g., C1,Benign
and C2,Benign in Fig. 1), which reflects intra-class variability in Dtrain. By reduc-
ing the data’s dimensionality, the contrastive autoencoder not only speeds up
subsequent computations but also approximates the decision boundaries inher-
ent in Dtrain, all without being tied to a specific NIDS model.

In phase 1, we use the trained f to encode Dtest into the same structured
latent space as Dtrain. We obtain Ztest = {z | z = f(x;θ), x ∈ Dtest}, which
positions each test data point relative to Dtrain’s distribution. For each z ∈ Ztest
with input label lk, we compute its Euclidean distance ∥z − µCi,lj

∥ to every
cluster centroid µCi,lj

in C. Among these distances, the cluster Ci,lj whose label
lj matches lk and minimizes ∥z− µCi,lj

∥ is termed as its positive cluster P(z).
Conversely, the cluster Ci,lj whose label differs (lj ̸= lk) and minimizes that
distance is its negative cluster N (z). Fig. 1 illustrates this pairing by arrows
linking a Benign encoded test data point to its positive and negative clusters,
representing the intrinsic maximal difficulty to make the right decision. Accord-
ingly, we define three complementary metrics (diversity, proximity, and scarcity)
to assess how effectively Dtest challenges the NIDS in its detection task. They
are computed in the structured latent space on a per-cluster basis (details in
Section 3.2). We then aggregate each metric’s results across all clusters Ci,lk ∈ C
to measure how effectively Dtest challenges each subgroup of Dtrain.

In phase 2 (detailed in Section 3.3), the RL agent is trained by iteratively
interacting, through trial and error, with a configurable testbed that it directs to
generate network traffic (see Fig. 1). At each iteration, the agent first consults its
current view of the structured latent space and then selects a traffic-generation
configuration. The resulting network traffic is merged into the evolving Dtest and,
after encoding, is re-assessed with TATA’s predefined metrics, yielding a quality
measure that serves as the reward. This reward guides the agent’s configuration
choices, which are refined over multiple iterations. Once training, the agent’s
learned policy can be used on the same or other NIDS datasets without requiring
further retraining (i.e., without additional reward signals).

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 7

3.2 Test Set Quality Assessment

Because TATA’s metrics are computed on a per-cluster basis, we begin by defin-
ing the subset of encoded test data points tied to each cluster Ci,lk . Specifically,
for each Ci,lk , we focus on Z(Ci,lk

)
test = {z ∈ Ztest | P(z) = Ci,lk}, the Ztest subset

of encoded test data points whose positive cluster is Ci,lk . To support
metrics computation, we also introduce the function PairNeg(Ztest, Ci,lk) ={(
z,N (z)

) | z ∈ Z(Ci,lk
)

test
}

that pairs every z ∈ Z(Ci,lk
)

test with its negative cluster
N (z). Each pair

(
z,N (z)

)
indicates the nearest differently labeled cluster that

could challenge the classification of z away from its positive cluster Ci,lk (i.e.
leading to a classification error so).
Diversity A common testing requirement is to cover a wide range of test cases.
Diversity (D) captures the variability among the data points in Z(Ci,lk

)
test . A higher

D reflects a Dtest in which individual data points exhibit minimal redundancy
and more fully cover the available feature space.

D is calculated using the Vendi Score [8] (denoted as Vi,lk), which quantifies
how evenly the data points span the feature space by computing the von Neu-
mann entropy of their normalized similarity matrix. Since Vi,lk ranges from 1
(minimal diversity) to the size of Z(Ci,lk

)
test (maximal diversity), we min–max nor-

malize it to [0, 1]. Finally, we average these normalized scores across all clusters
to obtain :

D =
1∣∣C∣∣ ∑

Ci,lk
∈C

Vi,lk (1)

(training)
(test)(training)

(training)

(training)

Distance between encoded training
data point and the centroid of its
Distance between encoded test
data point and the centroid of its

Fig. 2: Training vs. Test Distances for C1,Benign

Proximity Because diverse data
points lying far from decision
boundaries are typically sim-
pler to classify, proximity (P)
measures how close data points
in Z(Ci,lk

)
test are to their nega-

tive clusters. A higher P sug-
gests that Dtest includes data
points near differently labeled
training data point, which are more likely to challenge the NIDS.

Formally, for each cluster Ci,lk , we define:

dtesti =
{
∥z− µN (z)∥ | (z,N (z)) ∈ PairNeg

(
Ztest, Ci,lk

)}
(2)

as the set of Euclidean distances from each z ∈ Z(Ci,lk
)

test to the centroid of its
negative cluster. To determine whether these encoded test data points lie farther
from Ci,lk than their training counterparts z ∈ Ztrain assigned to Ci,lk (and thus
pose a greater challenge to the NIDS), we analogously define dtraini . Fig. 2 illus-
trates dtest (dashed) and dtrain (solid) derived for the set Z(C1,Benign)

test . Using the
empirical cumulative distribution functions Ftesti and Ftraini

of dtesti and dtraini
,

we derive the maximum positive difference using the one-sided Kolmogorov–
Smirnov statistic KSCi,lk

∈ [0, 1]. A high value means that the distances in dtesti

8 Anser et al.

are significantly smaller than those in dtraini
, so the encoded test data points are

very close to their negative clusters. To capture the worst-case, we define P as
the maximum KS value computed across all Z(Ci,lk

)
test (for Ci,lk ∈ C):

P = max
Ci,lk

∈C

(
KSCi,lk

)
. (3)

Fig. 3: Optimal
scarcity scenario

Fig. 4: Non-optimal
scarcity scenario

Scarcity Beyond diversity and
proximity, a robust test ap-
proach must ensure that test
data points appear across mul-
tiple decision boundaries where
misclassifications may arise.
Scarcity (S) evaluates how uni-
formly data points in Z(Ci,lk

)
test

are spread across all possible
negative clusters, Fig. 3 de-
picts an optimal scenario where each of the three possible negative clusters of
C1,Benign is assigned an equal number of encoded test data points (three points
each). In contrast, Fig. 4 shows a non-optimal scenario and reflects thus a poor
scarcity.

Formally, we define the set of all possible negative clusters of Ci,lk as:

Nall(Ci,lk) = {Cj,lp ∈ C | j ̸= i, lp ̸= lk } (4)

For each Cj,lp ∈ Nall
(
Ci,lk

)
, we define the number of associated data points as:

PointCount(Cj,lp) =
∣∣ { z | (z, N (z)) ∈ PairNeg(Ztest, Ci,lk) ∧ N (z) = Cj,lp}

∣∣ (5)

Normalizing PointCount(Cj,lp) by |PairNeg(Ztest, Ci,lk)| yields the distribution
Ri,lk . The complement of the Gini Coefficient measures its uniformity:

Ri,lk =
{ PointCount(Cj,lp)∣∣PairNeg

(
Ztest, Ci,lk

)∣∣ ,∀ Cj,lp ∈ Nall
(
Ci,lk

)}
, Gi,lk = 1−Gini

(
Ri,lk

)
(6)

Values of Gi,lk range from 0 to 1, where higher values indicate a more even
distribution among negative clusters. S is the average of Gi,lk for all Ci,lk ∈ C:

S =
1

|C|
∑

Ci,lk
∈C

Gi,lk . (7)

3.3 Test Set Targeted Augmentation

We formulate the augmentation of Dtest as a Partially Observable Markov Deci-
sion Process (POMDP) and train a RL agent whose policy π—a learnable rule
that maps the current view of the latent space (the observation), to the next
testbed configuration (the action)—interacts with this POMDP to maximise
the three test set quality objectives: diversity, proximity, and scarcity. The main
components of this POMDP are:

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 9

– Observations Ω. Each observation o ∈ Ω is a compressed summary of
the structured latent space, comprising the cluster centroids µCi,lk

(for all
Ci,lk ∈ C) and basic statistics (mean, min, max, variance, std) computed
over Ztest.

– Actions A. Each action a ∈ A specifies a traffic-generation configuration
(e.g., bandwidth throttling, latency injection, or packet corruption) that the
testbed uses to generate one new network traffic data point.

– Reward R. After each action, the agent receives a scalar reward r quanti-
fying the improvement in test set quality in terms of diversity D, proximity
P , and scarcity S. Formally, R = 1

wD

D
+

wP

P
+

wS

S

, where wD, wP , and wS

are tunable hyperparameters.
During training, the agent first observes the cluster centroids and the sum-

mary of the initial Ztest, denoted by o0, while its policy π is randomly ini-
tialized. We implement this policy using Deep Reinforcement Learning (DRL),
where a neural network approximates π. At each step t, the agent selects a
traffic-generation configuration at (i.e., how the testbed should create one net-
work traffic data point). In response, the configured testbed instantiates real
network traffic under those conditions, yielding a new data point. It is then en-
coded, f(x), and appended to Ztest. The updated Ztest is summarized to yield,
with the cluster centroids, the new partial observation ot+1, and the test set is
evaluated using the three quality metrics to compute the reward rt. Upon re-
ceiving the transition tuple

(
ot, at, rt, ot+1

)
, the agent updates π with the aim

of increasing future rewards. This process repeats for multiple steps, with each
step adding one new encoded data point to Ztest. If a target test set quality is
reached or a maximum step budget is met, the current episode terminates and
the environment resets to the original test set (or a fresh copy), after which a
new episode begins. Over multiple episodes, π converges to a better policy π∗,
learning a strategy for configuring the testbed to generate network traffic flows
that progressively enhance the diversity, proximity, and scarcity of the test set.

Once the training phase is complete, π∗ can be reused during testing to
augment either the same Dtest or another NIDS dataset. In the latter case, the
preliminary phase and phase 1 must first be carried out to establish a compatible
structured latent space for that new NIDS dataset; the pre-trained agent can
then directly apply π∗ to guide the generation of additional network traffic.

4 Experiments and Results

4.1 Experimental Setup

Experiments were conducted on a server running Ubuntu 22.04.3 LTS with an
Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz processor, 500 GB of RAM, and
an NVIDIA RTX A6000. Our implementation is provided.4

4 https://gitlab.inria.fr/oanser/tata

10 Anser et al.

Datasets We used refined versions of the IDS2017 and IDS2018 datasets [21],
recognized benchmarks for NIDS [7] yet noted for their relatively low input
complexity [6] and classification complexity [22]. Both are flow-based using CI-
CFlowMeter [21] to create bidirectional flows enriched with statistical features.
While both cover the same number of attacks, they differ in scale: about 926k
benign and 253k attack flows for IDS2017 and about 59.8M benign and 4.1M
attack flows for IDS2018. Benign traffic is mostly DNS, HTTP, and HTTPS
flows with other minority protocols (e.g., SSH, FTP, SMTP). The attack types
range from infiltration and port scanning to DoS, DDoS, and web exploits. Due
to the very low occurrence (10 to 20 flows) of certain attack types in IDS2017,
a pattern not observed in IDS2018, we removed these attack types.

NIDS Models We show TATA’s model-agnostic nature using three multi-class
ML models: RF, SVM, and a DNN which features three fully connected ReLU
layers (128 neurons each) and a softmax output. These models are widely used
in NIDS research, showing strong results on IDS2017 and IDS2018 [28]. Each
dataset is stratified 60/20/20 into training (Dtrain), validation (Dval), and test
(Dtest) splits; Dval is used to select model hyper-parameters via random search.

Contrastive Autoencoder The contrastive autoencoder is a multilayer per-
ceptron selected after a grid search over candidate architectures and training
hyper-parameters. The best configuration, ranked according to the Silhouette-
guided k -means accuracy, uses three fully connected layers with 64, 32, and 16
neurons, and ReLU activations. It is trained for 250 epochs with a batch size of
128 and a learning rate of 0.001. The contrastive loss employs a margin of 10 and
a regularisation factor of λ = 0.1, while the latent space is three-dimensional.

4.2 Preliminary Phase: Evaluating the Contrastive Autoencoder

We evaluate the output from the contrastive autoencoder (the cluster set C,
derived from Ztrain) comparing it to a vanilla autoencoder (which omits the
contrastive loss). Both autoencoders are trained on ten distinct 60%-Dtrain splits
of IDS2017 and IDS2018, each generated with a different random seed, and
assessed via silhouette score (a measure of cluster separability) and K-Means
(KM) accuracy (alignment of clusters with true labels).

The contrastive autoencoder achieves significantly higher silhouette scores
(0.96±0.00 vs. 0.73±0.05 on IDS2017 and 0.98±0.00 vs. 0.76±0.02 on IDS2018), indi-
cating that the clusters in Ztrain are both well-grouped and clearly divided. These
strong internal structures yield near-perfect KM Accuracy (over 99% on both
datasets), indicating that each cluster is almost entirely composed of encoded
data points from the same input label. In contrast, the vanilla autoencoder’s
lower KM Accuracy (around 60%) reveals considerable label mixing.
Takeaway: The contrastive autoencoder yields a highly discriminative and well-
structured latent space, outperforming a vanilla autoencoder.

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 11

4.3 Phase 1: Test Set Assessment Metrics in Practice

Having introduced each metric’s rationale, we now address RQ1 by examining
whether their values vary in alignment with the performance of the implemented
NIDSs. We use a single 60/20 Dtrain–Dtest stratified split on the IDS2017 dataset
(IDS2018 yields similar observations). Because this split alone gives each metric a
single value, we selectively manipulate Dtest to produce varying test set qualities,
as detailed in the subsections below. We measure correlation using Pearson’s r
for linear relationships and Spearman’s ρ for rank-based (monotonic) trends, so
both absolute differences and relative orderings are captured.
Diversity. We investigate whether including additional traffic types (labels) in
the NIDS evaluation (an inherently more challenging scenario) correlates with
higher diversity. To do this, we generate all sub-test sets from IDS2017’s Dtest
corresponding to each label combination of size k (k ranges from 1 to 9 since
IDS2017 includes 9 types of traffic).

1 2 3 4 5 6 7 8 9
Number of classes

0.000

0.025

0.050

0.075

0.100

0.125
D

iv
er

si
ty

Fig. 5: Box plots of the diversity metric for sub-
test sets of size k = 1, . . . , 9

We then compute and plot the re-
sulting diversity values in Fig. 5,
observing a perfect correlation
(Pearson’s r = 1, Spearman’s ρ =
1) between the number of labels
and mean diversity. As k grows
from 1 to 9, diversity rises mono-
tonically from near-minimal to a
maximum of 0.1209.
Takeaway: The diversity metric
captures the increased evaluation
challenge that results from adding
more label types, which increases
the range of traffic types the NIDS must handle.
Proximity. To assess proximity, we compute each encoded test data point’s dis-
tance to its negative cluster. We rank these distances from largest to smallest and
split the ordered list into 100 cumulative sub-test sets: the first contains the top
1 %, the second the top

0.00 0.05 0.10 0.15 0.20
Proximity

0.92

0.94

0.96

0.98

1.00

F1
m

ac
ro

SVM
RF
DNN

Fig. 6: Effect of Proximity on NIDS Performance

2 % (including the first), and so
on. As we move from sets with the
largest distances to those with
smaller ones, the average dis-
tance decreases, thereby increas-
ing the proximity metric. Using
each sub-test set, we evaluate
whether higher proximity levels
challenge the NIDS, as indicated
by increased error.

In Fig. 6, each circular marker
represents a sub-test set, with its
average proximity (x-axis) plot-

12 Anser et al.

ted against the macro-F1 of the three NIDS (RF, DNN, SVM). All three
NIDS maintain macro-F1=1.0 across more than half the sub-test sets (proximity
≤ 0.11–0.14), but macro-F1 gradually declines (to about 0.92 for RF/DNN and
0.91 for SVM) as more borderline data points appear. We observe a strong neg-
ative Spearman correlation (ρ = −0.90± 0.01) and a similarly negative Pearson
correlation (r = −0.86 ± 0.01), both averaged across the three NIDS, confirm-
ing that higher proximity corresponds to lower macro-F1. Their nearly identical
trajectories (pairwise correlations Pearson > 0.98, Spearman > 0.97) indicate
that proximity is agnostic to the ML model.
Takeaway: Proximity captures the escalating difficulty posed by borderline test
data points, as higher proximity values coincide with lower NIDS performance.
Scarcity. As with proximity, we investigate whether scarcity correlates with
Dtest’s difficulty and thus affects NIDS performance. Defined in Sec. 3.2, scarcity
measures how uniformly encoded test data points distribute across all possible
negative clusters. To produce sub-test sets with different scarcity levels, we run
each NIDS on Dtest, record misclassified data points, and map them to their
latent representations. We then systematically redistribute these misclassified
instances among the available negative clusters in 10 steps, transitioning from
a less-uniform (clustered) to a more-uniform (dispersed) arrangement. As with
proximity, we therefore create sub-test sets with an increasing scarcity and eval-
uate how this impacts the NIDS performance.

0.35 0.40 0.45 0.50
Scarcity

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

M
ac

ro
F1

RF
DNN
SVM

Fig. 7: Effect of Scarcity on NIDS Perfor-
mance

Because our objective is to create a
wide range of types of misclassifica-
tion errors (i.e. mixing different labels),
macro-F1 is also considered, correcting
imbalance effect of a particular label.
In overall, a strong negative Spearman
correlation (ρ = −1±0, averaged across
models) and a strong negative Pear-
son correlation (r = −0.8885± 0.0055)
clearly indicate that higher scarcity
corresponds to a lower macro-F1. In de-
tails, Figure 7 shows that, after the first
redistribution step, macro-F1 shows a
sharp decline. Performance then continues to decrease more gradually and mono-
tonically; for instance, the macro-F1 of the RF-based NIDS falls below 0.78 when
the scarcity level reaches 0.53.
Takeaway: A more uniform spread of misdetection data points across decision
boundaries increases scarcity and decreases the macro-averaged F1-score, con-
firming scarcity’s relevance as a difficulty indicator.

4.4 Phase 2: Test set Augmentation Evaluation

In this second phase, TATA focuses on augmenting Dtest with Benign flows
only, as a proof of concept. The RL agent relies on a two-host testbed (client

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 13

and server) exchanging Benign SSH traffic (a protocol present in IDS2017 and
IDS2018). While RL ideally operates at millisecond timescales, allowing the
collection of numerous transition tuples

(
ot, at, rt, ot+1

)
for effective learning,

our full pipeline (traffic generation, flow conversion, encoding with f and met-
rics computation) requires seconds, making a conventional online loop infea-
sible. Thus, we employ offline RL, training on a static dataset of transitions
(ot, at, rt, ot+1) derived from IDS2018 while reserving IDS2017 for final testing.
We omit the reverse scenario because IDS2018’s larger cluster set C exceeds what
an agent trained on IDS2017 can handle as observation input.

To construct these transition tuples, we first split IDS2018 into Dtrain and an
initial Dtest and augment the latter iteratively with a random traffic-generation
configuration (action) on the SSH traffic, drawn from uniform parameter ranges
(forming the action set at): loss [5%, 10%], jitter [4ms, 10 ms], delay [10 ms,
40 ms], duplication [0.1%, 5%], corruption [0.1%, 10%], reordering [0.1%, 50%],
and correlation [50%, 100%]. The action is applied with the Linux tc command
on the client side while running a predefined SSH scenario creating large random
files, performing frequent file operations, executing complex commands, modi-
fying file permissions, and cleaning up. Next, we convert the resulting network
traffic into flow(s) using CICFlowMeter, after which we apply our pipeline (met-
ric computation and reward calculation with weights wP = wS = wD = 1). If
5,000 steps have elapsed or the reward exceeds 0.9, we reset the initial Dtest to
begin a new episode. Across these episodes, we collect roughly 500,000 transi-
tions without any filtering, deliberately retaining failed episodes to ensure the
offline RL algorithms (CQL [19] and TD3+BC [9], chosen for continuous-action
support and for penalizing out-of-dataset actions to remain within known tran-
sitions, and tuned via grid search) encounter a diverse range of outcomes.

After training, we evaluate each RL agent for 20 episodes on IDS2017, using
different random seeds to define an 60–20 train–test split each time. During
these evaluations, the agent manipulates traffic configurations on the same SSH
testbed, but no further policy updates or reward signals occur. Newly generated
flows are labeled benign and added to the IDS2017 test set. Finally, we measure
how this augmentation affects (i) our test-set quality metrics and (ii) NIDS
detection performance (macro-averaged precision and recall). We report mean
and standard deviation over the 20 episodes. Three baselines are considered:
– Random Agent: The agent selects traffic-shaping parameters (loss, jitter,

delay, etc.) at random, using no learned strategy.
– GAN-Based Method (Netshare[42]): Netshare employs a GAN to syn-

thesize network traffic. Although it attempts to mimic real-world distribu-
tions, its generated flows may not fully capture the complexity of realistic
network behavior.

– Augmentation guided with NC [30]: This variant uses the TATA’s of-
fline RL pipeline but replaces the default reward with a neuron-coverage
metric from the DNN-based NIDS. During training, after each newly gen-
erated traffic flow, we measure the fraction of activated neurons (e.g., 70%
activation yields a reward of 0.7).

14 Anser et al.

No Augmentation
Random AgentNetshare TATA

Augmentation guided with NC

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
c

V
al

ue

RF Precision
RF Recall
SVM Precision

SVM Recall
DNN Precision
DNN Recall

Diversity
Proximity
Scarcity

Fig. 8: Impact of TATA and Baselines on Test-Set
Quality Metrics and Detection Performance

−0.4 −0.2 0.0 0.2 0.4 0.6
Difference from Original Test set

D

P

S

(P,S)

(P,D)

(S,D)

Proximity
Scarcity
Diversity
RF Precision
RF Recall

SVM Precision
SVM Recall
DNN Precision
DNN Recall

Fig. 9: Impact of Partial Metric Combinations
on Test-Set Quality and NIDS Performance

We compare only methods with
publicly available, working code
that can be adapted to NIDS;
others, such as [31], focus on
image-based augmentation and are
therefore omitted.

Fig. 8 summarizes our re-
sults, plotting each augmentation
method alongside the test set (no
augmentation) on the x-axis.

Our TATA approach focuses on
CQL-based findings, as TD3+BC
produces similar outcomes that do
not change our conclusions. The
y-axis shows both quality metrics
(diversity, proximity, and scarcity)
and NIDS performance metrics
(macro-averaged precision and re-
call), all normalized to [0,1].

Both the Random agent and
Netshare dramatically reduce di-
versity, driving it close to zero.
However, the impact on prox-
imity is negligible (the Random
agent lowers it slightly, while Net-
share raises it slightly) whereas
scarcity declines for both. To-
gether, these changes have nearly
no effect on NIDS performance.
In contrast, TATA increases prox-
imity by about 190%, scarcity by
roughly 136%, and diversity by
around 437%, whereas the aug-
mentation guided with NC focuses
on proximity, increasing it by ap-
proximately 129%. This limitation
arises because neuron coverage tar-
gets data points near negative clus-
ters, those most stressful to the
NIDS, while overlooking diversity
and scarcity. These differences also
influence precision and recall. For
example, for the RF-based NIDS,
TATA lowers precision by roughly
46 %, compared with about 23 %

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 15

for NC, while recall drops by around 13% with TATA versus 16 % with NC.
We see that scarcity, by distributing misclassified points more widely, strongly
affects precision (tied to false positives).
Takeaway: TATA comprehensively stresses the NIDS through diversity, proxim-
ity, and scarcity, creating a more challenging test set (thus lower precision/recall)
than augmentation guided with NC, which focuses solely on proximity.

To have a higher understanding of the importance of the quality metrics, the
reward is now calculated from a single metrics or any combination of two of them
resulting in 6 different cases reported in Fig. 9 where D, P , and S stands for
diversity, proximity, and scarcity respectively. Horizontal bars, centered at zero,
illustrate how much each configuration improves or degrades performance rela-
tive to the original set. Combinations that include proximity (P), (P, S), (P,D)
offer the greatest challenge to the NIDSs, while the others have minimal impact.
This is because proximity targets the decision boundary of negative clusters,
where the NIDS struggles most with detection. For example, with the RF-based
NIDS, in the (P, S) combination, recall declines by about 8% (from 0.934 to
0.862) and precision by about 49% (0.910 to 0.460), whereas in (S,D), they fall
by roughly 4% (0.934 to 0.900) and 3% (0.910 to 0.880), respectively.
Takeaway: Proximity emerges as the critical factor in stressing the NIDSs, whereas
scarcity and diversity offer complementary effects by covering all possible decision
boundaries and avoiding redundant test cases, together expanding test coverage.

4.5 Datasets Analysis Table 2: Datasets Summary

Dataset Key Highlights #Attacks #Feat

NSL-KDD (2009) DARPA’98 refinement;
∼148k records

22 41

CTU-13 (2011) 13 botnet scenarios;
>15M flows

13 15

ISCX IDS 2012 24-host lab; ∼2.5M flows 4 14

UNSW-NB15 (2015) Cyber-Range lab; 2.54 M
flows

9 49

CIC-UNSW (2015) Augmented UNSW-
NB15; ∼450 k flows

9 ∼80

ISCX Tor (2016) 5-user Tor traffic; 2 sce-
narios

2 28

VPN-NonVPN (2016) Multi-app data; VPN vs
non-VPN

14 84

CIC-IDS 2017 18-host testbed; 3.12M
flows

7 83

CSE-CIC-IDS 2018 Enterprise-scale net;
16.23 M flows

7 ∼80

Bot-IoT (2018) Simulated IoT; >72 M
records

4 46

CIC-DDoS 2019 Lab network; multi-
vector DDoS

13 80

ToN-IoT (2020) IoT/IIoT testbed; ∼0.48
M flows

9 42

We applied TATA’s metrics
to various networking-related
datasets, including intrusion
detection and other traffic-
classification benchmarks, to
assess their test sets over time.

Table 2 highlights stud-
ied benchmarks, from early,
small-scale examples like NSL-
KDD (2009) to more recent,
encrypted-oriented sets (ISCX
Tor, VPN-NonVPN) and IoT-
focused ones (Bot-IoT, ToN-
IoT). They have evolved to-
ward more realistic testbeds,
extensive logging, and multi-
vector attacks.

Using ten 60/20 train-
ing–test splits, Figure 10 plots
our metrics. As shown, prox-
imity remains fairly stable
(mostly 0.2–0.3), though early

16 Anser et al.

versions of IDS2017 and IDS2018 (with labeling errors) reach around 0.5. Di-
versity shows a broader range, from near zero to about 0.5, without a clear
monotonic trend. Scarcity largely tracks proximity until CIC-IDS2017 (errors
present), then aligns more with diversity and fluctuates more. Across all ten
splits, each metric exhibits minimal, often negligible, standard deviation.

These findings suggest that, despite increasingly complex testbed designs
over time (including more attacks, applications, and intricate topologies), the
core quality of these datasets’ test sets remains consistent, and their inherent
difficulty has not substantially increased. In contrast, widely used image classifi-
cation benchmarks, MNIST and CIFAR-10, exhibit higher complexity. Notably,
we adapted our contrastive autoencoder with convolutional layers for image data.

NLSKDD

CTU-13

IS
CX

ID
S 20

12

UNSW
-N

B15

CIC
-U

NSW

IS
CXTo

r 20
16

IS
CX

VPN-N
ONVPN

20
16

CIC
-ID

S 20
17

(w
ith

err
ors

)

CIC
-ID

S 20
17

CSE-C
IC

-ID
S 20

18
(w

ith
err

ors
)

CSE-C
IC

-ID
S 20

18

Bot-
IoT

CIC
-D

DoS
20

19

To
n-I

oT

M
NIS

T

CIFA
R

Datasets

0.00

0.25

0.50

0.75

1.00

Sc
or

es
Proximity Diversity Scarcity

Fig. 10: Test Sets Assessment of NIDS Datasets

Takeaway: Even with re-
cent advances in dataset
design, reference datasets
differ widely in difficulty
across application domains,
and our metrics reveal
that most NIDS test sets
still pose only a moder-
ate challenge, highlighting
the network-security com-
munity’s ongoing shortage
of truly demanding, well-
suited datasets.

5 Conclusion

In this paper, we presented TATA, a model-agnostic method to assess and aug-
ment the quality of benchmark NIDS test sets. TATA uses a contrastive autoen-
coder to build a structured latent space from a training set, derives three compre-
hensive metrics (diversity, proximity, scarcity) from the test set, and combines
them with RL to guide realistic traffic augmentation. Our evaluation shows that
the contrastive autoencoder effectively organizes the latent space, these dataset-
centric metrics capture test set difficulty, and the RL-based agent increases the
challenge for various ML-based NIDS models.

TATA’s pipeline still exhibits some limitations. (i) Computational overhead.
Assessing a new test set currently entails retraining the contrastive autoencoder
and running an exhaustive hyperparameter search, which dominates the total
runtime. We aim to reduce this cost by starting the preliminary phase from
a pre-trained autoencoder and fine-tuning only lightweight adapters. (ii) Lim-
ited traffic diversity. So far, the augmentation phase produces only benign SSH
flows. We plan to enrich the testbed with additional benign protocols and with
attack traffic by adopting a multi-agent design in which each agent generates
a specific traffic type. (iii) Fixed-cluster assumption. The present RL agent is

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 17

built for a fixed number of clusters, preventing its use on datasets that con-
tain more clusters than expected. (iv) Unverified RL generalization. Evaluation
has been restricted to the IDS2017 benchmark. The agent’s ability to generalize
to datasets with markedly different feature distributions (such as UNSW-NB15
and Bot-IoT) remains untested. Assessing performance across a broader suite of
NIDS benchmarks is therefore a central goal of future work.

Acknowledgement. The authors acknowledge partial support from the French
National Research Agency through the France 2030 initiative (project Superviz,
ANR-22-PECY-0008) and additional funding in part from the Luxembourg Na-
tional Research Fund (FNR, grant C23/IS/18088425/COCTEL). The opinions
expressed are solely those of the authors and do not necessarily reflect the views
of the French government.

A Computational Complexity of Test Set Assessment

To assess a given test set Dtest, TATA follows a workflow that begins with
contrastive autoencoder training and concludes with computing the cluster–wise
metrics D, P , and S.
(i) Preliminary phase (contrastive autoencoder training). The contrastive au-
toencoder is trained on the corresponding training set Dtrain. A hyper-parameter
tuning examine H candidate configurations; for each one, the autoencoder is
trained for E complete epochs over Dtrain. A single forward–backward pass scales
with the number of parameters in the model, and the worst case is obtained with
the largest candidate network, whose size is |θmax|. Hence, the overall cost of the
preliminary phase is: O

(
H E |Dtrain| |θmax|

)
.

(ii) Phase 1-a (cluster identification). On the embeddings from the best run,
silhouette-guided k-means performs I refinement rounds, yielding a cost of:
O
(
I |Dtrain| |C|

)
.

(iii) Phase 1-b (centroid assignment). Every embedding z ∈ Ztrain ∪ Ztest is
then compared with the |C| centroids to locate its P(z) and N (z) clusters, for a
total of O

(
(|Dtrain|+ |Dtest|) |C|

)
distance evaluations.

(iv) Phase 1-c (metric computation). A single linear pass over Ztest updates the
per-cluster counters needed for D, P , and S, costing: O

(
|Dtest|+ |C|

)
.

Combining the four steps, the overall time complexity becomes:

O
(
H E |Dtrain| |θmax|+ I |Dtrain| |C|+ (|Dtrain|+ |Dtest|)|C|

)
Pre-training the encoder once on an heterogeneous set of network traffic and then
fine-tuning a small adapter on m ≪ |Dtrain| data points for Ẽ ≪ E epochs cuts
the training component from H E |Dtrain| |θmax| to Ẽ m |θ⋆|, yielding an overall
per-dataset complexity of:

O
(
Ẽ m |θ⋆|+ I |Dtrain| |C|+ (|Dtrain|+ |Dtest|) |C|

)
, where |θ⋆| ≪ |θmax|

18 Anser et al.

B Offline RL Hyperparameter Tuning

We adopt the Split-Select-Retrain pipeline proposed by Nie et al. [27]. Con-
cretely, we create K = 20 independent 50/50 train/validation splits of the offline
dataset. For each algorithm–hyperparameter configuration (CQL or TD3+BC
variants), we train a candidate policy on every training split. We then estimate
each policy’s expected return on the corresponding validation split using Fit-
ted Q Evaluation (FQE), a simple method that learns a reward-predicting value
function from the logged data and reuses it to score a policy without any new
environment interaction, originally introduced by Paine et al. [29]. Averaging the
K FQE estimates yields a robust performance metric for each configuration; we
choose the configuration with the highest mean score and retrain the agent on
the full offline dataset before deployment.

References

1. Catillo, M., Pecchia, A., Villano, U.: Machine learning on public intrusion datasets:
Academic hype or concrete advances in nids? In: 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks - Supplemental
Volume (DSN-S) (2023)

2. Clausen, H., Flood, R., Aspinall, D.: Traffic generation using containerization for
machine learning. In: Proceedings of the 2019 Workshop on DYnamic and Novel
Advances in Machine Learning and Intelligent Cyber Security (2022)

3. Doriguzzi-Corin, R., Millar, S., Scott-Hayward, S., Martínez-del Rincón, J., Sir-
acusa, D.: Lucid: A practical, lightweight deep learning solution for ddos attack
detection. IEEE Transactions on Network and Service Management (2020)

4. Engelen, G., Rimmer, V., Joosen, W.: Troubleshooting an intrusion detection
dataset: the cicids2017 case study. In: 2021 IEEE Security and Privacy Workshops
(SPW) (2021)

5. Feng, Y., Shi, Q., Gao, X., Wan, J., Fang, C., Chen, Z.: Deepgini: prioritizing
massive tests to enhance the robustness of deep neural networks. In: Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2020 (2020)

6. Flood, R., Aspinall, D.: Measuring the complexity of benchmark nids datasets via
spectral analysis. In: 2024 IEEE European Symposium on Security and Privacy
Workshops (EuroSPW) (2024)

7. Flood, R., Engelen, G., Aspinall, D., Desmet, L.: Bad design smells in benchmark
nids datasets. In: 2024 IEEE 9th European Symposium on Security and Privacy
(EuroSP) (2024)

8. Friedman, D., Dieng, A.B.: The vendi score: A diversity evaluation metric for
machine learning (2023)

9. Fujimoto, S., Gu, S.S.: A minimalist approach to offline reinforcement learning. In:
Advances in Neural Information Processing Systems (2021)

10. Guo, J., Jiang, Y., Zhao, Y., Chen, Q., Sun, J.: Dlfuzz: Differential fuzzing testing
of deep learning systems. In: Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (2018)

Benchmark NIDS Test Sets Assessment and Targeted Augmentation 19

11. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06) (2006)

12. Harel-Canada, F., Wang, L., Gulzar, M.A., Gu, Q., Kim, M.: Is neuron coverage a
meaningful measure for testing deep neural networks? In: Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. ESEC/FSE 2020 (2020)

13. Hu, Q., Ma, L., Xie, X., Yu, B., Liu, Y., Zhao, J.: Deepmutation++: A mutation
testing framework for deep learning systems. In: 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE) (2019)

14. Humbatova, N., Jahangirova, G., Tonella, P.: Deepcrime: mutation testing of deep
learning systems based on real faults. In: Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2021 (2021)

15. Jiang, X., Liu, S., Gember-Jacobson, A., Bhagoji, A.N., Schmitt, P., Bronzino,
F., Feamster, N.: Netdiffusion: Network data augmentation through protocol-
constrained traffic generation. Proc. ACM Meas. Anal. Comput. Syst. (2024)

16. Khosla, P., et al.: Supervised contrastive learning. Advances in neural information
processing systems

17. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. In: Proceedings of the 41st International Conference on Software Engi-
neering. ICSE ’19 (2019)

18. Kim, J., Feldt, R., Yoo, S.: Evaluating surprise adequacy for deep learning system
testing. ACM Trans. Softw. Eng. Methodol. (2023)

19. Kumar, A., Zhou, A., Tucker, G., Levine, S.: Conservative q-learning for offline
reinforcement learning. In: Advances in Neural Information Processing Systems
(2020)

20. Lanvin, M., Gimenez, P.F., Han, Y., Majorczyk, F., Mé, L., Totel, E.: Er-
rors innbsp;thenbsp;cicids2017 dataset andnbsp;thenbsp;significant differences
innbsp;detection performances it makes. In: Risks and Security of Internet and
Systems: 17th International Conference, CRiSIS 2022, Sousse, Tunisia, December
7-9, 2022, Revised Selected Papers (2023)

21. Liu, L., Engelen, G., Lynar, T.M., Essam, D.L., Joosen, W.: Error prevalence
in nids datasets: A case study on cic-ids-2017 and cse-cic-ids-2018. 2022 IEEE
Conference on Communications and Network Security (CNS) (2022)

22. Lorena, A.C., Garcia, L.P.F., Lehmann, J., Souto, M.C.P., Ho, T.K.: How complex
is your classification problem? a survey on measuring classification complexity.
ACM Comput. Surv. (2019)

23. Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y., Zhao, J.: Deepct: Tomo-
graphic combinatorial testing for deep learning systems. In: 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER)
(2019)

24. Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L.,
Liu, Y., Zhao, J., Wang, Y.: Deepgauge: multi-granularity testing criteria for deep
learning systems. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ASE ’18 (2018)

25. Manocchio, L.D., Layeghy, S., Lo, W.W., Kulatilleke, G.K., Sarhan, M., Portmann,
M.: Flowtransformer: A transformer framework for flow-based network intrusion
detection systems. Expert Systems with Applications (2024)

26. Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set). In: 2015 Military Communica-
tions and Information Systems Conference (MilCIS)

20 Anser et al.

27. Nie, A., Flet-Berliac, Y., Jordan, D.R., Steenbergen, W., Brunskill, E.: Data-
efficient pipeline for offline reinforcement learning with limited data, neurIPS 2022

28. Owezarski, P.: Investigating adversarial attacks against random forest-based net-
work attack detection systems. In: NOMS 2023-2023 IEEE/IFIP Network Opera-
tions and Management Symposium (2023)

29. Paine, T.L., et al.: Hyperparameter selection for offline reinforcement learning.
arXiv preprint (2020)

30. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing
of deep learning systems. In: Proceedings of the 26th Symposium on Operating
Systems Principles. pp. 1–18. ACM (2017)

31. Riccio, V., Humbatova, N., Jahangirova, G., Tonella, P.: Deepmetis: augmenting
a deep learning test set to increase its mutation score. In: Proceedings of the 36th
IEEE/ACM International Conference on Automated Software Engineering. ASE
’21 (2022)

32. Riccio, V., Tonella, P.: When and why test generators for deep learning produce
invalid inputs: an empirical study. 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE) (2022)

33. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: Proceedings of the 4th
International Conference on Information Systems Security and Privacy, (ICISSP)
(2018)

34. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Com-
puters Security (2012)

35. Singla, A., Bertino, E., Verma, D.: Preparing network intrusion detection deep
learning models with minimal data using adversarial domain adaptation. In: Pro-
ceedings of the 15th ACM Asia Conference on Computer and Communications
Security. ASIA CCS ’20 (2020)

36. Sudyana, D., Verkerken, M., D’Hooge, L., Lin, Y.D., Hwang, R.H., Lai, Y.C.,
Yudha, F., Wauters, T., Volckaert, B., De Turck, F.: Quality analysis in ids dataset:
Impact on model generalization. In: 2024 IEEE Conference on Communications
and Network Security (CNS) (2024)

37. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (2018)
38. Tufano, M., Kimko, J., Wang, S., Watson, C., Bavota, G., Di Penta, M., Poshy-

vanyk, D.: Deepmutation: A neural mutation tool. In: 2020 IEEE/ACM 42nd In-
ternational Conference on Software Engineering: Companion Proceedings (ICSE-
Companion) (2020)

39. Wang, C., Finamore, A., Michiardi, P., Gallo, M., Rossi, D.: Data augmentation
for traffic classification. In: Richter, P., Bajpai, V., Carisimo, E. (eds.) Passive and
Active Measurement (2024)

40. Weiss, M., Chakraborty, R., Tonella, P.: A review and refinement of surprise ade-
quacy. In: 2021 IEEE/ACM Third International Workshop on Deep Learning for
Testing and Testing for Deep Learning (DeepTest) (2021)

41. Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., Zhao, J., Li, B., Yin,
J., See, S.: Deephunter: A coverage-guided fuzz testing framework for deep neural
networks. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis (2019)

42. Yin, Y., Lin, Z., Jin, M., Fanti, G., Sekar, V.: Practical gan-based synthetic ip
header trace generation using netshare. In: Proceedings of the ACM SIGCOMM
2022 Conference. SIGCOMM ’22 (2022)

