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Abstract. We give here a semi-analytic formula for the density of critical values for chi random
fields on a general manifold. The result uses Kac-Rice argument and a convenient representation
for the Hessian matrix of chi fields, which makes the computation of their expected determinant
much more feasible. In the high-threshold limit, the expression for the expected value of critical
points becomes very transparent: up to explicit constants, it amounts to Hermite polynomials times
a Gaussian density. Our results are also motivated by the analysis of polarization random fields in
Cosmology, but they might lead to applications in many different environments.
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1. Introduction

1.1. Background. The investigation of the geometric properties of random fields has represented a
major thread of research over the last fifteen years. A major driving force has been given by the
publication of very popular research monographs such as Adler and Taylor (2007) and Azaïs and
Wschebor (2009); these books have discussed in depth the Kac-Rice approach for the derivation of
expected values for critical points of smooth random fields. In broad terms, the Kac-Rice approach
leads to an "expectation Metatheorem" (the terminology adopted in Adler and Taylor (2007)),
stating that under regularity conditions the expected number of critical points can be expressed
in terms of the expectation of the absolute value of the determinant of the Hessian matrix of
the field, conditional on the gradient of the field being zero; other conditions can be added to
obtain related quantities, for instance on the signature of the Hessian if one is interested in the
expected number of minima or maxima. This general approach has led to an impressive amount of
results and applications, starting from the celebrated Gaussian Kinematic Formula, which allows
the computation of expected value of Lipschitz-Killing Curvatures for excursion sets of Gaussian
fields. As noted elsewhere, this area bridges the gap (in a very fascinating way) among different
areas of Mathematics, such as Differential Geometry and Random Fields; at the same time, it leads
to results which are motivated by fastly growing applied fields, including for instance Cosmology,
Neuroimaging, Neural Networks, Optimization, Spin Glasses and many others (see e.g., Auffinger
and Ben Arous (2013),Cheng and Schwartzman (2017), Arous et al. (2020), Cheng et al. (2020), Fan
et al. (2021), Fyodorov and Tublin (2022), Belius et al. (2022), Azaïs and Delmas (2022), Telschow
et al. (2023), just to mention a few recent references).

1.2. Motivations. The overwhelming majority of the literature on critical points has so far been
confined to the analysis of Gaussian random fields. Indeed, although the Kac-Rice approach is valid
in much greater generality than under Gaussianity, it turns out in practice to be extremely hard
in non-Gaussian circumstances to derive any analytic expression for critical points: in particular, it
is very difficult to compute exactly some extremely cumbersome multiple integrals arising from the
absolute values of the Hessian determinants, conditional on the gradient being null. Our purpose
in this paper is to move some steps beyond these limitations: more precisely, our goal is to derive
some semi-analytic expressions for the density of critical values for chi-square fields defined on the
sphere.

The choice of chi-square fields is natural if one has in mind motivations from statistics or machine
learning, and it is easy to figure out several applications. Among these, we are motivated by very
concrete examples which arise from Cosmological Data Analysis. In particular, it has been shown
in Lerario et al. (2025) that chi-square fields may approximate closely the behaviour of the squared
norm for random sections of spin fiber bundles, i.e. the random fields which model the behaviour of
Cosmic Microwave Background polarisation, see for instance Marinucci and Peccati (2011), Ch.12,
Malyarenko (2013) or LiteBIRD Collaboration (2023). Understanding the distribution of critical
points and extrema for polarisation fields is instrumental for the derivation of algorithms allowing
point source detection in polarisation data; this would represent an extension of the approach given
in the case of scalar random fields (Cosmic Microwave Background temperature data) in Cheng et al.
(2020), see also Telschow et al. (2023), Pistolato and Stecconi (2024) and the references therein.
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1.3. Discussion of Main Results. Our main results can be described as follows. We consider chi
random fields fields with k degrees of freedom, defined as the square root of the sum of the squares
of k i.i.d., unit variance, normal Gaussian fields on a smooth manifold M of dimension m. By this
we mean the following.

Definition 1. Let (M, g) be a smooth Riemannian manifold. A normal field on (M, g) is a Gaussian
field X on M , of class at least C2, having unit variance: E|X(p)|2 = 1 and such that E|dpX(v)|2 = 1
for any unit tangent vector v ∈ TpM ; here and in the sequel, we are using dpX to denote the
differential of X at p. A regular chi–field with k degrees of freedom on (M, g) is a field fk of the
form

fk =
√
X2

1 + · · ·+X2
k , (1.1)

where X1, . . . , Xk are i.i.d. copies of a normal field X. In this case, we say that fk is induced by X.

For our applications, we have in mind M = Sm the unit sphere and X isotropic, i.e., invariant
under the action of the orthogonal group, but our results do not require this assumption. We will
show that the expected number of critical points of these fields can be computed, up to some explicit
constants, as the expected value of the determinant of random matrices with Gaussian entries. These
random matrices do not fall within any known class (such as the Gaussian Orthogonal Ensemble
(GOE) or the Gaussian Unitary Ensemble (GUE)), and because these entries have a complicated
dependence structure, these expected values in the general case can only be expressed as rather
cumbersome multiple integrals, for which it is difficult to provide explicit analytic expressions.
More precisely, let us introduce the following:

Definition 2. Let H be a random symmetric and Gaussian m × m matrix. We say that H is
Hessian-like if there exists a Gaussian random variable γ ∼ N (0, 1) such that EHγ = −1m. In this
case, we also say that H is Hessian-like with respect to γ and, for all k ∈ N and t ≥ 0, we define the
real number

Et
k(H) := E

{
1[t,+∞](χk) |det (A(k − 1,m) + χkH + χk(γ − χk)⊮m)|

}
∈ R, (1.2)

where χk is an auxiliary independent chi random variable of parameter k and A(k − 1,m) is an
auxiliary independent Wishart random matrix, i.e. it is distributed according to Theorem 11 below.

Note that if H is Hessian-like and γ is as above, then the joint law of H, γ is determined by
the law of H. This explains why we write Et

k(H) and not Et
k(H, γ). We stress the fact that

the only dependence relation among the random variables and matrices in the expectation is that
E[Hγ] = −1m.

Our first main result is the following; more discussion on the mentioned random fields and their
properties is given in the Sections below:

Theorem 3. Let (M, g) be a smooth m-dimensional Riemannian manifold. Let fk be a regular
chi-field with k > m degrees of freedom on (M, g), induced by the normal field X. We have:

E[#Ct] =
Γ(k−m

2 )

2m/2Γ(k2 )

1

(2π)
m
2

∫
M

Et
k(HpX)dM(p), (1.3)

where #Ct denotes the number of critical points of fk of values equal or larger than t, and HpX the
Hessian matrix of X at p ∈ M .

Clearly in the special case where the random field X : M → R is isotropic, in an adequate sense,
the previous result simplifies to

E[#Ct] =
Γ(k−m

2 )

2m/2Γ(k2 )

Vol(M)

(2π)
m
2

Et
k(HX), (1.4)

where the distribution of the Hessian HX does not depend on p.
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The previous result is rather general but suffers from two limitations: the result on the expected
value is not fully explicit as the computation of Et

k(HpX) requires rather cumbersome multiple
integrals (or simulations), and the case k = m is not covered, despite for all m, k the total number
of critical points of fk with non zero value is integrable, as we show in Theorem 18. We are able to
address at least partially these issues and obtain our second main result, which we describe below.

More precisely, when we focus on maxima, rather than critical points with an arbitrary signature,
we are able to transform the problem into the computation of Gaussian extremes on a different
domain, and hence to obtain much more explicit results. In particular, as mentioned above the
maxima distribution is strongly motivated by statistical applications, such as the implementation
of multiple testing with False Discovery Rate control, as in Cheng et al. (2020); to this aim, it is
especially important to evaluate the distribution of maxima in the high-threshold tail, and especially
in the 2-dimensional case m = 2. Indeed in terms of motivations, it is especially relevant the case
where M = S2 and k = 2, because as we discussed earlier this corresponds to the modulus of
isotropic spin random fields as those emerging from the analysis of Cosmic Microwave Background
polarisation data, see also Carones et al. (2024) and the references therein. In this setting, we show
that the maxima density takes the form of known polynomials of order 2 times a Gaussian density.

In particular, let us denote by Hp(t) the Hermite polynomials defined as in Adler and Taylor
(2007, sec. 11.6), and by ϕ(t) = (2π)−1/2 exp(−t2/2) the standard Gaussian density; we prove the
following:

Theorem 4. Let X1, X2 be two i.i.d. copies of an isotropic Gaussian field on the two-sphere, of
class C2, with variance E|Xi(p)|2 = 1 and E∥dpXi∥2 = 2r2. Let f2(p) :=

√
X1(p)2 +X2(p)2 and

denote by µt(S2, f2) the number of maxima of f2 where f2 ≥ t. Then as t → ∞ we have that, for
some δ > 0, ((

H2(t)2r
2 + 2

)
(2π)

1
2 · ϕ(t)

)−1
E[µt(S2, f2)] = 1 +O

(
exp

(
−δt2

))
. (1.5)

In words, the tail behaviour of the maxima distribution is Gaussian, up to corrections terms
which are fully explicit combinations of Hermite polynomials and known constants.

Remark 5. In order to be able to connect more easily with the existing literature on isotropic fields
(e.g. Marinucci and Peccati (2011)), we stated the above result for fields that are not normal on
the unit sphere, unlike in the rest of the paper. However, the field X1 in Theorem 4 becomes a
normal field if and only if the sphere is endowed with the round metric of radius r, in which case
f2 becomes a regular chi-field with 2 degrees of freedom, induced by X1.

Theorem 4 can be seen a corollary of a more general result that is valid in full generality and
shows that the behavior of the expected number of maxima of a regular chi field resembles in some
aspects that of a Gaussian one, which is well documented in the literature. In particular, by the
aforementioned passage from fk to an auxiliary Gaussian field φ, we are able to exploit the results
of Gayet (2022) and Adler and Taylor (2007), proving the following.

Theorem 6. Let fk be a regular chi-field with k degrees of freedom (see Theorem 1) on a smooth
compact Riemannian manifold M of dimension m. For any Borel subset A ⊂ M , let us denote by
µt(A, fk) the number of maxima of fk where fk ≥ t that belong to A. If fk is induced by the normal
field X, then we have that

E (µt(A, fk)) =
1

2
m+k−3

2 π
m−1

2 Γ
(
k
2

) ∫
A
Dt

k ([HpX]) dM(p), (1.6)

where Dt
k([HpX]) depends solely the law of HpX and is defined in Theorem 33. Moreover, as

t → +∞, the following asymptotic equivalences hold up to an error of order O
(
exp

(
−(12 + δ)t2

))
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for some δ > 0:

P
(
max
M

fk ≥ t

)
∼ E (µt(M,fk)) (1.7)

∼ E(#{dfk = 0, fk ≥ t}) ∼ Eb(fk ≥ t) ∼ Eb0(fk ≥ t) ∼ Eb0(fk ≥ t;Bm) (1.8)

∼ Eχ(fk ≥ t) ∼
m+k−1∑
j=0

Lj(M × Sk−1)

(2π)
j
2

Hj−1(t)ϕ(t) (1.9)

(if M = rS2 and k = 2)∼ (2 + 2r2H2(t))
√
2πϕ(t). (1.10)

Here, b(fk ≥ t) is the sum of all Betti numbers; b0(fk ≥ t) is the number of connected components;
b0(fk ≥ t,Bm) is the number of the connected components that are homeomorphic to the unit ball in
Rm; χ(fk ≥ t) is the Euler–Poincaré characteristic; Li is the ith Lipschitz–Killing curvature (defined
as in Adler and Taylor (2007, sec. 7.6)).

Note in particular that the asymptotic behavior of the excursion probability of fk at a high
threshold depends only on the geometry of M and not on the inducing normal field X (which is not
uniquely determined by the Riemannian metric of M), although the distribution of maxM fk might
depend on X. Moreover, we can observe that

P
(

max
M×Sk−1

φ ≥ t

)
∼ Eχ (φ ≥ t) , (1.11)

for any normal Gaussian field φ defined on M × Sk−1, in virtue of Adler and Taylor (2007, Th.
14.0.2). Indeed, the main idea of our proof will be to show that for a suitable normal field φ, we
have that µt(M,fk) = µt(M × Sk−1, φ), see Section 5 (see also Kuriki and Matsubara (2023) and
Bloomfield et al. (2016) for some related results on the geometry of chi-square fields with a view to
cosmological applications).

1.4. Plan of the paper. The plan of the paper is as follows: in Section 2 we fix our notation and
introduce some background material; in Section 3 we give our general result for critical values, which
is not fully explicit: for this reason, in Section 4 we study more deeply the structure of the Hessian
in two dimension and in Section 5 we exploit these results to give a fully analytic expression for the
expected value of the number of maxima, and in Section 6 we prove the high-threshold limits. We
first prove Theorem 4 directly, then prove the more general Theorem 6 by relying on more abstract
results.

2. Setting and Background

2.1. Notations. The following list contains some recurring conventions adopted in the rest of paper.
(i) Unless otherwise specified, every random element is assumed to be defined on an adequate

common probability space (Ω,S,P).
(ii) A random element (see Billingsley (1999)) of the topological space V (or with values in V )

is a measurable mapping X : Ω → V , defined on (Ω,S,P). In this case, one writes

X⊂⊂V (2.1)

and denote by [X] := PX−1 the (push-forward) Borel probability measure on V induced by
X. We will use the notation

P{X ∈ U} := [X](U) = PX−1(U) (2.2)
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to indicate the probability that X ∈ U , for some Borel measurable subset U ⊂ V , and write
(as usual)

E{f(X)} :=

∫
V
f(v)[X](dv), (2.3)

to denote the expectation of the random variable f(X), where f : V → Rk is a measurable
mapping such that the above integral is well-defined. We will sometimes write that X is a
random variable, a random vector or a random field, respectively, when V is the real line, a
vector space, or a space of functions Cr(M,Rk), respectively.

(iii) We will use the special symbol

X : M−Ω▲ ▲→Rk, (2.4)

to indicate that X is a random field (see above), i.e., a random element of C0(M,Rk). The
symbol hints at the fact that X is also a measurable function X : M × Ω → Rk.

(iv) The sentence: “X has the property P almost surely” (abbreviated “a.s.”) means that the
set S = {v ∈ V : v has the property P} contains a Borel set of [X]-measure 1. It follows, in
particular, that the set S is [X]-measurable, i.e. it belongs to the σ-algebra obtained from
the completion of the measure space (V,B(V ), [X]).

(v) We write #(S) for the cardinality of the set S.

2.2. Definition of the main objects.

2.2.1. Normal fields. Let (M, g) be a smooth manifold of dimension m and let X : M−Ω▲ ▲→R be a
Gaussian random field of class C2 such that for all p ∈ M we have X(p) ∼ N (0, 1) and

gp(v, w) = E {dpX(v)dpX(w)} . (2.5)

We call gp(v, w) the Adler and Taylor metric, see Adler and Taylor (2007, Section 12.2). Following
Mathis and Stecconi (2024, Definition 6.3), in this case we write X ∼ N (M, g) and say that X is a
normal field on (M, g), as anticipated in Theorem 1. Recall that the Hessian is the random bilinear
form HpX : TpM × TpM → R such that

HpX(v, w) = ∂v∂wX(p)− dpX(∇vw), (2.6)

where ∇ is the Levi-Civita connection of g. Let us first recall the following standard characterization
of the dependence structure for the gradient and Hessian.

Proposition 7. For every p ∈ M ,

X(p) and dpX are independent.
(1)(2) dpX and HpX are independent.
(3) E{X(p)HpX} = −gp.

Proof : These results are classical and they are proved, for instance, in Adler and Taylor (2007,
Section 12.2). □

2.2.2. Chi distribution.

Definition 8. Let k ∈ N. We say that a random variable α⊂⊂R is a chi of parameter k if it has the
same law as the random variable

χk :=
√

γ21 + · · ·+ γ2k , (2.7)

where γ1, . . . , γk ∼ N (0, 1) are indipendent and identically distributed. In this case, we will write
briefly that α ∼ χk. The following characterization is classical, but we recall it for completeness.

Proposition 9. Given a ∈ R, we have that χk ∈ La if and only if k > −a.
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Proof : It is sufficient to observe that

E{χa
k} =

∫
Rk

|x|a e
− |x|2

2

(2π)
k
2

dRk(x) ∼
∫ 1

0
ra+k−1dr. (2.8)

□

Before we state our first main result, let us recall a simple property of chi-random variables; by
a straightforward computation, for k > m we have that

E
{

1

χm
k

}
=

∫ ∞

0

1

xm/2

xk/2−1exp(−x/2)

Γ(k/2)2k/2
dx (2.9)

=
Γ(k−m

2 )

2m/2Γ(k2 )

∫ ∞

0

x(k−m)/2e−x/2

Γ(k −m)/2)
dx =

Γ(k−m
2 )

2m/2Γ(k2 )
. (2.10)

2.2.3. The chi-field. Now let Y := (X1, . . . , Xk) : M−Ω▲ ▲→Rk such that all components are i.i.d.,
Xi ∼ X. Define F : M−Ω▲ ▲→R as

F (p) =
1

2
|Y (p)|2 ; (2.11)

in particular, notice that F (p) ∼ 1
2χ

2
k for all p ∈ M. Denote Z := F−1(0) and for t ≥ 0,

Ct : = Crit(|Y |) ∩ {|Y | ≥ t}

= Crit(F ) ∩ {F ≥ t2

2
} =

{
p ∈ M : dpF = 0, F (p) ≥ t2

2

}
.

(2.12)

Of course, Z denotes the nodal set of Y while Ct counts the number of critical values where the chi-
field is larger than some given (positive) value t. Note that Z ⊂ C0 ⊂ M is a random submanifold
of dimension d = m − k and Ct ⊂ C0 ∖ Z is a random finite set for all t > 0. In particular, if
k > m then Z is empty with probability one. Our first goal is to compute the expected value
E[#Ct]; indeed, in the language of Section 1, the field f = |Y | is a regular chi-field with k degrees
of freedom, on the manifold M .

Remark 10. The Riemannian volume density of (M, g), which we denote as dM , is proportional to
the expectation of the Riemannian d-volume of Z = Y −1(0) :

1

sd
E
{∫

Z
α(p)dZ(p)

}
=

1

sm

∫
M

α(p)dM(p), (2.13)

where si is the i-dimensional volume of the unit sphere of dimension i: Si ⊂ Ri+1 and α is any
Borel function on M . This expression is a consequence of Kac-Rice formula (Azaïs and Wschebor,
2009, Theorem 6.8). The precise constants can be computed by testing the formula on spheres, see
Lerario et al. (2025, Proposition 95).

2.2.4. Random matrices.

Definition 11. Let k,m ∈ N. Let γ1, . . . , γm ∼ N(0,1k). We define A(k,m)⊂⊂Rm×m to be the
random symmetric matrix whose coordinates Aa,b have a joint law defined by:

Aa,b = ⟨γa, γb⟩. (2.14)

Notice that A ∼ RTAR for any orthogonal matrix R ∈ O(m). For instance,

A(1, 2) =

(
γ21 γ1γ2
γ1γ2 γ22

)
, (2.15)

A(2, 2) =

(
γ211 + γ212 γ11γ21 + γ12γ22

γ11γ21 + γ12γ22 γ221 + γ222

)
, (2.16)
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A(3, 2) =

(
γ211 + γ212 + γ213 γ11γ21 + γ12γ22 + γ13γ23

γ11γ21 + γ12γ22 + γ13γ23 γ221 + γ222 + γ223

)
. (2.17)

Remark 12. Matrices of the form A(k,m) follow a so-called Wishart distribution A(k,m) ∼
Wm(1m, k); more precisely, for k ≥ m these matrices have densities

f(k,m)(A) =
(det(A))(k−m−1)/2 exp(−tr(A/2))

2km/2πm(m−1)/4
∏m

j=1 Γ((k + 1− j)/2)
1det(A)>0(A). (2.18)

It can be noted that the law of the matrix A depends just on its determinant and its trace -
two quantities invariant to rotations, as expected; moreover, these densities are positive only over
matrices which are positive definite, and they are zero otherwise. For instance, we have

f(2,2)(A) = f(2,2)(a11, a12, a21, a22) =
exp((−a11 − a22)/2)

4π(a11a22 − a12a21)1/2
Idet(A)>0(A), (2.19)

and
f(3,2)(A) = f(2,2)(a11, a12, a21, a22) =

exp((−a11 − a22)/2)

4π
Idet(A)>0(A). (2.20)

Now recall the notion of Hessian-like matrices in Definition 2, and notice that Et
k(H) = Et

k(R
THR)

for any orthogonal matrix R ∈ O(m). Moreover, the property of being Hessian-like is also invariant
under orthogonal changes of coordinates. Therefore, the following definition is well posed.

Definition 13. Let (T, g) be any Euclidean space of dimension m and let k ∈ N and t > 0. Let
H : T × T → R be a Hessian-like Gaussian symmetric bilinear form on T . Then we define the
deterministic real number

Et
k(H) := Et

k ((H(ea, eb))1≤a,b≤m) ∈ R, (2.21)

where e1, . . . , em is any orthonormal basis of T. To keep track the dependence on the metric g, when
needed, we will write Et

k(g,H).

Lemma 14. Et
k(λg,H) = Et

k(g, λ
−1H) for any λ > 0.

Proof : The proof is straightforward and hence omitted. □

Remark 15. Et
k(H) depends only on covariance matrix of H, that is, it depends on the 4-tensor

EHabHcd . We will not need to consider such object in this paper.

3. The First Main Result: Critical Points

In this Section we give our main result on the expected value of critical points for chi fields. For
convenience, we split it into two subsections, when covering the case k > m, the other k = m which
requires some different argument.

3.1. The expected value of critical points for k > m. Here is the main result of this subsection.

Theorem 16. In the setting described above, for all k > m, we have:

E[#Ct] =
Γ(k−m

2 )

2m/2Γ(k2 )

1

(2π)
m
2

∫
M

Et
k(HpX)dM(p). (3.1)

Proof : Notice that when k > m, the set Z = Y −1(0) is almost surely empty. Let us observe that

dpF (v) = Y (p)TdpY (v)⊂⊂R; (3.2)

HpF (v, w) = dpY (v)TdpY (w) + Y (p)THpY (v, w)⊂⊂R. (3.3)
Notice that, by Theorem 7, we have that dpY and Y (p) are independent, for every fixed p ∈ M.
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We will use the Kac-Rice formula (in particular, we refer to the statement in Mathis and Stecconi
(2024, Alpha-formula, Prop. 6.1)). Assuming that the formula is applicable, we have that

E {#Ct} = E

 ∑
p∈dF−1(0)

1
[ t

2

2
,+∞]

(F (p))


=

∫
M

E
{
1
[ t

2

2
,+∞]

(F (p))|det(HpF )|
∣∣∣dpF = 0

}
ρdpF (0)dM(p),

(3.4)

where, for any p ∈ M fixed, ρ[dpF ] : T
∗
pM → [0,+∞) is the density of the random vector dpF ⊂⊂T ∗

pM ,
with respect to the volume defined by the (flat) metric gp. Indeed, x 7→ ρ[dpF ](x) exists if and only
if k > m. In this case, it is continuous with respect to both (p, x). Let us compute it. Let us
fix an orthonormal basis of T ∗

pM , so that (T ∗
pM, gp) ∼= (Rm,1m). Then for all bounded continuous

functions α : Rm → [0, 1] we have:∫
Rm

α(x)ρ[dpF ](x)dRm(x) = E {α(dpF )}

=

∫
Rk

E
{
α(uTdpY )

∣∣Y (p) = u
}
d[Y (p)](u)

=

∫
Rk

E
{
α(uTdpY )

}
d[Y (p)](u) = . . .

(3.5)

where we used the expression [Y (p)] to denote the probability measure induced by Y (p) ∈ Rk, i.e.,
the law of Y (p). Now observe that, by construction, the law of the random matrix of dpY in an
orthonormal basis is that of the k ×m matrix:

dpY =
(
γij
)
1≤i≤k,1≤j≤m

, (3.6)

where γij ∼ N (0, 1) are i.i.d. This distribution is invariant under orthogonal transformations,
therefore, the integrand above depends only on |u|. Observe that the law of |Y (p)| is that of a chi
of parameter k, that we have denoted as χk. Hence we obtain

. . . =

∫ +∞

0
E
{
α(t(e1)

TdpY )
}
d[|Y (p)|](t)

= E
{
α(χk · dpX1)

}
= E


∫
Rm

α(χk · x)
e−

|x|2
2

(2π)
m
2

dRm(x)


= E


∫
Rm

α(y)
e
− |y|2

2χ2
k

(2π)
m
2 χm

k

dRm(y)

 =

∫
Rm

α(x)E

 e
− |x|2

2χ2
k

(2π)
m
2 χm

k

 dRm(x) .

(3.7)

In the 4th identity above, we used the change of variables y = χk · x. We conclude that

ρ[dpF ](x) = E

 e
− |x|2

2χ2
k

(2π)
m
2 χm

k

 , for almost every x ∈ Rm. (3.8)

If m < k, this defines a continuous function of (p, x) (if m ≥ k, it has a pole at x = 0) and
ρ[dpF ](0) = E

{
(2π)−

m
2 χ−m

k

}
.

Now, let us compute the conditional probability given dpF . This is interpreted as a family of
random vectors parametrized by the possible values of dpF and we denote it as [(F (p), HpF )|dpF =
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ξ], for ξ ∈ T ∗
pM . We are only interested in the case ξ = 0. We will do the computation in an

orthonormal frame, so that T ∗
pM = Rm. Let α : Rm×m → [0, 1] be any continuous function. Then

E {α(F (p), HpF ) |dpF = 0} =

∫
Rk

E {α(F (p), HpF )|dpF = 0, Y (p) = u} d[Y (p)](u)

=

∫
Rk

E

{
α

(
|u|2

2
, HpF

) ∣∣∣∣∣ dpF = 0,

Y (p) = u

}
d[Y (p)](u)

=

∫
Rk

E

{
α

(
|u|2

2
, dpY

TdpY + uTHpY

) ∣∣∣∣∣uTdpY = 0,

Y (p) = u

}
d[Y (p)](u) = . . .

(3.9)

Recall that the law of dpY is that given in (3.6) and that it is independent from (HpY, Y (p)).
Moreover, by Theorem 7, we have that [HpX|X(p) = t] = [HpX +(X(p)− t)gp]. Finally, as before,
the integrand depends only on |u| (indeed that Y ∼ RY for any R ∈ O(k)), so that we can continue
as follows.

. . . =

∫ +∞

0
E

{
α

(
t2

2
,

k∑
i=2

(dpX
i)TdpX

i + tHpX
1

)∣∣∣∣∣ dpX
1 = 0, X1(p) = t,

Xi(p) = 0 ∀i ≥ 2

}
d[|Y (p)|](t)

= E

{
α

(
χ2
k

2
,

k∑
i=2

(dpX
i)TdpX

i + χk(HpX + (X(p)− χk)gp)

)}
= . . .

(3.10)

Notice that the random matrix A :=
∑k

i=2(dpX
i)TdpX

i has coordinates Aa,b =
∑k

i=2 γ
i
aγ

i
b, therefore

A ∼ A(k − 1,m), as in Theorem 11.
Moreover, HpX is obviously a Hessian-like Gaussain matrix, in the sense of Theorem 13 and

γ := X(p) ∼ N (0, 1) is, by Theorem 7, the associated Gaussian random variable such that E{HpX ·
X(p)} = −gp = −1m. Since the above identities are true for arbitrary α, we can interpret them as
identities of probability laws, to conclude that:

[(F (p), HpF ) |dpF = 0] =

[(
χ2
k

2
, A(k − 1,m) + χk ·HpX + χk(γ − χk)1m)

)]
, (3.11)

where the only dependence relation is EHpXγ = −gp.
Now that we have all the ingredients, we deduce that when k > m, dF satisfies the continu-

ity properties at Mathis and Stecconi (2024, Def. 4.1), hence the Kac-Rice formula (Mathis and
Stecconi, 2024, Prop. 6.1) is applicable and we conclude:

E {#Ct} =

∫
M

E
{
1
[ t

2

2
,+∞]

(F (p))|det(HpF )|
∣∣∣dpF = 0

}
ρdpF (0)dM(p)

=

∫
M

E
{
1[t,+∞](χk)| det (A(k − 1,m) + χk ·HpX + χk(γ − χk)1m) |

}
·

· E

{
1

(2π)
m
2 χm

k

}
dM(p)

=

∫
M

Et
k(HpX)E

{
1

(2π)
m
2 χm

k

}
dM(p).

(3.12)

□

3.2. The general case: including m = k. The fact that the theorem holds only for m < k seems to
be due to a strange phenomenon of Kac-Rice formula: sometimes the Kac-Rice density, written as
“conditional expectation times density”, contains some expression of the form: 0 · ∞. In this case,
it might be that 0 · ∞ ∈ R. Indeed, in principle, it is possible that there exists another function Fε
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with the same high level critical points as F , for which Kac-Rice formula can be applied. Indeed,
when k = 1, the critical points of F of level t > 0 are exactly the critical points of the normal field
X, of level ±t, and such expectation can be computed with standard computations.

We have failed trying to find a good modification of F . However, we prove below that E{#Ct}
is finite whenever Ct is almost surely a finite set.

There is indeed a generalized version of Kac-Rice formula that can be applied directly to our
situation, as we explain below.
Let Rk

M = M ×Rk denote the trivial vector bundle over M of rank k. Let us consider the space of
one jets of k-valued functions:

J1(M,Rk) := Rk × (T ∗M)⊕k =
{
(p, y,A) : p ∈ M,y ∈ Rk, A : TpM → Rk linear

}
, (3.13)

where a linear map A : TpM → Rk is seen as a k-tuple of covectors A1, . . . , Ak ∈ T ∗
pM, which are

its “rows”.
Recall (see Hirsch (1994)) that to any smooth function Y ⊂⊂C1(M,Rk), we can associate a smooth

1-jet prolongation j1Y : M → J1(M,Rk) defined as

j1Y (p) := j1pY := (p, Y (p), dpY ). (3.14)

Clearly, P : J1(M,Rk) → M is a smooth vector bundle and j1Y is a smooth section. We will use
the following standard notation for the fiber of this vector bundle: for any p ∈ M

P−1(p) =: J1
p (M,Rk). (3.15)

For any t ≥ 0, define the subset Wt ⊂ J1(M,Rk) such that

Wt :=
{
(p, y,A) ∈ J1(M,Rk) : |y| > t and yTA = 0

}
. (3.16)

The closure of Wt is just the set Wt = Wt ∪ ∂Wt, where

∂Wt :=
{
(p, y,A) ∈ J1(M,Rk) : |y| = t and yTA = 0

}
. (3.17)

Now, observe that Wt has codimension m and that the set that we are studying is

Ct = (j1Y )−1(Wt). (3.18)

It is easy to see that Wt ⊂ J1(M,Rk) is an open semialgebraic (locally, because it is defined
by polynomial inequalities) submanifold for all t ≥ 0. Indeed, in a local chart defined on an open
subset O ⊂ M we have that

Wt ∩ P−1(O) ∼=
{
(p, ry, (A1, . . . , Am)) ∈ O × Rk × Rk×m : p ∈ O, r > t, y ∈ Sk−1, Ai ∈ y⊥

}
,

(3.19)
where here A1, . . . , Am are the columns of A : Rm → Rk. Thus, it follows that Wt is locally
diffeomorphic to

Wt ∩ P−1(O) ∼= O ×
(
(t,+∞)×

(
TSk−1

)⊕m
)
. (3.20)

If t > 0, the closure Wt = Wt∪∂Wt is a manifold with boundary. In the case t = 0, the topological
frontier ∂Wt is not a smooth boundary, but rather an additional stratum of codimension k:

W0 ∩ P−1(O) ∼=
(
O × {0} × Rk×m

)
∪W0 ∩ P−1(O). (3.21)

This stratum is semialgebraic thus, the union W0 remains a semialgebraic subset with two strata.
Its codimension is, by definition, the minimimum of the codimensions of the two strata. Therefore
W0 has codimension m if and only if m ≤ k and Wt, for t > 0, has always codimension m.
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Remark 17. Observe that when k > m, the stratum ∂W0 is too small and j1Y −1(∂W0) = {Y = 0}
is almost surely empty. In the general case, j1Y −1(∂W0) = {Y = 0} ⊂ M is almost surely a
submanifold of dimension m− k. In particular, we will certainly have E#C0 = ∞ if k < m.

We are in the position to apply Stecconi (2022, Thm. 27) to deduce the following. Notice that
the case k = m was not included in Theorem 3.

Theorem 18. For all k ∈ N and t > 0, we have E{#Ct} ≤ E{#C0+}, where

E{#C0+} := E{# ∪t>0 Ct} < +∞. (3.22)

Moreover, E{#Z} = E{#C0} − E{#C0+} is the expected number of zeroes of Y and satisfies the
following: if k > m, then E{#Z} = 0; if k = m, then E{#Z} ∈ (0,+∞); if k < m, then
E{#Z} = +∞.

Proof : Following the discussion above, we have to show that E{#(j1Y )−1(W0)} is finite. Let
W = W0 and let π : E → M be the trivial vector bundle E := M × Rk. We will apply Stecconi
(2022, Cor. 3.9) to the random field Y : M−Ω▲ ▲→Rk, that in the language of Stecconi (2022, Cor.
3.9), is a smooth Gaussian random section of E. The fiber over p ∈ M of its 1-jet extension is
J1
pE = J1

p (M,Rk) = P−1(p).
We already observed that W ⊂ E is a semialgebraic submanifold of codimension m. by Stecconi

(2022, Rem. 3.3), this implies that W has sub-Gaussian concentration. The fact that W is transverse
to the fibers P−1(p) for all p ∈ M is obvious from Equation (3.21), in that the local equations of
W do not involve p.

The 1-jet of Y at p ∈ M is

j1pY = (p, Y (p), dpY )⊂⊂J1
p (M,Rk), (3.23)

which is non-degenerate by construction since its support is the whole space {p} ×Rk × (T ∗
pM)k =

J1
p (M,Rk).
We checked all hypotheses for point 1. of Stecconi (2022, Cor 3.9), applied to the field Y , which

implies that E{#(j1Y )−1(W )} is finite given that the manifold is compact.
Regarding the set of zeroes Z = Y −1(0), we have that if k > m, then Z is almost surely empty

while if k ≤ m, we can use Mathis and Stecconi (2024, Theorem 6.2) using the same argument as
in the proof of Mathis and Stecconi (2024, Lemma 6.5) to compute

E {volm−k(Z)} =
volm−k(Sm−k)

volm(Sm)
volm(M), (3.24)

where volj denotes the jth Hausdorff volume measure associated to the Riemannian manifold (M, g).
Clearly, (3.24) implies the thesis. □

Remark 19. The condition k ≥ m in the above theorem is due to the fact that C0 includes all
critical values v satisfying v ≥ 0. For instance, when k = 1 and Y = X, we have that C0 = {X =
0} ∪ {dX = 0} is clearly infinite, whilst E#C0+ = E#{dX = 0} is finite.

4. A study of the Hessian in dimension 2

Consider the case in which the original Gaussian random function X : M−Ω▲ ▲→R is a random
eigenfunction on the sphere M = Sm. Then, X is invariant in law under isometries of Sm. In
particular, this implies that for any R ∈ O(m+ 1), that fixes a point p ∈ Sm we have that

RTHpXR = Hp(X ◦R) ∼ HpX. (4.1)

the same happens for stationary fields on Rd, like Berry or Bargmann-Fock. We may regard such
isometry R as an isometry of p⊥ = TpSm and generalize this concept.
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Definition 20. Given a Gaussian bilinear form H on a Euclidean space V , we say that H is rotation
invariant if for every R : V → V linear orthogonal transformation, there is an equivalence in law:

H ∼ RTHR. (4.2)

Given a Gaussian field X : M−Ω▲ ▲→R, we say that X has rotation invariant Hessian if for every point
p ∈ M the Hessian HpX is a rotation invariant, as a random bilinear form on TpM .

Lemma 21. Let H =

(
h1 h3
h3 h2

)
satisfy Equation (4.2). Then there are constants σ, c ≥ 0 such

that: h1
h2
h3

 ∼ N

0,

2σ2 + c c 0
c 2σ2 + c 0
0 0 σ2

 . (4.3)

Moreover, H is Hessian-like if and only if (σ2 + c) ≥ 1, with

γ = −tr(H)
1

2(σ2 + c)
+ γ0

√
1− 1

(σ2 + c)
. (4.4)

for some γ0 ∼ N (0, 1) independent from H.

Proof : First, one can easily see that E[h21] = E[h22] =: a2, and that E[h1h3] = E[h2h3] =: b. Let
R(θ) be the matrix of the rotation of angle θ in R2 and define

H(θ) =

(
h1(θ) h3(θ)
h3(θ) h2(θ)

)
:= R(θ)THR(θ). (4.5)

□

By imposing the condition that E[hi(θ)hj(θ)] is constant in θ, one gets, for any choice of i, j, the
same condtion:

a2 = 2σ2 + c and b = 0; (4.6)
hence the proposition is proven.

4.0.1. Stationary plane fields.

Proposition 22. Let ξ : Rd−Ω▲ ▲→R be a stationary and isotropic Gaussian random field of class
C2, with covariance function K(|x − y|) = E {ξ(x)ξ(y)} . Then the random variables ∂i∂jξ(0), for
1 ≤ i ̸= j ≤ d have the following covariances:

E∂i,jξ(0)∂i,kξ(0) = E∂i,jξ(0)∂h,kξ(0) = 0, (4.7)

E|∂2
i ξ(0)|2 = K ′′′′(0), E|∂i∂jξ(0)|2 =

1

3
K ′′′′(0), E∂2

i ξ∂
2
j ξ =

1

3
K ′′′′(0), (4.8)

where i, j, h, k are any 4 distinct indices and K ′′′′(0) denotes the fourth derivative of K evaluated at
the origin. In particular, if d = 2, then H = H0ξ satisfies (4.3) with the additional condition that
c = σ2: h1

h2
h3

 ∼ N

0,K ′′′′(0)

1 1
3 0

1
3 1 0
0 0 1

3

 . (4.9)

and

ξ(0) = −∆ξ(0)
3

4K ′′′′(0)
+ γ0

√
1− 3

2K ′′′′(0)
. (4.10)

for some γ0 ∼ N (0, 1) independent from H, ∆ denoting as usual the Laplacian operator.
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Remark 23. The above proposition is in accordance with Nicolaescu (2017, Eq. (2.11)). Note that
our setting includes the Hessian of Berry’s random field, for which Nicolaescu (2017, Prop. B.6)
does not hold.

Remark 24. For ξ to be a normal field on Rd with respect to the standard metric (see Section 2),
we must have that K(0) = −K ′′(0) = 1.

Proof : K(t) is an even function of class C2, so its Taylor expansion is a series in t2. Let us define
K(t) = h(t2), then or all n ∈ N

h(n)(0) =
n!

(2n)!
K(2n)(0). (4.11)

Now, it is sufficient to compute ∂i∂j∂i′∂j′h(|x− y|2) at x = y = 0. We report only the computation
of E∂2

i ξ∂
2
j ξ.

E∂2
i ξ∂

2
j ξ =

d2

dt2

∣∣∣
0

d2

ds2

∣∣∣
0
E [ξ(t, 0)ξ(0, s)]

=
d2

dt2

∣∣∣
0

d2

ds2

∣∣∣
0
h
(
t2 + s2

)
=

d2

dt2

∣∣∣
0

d

ds

∣∣∣
0
h′
(
t2 + s2

)
2s

=
d2

dt2

∣∣∣
0
h′
(
t2
)
2 = 4h′′(0) = 4

2!

4!
K ′′′′(0).

(4.12)

□

Let J0 : R → R be the Bessel function of the first kind, that is,

J0(t) :=
∞∑
j=0

(−1)j

(j!)2

(
t

2

)2j

. (4.13)

Proposition 25. If ξ : R2−Ω▲ ▲→R is the Berry random field, with covariance E {ξ(x)ξ(y)} =
J0(

√
2|x− y|)1, then ξ is a normal field on R2, with K ′′′′(0) = 3

2 and

H0ξ =

(
ξ′′1 (0) ξ′′12(0)
ξ′′12(0) ξ′′2 (0)

)
with

 ξ′′1 (0)
ξ′′2 (0)
ξ′′12(0)

 ∼ N

0,
3

2

1 1
3 0

1
3 1 0
0 0 1

3

 . (4.14)

In particular, ξ(0) = −1
2∆ξ(0).

Proposition 26. If ξ : R2−Ω▲ ▲→R is the Bargmann-Fock random field, with covariance E {ξ(x)ξ(y)} =

e−
|x−y|2

2 , then ξ is a normal field on R2, with K ′′′′(0) = 2 and

H0ξ =

(
ξ′′1 (0) ξ′′12(0)
ξ′′12(0) ξ′′2 (0)

)
with

 ξ′′1 (0)
ξ′′2 (0)
ξ′′12(0)

 ∼ N

0, 2

1 1
3 0

1
3 1 0
0 0 1

3

 . (4.15)

In particular, ξ(0) = −3
8∆ξ(0) + 1

2γ0.

4.0.2. Isotropic spherical fields.

Proposition 27. Take ξ : S2−Ω▲ ▲→R to be a Gaussian isotropic spherical random field, with covariance
E {ξ(p)ξ(q)} = K(θ(p, q)), where θ(p, q) denotes the spherical distance of p and q; let K(0) = 1,
a2 := K ′′′′(0) and r2 := −K ′′(0). Then, ξ̂(p) := ξ(r−1p) is a normal field on rS2. In such case, for

1This normalization, with the factor
√
2, is the only one that ensures that we are in the setting of this paper,

namely K′′(0) = −1. Then, ξ satisfies the almost sure equation ∆ξ = −2ξ.
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any fixed p ∈ S2 and orthonormal basis u, v of p⊥ we have that the Riemannian Hessian of ξ̂ has
the following law:

Hpξ̂ =:

(
ξ̂′′u(p) ξ̂′′uv(p)

ξ̂′′uv(p) ξ̂′′v (p)

)
, with

 ξ̂′′u(p)

ξ̂′′v (p)

ξ̂′′uv(p)

 ∼ N

0,
a2

r4

 1 1
3 + 2r2

3a2
0

1
3 + 2r2

3a2
1 0

0 0 1
3 − r2

3a2


 . (4.16)

In particular, in the notation of Theorem 21, c− σ2 = 1
r2

and Hpξ̂ is Hessian-like with respect to

γ = −∆S2ξ(0)
3r4

(4a2 + 2r2)
+ γ0

√
1− 3r4

(2a2 + r2)
, (4.17)

where ∆S2 denotes the spherical Laplacian and γ0 ∼ N (0, 1) is independent from Hpξ̂.

Proof : Notice that K(θ) = h(cos θ) for some C1 function h. If ξ is isotropic, then it has rotation
invariant Hessian, thus Theorem 21 holds. For this reason it is enough to compute E|ξ̂′′u(p)|2 and
E[ξ̂′′u(p)ξ̂′′v (p)]. Let p(θ, ϕ) ∈ S2 be the point with polar coordinates θ and φ and let us assume that
p = p(0, φ) is the north pole, so that the curves t 7→ p(t, φ) are geodesics, for any fixed φ.

E[ξ̂′′u(p)ξ̂′′v (p)] =
d2

dt2

∣∣∣
0

d2

ds2

∣∣∣
0
E[ξ̂(rp(r−1t, 0))ξ̂(rp(r−1s,

1

2
π)]

=
d2

dt2

∣∣∣
0

d2

ds2

∣∣∣
0
E[ξ(p(t, 0))ξ(p(s,

1

2
π)]r−4

=
d2

dt2

∣∣∣
0

d2

ds2

∣∣∣
0
h

(
⟨p(t, 0), p(s, 1

2
π)⟩
)
r−4

=
d2

dt2

∣∣∣
0

d2

ds2

∣∣∣
0
h (cos t cos s) = h′′(1) + h′(1) =

(
1

3
K ′′′′(0)− 2

3
K ′′(0)

)
r−4.

(4.18)

An analogous computation shows that E|ξ̂′′u(p)|2 = K ′′′′(0)r−4. □

Remark 28. It is well-known that under isotropy the covariance function can be expressed as

E {ξ(p)ξ(q)} = K(θ(p, q)) =
∑
ℓ

2ℓ+ 1

4π
CℓPℓ(cos θ(p, q)),

the non-negative sequence (Cℓ)ℓ=0,1,2,... denoting the angular power spectrum of the field and Pℓ(.)
representing Legendre polynomials (see e.g. Marinucci and Peccati (2011)). Then standard compu-
tations yield (see e.g. Cammarota et al. (2016))

K(0) =
∑
ℓ

2ℓ+ 1

4π
Cℓ,

K ′′(0) = −
∑
ℓ

2ℓ+ 1

4π

λℓ

2
Cℓ ,

where we wrote λℓ = ℓ(ℓ+ 1), and

K ′′′′(0) =
∑
ℓ

2ℓ+ 1

4π

(
3
λℓ(λℓ − 2)

8
+

λℓ

2

)
Cℓ .
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4.1. Behavior of the Hessian under scaling limit.

Proposition 29. Assume that Xλ : M−Ω▲ ▲→R is a sequence of C2 GRFs of unit variance with Adler-
Taylor metric gλ (so that Xλ ∼ N (M, gλ)) and such that the following limit holds:

Xλ

(
expgλp

(
u√
λ

))
C2(TpM)-law−−−−−−−−→

λ→+∞
ξ(u), (4.19)

in distribution in the space of C2 functions of u ∈ TpM , where ξ : TpM−Ω▲ ▲→R is some GRFs on
TpM ∼= Rm. Let Hgλ denote the Hessian operator with respect to the metric gλ. Then, we have that
for every p ∈ M ,

1

λ
Hgλ

p Xλ(u, v)
R−law−−−−→
λ→+∞

H0ξ(u, v). (4.20)

Proof : It is enough to check the limit for u = v, since the symmetric form HpXλ(u, v) can be
recovered from the quadratic form HpXλ(u, v) by means of the polarization formula. Moreover, by
Skorohod’s theorem, we can assume that the convergence in Equation (4.19) holds almost surely.
We have that

1

λ
Hgλ

p Xλ(u, u) =
d2

dt2

∣∣∣
t=0

Xλ

(
expgλp

(
tu√
λ

))
R−−−−→

λ→+∞

d2

dt2

∣∣∣
t=0

ξ(tu). (4.21)

□

The hypotheses of the above proposition are, in particular, satisfied for Gaussian Laplace eigen-
functions: ∆SmXλ = −λXλ on the sphere M = Sm, with λ ∈ {ℓ(ℓ + m − 1) : ℓ ∈ N} tending to
+∞. In this case, we have that gλ = λ

mg, where g is the standard round metric on Sm and therefore
expgx = expg

λ

x , so that Equation (4.19) is the usual scaling limit, with ξ being Berry’s random field
on TpSm ∼= Rm.

In this situation, as λ → +∞, we can approximate:

Et
k

(
gλ, Hgλ

p Xλ

)
= Et

k

(
g,

m

λ
Hgλ

p Xλ

)
∼ Et

k(g,mH0ξ), (4.22)

which by Theorem 3 gives as λ → +∞

E#Cλ
t ∼ E

{
1

χm
k

}
1

(2π)
m
2

vol(M) · Et
k(g,mH0ξ) ·

(
λ

m

)m
2

. (4.23)

5. An exact formula for local maxima

For applications in Statistics, Mathematical Physics and Machine Learning it is of course very
common to focus on local maxima, especially at high threshold. These are the random quantities
that must be considered, for instance, when probing for galactic point sources among Cosmic Mi-
crowave background (CMB) polarisation data, or when investigating the convergence properties of
statistics and machine learning optimization algorithms. In this Section, we show how much more
explicit results can be obtained, in the limit of high thresholds u.

Let us first introduce the following auxiliary Gaussian random function φ⊂⊂C∞(M × Sk−1)

φ : M × Sk−1 → R, φ(p, u) := Y (p)Tu. (5.1)

Indeed, we have that if F = |Y |2
2 has non-degenerate maxima (true a.s.), then there is a bijection:

{p ∈ M : local maxima of F}
∼=−→
{
(p, v) ∈ M × Sk−1 : local maxima of φ

}
p →

(
p,

Y (p)

|Y (p)|

)
.

(5.2)
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Notice also that F (p) = 1
2φ
(
p, Y (p)

|Y (p)|

)2
. It follows that almost surely we have that, for all t ≥ 0

Ct ∩ {p ∈ M : HpF < 0} =

{
p ∈ M : local maxima of F , with value ≥ t2

2

}
∼=
{
(p, v) ∈ M × Sk−1 : local maxima of φ of value ≥ t

}
=
{
(p, v) ∈ M × Sk−1 : d(p,v)φ = 0, d2(p,v)φ < 0, φ(p, v) ≥ t

}
=: CMax

t

(5.3)

Recall that Y = (X1, . . . , Xk), where Xi ∼ X are i.i.d. copies of X ∼ N (M, g).

Lemma 30. Let (p, u) ∈ M ×Sk−1 and let us choose orthonormal bases to identify TpM ∼= Rm and
TuSk−1 ∼= Rk−1. Then dpX is identified with a standard Gaussian row in Rm and HpX is identified
with a symmetric Gaussian m×m matrix. The 2-jet of φ has the following joint distribution:

φ(p, v) = X1(p)⊂⊂R

d(p,v)φ =
(
dpX

1, X2(p), . . . , Xk(p)
)

⊂⊂Rm × Rk−1

H(p,v)φ =


HpX

1 (dpX
2)T . . . (dpX

k)T

dpX
2

. . . −X1(p)1k−1

dpX
k

⊂⊂
(
Rm × Rk−1

)
⊗
(
Rm × Rk−1

)
.

(5.4)

In particular, we have that d(p,v)φ and H(p,v)φ are independent and the dependence between φ(p, v)

and H(p,v)φ is that E{H(p,v)φ ·X1(p)} = −1m+k−1.

Proof : The result is the same (in law) for all v ∈ Sk−1, so that we can choose v = e1. Then
TvSk−1 is identified with e⊥1 = Rk−1. In a neighborhood of e1 in Sk−1, we take affine coordinates
u = u2, . . . uk ∈ Rk−1, to parametrize the point v(u) = (

√
1− |u|2, u) ∈ Sk−1, so that for any curve

t 7→ u(t), the velocity d
dt(v(u)) ∈ Te1Sk−1 is isometrically identified with u̇ ∈ Rk−1. Then, we have

φ(p, v) = Y (p)T v(u). For every ṗ ∈ TpM, and u̇ ∈ Rk−1, we compute the Hessian as follows. Let
p(t) be a geodesic in M such that p(0) = p and ṗ(0) = ṗ and let u(t) parametrize a geodesic v(u(t))

on Sk−1, with u(0) = 0 and u̇(0) = u̇, that is, u(t) =
(
sin(t|u̇|) u̇

|u̇|

)
. Then,

H(p,e1)φ ((ṗ, u̇), (ṗ, u̇)) =
d2

dt2

[
X1(p)

√
1− |u|2 +

k∑
i=2

Xi(p)ui

]

= HpX
1(ṗ, ṗ) +X1(p)

d2

dt2

√
1− |u|2 + 2

k∑
i=2

dpX
i(ṗ)u̇i

= HpX
1(ṗ, ṗ)−X1(p)|u̇|2 + 2

k∑
i=2

dpX
i(ṗ)u̇i.

(5.5)

□

Observe that the law above depends uniquely on the metric g at p, that is essentially the covariance
of dpX, and on the law of HpX.
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Lemma 31. Let (p, u) ∈ M ×Sk−1 and let us choose orthonormal bases to identify TpM ∼= Rm and
TuSk−1 ∼= Rk−1. The 2-jet of φ has the following joint distribution:

φ(p, v) = γ1⊂⊂R

d(p,v)φ = (γ1,1, . . . , γm,1, γ2, . . . , γk)⊂⊂Rm × Rk−1

H(p,v)φ =


γ1,2 . . . γ1,k

HpX . . .
γm,2 . . . γm,k

γ1,2 . . . γm,2

. . . −γ11k−1

γ1,k . . . γm,k

⊂⊂
(
Rm × Rk−1

)
⊗
(
Rm × Rk−1

)
.

(5.6)

where γi,j ∼ N (0, 1) are i.i.d. and independent from (γ1, HpX) and E{γ1HpX} = −1m. In partic-
ular, the above law is invariant under orthonormal changes of basis in TpM .

Remark 32. The above lemma shows that φ is a normal field on M × Sk−1.

Definition 33. Let (H, γ1) be as in Theorem 13: H is an m×m Hessian-like Gaussian matrix and
E{γ1H} = −⊮m. Let H̃ be distributed as H(p,v)φ in Theorem 31, that is:

H̃ =


γ1,2 . . . γ1,k

H . . .
γm,2 . . . γm,k

γ1,2 . . . γm,2

. . . −γ11k−1

γ1,k . . . γm,k

 , (5.7)

where γi,j ∼ N (0, 1) are i.i.d. and independent from (γ1, H). Let us use the notation G(m) ⊂ Rm×m

to denote the subset of positive definite symmetric matrices. 2 Define

Dt
k(H) := E

[
| det

(
H̃
)
| · 1G(m+k−1)(−H̃)1[t,+∞)(γ1)

]
. (5.8)

We can now exploit the previous expressions to derive an explicit formula for the critical values
of chi fields.

Theorem 34. For any A ⊂ M, we have that

E
{
#
(
CMax
t ∩A

)}
=

vol(Sk−1)

(2π)
m+k−1

2

∫
A
Dt

k ([HpX]) dM(p). (5.9)

Proof : We apply the Alpha-Kac-Rice formula (see Mathis and Stecconi (2024)) to φ : M×Sk−1−Ω▲ ▲→R,
with

α(φ, p, v) = 1G(m+k−1)(−H(p,v)φ) · 1[t,+∞)(φ(p, v)). (5.10)
Mathis and Stecconi (2024, Prop. 4.10) shows that we can, because dφ is Gaussian and d(p,v)φ is
non-degenerate for all (p, v) ∈ M × Sk−1. Since d(p,v)φ and α(φ, p, v) are independent, the formula
says that

E
{
#
(
CMax
t ∩A

)}
= E

 ∑
(p,v)∈A×Sk−1 s.t. d(p,v)φ=0

α(φ, p, v)


=

∫
Sk−1

∫
A
E
{
| det

(
H(p,v)φ

)
| · α(φ, p, v)

}
ρ[d(p,v)φ](0)dM(p)dSk−1(v)

(5.11)

2In general, the space of positive definite symmetric matrices is the space of scalar products, so we prefer to work
with that instead than with the set of negative definite matrices. Of course, the two are identical.
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Observe that, by Theorem 31, the density of d(p,v)φ at zero is equal to

ρ[d(p,v)φ](0) =
1

(2π)
m+k−1

2

(5.12)

and that the expectation term is exactly Dt
k(HpX), which is constant in v, hence we conclude. □

6. High-threshold asymptotics

Let us try to get more explicit formulae in the case m = k = 2, and X is an isotropic Gaussian
field on M , and M is the round sphere (of some radius r) or the plane. In this case, we can write

H̃ =

h1 h2 γ1
h2 h3 γ2
γ1 γ2 −γ

 , (6.1)

where (γ1, γ2) is independent from (h1, h2, h3, γ) with(
γ1
γ2

)
∼ N

((
0
0

)
,

(
1 0
0 1

))
, (6.2)

and, since this field have rotation invariant Hessian in the sense of Theorem 20, we have from
Theorem 21 that there are constants σ, c ≥ 0 such that

h1
h3
h2
γ

 ∼ N



0
0
0
0

 ,


2σ2 + c c 0 −1

c 2σ2 + c 0 −1
0 0 σ2 0
−1 −1 0 1


 . (6.3)

In fact, one can compute c, σ2 by a universal formula depending only on the fourth derivative of
the covariance of the field and on the model chosen: Theorem 22 for the plane and Theorem 27 for
the sphere. It follows from Theorem 7 that the vector (h̃1, h̃3, h2) is zero mean and independent
from γ, where h̃i = hi + γ. With this notation, we have

det(H̃) = det

h̃1 − γ h2 γ1
h2 h̃3 − γ γ2
γ1 γ2 −γ

 (6.4)

= −h̃1h̃3γ + h22γ − γ2(h̃1 + h̃3)− γ3 − γ21 h̃3 + γγ21 − γ22 h̃1 + γ22γ + 2h2γ2γ1 . (6.5)

Remark 35. It is easy to see that the expected value of this determinant in the region where
(h̃1, h2, h̃3) is in R3, (γ1, γ2) is in R2 and γ ≥ t, is equal to

A1 :=

∫ ∞

t

1√
2π

exp

(
−γ2

2

)
(γ3 − (3− c+ σ2)γ)dγ = (H2(t) + (c− σ2))φ(t) .

The idea that we will follow in this section is to show that the difference between this term and the
one with the absolute value is of smaller order in t.

Remark 36. It should be noted that, for m = k = 2,

Dt
k(H) := E

[
| det

(
H̃
)
| · 1G(3)(−H̃)1[t,+∞)(γ)

]
= E

[
det
(
−H̃

)
· 1G(3)(−H̃)1[t,+∞)(γ)

]
(because the determinant of H̃ is necessarily negative)

= E
[
det
(
−H̃

)
· 1[t,+∞)(γ)

]
− E

[
det
(
−H̃

)
·
(
1− 1G(3)(−H̃)

)
1[t,+∞)(γ)

]
We are therefore able to establish the following result.
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Theorem 37. Let m = k = 2 and let X have rotation invariant Hessian, in the sense of Theorem 20.
As t → +∞, we have that

Dt
2(H)

(H2(t) + (c− σ2))ϕ(t)
=

E
[
| det

(
H̃
)
| · 1G(3)(−H̃)1[t,+∞)(γ)

]
(H2(t) + (c− σ2))ϕ(t)

= 1 +O
(
exp(−δt2)

)
.

Proof : Note first that
A1 = E

[
det
(
−H̃

)
· 1[t,+∞)(γ)

]
= E

[
(h̃1h̃3γ − h22γ + γ2(h̃1 + h̃3) + γ3 + γ21 h̃3 − γγ21 + γ22 h̃1 − γ22γ − 2h2γ2γ1) · 1[t,+∞)(γ)

]
(6.6)

= E
[
(γ3 − (3− c+ σ2)γ) · 1[t,+∞)(γ)

]
=

∫ ∞

t

(
H3(x)+(c− σ2)H1(x)

)
ϕ(x)dx

=
(
H2(t) + (c− σ2)

)
ϕ(t) ,

because

E[h22] = σ2, E[h̃1h̃3] = c− 1, E[γ21 ] = E[γ22 ] = 1 , E[h̃1] = E[h̃3] = E[h2] = 0 ,

and using one of the defining property of Hermite polynomials, saying that
∫∞
t Hn+1(γ)ϕ(γ)dγ =

Hn(t)ϕ(t). Now let us focus on

A2 := −E
[
det
(
−H̃

)
·
(
1− 1G(3)(−H̃)

)
1[t,+∞)(γ)

]
;

in the above integral, the Hessian must be negative definite, which implies that some of the mixed
products involving h’s and γ must be larger than γ3; we shall show that this probability is ex-
ponentially small in the regime where γ > t and t grows to infinity. Precisely, observe that
H̃ is not negative definite if and only if there exists a vector λ ∈ R3, such that λT H̃λ ≥ 0.
Let µ := max{|h̃1|, |h2|, |h̃3|, |γ1|, |γ2|} and observe that if µ < 3

8 t and γ ≥ t, then we for all
λ = (λ1, λ2, λ3) with ∥λ∥ ≤ 1 we have that

λT H̃λ = (h̃1 − γ)λ2
1 + (h̃3 − γ)λ2

2 + (−γ)λ2
3 + 2h2λ1λ2 + 2γ1λ1λ2 + 2γ2λ1λ2

≤ 8µ− 3t < 0.
(6.7)

Therefore, we can deduce the following:(
1− 1G(3)(−H̃)

)
1[t,+∞)(γ) ≤ 1[ 3t

8
,+∞)(µ)1[t,+∞)(γ). (6.8)

On the other hand, it is easy to see that for any γ > 0,

| det
(
−H̃

)
| ≤ 11(γ3 + µ3). (6.9)

Now, µ3 is bounded by the multiple of a chi-distributed random variable, meaning that µ ≤ Cχ5, for
a constant C > 0 (which should be comparable with

√
σ2 + c) and a chi-distributed random variable

χ5 of parameter 5, independent from γ. It follows from Theorem 38 below that, by combining
Equation (6.8) and Equation (6.9), that the corresponding expected value A2 is bounded above as
follows

A2 ≤ 11

∫ ∞

3t
8C

∫ ∞

t
(χ3 + γ3)χ4 exp(−χ2/2) exp(−γ2/2)dγdχ

= O

((∫ ∞

t
(t6 + t3γ3) exp(−γ2/2)dγ

)
exp

(
−2δt2

))
= O

(
(t6 + t3 · t2) exp

(
− t2

2

)
exp

(
−2δt2

))
= O

(
exp

(
−t2

(
1

2
+ δ

)))
,

(6.10)



Critical Points of Chi-Fields 769

for some small constant δ > 0, depending on σ and c. This integral is exponentially smaller than
the leading term. □

Lemma 38. As t → +∞, we have∫ +∞

t
C

xn exp

(
−x2

2

)
dx = O

(
tn−1 exp

(
− t2

2C2

))
. (6.11)

Proof : The proof is straightforward and hence omitted. □

By combining the latter with Theorem 34, we obtain the following, which proves also our main
result, Theorem 4.

Corollary 39. In the same setting as above, with m = k = 2 when X is normal and isotropic, or
whenever the value of Dt

k([HpX]) is constant in p, we have that as t → +∞

E
{
#
(
CMax
t

)}
·

(
1

(2π)
1
2

vol(M)
(
H2(t) + (c− σ2)

)
ϕ(t)

)−1

= 1 +O
(
exp(−δt2)

)
. (6.12)

Recalling Theorem 27, for X a normal isotropic field on M = rS2, we have c − σ2 = 1
r2

, where
σ, c, r are defined as in Theorem 27. Therefore, the above result implies Theorem 4. We stress that
the field ξ := X1 of Theorem 4 is not necessarily a normal field (Theorem 1) on the standard unit
sphere S2 (unless r = 1), as one can easily see that E|dpξ(v)|2 = −K ′′(0) = r2 (i.e., E∥dpξ∥2 = 2r2),
see Theorem 27. However, Theorem 4 is deduced from Theorem 39 above, by applying it to the
field X = ξ̂ from Theorem 27, which is a normal isotropic field on the sphere rS2 of radius r.

6.1. Proof of Theorem 6. The first statement of Theorem 6 is Theorem 34, so it remains to show
the validity of the asymptotic equivalences. We will address and justify each one of them in the
following. The idea is to exploit the fact that φ is a normal field (in the sense of Theorem 1 on
M × Sk−1, by Theorem 32.

6.1.1. The connection with the Euler-Poincaré Characteristic and excursion probabilities. We note
also that, by Adler and Taylor (2007, Eq. (14.0.2)) and for small enough δ > 0, we have

Eχ(φ ≥ t) = P(max
M×S1

φ ≥ t) +O

(
exp

(
−
(
1

2
+ δ

)
t2
))

= P(max
M

f2 ≥ t) +O

(
exp

(
−
(
1

2
+ δ

)
t2
))

,

(6.13)

since, by construction, maxM×S1 φ = maxM f2.

6.1.2. The connection with Betti numbers. The Euler characteristic χ(E) of a manifold with bound-
ary E of dimension m is defined as the alternating sum of its Betti numbers (see Milnor et al. (1969)),
and by Equation (6.18) (a classical identity in Morse theory, see Milnor et al. (1969)) it coincides
with the alternating sum of the number of critical points of a Morse function. Specifically, in the
setting of Theorem 34, Milnor et al. (1969, Th. 5.2)3 yields

χ(φ ≥ t)
def
=

m∑
i=0

(−1)ibi(φ ≥ t)
Milnor et al. (1969, Th. 5.2)

=
m∑
i=0

(−1)iCi(φ ≥ t) (6.14)

3The theorem is stated for a compact manifold, but its proof and Milnor et al. (1969, Th. 3.5) implies that it can
be applied also for the excursion set of the Morse function
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where we denote Ci(φ ≥ t) := #{dφ = 0, index(Hφ) = i, φ ≥ t} and moreover, the weak Morse
inequality holds:

bi(φ ≥ t)
Milnor et al. (1969, Th. 5.2)

≤ Ci(φ ≥ t). (6.15)

In particular, b0(φ ≥ t) denotes the number of connected components of the excursion set and
C0(φ ≥ t) is the number of local maxima of φ with value exceeding t.

By studying the asymptotic behavior the Kac-Rice formulas for ECi(φ ≥ t), Gayet (2022) showed
(in the more general context of stratified manifolds) that for i ≥ 1, we have

ECi(φ ≥ t)
Gayet (2022, Th. 3.6)

= O

(
exp

(
−(

1

2
+ δ)t2

))
. (6.16)

Therefore, up to an exponentially small error in expectation, as t → +∞, all the critical points of
φ in the excursion set {φ ≥ t} are the local maxima.

An additional observation of Gayet (2022) is that Morse theory implies that

b0(φ ≥ t)
Gayet (2022, Cor. 2.5)

≤ b0(φ ≥ t,B) +
m∑
i=1

Ci(φ ≥ t), (6.17)

where b0(φ ≥ t,B) denotes the number of connected components that are homeomorphic to a unit
ball B of dimension m. As a consequence, one deduces that the only Betti number of the excursion
set that is asymptotically relevant is b0(φ ≥ t,B), see Gayet (2022, Thm 5.19). The proof of
Equation (6.17) is the following: if E ⊂ {φ ≥ t} is a connected component that contains k critical
points that are all of index 0, then by Milnor et al. (1969, Th. 3.5) it follows that the Betti numbers
of E are b0 = k, b1 = 0, . . . , bm = 0, which means that k = 1 and thus that the flow of −∇φ deforms
E into a small ball around the only maximum, so that E must be homeomorphic to B.

6.1.3. The case of the two-sphere. Let M = rS2 be the round sphere of radius r > 0. By showing
that in the high-threshold limit the dominant term corresponds to the expected value of the de-
terminant without the modulus, we are actually proving that the number of maxima taking values
larger than t is asymptotically equivalent to the Euler-Poincaré characteristic for the excursion set
of φ : rS2 × S1 → R which we introduced in Section 5, that is

χ(φ ≥ t)
Adler and Taylor (2007, Cor. 9.3.5)

=
∑

{(p,v)∈rS2×S1: d(p,v)φ=0}

sgn
(
det
(
−H(p,v)φ

))
· 1[t,+∞](φ(p, v)),

(6.18)
since (−1)index(−H) = sgn(det(−H)). Indeed the expectation of the determinant without the ab-
solute value, i.e., the term A1 in the proof of Theorem 37, is indeed the Kac-Rice density of the
right-hand side. Hence our result Theorem 4 is equivalent to the following limit:

( Eχ(φ ≥ t) )−1 E[µt(rS2, f2)] = 1 +O
(
exp

(
−δt2

))
, (6.19)

Indeed, the Adler-Taylor formula for Eχ(φ ≥ t), allowing to express the above in terms of the
Lipschitz-Killing curvatures Li of the space rS2 × S1 (see Adler and Taylor (2007, Thm. 12.4.2)),
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yields

Eχ(φ ≥ t)
Adler and Taylor (2007, Th. 12.4.1)

= L0(rS2 × S1)ρ0(t) + L1(rS2 × S1)ρ1(t)
+ L2(rS2 × S1)ρ2(t) + L3(rS2 × S1)ρ3(t)

= 0 + L1(rS2 × S1) · 1√
2π

ϕ(t) + 0 + r2vol(S2)vol(S1) · H2(t)

2π

1√
2π

ϕ(t)

=

(
L1(rS2 × S1) + r2vol(S2)vol(S1)

H2(t)

2π

)
· 1√

2π
ϕ(t)

=

(
2H2(t)r

2 +
L1(rS2 × S1)

2π

)
· (2π)

1
2ϕ(t)

=
(
2H2(t)r

2 + 2
)
· (2π)

1
2ϕ(t).

(6.20)

To compute L1(rS2 × S1), for any r, we can use Pistolato and Stecconi (2024, Prop. 3.0.1), im-
plying that for a 3-dimensional closed manifold M with constant scalar curvature scal(M), one has
4πL1(M) = scal(M)vol(M); combining such formula with: scal(M × N) = scal(M) + scal(N) ,
scal(rS2) = 2

r2
and scal(S1) = 0, we get that L1(rS2 × S1) = 4π, which is what we used in the

last line of the previous computation. We deduce our final formula of Theorem 4, derived from
Theorem 39:

(
2r2
(
H2(t) +

1

r2

)
· (2π)

1
2ϕ(t)

)−1

E[µt(rS2, f2)] = 1 +O
(
exp

(
−δt2

))
. (6.21)

6.1.4. Asymptotic Equivalences. Let us also define the total Betti number of the excursion set as
b(φ ≥ t) =

∑m
i=0 bi(φ ≥ t) and let us denote the total number of critical points as C(φ ≥ t) :=∑m

i=0Ci(φ ≥ t). Putting together the asymptotics in the previous two remarks, we deduce that as
t → +∞ we have

E#(C0(φ ≥ t)) ∼ EC(φ ≥ t) ∼ Eb(φ ≥ t) ∼ Eχ(φ ≥ t)

∼ Eb0(φ ≥ t) ∼ Eb0(φ ≥ t;B)

∼ P
(

max
M×Sk−1

φ ≥ t

)
∼

m+k−1∑
j=0

Lj(Sk−1 ×M)

(2π)
j
2

Hj−1(t)ϕ(t)

(6.22)

with an error of O
(
exp

(
−(12 + δ)t2

))
. The last line being Adler and Taylor (2007, Th. 12.4.1).

Observe also that the set {φ ≥ t} can be homotopically retracted to {(p, Y (p)) : |Y (p)| ≥ t} in
Sk−1 × M , which is diffeomorphic (being a graph) to the set {fk ≥ t} ⊂ M . This implies that
the two sets have the same Betti numbers. Moreover, a connected component of the former is
heomeomorphic to a ball if and only if the corresponding connected component of {fk ≥ t} is.
Finally, in the setting of Theorem 34, it is easy to show that critical points of φ correspond with
critical points of fk so that C(φ ≥ t) = #Ct and we already observed that C(φ ≥ t) = #

(
CMax
t

)
.
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Therefore, up to an error O
(
exp

(
−(12 + δ)t2

))
, we have the same asymptotic equivalences for fk:

E(#CMax
t ) ∼ E#Ct ∼ Eb(fk ≥ t) ∼ Eχ(fk ≥ t)

∼ Eb0(fk ≥ t) ∼ Eb0(fk ≥ t;B)

∼ P
(
max
M

fk ≥ t

)
∼

m+k−1∑
j=0

Lj(Sk−1 ×M)

(2π)
j
2

Hj−1(t)ϕ(t)

(M = S2, k = 2)∼ (2 + 2r2H2(t))
√
2πϕ(t).

(6.23)

The latter asymptotics conclude the proof of Theorem 6.
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