
A Logical Analysis of an Information Filtering Architecture
Based on Epistemic Trust Inference

(Extended Version)
Xu Li1, Leendert van der Torre1, Liuwen Yu1

1University of Luxembourg
2, place de l’Université, L-4365 Esch-sur-Alzette, Luxembourg

xu.li@uni.lu, leon.vandertorre@uni.lu, liuwen.yu@uni.lu

Abstract

In agent theory, epistemic trust is used to infer beliefs, for ex-
ample by filtering out the information the agent receives from
untrustworthy agents. Moreover, trust itself can be inferred
from other information. We introduce a simple information
filtering architecture that clearly distinguishes the relation be-
tween the two kinds of inference. Moreover, we provide a
logical analysis of the architecture, based on a new family of
input/output logics, and we explore information filtering and
belief manipulation within this formal framework. Our key
finding is that due to this architecture, some of the widely
debated logical rules for trust inference are redundant with
respect to information-filtering mechanisms and some other
are redundant with respect to belief manipulation.

1 Introduction
In agent theory, epistemic trust (Liau 2003) is a relation
between two agents, and it is used to infer beliefs. We
call the inverse of the trust relation belief manipulation
(Hunter, Schwarzentruber, and Tsang 2017; Eiter, Hunter,
and Schwarzentruber 2021). This means that if agent X
trusts agent Y with respect to the belief in p, agent Y can
manipulate the belief of X in p.

The trust relation can be conceptualized as two related
inference processes. On the one hand, trust itself can be in-
ferred from some information. On the other hand, the in-
ferred trust can be used to infer beliefs by filtering out the
information the agent receives from untrustworthy agents.

In this paper we are interested in the combination of these
two kinds of inference from an architectural and logical
point of view.
1. How to define an information filtering architecture that

clearly distinguishes the relation between the two kinds
of inference, and in which belief manipulation is the in-
verse of epistemic trust?

2. How to provide a logical analysis of the architecture, in
which optional properties of the two inferences are rep-
resented by optional logical rules?

3. Which of the logical rules are redundant with respect
to information-filtering mechanisms and belief manipu-
lation, respectively?

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We explore information filtering and belief manipulation
within the general formal approach of input/output logics
(Makinson and Van Der Torre 2000), because information
filtering has the general property that the input is not in-
cluded in the output. In fact, information filtering has the
inverse property that the output is included in the input, and
we therefore introduce a new family of input/output logics
satisfying this property.

We do not consider other interpretations of the informa-
tion filtering architecture (such as power or rights), which
may give rise to other logical rules. Moreover, we do not
consider other logics of trust in computer science, for ex-
ample the logical approaches to trust management (Becker,
Russo, and Sultana 2012).

Our main contributions can be summarized as follows:

1. A new two-step information-filtering architecture sepa-
rating trust inference from belief acceptance.

2. A comprehensive family of trust I/O logics, including the
first semantic characterizations of some derivation sys-
tems.

3. The first study of the manipulation problem in trust-based
information filtering.

4. Formal redundancy results reveals that some of the
widely debated logical rules for trust inference are re-
dundant with respect to information-filtering and belief
manipulation.

The structure of the paper is as follows. Section 2 intro-
duces pre-logical transformers. Section 3 develops a fam-
ily of input/output logics for inferring trust and analyzes
their behavior through various inference rules. Section 4 ap-
plies these logics to define an information filtering mech-
anism and examine which trust inference rules are redun-
dant in that context. Section 5 turns to belief manipulation,
formally characterizing which formulas are manipulable un-
der different filtering operations. Section 6 discusses related
work, and Section 7 concludes with a summary and future
research.

2 Information Filtering Architecture on a
Pre-Logical Level

Makinson and van der Torre (2000) distinguish two main
kinds of input/output processes. The most studied processes

are desiderative transformations, where inputs may be con-
ditions, with outputs expressing what is deemed desirable in
those conditions. In this paper we consider processes serv-
ing for information filtering, some inputs pass, others are
blocked or modified.

The box may stop some inputs, while letting others
through, perhaps in modified form. Inputs may record
reports of agents, of the kind ‘according to source i,
x is true’, while the box may give as output either x
itself, a qualified version of x, or nothing at all, ac-
cording to the identity of i. Or it might give output x
only when at least two distinct sources vouch for it,
and so on.

Moreover, Makinson and van der Torre (2000) observe
that classical logic serves as an inference motor, with
premises as inputs and conclusions as outputs, but real-
world cases call for reasoning beyond just classical infer-
ence.

It may also be seen in another role, as ‘secretarial
assistant’ to some other, perhaps non-logical, trans-
formation engine. The task of logic is one of prepar-
ing inputs before they go into the machine, unpacking
outputs as they emerge and, less obviously, coordinat-
ing the two. The process as a whole is one of inference
only when the central transformation is so. In general,
it is one of ‘logically assisted’ transformation. That is
the general perspective underlying the present paper.

On a pre-logical level, the input/output process can be ex-
plained as follows. Consider any set L (not necessarily of
formulas), and any relation G ⊆ L × L, which is referred
to as a transformer (Makinson and Van Der Torre 2000), as
illustrated by Figure 1. Given an input A ⊆ L, the output
of A under G can be understood as G(A) = {x : (a, x) ∈
G for some a ∈ A}. The architecture operates in two steps.
First, an input set A is passed into the transformer G, pro-
ducing the intermediate output G(A), which represents the
set of elements that would be trusted or authorized given A.
This stage corresponds to inferring trust. The result G(A)
is labeled as “Trust” in the figure, and corresponds to the
output of the transformer component. In the second stage,
this set is intersected with the original input A. The re-
sult G(A) ∩ A forms the final output of the entire archi-
tecture. This final output represents those elements that are
both informed and trusted, i.e., what is ultimately accepted.

Figure 1: Pre-logical transformer

Consider a school entry policy where children may enter
only if accompanied by at least one parent, while parents
themselves are not admitted. A guard enforces this rule: a
child without a parent is blocked, and a parent without a
child has no effect. Let P = {p1, p2, p3} be the parents

and C = {c1, c2, c3} the children, with parent–child re-
lation G = {(p1, c1), (p1, c2), (p2, c1), (p3, c2)}, so c1 has
parents p1, p2 and c2 has parents p1, p3. Given an input set
A ⊆ P ∪ C of individuals at the gate, the authorized output
is G(A) = {x ∈ C | ∃a ∈ A : (a, x) ∈ G}: a child is
admitted if at least one parent is present. Thus, if A = {p1},
both c1 and c2 may enter, while if A = {c1}, nobody enters.

We distinguish local and global output. The local output
of a transformer G is the set of all x such that (a, x) ∈ G for
some a in the input. The global output further restricts this
by intersecting the local output with the input; if the input
represents informed information and the local output repre-
sents (epistemic) trust, then the global output corresponds
to accepted belief. In the school example, the local output
consists of all children authorized to enter given the parents
present, whereas the global output contains only those chil-
dren who are both authorized and actually present, thus cap-
turing a whitelist policy. We also define manipulability: an
element x ∈ L is manipulable if some input A ⊆ L satisfies
x ∈ G(A) ∩ A. Since the global output represents accepted
belief, manipulable elements are exactly those an agent can
be made to believe. In the school example, c3 has no parent
linked in G, so for any A ⊆ P ∪C, we have c3 /∈ G(A)∩A,
and therefore c3 is not manipulable.

3 Inferring Trust
In this section, we will present a family of I/O logics for
inferring trust. We start by introducing the basics of the I/O
logic framework.

We assume a nonempty set PROP of propositional vari-
ables or atoms. Let L be the propositional language gener-
ated by PROP, and elements of L are called formulas. For a
finite set A of formulas,

∧
A is the conjunction of all for-

mulas in A, and likewise for
∨

A. Note that
∧

∅ := ⊤ and∨
∅ := ⊥. For all sets of formulas A ∪ {a}, A ⊢ a denotes

that a is a logical consequence of A in classical proposi-
tional logic. Cn(A) = {a | A ⊢ a} is the set of all the logi-
cal consequences of A. Given two formulas a and b, a ⊣⊢ b
abbreviates that a ⊢ b and b ⊢ a.

In the I/O logic framework (Makinson and Van Der Torre
2000), a set G of pairs of formulas is called a generating
set. In this paper, a pair (a, x) ∈ G is interpreted as “if a is
informed, then the judgment x is trusted”. The idea behind
the “conditional trust” is that some of our trusts may be trig-
gered only if relevant information is provided. Consider the
following example:

Example 1. Consider the following two statements made by
an epidemiologist:

x: Vaccination reduces the spread of disease.
y: Economic lockdowns are ineffective in preventing reces-

sions.

In this scenario, the epidemiologist’s claim about vaccina-
tion falls within their domain of expertise and is thus trusted
unconditionally. In our framework, this is represented by
(⊤, x). However, their claim about economic outcomes is
outside their field and is trusted only if supported by relevant
evidence. Let a be “The epidemiologist has also published in

peer-reviewed economic journals.” Then we may represent
the conditional trust as (a, y).

An input is a set of formulas, representing the statements
that have been informed. The question is how to reasonably
define the set of formulas making up the output of A under
G, which is intended to characterize the set of judgments that
can be trusted, given the information A. The solution can be
proposed in terms of either proof theory or semantics.

We first introduce the proof theory of the I/O logics in this
paper. The three basic inference rules T, SI (“Strengthening
of the Input”), and OEQ (“Output Equivalence”) are listed
below. T says that propositional tautologies are always un-
conditionally trusted. OEQ means that trust does not depend
on the syntactic form of the sentence. SI states that trust is
monotonic: if x is trusted given the information a, then it is
still trusted given the more informative statement b.
Remark 1. In SI, the formula b may be inconsistent. Then
it is questionable whether x can still be trusted given b. We
will not address the problem of consistency in this section,
but postpone it to the next where we propose an information
filtering architecture with a consistency check.

T From no premise to (⊤,⊤).
SI From (a, x) to (b, x) whenever b ⊢ a.

OEQ From (a, x) to (a, y) whenever x ⊣⊢ y.

In addition to the basic rules, we consider the follow-
ing four optional rules. All of them have been discussed in
the logical literature on trust. For example, ST abbreviates
“Symmetric Trust”. (The unconditional version of) ST is ac-
cepted in (Liau 2003) as an optional rule for trust inference,
whereas AND is rejected in the same paper. The reason is
that in AND, the conjunction x∧y may be inconsistent (and,
thus, untrustable), even if both x and y are consistent. As a
weaker version of AND, DT (“Disjunctive Trust”) is first
introduced in (Dastani et al. 2005), where DT is argued to
be a reasonable inference rule for trust that is not discussed
in (Liau 2003). Finally, WO is also discussed in Liau’s pa-
per, but is considered to be problematic for trust. Recently,
a normal modal logic for “trust in sincerity” is proposed in
(Leturc and Bonnet 2018), in which all the following rules
are valid for “trust in sincerity” except for ST.

ST From (a, x) to (a,¬x).
DT From (a, x) and (a, y) to (a, x ∨ y).

AND From (a, x) and (a, y) to (a, x ∧ y).
WO From (a, x) to (a, y) whenever x ⊢ y.

In this paper, we do not aim to settle the dispute over
the “correct” inference rules for trust. Instead, we focus on
the information filtering architecture (to be introduced) and
study the effects of different inference rules on this architec-
ture. As we shall see, some of the above rules are redundant
with respect to the information filtering architecture.

In this section, we comprehensively study the I/O logics
generated by all basic rules and subsets of the optional rules.

Definition 2. Let R ⊆ {ST,DT,AND,WO}. For all gener-
ating sets G, derivR(G) is the smallest set that contains G
and is closed under all the basic rules and rules in R. For all
sets of formulas A ∪ {x}, we put (A, x) ∈ derivR(G) iff

(a, x) ∈ derivR(G) for some conjunction a of formulas in
A. Finally, derivR(G,A) = {x | (A, x) ∈ derivR(G)}.

In what follows, we shall write derivSDW(G) instead of
deriv{ST,DT,WO}(G) and similarly for other derivations. That
is, each rule is abbreviated by its initial. Our first observation
is that ST and WO cannot both be applied for inferring trust.
Observation 3. If R ⊇ {ST,WO}, then derivR(G,A) = L
for all inputs A.

Proof. By the inference rule T, (⊤,⊤) ∈ derivR(G).
By ST, (⊤,¬⊤) ∈ derivR(G). For all formulas x, since
¬⊤ ⊢ x, (⊤, x) ∈ derivR(G) by WO. Since ⊤ =

∧
∅,

(A, x) ∈ derivR(G), i.e., x ∈ derivR(G,A). Therefore,
derivR(G,A) = L.

It is easy to see that DT is derivable from WO. Therefore,
the next observation states that given WO, DT is redundant
for inferring trust.
Observation 4. For all inputs A, we have: derivW(G,A) =
derivDW(G,A) and derivAW(G,A) = derivDAW(G,A).

The next observation states that given ST, DT and AND
are interderivable.
Observation 5. For all inputs A, we have:

derivSD(G,A) = derivSA(G,A) = derivSDA(G,A).

Proof. It suffices to show that derivSD(G) = derivSDA(G)
and derivSA(G) = derivSDA(G). For the former, it suffices
to show that derivSD(G) is closed under AND. Assume that
(a, x) and (a, y) are in derivSD(G). The following deriva-
tion shows that (a, x ∧ y) ∈ derivSD(G):

(a, x)
ST

(a,¬x)
(a, y)

ST
(a,¬y)

DT
(a,¬x ∨ ¬y)

ST
(a,¬(¬x ∨ ¬y))

OEQ
(a, x ∧ y)

Similarly, derivSA(G) = derivSDA(G).

According to Observations 3, 4, and 5, there are at most
8 mutually different and non-trivial I/O logics generated by
the optional rules: deriv∅, derivS, derivD, derivA, derivW,
derivSD, derivDA, and derivAW. The remainder of this sec-
tion focus on the semantic characterization of the 8 logics.

We start with derivAW. In (Makinson and Van Der Torre
2000), the derivation deriv1 is defined such that deriv1(G)
is the smallest that contains G and is closed under T, SI,
AND, and WO. The only difference between deriv1 and our
derivAW is that OEQ does not appear in the definition of
deriv1. Nevertheless, it is easy to see that OEQ can be de-
rived from WO. Thus, deriv1 and derivAW are the same.
Observation 6. derivAW(G,A) = deriv1(G,A) for all A.

It is established in (Makinson and Van Der Torre 2000)
that deriv1(G,A) = Cn(G(Cn(A))), where G(B) = {x |
(a, x) ∈ G for some a ∈ B} for all sets B of formu-
las. Therefore, the semantic characterization of derivAW is
straightforward.

Definition 7. For all inputs A, we put outAW(G,A) =
Cn(G(Cn(A))). In addition, outAW(G) = {(a, x) | x ∈
outAW(G, a)}.1

Proposition 8. derivAW(G,A) = outAW(G,A).
Next we present the semantic characterization for out∅,

outS, outD, outA, outW. To do this, we need some notations.
For all sets B of formulas, let
• Eq(B) = {x | x ⊣⊢ ⊤ or ∃a ∈ B such that a ⊣⊢ x},
• B = {¬x | x ∈ B},
• Disj(B) = {

∨
B′ | ∅ ̸= B′ ⊆ B and B′ is finite},

• Conj(B) = {
∧
B′ | ∅ ̸= B′ ⊆ B and B′ is finite}, and

• Cn−(B) = {x | x ⊣⊢ ⊤ or ∃a ∈ B such that a ⊢ x}.
Definition 9. For all inputs A, we put:

out∅(G,A) = Eq(G(Cn(A)))

outS(G,A) = Eq(G(Cn(A))) ∪ Eq(G(Cn(A)))

outD(G,A) = Eq(Disj(G(Cn(A))))

outA(G,A) = Eq(Conj(G(Cn(A))))

outW(G,A) = Cn−(G(Cn(A)))

For each R ∈ {∅, S,D,A,W}, outR(G) is analogously de-
fined as before.
Proposition 10. For each R ∈ {∅, S,D,A,W},

derivR(G,A) = outR(G,A) for all inputs A.

Proof. We distinguish five cases depending on the choices
of R.

Case R = ∅. From left to right: Suppose x ∈
deriv∅(G,A). Then (a, x) ∈ deriv∅(G) for some conjunc-
tion of formulas in A. It is easy to verify that out∅(G)
contains G and is closed under T, SI, and OEQ. Hence,
deriv∅(G) ⊆ out∅(G) (since deriv∅(G) is the small-
est such set). Therefore, (a, x) ∈ out∅(G), i.e., x ∈
out∅(G, a). Note that out∅(G, a) ⊆ out∅(G,A). Hence,
x ∈ out∅(G,A).

From right to left. Suppose x ∈ out∅(G,A) =
Eq(G(Cn(A))). We consider two cases: (1) x ⊣⊢ ⊤. Since
(⊤,⊤) ∈ deriv∅(G) by T, (⊤, x) ∈ deriv∅(G) by OEQ.
Thus, x ∈ deriv∅(G,A). (2) Otherwise, there must be
(b, y) ∈ G such that b ∈ Cn(A) and y ⊣⊢ x. Since
b ∈ Cn(A), by the compactness of propositional logic, there
must be a conjunction a of formulas in A such that a ⊢ b.
Since (b, y) ∈ G, (b, y) ∈ deriv∅(G). Since deriv∅(G)
is closed under SI, (a, y) ∈ deriv∅(G). Thus, by OEQ,
(a, x) ∈ deriv∅(G). Since a is a conjunction of formulas
in A, x ∈ deriv∅(G,A).

Case R = S. From left to right. It suffices to show that
derivS(G) ⊆ outS(G). It is straightforward to verify that
outS(G) contains G and is closed under T, SI, OEQ, and ST.
Since derivS(G) is the smallest such set, derivS(G,A) ⊆
outS(G,A).

From right to left. Suppose x ∈ outS(G,A) =

Eq(G(Cn(A)))∪Eq(G(Cn(A))). If x ∈ Eq(G(Cn(A))),
then x ∈ derivS(G,A) since x ∈ deriv∅(G,A)

1outAW(G, a) = outAW(G, {a}).

and deriv∅(G,A) ⊆ derivS(G,A). Otherwise, x ∈
Eq(G(Cn(A))). Then x = ¬y for some formula y ∈
Eq(G(Cn(A))) ⊆ derivS(G,A). Since y ∈ derivS(G,A).
There must be a conjunction a of formulas in A such
that (a, y) ∈ derivS(G). Then (a, x) ∈ derivS(G) since
derivS(G) is closed under ST. Thus, x ∈ derivS(G,A).

Case R = D. From left to right. It suffices to show that
derivD(G) ⊆ outD(G), which can be shown by verifying
that outD(G) contains G and is closed under the rules T, SI,
OEQ, and DT.

From right to left. Suppose x ∈ Eq(Disj(G(Cn(A)))).
We consider two cases. The case x ⊣⊢ ⊤ can be shown
as before. Otherwise, there is a finite and nonempty subset
B = {y1, . . . , yn} ⊆ G(Cn(A)) such that x ⊣⊢

∨
B.

For each yi ∈ B, since yi ∈ G(Cn(A)), there must
be ai ∈ Cn(A) such that (ai, yi) ∈ G ⊆ derivD(G).
Thus, (

∧
1≤j≤n

aj , yi) ∈ derivD(G) for each i by SI. Hence,

(
∧

1≤j≤n

aj ,
∨

B) ∈ derivD(G) by DT. Note that
∧

1≤j≤n

aj ∈

Cn(A). Hence, by the compactness of propositional logic,
there must be a conjunction a of formulas in A such that a ⊢∧
1≤j≤n

aj . By SI, (a,
∨

B) ∈ derivD(G). Since x ⊣⊢
∨

B,

(a, x) ∈ derivD(G) by OEQ. Therefore, x ∈ derivD(G,A).
Case R = A. It is analogous to the case R = D.
Case R = W. From left to right. It suffices to show that

derivW(G) ⊆ outW(G), which can be shown by verifying
that outW(G) contains G and is closed under the rules T, SI,
OEQ, and WO.

From right to left. Suppose x ∈ outW(G,A). We consider
only the case x ̸⊣⊢ ⊤. Then there is y ∈ G(Cn(A)) such
that y ⊢ x. Since y ∈ G(Cn(A)), there is (b, y) ∈ G such
that b ∈ Cn(A). Since b ∈ Cn(A), by propositional logic
there must be a conjunction a of formulas in A such that
a ⊢ b. Since (b, y) ∈ G and derivW(G) contains G, (b, y) ∈
derivW(G). By SI, (a, y) ∈ derivW(G). By WO, (a, x) ∈
derivW(G). Hence, x ∈ derivW(G,A).

The semantic characterization of derivSD and derivDA re-
mains to be considered. Next we consider derivSD.

Definition 11. For all inputs A, let outSD(G,A) =

{x | ∃A1, . . . , An ⊆ G(Cn(A)) ∪G(Cn(A)) such that
n ≥ 0, each Ai is finite, and x ⊣⊢

∨
1≤i≤n

∧
Ai}.

Proposition 12. derivSD(G,A) = outSD(G,A).

Proof. From left to right. It suffices to show derivSD(G) ⊆
outSD(G). This can be shown by verifying that outSD(G)
contains G and is closed under the rules T, SI, OEQ, ST,
and DT. We show only the case for ST. Suppose (a, x) ∈
outSD(G). Then x ∈ outSD(G, a). By definition, there must
be finite A1, . . . , An ⊆ G(Cn(a)) ∪ G(Cn(a)) such that
x ⊣⊢

∨
1≤i≤n

∧
Ai. We distinguish two cases. (1) If n =

0, then x ⊣⊢ ⊥. Since out(G) is closed under T and SI,
(a,⊤) ∈ outSD(G). Thus, (a,¬x) ∈ outSD(G) by OEQ. (2)

n ̸= 0. Since x ⊣⊢
∨

1≤i≤n

∧
Ai, by propositional logic,

¬x ⊣⊢
∨

{¬a1 ∧ · · · ∧ ¬an | ai ∈ Ai for each 1 ≤ i ≤ n}

Thus, we can let B1, B2, . . . , Bm be an enumeration of all
sets B such that B = {¬a1, . . . ,¬an} with ai ∈ Ai for
each 1 ≤ i ≤ n. Then ¬x ⊣⊢

∨
1≤i≤m

∧
Bi. Note that for

each Bi and formula b ∈ Bi, there is c ∈ G(Cn(a)) ∪
G(Cn(a)) such that c ⊣⊢ b. Let us denote by B′

i the set
obtained by replacing each formula in Bi with the equiva-
lent in G(Cn(a)) ∪ G(Cn(a)). Then it holds that ¬x ⊣⊢∨
1≤i≤m

∧
B′

i. Since B′
i ⊆ G(Cn(a)) ∪ G(Cn(a)) for each

1 ≤ i ≤ m, x ∈ outSD(G, a).
From right to left. Suppose x ∈ outSD(G,A). There must

be finite A1, . . . , An ⊆ G(Cn(A)) ∪ G(Cn(A)) such that
x ⊣⊢

∨
1≤i≤n

∧
Ai. If n = 0, then x ⊣⊢ ⊥. Since (⊤, x) ∈

derivSD(G) (by T, ST, and OEQ), x ∈ derivSD(G,A). Oth-
erwise, for each Ai and formula y ∈ Ai, y ∈ derivS(G,A)
by Proposition 10. Hence, y ∈ derivSD(G,A). Thus, there
must be a conjunction y∗ of formulas in A such that
(y∗, y) ∈ derivSD(G). By SI and AND2, it follows that
(
∧

y∈Ai

y∗,
∧
Ai) ∈ derivSD(G) for each i. By SI and DT,

it follows that (
∧

1≤i≤n

∧
y∈Ai

y∗,
∨

1≤i≤n

∧
Ai) ∈ derivSD(G).

Thus, by OEQ, (
∧

1≤i≤n

∧
y∈Ai

y∗, x) ∈ derivSD(G). Therefore,

x ∈ derivSD(G,A).

Finally, we consider derivDA.

Definition 13. For all inputs A, let outDA(G,A) =

{x | ∃A1, . . . , An ⊆ G(Cn(A)) such that
n ≥ 1, each Ai is finite, and x ⊣⊢

∨
1≤i≤n

∧
Ai}.

Proposition 14. derivDA(G,A) = outDA(G,A).

Proof. From left to right. It suffices to show derivDA(G) ⊆
outDA(G). This can be done by verifying that outDA(G)
contains G and is closed under T, SI, OEQ, DT, and
AND. We show only the case for AND. Suppose both
(a, x) and (a, y) are in outDA(G). Then x ∈ outDA(G, a)
and y ∈ outDA(G, a). By definition, there must be finite
A1, . . . , An, B1, . . . , Bm ⊆ G(Cn(a)) such that

x ⊣⊢
∨

1≤i≤n

∧
Ai and y ⊣⊢

∨
1≤j≤m

∧
Bj .

Let C = {Ai ∪ Bj | 1 ≤ i ≤ n and 1 ≤ j ≤ m}. By
propositional logic, x∧y ⊣⊢

∨
C∈C

∧
C. It follows that x∧y ∈

outDA(G, a), i.e., (a, x ∧ y) ∈ outDA(G).
The direction from right to left can be shown similarly as

in the proof of Proposition 12.

2Note that derivSD(G) = derivSDA(G) from Observation 5.

We conclude this section with an example illustrating the
difference between the 8 I/O logics.

Example 15. Let G = {(⊤, x), (a, y)} and A = {a}.

• out∅(G,A) = Eq(x, y).
• outS(G,A) = Eq(x, y) ∪ Eq(x, y).
• outD(G,A) = Eq(x, y, x ∨ y).
• outA(G,A) = Eq(x, y, x ∧ y).
• outW(G,A) = Cn−(x, y).
• outDA(G,A) = Eq(x, y, x ∨ y, x ∧ y).
• outAW(G,A) = Cn(x, y).
• ¬(x ↔ y) ∈ outSD(G,A).

Note that ¬(x ↔ y) is not in outR(G,A) for all R ̸= SD.

4 Filtering Information by Trust
In the last section, we proposed a family of I/O logics for in-
ferring trust. In this section, given a set A of statements that
have been informed, we investigate which information con-
tained in A will be believed/accepted by a rational agent. For
this, we propose an information filtering architecture based
on trust. Our logical analysis shows that some rules for trust
inference are redundant with respect to the mechanism.

Belief change has been extensively studied in, e.g., be-
lief revision theory (Alchourrón, Gärdenfors, and Makinson
1985) and dynamic epistemic logic (van Ditmarsch, van der
Hoek, and Kooi 2008). In both approaches, the incoming
information is always completely accepted without scrutiny
(in AGM belief revision, the success postulate is included
and in public announcement logic, the announced (proposi-
tional) formulas are always believed). However, when trust
is considered in the process of belief change, not all incom-
ing information will be believed, because “trust plays the
role of filtering out noisy information” (Liau 2003).

We present a simple information filtering architecture in
the next definition. The core idea is that a piece of informa-
tion will be believed if (and only if) it is implied by what is
both informed and trusted.

Definition 16. Let R ∈ {∅, S,D,A,W,SD,DA,AW}. The
operation outfR is defined as follows.

outfR(G,A) =

{
Cn(∅) if A is inconsistent,
Cn(outR(G,A) ∩ Cn(A)) otherwise.

Note that the above definition ensures that nothing (except
for tautologies) will be believed if the input is inconsistent.
Let us illustrate the definition by an example:

Example 17. Let G = {(⊤, x), (a, y)} and A = {x, y}.
Then out∅(G,A) = Eq(x). Thus, outf∅(G,A) = Cn(x).

Next, we list some obvious properties of outfR: the rules
T, OEQ, WO, DT, and AND are valid for outfR. A restricted
form of SI is also valid, whereas the rule ST is invalid.

Observation 18. Let outfR be a filtering operation. The fol-
lowing holds for all generating sets G and inputs A:

• ⊤ ∈ outfR(G,A).
• if x ⊢ y, then x ∈ outfR(G,A) implies y ∈ outfR(G,A).

• if x, y ∈ outfR(G,A), then x ∨ y, x ∧ y ∈ outfR(G,A).
• if x ∈ outfR(G,A) then x ∈ outfR(G,B), provided that
A ⊆ Cn(B) and B is consistent.

• x ∈ outfR(G,A) implies that ¬x /∈ outfR(G,A).

The next three observations are about the redundancy of
the rule AND with respect to the information filtering ar-
chitecture. This fact has been informally mentioned in (Liau
2003). Our information filtering mechanism enables us to
formally define the notion of “redundancy”, and we obtain
formal results of the redundancy of certain rules.

Observation 19. outfA(G,A) = outf∅(G,A).

Proof. We consider only the case when A is consistent. The
inclusion outf∅(G,A) ⊆ outfA(G,A) follows directly from
the fact that out∅(G,A) ⊆ outA(G,A). It remains to show
that outfA(G,A) ⊆ outf∅(G,A). By definition and the prop-
erties of Cn, it suffices to show that outA(G,A)∩Cn(A) ⊆
Cn(out∅(G,A) ∩ Cn(A)). Let x ∈ outA(G,A) ∩ Cn(A).
If x ⊣⊢ ⊤, then x ∈ Cn(out∅(G,A) ∩ Cn(A). Other-
wise, (by the definition of outA) there must be finite and
non-empty B ⊆ G(Cn(A)) such that x ⊣⊢

∧
B. It is

easy to see that B ⊆ out∅(G,A) ∩ Cn(A). Hence, x ∈
Cn(out∅(G,A) ∩ Cn(A)).

Observation 20. outfDA(G,A) = outfD(G,A).

Proof. We consider only the case when A is consistent. We
show that outfDA(G,A) ⊆ outfD(G,A) (the other direction
is trivial). By definition and the properties of Cn, it suffices
to show that outDA(G,A) ∩ Cn(A) ⊆ Cn(outD(G,A) ∩
Cn(A)). Let x ∈ outDA(G,A) ∩ Cn(A). The case x ⊣⊢ ⊤
is trivial. We assume x ̸⊣⊢ ⊤. By the definition of outDA,
there are finite and nonempty A1, . . . , An ⊆ G(Cn(A))
(n ≥ 1) such that x ⊣⊢

∨
1≤i≤n

∧
Ai. Applying (the dis-

tribution law of) propositional logic, this can be rewritten
as x ⊣⊢

∧
1≤j≤m

∨
Bj where each Bj ⊆ G(Cn(A)). For

each Bj , it is easy to see that
∨
Bj ∈ Disj(G(Cn(A))) ⊆

outD(G,A) and
∨
Bj ∈ Cn(A) (since x ∈ Cn(A)). Hence,

{
∨

Bj | 1 ≤ j ≤ m} ⊆ outD(G,A) ∩ Cn(A). Thus,
x ∈ Cn(outD(G,A) ∩ Cn(A)).

Observation 21. outfAW(G,A) = outfW(G,A).

Proof. We consider only the case where A is consistent. We
show that outfAW(G,A) ⊆ outfW(G,A) (the other direction
is trivial). By definition and the properties of Cn, it suffices
to show that outAW(G,A) ∩ Cn(A) ⊆ Cn(outW(G,A) ∩
Cn(A)). Let x ∈ outAW(G,A) ∩ Cn(A). If x ⊣⊢ ⊤,
then x ∈ Cn(outW(G,A) ∩ Cn(A)). Otherwise, since
x ∈ outAW(G,A) = Cn(G(Cn(A))), there must be
b1, . . . , bn ∈ G(Cn(A)) (n ≥ 1) such that

∧
1≤i≤n

bi ⊢ x.

Then x ⊣⊢
∧

1≤i≤n

(x∨bi). For each i, x∨bi ∈ outW(G,A) =

Cn−(G(Cn(A))) and x∨ bi ∈ Cn(A) (since x ∈ Cn(A)).
Hence, x ∈ outfW(G,A) = Cn(outW(G,A)∩Cn(A)).

According to Observations 19, 20, and 21, there are at
most 5 different filtering logics: outf∅ , outfS , outfD, outfW, and
outfSD. Next, we show that they are mutually different by
some examples.
Example 22. Let G = {(⊤,¬a ∧ b), (⊤, b), (⊤, a ∧ ¬b)}
and A = {a}. We have:
• out∅(G,A) = Eq(¬a ∧ b, b, a ∧ ¬b).

Thus, outf∅(G,A) = Cn(∅);
• outS(G,A) = Eq(¬a∧b, a∨¬b, b,¬b, a∧¬b,¬a∨b,⊥).

Thus, outfS (G,A) = Cn(a ∨ ¬b).
• outD(G,A) = Eq(Disj(¬a ∧ b, b, a ∧ ¬b)).

Therefore, outfD(G,A) = Cn(a ∨ b).
• Since a ∈ outSD(G,A), outfSD(G,A) = Cn(a).

The above example shows that outf∅ , outfS , outfD, and
outfSD are different from each other. It remains to show the
independence of outfW.
Example 23. Let G = {(⊤, a), (⊤, b)} and A = {a ∨
c}. Then outW(G,A) = Cn−(a, b). Therefore, a ∨ c ∈
outfW(G,A). However, a∨c /∈ outfSD(G,A) because a∨c /∈
outSD(G,A). Therefore, a ∨ c is in none of outf∅(G,A),
outfS (G,A), and outfD(G,A).

5 Belief Manipulation
In the previous section, we have proposed a mechanism for
the acceptance of information by rational agents based on
their trust. A natural question is whether the mechanism can
be manipulated. In Example 1, e.g., the epidemiologist may
intend that the public believe the effects of vaccination on re-
ducing the spread of disease. In this case, it is meaningful to
know whether there exist statements by the epidemiologist
that can make the public believe the effects of vaccination.
In this section, we investigate the problem of belief manipu-
lation in the information filtering architecture. We show that
certain information filtering operations are equivalently ma-
nipulable, in the sense that the sets of manipulable formulas
are the same. Furthermore, we characterize the set of manip-
ulable formulas under various filtering operations.

Definition 24. Given a filtering operation outfR and a gen-
erating set G, a formula x is manipulable under G and outfR
if there exists an input A such that x ∈ outfR(G,A).
Example 25. Let G = {(⊤, x), (a, y)}. The formula x is
manipulable under G and outf∅ because x ∈ outf∅(G, x). On
the contrary, ¬x is not manipulable under G and outf∅ .

Before characterizing the set of manipulable formulas, we
first explore the relationship between the sets of manipulable
formulas under different filtering operations.

Definition 26. Let two filtering operation outfR and outf
R′

be given. We say outfR and outf
R′ are equivalently manipu-

lable, notation outfR ≡ outf
R′ , if for all generating sets G,

the manipulable formulas under G and outfR are the same as
that under G and outf

R′ .

In the last section, we have seen that the rule AND is re-
dundant with respect to the information filtering architec-
ture. Thus, the next observation is obvious.

Observation 27. outf∅ ≡ outfA, outfD ≡ outfDA, and outfW ≡
outfAW.

Next, we show that the rule DT is also redundant, as far
as only the manipulable formulas are concerned. For this,
we need the next lemma. Recall that a set V of formulas
is ”maximal consistent” if V is consistent, and no proper
superset of V is consistent.

Lemma 28. Let outfR and G be given. A formula x (x ̸⊣⊢
⊤) is manipulable under G and outfR iff there is a maximal
consistent set V such that x ∈ Cn(outR(G,V) ∩ V).

Proof. The direction from right to left is trivial. From left
to right. Suppose x is manipulable and x ̸⊣⊢ ⊤. Then there
exists A such that x ∈ outfR(G,A). Since x ̸⊣⊢ ⊤, A must
be consistent. Therefore, x ∈ Cn(outR(G,A) ∩ Cn(A)).
Note that, by the Lindenbaum lemma, there exists a maximal
consistent set V ⊇ A. Since outR(G,A) ⊆ outR(G,V) and
Cn(A) ⊆ Cn(V) = V , x ∈ Cn(outR(G,V) ∩ V).

Observation 29. outf∅ ≡ outfD.

Proof. We need to show that for all formulas x and gener-
ating sets G, x is manipulable under outf∅ and G iff x is
manipulable under outfD and G.

The case x ⊣⊢ ⊤ is trivial. We consider only the case
x ̸⊣⊢ ⊤. The direction from left to right follows from the
fact that outf∅(G,A) ⊆ outfD(G,A) for any A. From right
to left. Suppose x is manipulable under outfD and G. By
Lemma 28, there is a maximal consistent set V such that
x ∈ Cn(outD(G,V) ∩ V). To show that x is manipulable
under out∅, it suffices to show that Cn(outD(G,V)∩ V) ⊆
Cn(out∅(G,V) ∩ V). By the properties of Cn, it suffices
again to show that outD(G,V)∩V ⊆ Cn(out∅(G,V)∩V).
For each y ∈ outD(G,V) ∩ V , if y ⊣⊢ ⊤ then y ∈
Cn(out∅(G,V) ∩ V). Otherwise, y ∈ V and there is fi-
nite and nonempty B ⊆ G(Cn(V)) such that y ⊣⊢

∨
B.

Since y ∈ V ,
∨
B ∈ V . By the property of maximal con-

sistent set, there is a b ∈ B such that b ∈ V . Note that
b ∈ G(Cn(V)) ⊆ out∅(G,V). Hence, b ∈ out∅(G,V)∩V .
Hence, y ∈ Cn(out∅(G,V) ∩ V).

Observation 30. outfS ≡ outfSD.

Proof. We need to show that for all formulas x and gener-
ating sets G, x is manipulable under outfS and G iff x is
manipulable under outfSD and G.

By the same reasoning as in the proof of Observa-
tion 29, we need only to show that outSD(G,V) ∩ V ⊆
Cn(outS(G,V)∩V) (for any maximal consistent set V). Let
y ∈ outSD(G,V)∩ V . Then there exist finite A1, . . . , An ⊆
G(Cn(V)) ∪G(Cn(V)) such that y ⊣⊢

∨
1≤i≤n

∧
Ai. Since

y is consistent, n ̸= 0. Since y ∈ V ,
∨

1≤i≤n

∧
Ai ∈ V .

By the property of maximal consistent sets, there is some
1 ≤ j ≤ n such that

∧
Aj ∈ V . Thus, Aj ⊆ V .

On the other hand, since Aj ⊆ G(Cn(V) ∪ G(Cn(V))),
Aj ⊆ outS(G,V). Hence, Aj ⊆ outS(G,V)∩ V . Note that
Aj ⊢ y. Therefore, y ∈ Cn(outS(G,V) ∩ V).

According to Observations 27, 29, and 30, there are at
most 3 filtering operations that are not equivalently manip-
ulable: outf∅ , outfS , and outfW. The next two examples show
that the sets of manipulable formulas under the three filter-
ing operations are different from each other.

Example 31. To see outf∅ ̸≡ outfS , we employ the same
G as in Example 25, i.e., G = {(⊤, x), (a, y)}. We have
seen that ¬x is not manipulable under G and outf∅ . However,
¬x ∈ outfS (G,A) where A = {¬x}.

Example 32. Let G = {(p,⊥)}. The formula p is manipu-
lable under G and outfW since p ∈ outfW(G, p). However, p
is not manipulable under G and any of outf∅ and outfS .

Example 32 shows that the manipulable formulas under
outf∅ and outfW are different. But what is the exact rela-
tionship between them? The next observation answers the
question. For any generating set G and formula x, let Gx =
{(a, b ∨ x) | (a, b) ∈ G}.

Observation 33. Let G be given. For all formulas x, x is
manipulable under G and outfW iff x is manipulable under
Gx and outf∅ .

Proof. It suffices to show that for all inputs A,

x ∈ outfW(G,A) iff x ∈ outf∅(G
x, A).

We consider only the case when A is consistent. From left
to right. Suppose x ∈ outfW(G,A). Then, by definition,
there are a1, . . . , an ∈ Cn−(G(Cn(A))) ∩ Cn(A) such
that

∧
1≤i≤n

ai ⊢ x. For each i, without loss of generality,

we assume that ai ̸⊣⊢ ⊤. Since ai ∈ Cn−(G(Cn(A))),
there must be bi ∈ G(Cn(A)) such that bi ⊢ ai. Then∧
1≤i≤n

bi ⊢ x. Therefore,
∧

1≤i≤n

(bi ∨ x) ⊢ x. Note that for

each i, bi ∨ x ∈ Gx(Cn(A)) and bi ∨ x ∈ Cn(A). Hence,
x ∈ outf∅(G

x, A).
From right to left. Since A is consistent, it suffices to show

that out∅(Gx, A) ⊆ outW(G,A). Let y ∈ out∅(G
x, A) =

Eq(Gx(Cn(A))). We consider only the case y ̸⊣⊢ ⊤. Then
there is (a, b ∨ x) ∈ Gx such that a ∈ Cn(A) and b ∨ x ⊣⊢
y. Since (a, b) ∈ G and b ⊢ y, y ∈ Cn−(G(Cn(A))) =
outW(G,A).

We conclude this section by characterizing the manipula-
ble formulas under outf∅ , outfS , and outfW. For all generating
sets G, let b(G) = {a | (a, x) ∈ G}.

Proposition 34. A formula x is manipulable under G and
outf∅ (outfS , respectively) iff there are B ⊆ b(G) and H ⊆
G(B) (H ⊆ G(B) ∪ G(B), respectively) such that B ∪H
is consistent and x ∈ Cn(H).

Proof. We show only the case for outf∅ . From right to left.
We show that

x ∈ outf∅(G,B∪H) = Cn(out∅(G,B∪H)∩Cn(B∪H)).

Since x ∈ Cn(H), it suffices to show that H ⊆ out∅(G,B∪
H) and H ⊆ Cn(B ∪ H). The latter is trivial. The former
holds because H ⊆ G(B) ⊆ out∅(G,B ∪H).

From left to right. Suppose x is manipulable. If x ⊣⊢ ⊤,
we can let B = H = ∅. Assume x ̸⊣⊢ ⊤. Then x ∈
outf∅(G,A) for some consistent A. Let B = b(G) ∩ Cn(A)
and H = G(B) ∩ Cn(A). It is clear that B ∪ H is con-
sistent. To show that x ∈ Cn(H), it suffices to show that
(out∅(G,A) ∩ Cn(A)) ⊆ Cn(H). Let y ∈ out∅(G,A) ∩
Cn(A) and y ̸⊣⊢ ⊤. Then there is z ∈ G(Cn(A)) such
that z ⊣⊢ y. Since G(Cn(A)) = G(B), z ∈ G(B). Since
z ∈ Cn(A), z ∈ H . Thus, y ⊣⊢ z ∈ Cn(H).

Proposition 35. A formula x is manipulable under G and
outfAW (= outfW) iff there is B ⊆ b(G) such that B ∪ {x} is
consistent and x ∈ Cn(G(B)).

Proof. From right to left. It suffices to show that x ∈
outfAW(G,B ∪ {x}). Since B ∪ {x} is consistent, we only
need to show that

x ∈ Cn(Cn(G(Cn(B ∪ {x}))) ∩ Cn(B ∪ {x})).

This holds because x ∈ Cn(G(B)) and x ∈ Cn(B ∪ {x}).
From left to right. Suppose x is manipulable. Then there
exists A such that x ∈ outfAW(G,A). The case where
A is inconsistent is trivial. If A is consistent, then x ∈
Cn(Cn(G(Cn(A))) ∩ Cn(A)). Let B = {a ∈ b(G) |
a ∈ Cn(A)}. It is clear that B ∪ {x} is consistent (since
B ∪ {x} ⊆ Cn(A)) and G(B) = G(Cn(A)). Therefore,
x ∈ Cn(G(B)).

6 Related Work
Logic of Trust. Epistemic trust has been studied in the log-
ical literature, e.g., (Liau 2003; Dastani et al. 2005; Jiang
and Naumov 2022). Most of them studied unconditional
trust using modal logic, whereas our paper generalizes trust
to a conditional setting and employs the I/O logic frame-
work. Compared with the modal logic approach, the I/O
logic framework is more flexible in combining different in-
ference rules. Nevertheless, the I/O language is also more
restrictive (only propositional trust can be expressed). It can
be expected that some of our I/O logics and filtering opera-
tions can be embedded into some modal logics of trust, e.g.,
in (Liau 2003).

The logics of trust are also studied in the belief revision
context, e.g., (Booth and Hunter 2018) and (Singleton and
Booth 2022). Booth and Hunter suggest representing agents’
trust as a partition Π over the set of all valuations (states) on
a given finite set of atoms. The semantic intuition is that the
agent trusts the source to distinguish between states belong-
ing to different cells in the partition Π. Given an informed
statement φ, the filtered information by Π is semantically
represented by Π(φ) =

⋃
{Π(s) | s |= φ}, where s is a

state, Π(s) is the element of Π containing s, and |= is the

satisfaction in classical propositional logic. We remark that
this approach can be simulated using the operation outfSD.
But, due to the space limitation, we cannot include the proof.

Belief Manipulation. Belief manipulation is concerned with
the ability of one agent to convince another to hold certain
beliefs (Hunter, Schwarzentruber, and Tsang 2017; Eiter,
Hunter, and Schwarzentruber 2021). Similar notions, such as
“knowability”, are also studied in dynamic epistemic logic
(Balbiani et al. 2008). Strictly speaking, our definition of
“manipulable formulas” does not correspond to the exact
notion of “belief manipulation”, because in our framework,
agents’ belief states are not represented and no mechanism
for belief change is included. Our emphasis is rather on ma-
nipulation in the process of trust-based information filter-
ing. It can be imagined that, even if certain formulas cannot
be manipulated in our information filtering architecture, one
agent (the sender) is still able to make another (the receiver)
believe the formulas. To model this, we need to extend our
framework with, e.g., belief revision theory.

Input/Output Logic. I/O logic is originally introduced in
(Makinson and Van Der Torre 2000). Although I/O logic
is an influential framework for normative reasoning, it can
also be applied to other domains, such as causal reasoning
and nonmonotonic logic (Makinson and van der Torre 2001;
Bochman 2005). In the literature, I/O logics without WO
have been studied, see (Stolpe 2008) and (Parent and van der
Torre 2019). But, in both of (Stolpe 2008) and (Parent and
van der Torre 2019), the rule AND is included. I/O logics
without WO and AND is considered in (Farjami 2020), but
in an algebraic setting.

7 Conclusion and Future Work
Trust can be inferred from other information and plays the
role of filtering out noisy information. In this paper, we first
developed a family of new I/O logics for inferring trust and,
then, presented an information filtering architecture based
on trust inference. We also investigated the manipulation
problem and we characterized the manipulable formulas in
the information filtering architecture. Our main results (see
Table 1) are about the redundancy of inference rules for
trust: AND is redundant with respect to information-filtering
mechanism and, furthermore, both AND and DT are redun-
dant with respect to belief manipulation.

For future work, we plan to study the redundancy problem
for other inference rules in I/O logic. We can also study a
conditional notion of manipulability, because we may want
to convince others to believe something while not revealing
secret information. Finally, we can extend our architecture
with belief revision operations.

out∅ outA outD outDA outS outSD outW outAW

out∅ = outfA outfD = outfDA outfS outfSD outfW = outfAW

out∅ ≡ outfA ≡ outfD ≡ outfDA outfS ≡ outfSD outfW ≡ outfAW

Table 1: Summary of main results.

References
Alchourrón, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the Logic of Theory Change: Partial Meet Contraction
and Revision Functions. The Journal of Symbolic Logic,
50(2): 510–530.
Balbiani, P.; Baltag, A.; van Ditmarsch, H.; Herzig, A.;
Hoshi, T.; and de Lima, T. 2008. ‘Knowable’ as ‘Known
after an Announcement’. The Review of Symbolic Logic,
1(3): 305–334.
Becker, M. Y.; Russo, A.; and Sultana, N. 2012. Foundations
of Logic-Based Trust Management. In 2012 IEEE Sympo-
sium on Security and Privacy, 161–175.
Bochman, A. 2005. Explanatory Nonmonotonic Reasoning.
WORLD SCIENTIFIC.
Booth, R.; and Hunter, A. 2018. Trust as a precursor to be-
lief revision. Journal of Artificial Intelligence Research, 61:
699–722.
Dastani, M.; Herzig, A.; Hulstijn, J.; and van der Torre, L.
2005. Inferring Trust. In Leite, J.; and Torroni, P., eds., Com-
putational Logic in Multi-Agent Systems, 144–160. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-540-
31857-6.
Eiter, T.; Hunter, A.; and Schwarzentruber, F. 2021. How
Hard to Tell? Complexity of Belief Manipulation Through
Propositional Announcements. In Zhou, Z.-H., ed., Proceed-
ings of the Thirtieth International Joint Conference on Arti-
ficial Intelligence, IJCAI-21, 1866–1872. International Joint
Conferences on Artificial Intelligence Organization. Main
Track.
Farjami, A. 2020. Discursive Input/output Logic: Deontic
Modals, and Computation. Ph.D. thesis, University of Lux-
embourg.
Hunter, A.; Schwarzentruber, F.; and Tsang, E. 2017. Be-
lief Manipulation Through Propositional Announcements.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, 1109–1115.
Jiang, J.; and Naumov, P. 2022. In Data We Trust: The Logic
of Trust-Based Beliefs. In Raedt, L. D., ed., Proceedings
of the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI-22, 2683–2689. International Joint
Conferences on Artificial Intelligence Organization. Main
Track.
Leturc, C.; and Bonnet, G. 2018. A Normal Modal Logic
for Trust in the Sincerity. In Proceedings of the 17th In-
ternational Conference on Autonomous Agents and Multi-
agent Systems, AAMAS ’18, 175–183. Richland, SC: Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.
Liau, C.-J. 2003. Belief, information acquisition, and trust in
multi-agent systems – A modal logic formulation. Artificial
Intelligence, 149(1): 31–60.
Makinson, D.; and Van Der Torre, L. 2000. Input/output
logics. Journal of philosophical logic, 29: 383–408.
Makinson, D.; and van der Torre, L. 2001. Constraints for
Input/Output Logics. Journal of Philosophical Logic, 30(2):
155–185.

Parent, X.; and van der Torre, L. 2019. Input/output logics
without weakening. Filosofiska Notise, 6(1): 189–209.
Singleton, J.; and Booth, R. 2022. Who’s the Expert? On
Multi-source Belief Change. In Proceedings of the 19th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning, 331–340.
Stolpe, A. 2008. Normative Consequence: The Problem of
Keeping It Whilst Giving It up. In van der Meyden, R.; and
van der Torre, L., eds., Deontic Logic in Computer Science,
174–188. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-540-70525-3.
van Ditmarsch, H.; van der Hoek, W.; and Kooi, B. 2008.
Dynamic Epistemic Logic. Springer, Dordrecht.

