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Abstract

Metaproteomics is an emerging approach for studying microbiomes, of-
fering the ability to characterize proteins that underpin microbial func-
tionality within diverse ecosystems. As the primary catalytic and struc-
tural components of microbiomes, proteins provide unique insights
into the active processes and ecological roles of microbial communities.
By integrating metaproteomics with other omics disciplines, researchers
can gain a comprehensive understanding of microbial ecology, interac-
tions, and functional dynamics. This review, developed by the Metapro-
teomics Initiative (www.metaproteomics.org), serves as a practical guide
for both microbiome and proteomics researchers, presenting key princi-
ples, state-of-the-art methodologies, and analytical workflows essential to
metaproteomics. Topics covered include experimental design, sample
preparation, mass spectrometry techniques, data analysis strategies, and
statistical approaches.
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INTRODUCTION

The importance of microbiomes in nearly all processes
within the biosphere is increasingly clear. Composed of
bacteria, bacteriophages, archaea, yeasts, fungi, protozoa,
and viruses, microbiomes are highly diverse in taxo-
nomic composition. A microbiome and its theater of
activity—including microbial elements such as genes,
transcripts, proteins, and metabolites—together form a
microbiome [1]. Microbiomes are, in most cases, highly
structured in both membership and function. This un-
derscores the need to understand microbiomes and their
interactions with their environment or eukaryotic hosts,
whether beneficial or harmful. However, the complexity
of these systems challenges traditional research tools,
particularly cultivation-dependent approaches, which,
given the wealth of intra-organism interactions, are not
scalable for large-scale microbiome studies.

The rapid advancement of omics-based approaches
has opened new avenues for systems biology-based
research into the complexity of microbiomes. Shotgun
metagenomics, in particular, has proven to be a pow-
erful tool, offering much deeper insights than older
techniques such as 16S rRNA gene amplicon sequenc-
ing. Metagenomics enables the discovery of complete
genomic inventories, even for uncultured microorgan-
isms, revealing the metabolic and physiological
capabilities of a microbiome. However, it is limited
to predicting functions rather than identifying active
processes. To overcome this limitation, omics ap-
proaches such as metatranscriptomics, metaproteomics,
and metabolomics provide essential insights into actual
gene expression and activity under specific conditions.
Together, these techniques bridge the gap from

this guide is part of our ongoing efforts to educate researchers about me-
taproteomics, address technical challenges, and foster collaborations to
advance microbiome research.

taxonomic structure to genomic potential and dynamic,
context-dependent functions.

Metaproteomics enables the comprehensive analysis of
the proteins expressed and functional in a microbiome,
quantifies their abundances, and characterizes their modi-
fications, interactions, and localizations (Figure 1). Proteins
serve as the primary catalytic units and structural elements
of microbiomes, making metaproteomics a direct reflection
of the microbiome's phenotype [2]. This approach provides
a detailed functional description and examines specific
protein changes associated with structure, homeostasis, and
enzymatic activity. Differences in protein sequences allow
researchers to determine the taxonomic origins of particu-
lar enzyme sets, linking functions to taxonomic units.

Metaproteomics has already been successfully applied in
the context of many impactful studies. It has contributed to
fundamental understanding of microbial ecology, host-
microorganism interactions, and disease mechanisms [3].
It has also improved biotechnological processes such as
anaerobic digestion and wastewater treatment [4-6], sup-
ported environmental monitoring [7], and improved agri-
cultural productivity [8, 9]. Furthermore, it has applications
in describing historical heritage and solving forensic ques-
tions [10]. Readers interested in further details on the ben-
efits of metaproteomics can explore several recommended
reviews [11-15] and perspectives on its future [16-19].

Below, we will discuss three applications in more
depth, starting with deciphering microbial activity in the
ocean for bio-monitoring. The ocean plays an important
role in global climate regulation, carbon storage, and
environmental pollution. Understanding aquatic carbon
and nitrogen fixation processes under both steady-state
and changing environmental conditions, as well as pol-
lutant degradation, is essential for improving climate
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Overview of metaproteomics within the multi-meta-omics toolbox applied to diverse microbiome research domains. This figure

highlights the role of metaproteomics in identifying proteins, quantifying their abundances, detecting posttranslational modifications (PTMs),
mapping protein—protein interactions (PPIs), and determining protein localizations. Metaproteomics complements other omics approaches,
including metagenomics, metatranscriptomics, and metabolomics, to provide a comprehensive understanding of microbial systems. Examples of
microbiome research domains include the human microbiome (oral, skin, gut, lung, and vaginal), animal microbiomes (farm, wild, and laboratory
animals), environmental microbiomes (soil and ocean), and special sample sources (e.g., ancient microbiome samples).

change and pollution monitoring. Recent metaproteomic
studies have shed light on the role of micro-nutrients in
regulating ammonium and carbon processes and have
helped decipher biogeochemical processes across scales
[20-22]. Importantly, the work allowed us to map nitri-
fication and carbon metabolism processes in different
regions and depths and to identify micro-nutrient limi-
tation, particularly zinc limitation indicated by zinc
responsive proteins, as a key modulator of microbial and
algal activity in the ocean [20, 21]. At the same time,
metaproteomics has enabled scientists to decipher the
different roles of zooplankton, bacteria, archaea, and
viruses in carbon cycling in the deep sea. Among other
findings, this study suggests that the high abundance of
extracellular enzymes of comparatively low abundant
gammaproteobacteria in the deep sea, which might be

driven by bacteriophages-induced cell lysis, promotes
carbon cycle under hydrostatic pressure [22]. Together,
these insights have important implications for monitor-
ing ocean activity and may enable the use of microbial
scavenger proteins for bio-monitoring, such as tracking
local zinc levels.

The second application focuses on optimizing biofuel
production and feeding efficiency using metaproteomics.
The growing demand for agricultural and bio-
technological products, including vegetables, meat, and
fuel, combined with increasing waste production such as
plastic and wastewater, call for more efficient production
and waste management strategies. Metaproteomics has
contributed to deciphering microbial pathways for plastic
degradation in the ocean, leading to the identification
of polyamidase, hydrolase, and depolymerase, that is,
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enzymes synthesized by rare taxa [23]. These taxa and
enzymes hold promise for large-scale industrial scale
plastic degradation. Similarly, metaproteomics helped
our understanding of microbial players and specific
carbohydrate-active enzymes in lignocellulose biofuel
production. This knowledge now enables the optimiza-
tion of biofuel production at high solids loads, a critical
factor for industrial-scale efficiency [24]. Microbiome
composition and carbohydrate-active enzymes also
play an important role in cattle feed efficiency. However,
only a recent metaproteomics-based analysis of rumen
microbiota from different cows has demonstrated
that functional redundancy on protein level and niche
partitioning are the underlying factors influencing feed
efficiencies [25]. These findings provide a foundation for
developing pre- and pro-biotic intervention strategies
to optimize feeding efficiency in response to limited
resources and increasing demand.

The third application focuses on identifying
biomedical disease markers. The human microbiome has
received substantial attention for its role in disease
initiation, progression, and therapy resistance. While
dysbiotic community profiles have been characterized for
various disease states, functional redundancy among
different microbial community patterns limits their
diagnostic utility, necessitating the use of other omics
techniques. Metaproteomics has recently provided
deeper insights into the complex interactions between
diet, the host, and the microbiome in inflammatory
bowel disease (IBD) patients. This approach has led to
the identification of novel biomarkers that may out-
perform calprotectin as an inflammation marker. Nota-
bly, these are biomarkers that could not be detected at
the taxonomic level. The study also established a link
between fecal dietary protein, malabsorption in the small
intestine, and inflammation [26]. These findings high-
light the advantages of metaproteomics over other tech-
niques for studying diet-related diseases and dietary
interventions, as it uniquely enables the simultaneous
analysis of microbiome composition, host responses, and
dietary components.

In addition, the strength of metaproteomics in these
application fields lies in its ability to address many
important questions, such as: (i) What are the metabolic
and physiological processes of microorganisms in diverse
habitats, including environmental, technical, and host-
associated systems? (ii) How do microbiomes respond to
changing conditions, as reflected by differential protein
expression? (iii) How do microbes interact with their
environment, including extracellular and intracellular
protein dynamics? (iv) What posttranslational modifica-
tions (PTMs) regulate protein activity and structure?
(v) How do microbiome phenotypes change over time or

across spatial scales? (vi) How can stable isotope infor-
mation from metaproteomes represent microbial activity
and substrate utilization [4, 27]?

This review, prepared by the Metaproteomics Initia-
tive (Www.metaproteomics.org), aims to serve as a
practical and accessible guide to metaproteomics. A de-
tailed overview of the organization and presentation of
this collaborative work is provided in Section A collab-
orative effort: Writing a comprehensive review with
members of the Metaproteomics Initiative, highlighting
our dedication to delivering a comprehensive and valu-
able resource for the microbiome research community.

BASICS OF PROTEOMICS

Proteins are the essential structures and machinery that
execute the instructions encoded in DNA, performing
tasks ranging from catalyzing biochemical reactions to
providing structural support. The term “proteome” refers
to the complete set of proteins expressed in a cell, tissue,
or organism [28]. Proteomics, as a field, seeks to uncover
the identities, quantities, structures, interactions, and
modifications of proteins to better understand their roles
in biological systems.

Although the term “proteome” was coined in the
mid-1990s, its foundations lie in decades of protein
biochemistry research that continues to shape modern
proteomics. One of the earliest applications of proteo-
mics combined gel electrophoresis (1D and 2D) with
mass spectrometry techniques such as matrix-assisted
laser desorption-ionization (MALDI) and electrospray
ionization-liquid chromatography-tandem mass spec-
trometry (ESI-LC-MS/MS) [29]. Initially, protein sam-
ples were separated on a combination of 1D and 2D
gels. One gel was electro-blotted onto a nitrocellulose
membrane and stained using amido black, while the
other gel was silver-stained for higher sensitivity. Pro-
tein bands or spots were excised from the nitrocellulose
membrane, digested with trypsin, and identified using
mass spectrometry. Aligning the nitrocellulose mem-
brane with the silver-stained gel allowed researchers to
locate bands that were difficult to visualize on the less-
sensitive stain. Subsequent improvements, such as in-
gel digestion, eliminated the need for electro-blotting.
Early proteomics efforts also gave rise to software tools
that automated protein identification, and therefore
replaced manual annotation of peptide sequences.
Many of these early innovations, however, formed the
basis for modern proteomics workflows.

The development of gel-free proteomics marked a
significant advancement in the field. This approach
bypasses gel-based separation, proceeding directly from
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protein extraction to digestion and mass spectrometry.
Gel-free methods catalyzed a wave of new techniques,
reagents (e.g., stable isotope labeling by amino acids in
cell culture [SILAC], isotope-coded affinity tags [ICAT],
isobaric tags for relative and absolute quantification
[iTRAQ]), and software, which collectively improved
protein identification, posttranslational modification
(PTM) analysis, quantitation, and multiplexing.
Tasks that were once labor-intensive with 2D gel mass
spectrometry (MS) became faster and more accessible
through gel-free workflows. Moreover, mass spectro-
meters, which were initially optimized for small mole-
cule research, were adapted for proteomics. Over the
past 15 years, proteomics-dedicated mass spectrometers
have been developed, offering greater speed, sensitivity,
and accuracy in peptide identification and quantitation.

Proteomics today falls into two broad methodological
categories: shotgun (or bottom-up) proteomics [30] and
top-down proteomics [31]. Shotgun proteomics, the more
widely used approach, involves enzymatic digestion of
proteins into peptides, which are analyzed by mass
spectrometry. This method is robust and effective for
protein identification and quantification. In contrast,
top-down proteomics directly analyzes intact proteins,
providing insights into sequences, structures, and modi-
fications. Although top-down proteomics offers unique
advantages, it is technically demanding, less commonly
used in single-species proteomics, and not currently
applied in metaproteomics.

A typical bottom-up proteomics workflow begins
with the enzymatic digestion of proteins, most commonly
using trypsin, into smaller peptides. These peptides are
separated through liquid chromatography and analyzed
by tandem mass spectrometry (LC-MS/MS). In the mass
spectrometer, the peptides are ionized, and their intact
forms are detected to generate MS1 spectra. The peptides
are further fragmented to produce MS2 spectra, which
are analyzed by proteomics software. In most cases, da-
tabase searches match these spectra to theoretical spectra
derived from protein databases. This approach enables
the identification and quantification of peptides and
their corresponding proteins. For those seeking a deeper
understanding of proteomics, numerous resources and
reviews provide detailed insights into the field [32-35].

EXPERIMENTAL METHODS IN
METAPROTEOMICS

Metaproteomics expands upon proteomics techniques,
leveraging high-resolution LC-MS/MS instruments
[36, 37] and accompanying software tools for mass
spectra identification. However, metaproteomics goes

iMeta-wi LEYy—L 3o

beyond the straightforward application of proteomics to
microbiome research. Its added complexity arises from
the requirement to consider both species-specific and
functional annotations for each protein. Additionally, the
presence of protein homologs across phylogenetically
related species within a single sample further compli-
cates protein inference.

The key distinctions between proteomics and metapro-
teomics lie in the taxonomic and functional complexity of
microbiomes, the vast size of microbiome databases, and the
challenges associated with sample processing, as well as the
identification and quantitation of peptides and proteins.
Additionally, specialized bioinformatic and statistical tools
are required to track both the taxonomic and functional
annotations of peptides and proteins. These aspects, which
are unique to metaproteomics, will be discussed in detail
throughout the remainder of this article.

This section provides an essential foundational guide to
start with metaproteomics studies (Figure 2). We outline the
basic principles for each step, starting with experimental
design (Section Experiment design), followed by sample
collection, preservation, and preprocessing (Sections Sample
collection, preservation, and storage prior to before pre-
processing and Sample preprocessing). Protein sample
preparation is then described, covering both manual work-
flows (Sections Protein sample preparation: From extraction
to digestion and Separation and fractionation techniques)
and automated workflows (Section Automation). Next, we
explain the basics of MS data acquisition (Section Mass
spectrometry data acquisition methods), before delving into
the detailed bioinformatics workflows used in metapro-
teomics (Sections Peptide identification, protein inference,
and quantification to Downstream statistics).

Experiment design

Aligning experimental design with the
scientific question

A well-designed metaproteomics experiment forms the
basis for generating meaningful insights that directly
address the scientific question being studied. Most impor-
tantly, the experimental design must align with the specific
scientific question being addressed and the resources
available to answer that question. Broadly, three experi-
mental scenarios can be outlined (Figure 3A). (i) Unique
sample without a control: The goal here is to provide a
comprehensive description of the taxonomic and func-
tional units present in the sample, although comparisons
with a control are not possible. Examples include desic-
cated material from a historical Antarctic ice core [38], a
unique biofilm from an industrial storage pool [39],
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FIGURE 2 Overview of key principles and workflows in metaproteomics. A typical metaproteomics workflow begins with experimental
design (Section Experiment design), followed by sample collection, preservation, and preprocessing (Sections Sample collection,
preservation, and storage prior to before preprocessing to Sample preprocessing). Microbial cells undergo enrichment, lysis, protein
extraction, and peptide separation, processed either manually (Sections Protein sample preparation: From extraction to digestion to

Separation and fractionation techniques) or automated (Section Automation) before mass spectrometry data acquisition (Section Mass
spectrometry data acquisition methods). Finally, bioinformatics analysis (Section Computational analysis of metaproteomics data) performs
database searches and interprets the data to reveal microbial functions and ecological insights.

residues from an ancient tomb [40], or medieval dental
calculus [41] were analyzed using metaproteomics.
Differential functional abundances among the identified
microorganisms can reveal their metabolic specialization.
(ii) Comparison of microbiomes under different condi-
tions: This common approach highlights differences
between conditions. Comparisons may involve two condi-
tions (i.e., condition A vs. condition B) or more complex
setups with multiple conditions. Specific cases include
dose-response analyses, where a single parameter such as
stress intensity is modified, or spatial comparisons. Ex-
amples include characterizing microbial communities
along a 5000 km Pacific Ocean transect [21] or analyzing
microbiome responses to various xenobiotics in vitro
[42]. (iii) Longitudinal analysis of a single microbiome or
multiple microbiomes: This strategy captures temporal

dynamics within a microbial community, and potentially
the host's response, by analyzing the same microbiome at
different time points. A more complex approach examines
temporal changes across multiple conditions or sampling
sites. Examples include monitoring gut microbiomes in
Crohn's disease patients post-resection surgery over 1 year
[43] or monthly analyses of specialized microbiomes in a
two-stage anaerobic digester for lignocellulose breakdown,
tracking the dynamics between hydrolytic and methano-
genic subsystems [44].

Some readers may already have experience designing
experiments for metagenomics and understand its
principles. In contrast, metaproteomics offers a different
perspective on microbiome changes (Figure 3B,C).
Metagenomics captures shifts driven by changes in
taxonomic composition, as genomic content within a
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FIGURE 3 Metaproteomic experimental designs and their comparison with metagenomics in studying microbiome dynamics.

(A) Overview of common metaproteomic experimental designs. The left panel illustrates the comparison of microbial protein expression
between species within a unique sample source, lacking a control. The middle panel compares microbiomes under varying conditions, such
as drug treatments, using ex vivo microbiomes to assess microbial responses. The right panel shows longitudinal studies that monitor
temporal changes in microbial protein expression over time. (B) Metagenomic responses to perturbations, showing shifts in taxonomic
composition while assuming genome content remains relatively constant. (C) Metaproteomic responses to perturbations, showing changes
in both taxonomic composition and proteome content. This approach captures microbial abundances and their functional contributions,
providing deeper insights into microbiome dynamics.

sample is relatively constant (Figure 3B). This approach (Figure 3C). This makes metaproteomics particularly

reveals species abundance and diversity but does not pro-  well-suited for comparing microbiomes under different
vide functional insights. Metaproteomics, on the other conditions or for longitudinal studies.

hand, measures not only taxonomic changes through When selecting conditions or time points for a kinetic
taxon-specific peptide intensities but also dynamic func- analysis, careful consideration is essential. Comparisons

tional responses through proteome variations across taxa  between vastly different samples, such as a soil microbiome
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versus a human gut microbiome, are in general unin-
formative, while overly similar samples may show no
significant differences. Selection should be guided by a
clear rationale and preliminary observations. The reference
condition or time point depends on the scientific question
but may involve using a mixture of all samples as a refer-
ence. While this approach increases peptide diversity in the
reference sample, it can complicate analysis if the full
diversity is not captured by the analytical workflow as
further detailed in Sections Separation and fractionation
techniques and Mass spectrometry data acquisition
methods.

Potential confounding factors must also be accounted
for during experimental design [45]. Comprehensive
metadata collection is critical, including information on
sampling location, timing, storage, processing conditions,
and data acquisition. Additional metadata, such as
weather conditions on sampling days, patient medica-
tion, or health status, may also be essential for inter-
preting results. Additionally, researchers should also
consider using additional material to create appropriate
databases for matching spectra to peptides and for testing
methodologies before processing all samples. More
details on proteomics software and database creation are
provided in Sections Peptide identification with proteo-
mics search engines and Database construction or
selection, respectively.

Finally, while a limited number of metaproteomics
studies have used metabolic labeling [46-48], this
approach is often impractical for environmental or human
microbiome samples. Metabolic labeling, as briefly men-
tioned in Section Basics of proteomics, involves incorpo-
rating heavy isotopes like N or '°C into proteins through
labeled substrates, enabling the study of metabolic cross-
talk and protein production rates. However, its limited
applicability means that it is not further discussed in this
review.

Reproducibility and statistics

The high complexity and heterogeneity of metapro-
teomics samples necessitate careful consideration of
statistical power and steps to ensure reproducibility
during experimental design. Biological, technical, and
analytical replicates are key to producing reliable data
and accurate interpretations. Increasing the number of
biological replicates improves the ability to detect smaller
differences, even in the presence of high variability.
When only slight differences between conditions are
expected, the use of pooled samples may also be con-
sidered. Technical and analytical replicates are necessary
to account for noise introduced during measurement.

It is advisable to first evaluate the variability of sample
preparation and the analytical workflow using a repre-
sentative sample. Additionally, randomizing the order of
samples before LC-MS/MS analysis reduces the risk of
bias due to the sequence in which they are processed
[49]. For cases where specific sources of variability, such
as batch effects, are known, blocked randomization is
preferable to further minimize bias. Rigorous quality
control (QC) is essential during the LC-MS/MS phase of
the metaproteomics workflow to ensure data reliability
and consistency. Section Quality control of LC-MS/MS
provides further details on these QC procedures.

Determining the appropriate number of biological
replicates is essential to detect meaningful biological
differences, such as variations in taxon biomasses, pro-
tein abundances, or metabolic pathways. Power analysis
is typically used to calculate the required sample size,
but it can be challenging in metaproteomics due to
the complexity of experimental designs and the inherent
variability of samples. When precise endpoints are
unavailable, rough estimates from similar studies can
serve as a guide. Power analysis considers several key
factors: the effect size, which reflects the expected mag-
nitude of differences between groups and helps deter-
mine the necessary sample size; the significance level (o),
usually set at 0.05 to allow a 5% risk of false positives;
statistical power (1 —f3), often set at 0.8 or higher to
reduce the likelihood of failing to detect a true effect; and
the variability in the data, which can be estimated from
pilot studies or previous literature on comparable ex-
periments. In studies involving complex microbial com-
munities, deriving precise sample size estimates may be
impractical, but approximate estimates remain a valuable
approach [50]. Conducting power analysis is critical for
avoiding underpowered studies and ensuring efficient
use of resources [50, 51].

Sample collection, preservation, and
storage before preprocessing

Sample collection and preservation

Metaproteomics has been applied to a variety of samples,
including microbial communities from environmental
niches such as water, soil, sewage, aerosols, and rocks
[52, 53]. It has also been used to analyze microbiomes in
fermented foods and beverages [54, 55] and in associations
with various higher eukaryotes, including arachnids,
insects, worms, mollusks, fish, plants, birds, and mammals
[8, 56]. In mammals and other vertebrates, metaproteomics
has been applied to numerous body sites across the
digestive, respiratory, and urogenital systems [57, 58].
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However, many microbiomes remain unexplored by
metaproteomics.

Microbiome samples are often collected directly into
sterile tubes or containers. This method is common for
noninvasive clinical samples, such as feces, saliva, spu-
tum, and urine, which can often be self-collected by study
participants [59-62]. For clinical specimens requiring
surface sampling, swabs, spatulas, or syringes are often
used for oral, nasal, and cervicovaginal samples [63-65],
while periodontal curettes or paper strips are used
for tooth- and gingiva-associated microbiomes [66, 67].
Invasive procedures, such as bronchoalveolar lavage, en-
dotracheal aspiration [68], intestinal biopsies [69], colonic
luminal aspirates [70], and surgical collection of colonic
contents [71], are necessary for some specimens. Similarly,
gastrointestinal fistulation [72] and post-mortem dissec-
tion [73] are used for collecting samples from laboratory or
field animals. For environmental samples, specialized
devices such as quartz filters for bioaerosols [74] and
large-volume water transfer/filter systems for aquatic
environments [75, 76] are commonly employed. More
complex ecosystems may require multi-step collection
protocols [77].

The choice of collection method can significantly
influence the resulting metaproteomic profile, including
the ratio of microbial to nonmicrobial components and
the relative abundances of microbial taxa. Collection
strategies also introduce operator-dependent variability,
making user-friendly devices especially valuable for self-
sampling of clinical specimens. In this regard, specific
methodological studies are needed to investigate the
impact of the different sampling protocols on the meta-
proteomic results [78], as well as the level of compara-
bility between different specimens obtained to investigate
the same environment or host-related microbial
community [79]. Collection strategies also introduce
operator-dependent variability, making user-friendly
devices especially valuable for self-sampling of clinical
specimens in view of their higher reproducibility. Com-
mon pitfalls, including polyethylene glycol (PEG) con-
tamination from plasticware and keratin contamination
from handling, must be carefully managed during sample
collection and processing.

Microbiome sampling inherently involves the trans-
location of microbial communities from their native
environment to laboratory conditions. During this tran-
sition, microbial communities are highly sensitive to
environmental changes such as temperature, humidity,
and exposure to chemical or biological agents. These
factors can induce substantial alterations in the meta-
proteome profile. To minimize artifacts, protein extrac-
tion should ideally occur immediately after sampling.
However, immediate processing is often impractical,
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particularly in large-scale studies or field collections. In
such cases, proper transport and storage procedures are
crucial to preserving the microbiome's original biological
functions. This is especially important for low-biomass or
low-diversity microbiomes, which are more vulnerable
to rapid shifts in their composition and activity due to
external stimuli.

Storage conditions to maintain sample integrity

Proper storage is critical to preserving the integrity of
microbial proteins and ensuring reliable downstream
analyses. Exposure to environmental changes, such as air
exposure, temperature fluctuations, or nutrient deple-
tion, can significantly alter protein profiles, leading to
misleading results. For instance, air exposure can intro-
duce oxidative stress and enrich bacterial superoxide
dismutase enzymes, which may bias colorectal cancer
studies by mimicking disease-specific characteristics [59].
Therefore, appropriate storage immediately after sample
collection is essential to maintain the microbiome's
original state.

The standard practice for preserving metaproteomic
samples involves flash-freezing in liquid nitrogen,
followed by storage at —80°C. This approach minimizes
molecular degradation and prevents alterations in pro-
tein abundance. While this method is highly effective,
some experimental setups do not allow for immediate
freezing. In such cases, alternative preservation methods
may be employed. Solutions like PBS [80], Amies liquid
medium [81], NAP buffer [82], and other commercially
available liquid reagents [83] have been tested for their
ability to enhance storage conditions or enable room-
temperature preservation in metaproteomics. Protease
inhibitors are often added to biological fluids such as
saliva to prevent uncontrolled proteolysis [84]. RNAlater
or RNAlater-like treatments have shown potential for
preserving protein profiles in intestinal and marine
samples, although with conflicting results [82, 85, 86].
Regardless of the method used, compatibility with
downstream protein extraction, digestion, and analysis
steps is crucial. The Critical Assessment of MetaPro-
teome Investigation-2 (CAMPI-2) study aims to evaluate
preservation protocols for efficiency and robustness by
involving multiple laboratories, ensuring control over
inter-operator variability across all pre-analytical steps.
This approach allows for the identification of potential
biases and the assessment of reproducibility [87].

Alternative long-term storage strategies, such as
freeze-drying or storing samples at —20°C, in liquid
nitrogen tanks, or as lyophilized powders, also require
careful evaluation. These approaches may be suitable for
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some sample types but may not consistently maintain
protein integrity. For example, frozen intact stool mate-
rial has been shown to be more stable than extracted
proteins when stored at —80°C, underscoring the
importance of selecting storage strategies tailored to the
specific sample type [88].

It is important to note that the stability of proteins
during storage is highly dependent on the sample type
and storage conditions. For example, the activity and
stability of soil proteins are influenced by temperature,
duration of storage, and soil organic matter content
[89, 90]. For studies involving prolonged transport or
storage, incorporating a straightforward mock commu-
nity can provide valuable controls to assess sample sta-
bility and detect potential storage-induced changes [53].

Sample preprocessing

Sample preprocessing ensures the removal of contami-
nants and debris, which can hinder protein extraction,
degrade analytical quality [91], and dilute biologically
relevant signals. This step, as in other gene expression
measurement workflows, ensures the enrichment
of microbial fractions and improves the quality of
downstream analysis. Ideally, preprocessing should
involve minimal, rapid, and reproducible steps. Since no
standardized protocols for metaproteomics (or metage-
nomics) currently exist, methods must be tailored to the
specific sample type and evaluated based on the study's
objectives [92-94]. While the breadth of samples pro-
cessed for metaproteomics remains limited, this field is
rapidly evolving, and many more methods are expected
to emerge.

For soil samples, humic substances derived from de-
composed organic material often co-extract with proteins,
interfering with MS measurements [95, 96]. To address
this, several methods have been developed to remove
humic compounds while preserving protein integrity
before digestion [97-100]. Alternatively, filter-aided sam-
ple preparation (FASP) can directly digest proteins within
humic complexes. This method uses acidification to pre-
cipitate humic compounds and undigested proteins while
peptides are extracted via centrifugation through molec-
ular weight cut-off filters [101].

For human gut microbiome samples, nonmicrobial
proteins from host cells and food debris are often much
more abundant than microbial proteins, reducing the
efficiency of microbial metaproteome identification [18].
Techniques such as double filtering [102] and differential
centrifugation [103] can enrich microbial cells to
improve identification. However, these methods may
introduce biases and depend on the study's goals [92].

For example, double filtration can remove host
cells and exoproteins, while differential centrifugation
may nonspecifically remove microbial cells and proteins
[104-106]. Moreover, these methods are time-
consuming and may be influenced by fecal variability,
such as texture, fiber, and water content. Automation
technologies, including solid-phase extraction clean-up,
have been proposed to streamline processing for large
longitudinal studies, reducing variability and improv-
ing reliability [107].

In studies analyzing heterogeneous samples with
high host protein content, such as viscous sputum of
cystic fibrosis patients, certain plant tissues or environ-
mental samples, a homogenization step can improve
sample consistency. This step should be performed under
conditions (temperature and duration) that minimize
alterations to the in vivo metaproteome. Various
mechanical strategies can achieve homogenization,
including laboratory mills [61] and glass homogenizers
[108]. The addition of protease inhibitors and DNase I to
prevent protein degradation and disrupt DNA-based ag-
gregates may also be beneficial, yet should be carefully
evaluated based on the sample type and study objective.

For clinical samples containing bacterial or viral
pathogens, inactivation is required before further pro-
cessing outside appropriate biosafety level (BSL) con-
tainment. Since no standardized pipeline exists for this
step, protocols must be tailored to the specific pathogen
and sample type. Methods such as heat inactivation in
lithium dodecyl sulfate buffers [109] and metabolite,
protein, and lipid extraction (MPLEx), which uses chlo-
roform, methanol, and water (8:4:3) for simultaneous
pathogen inactivation and fractionation into metabolite,
protein, and lipid phases, are commonly used [110].
These approaches ensure both safety and compatibility
with downstream metaproteomics workflows.

Protein sample preparation: From
extraction to digestion

Preparing protein samples from biological material
involves a series of interconnected steps, each essential
for obtaining high-quality metaproteomic data. The term
“protein extraction” is often used broadly to describe the
entire workflow of isolating proteins from a biological
sample. This process typically begins with cell lysis using
extraction buffers and may also include subsequent
protein clean-up steps, such as precipitation, filtration, or
other methods. In some workflows, however, protein
clean-up is treated as a distinct step, especially in pro-
tocols where extraction, clean-up, and digestion are
streamlined into a single process. This section provides



THE MICROBIOLOGIST'S GUIDE TO METAPROTEOMICS

an overview of the key stages in protein sample prepa-
ration: cell lysis and extraction (Section Cell lysis and
protein extraction), protein clean-up (Section Protein
clean-up: Precipitation and alternative methods), protein
concentration (Section Measuring protein concentra-
tion), and protein digestion (Section Protein digestion).

Cell lysis and protein extraction

Cell lysis releases the proteome from microbial cells, with a
variety of methods available, each with distinct advantages
[111]. Mechanical disruption methods, such as direct ul-
trasonication, noncontact ultrasonication, and bead beat-
ing, are commonly used. Ultrasonication usually involves
direct ultrasonication, where the probe is directly inserted
into the sample, or noncontact ultrasonication, where the
sample in a tube receives sonication energy from a cup
horn through a coupling fluid. An advanced noncontact
method termed adaptive focused acoustic (AFA) technique
provides precise control over parameters like amplitude
and duration, achieving efficient lysis while minimizing
protein denaturation [112]. Bead beating, which uses zir-
conia or silica beads, is effective for cell disruption, with
bead size modulating efficiency [113].

Chemical lysis methods use detergents such as urea
buffers containing Triton X-100 or sodium dodecyl sul-
fate (SDS) to disrupt microbial cell membranes, often in
combination with mechanical disruption/ultrasonication
[113]. Notably, when combining urea-containing buffers
with mechanical disruption or ultrasonication, one
should be aware of the risk of urea-induced carbamyla-
tion caused by sample overheating [114]. Physical
methods, including freeze-thaw cycles or high-pressure
homogenization, are also effective, with pressure settings
tailored to specific sample types [115]. Since microbial
cell structures vary significantly, for example between
Gram-positive bacteria, Gram-negative bacteria, and
fungi, optimizing lysis conditions is crucial to preserve
protein integrity, maximize yield, and ensure unbiased
protein extraction [116, 117].

Recently, some of the above approaches have been
compared and found that a urea- and SDS-containing
lysis buffer coupled to ultrasonication yielded higher
protein recovery than bead beating in microbiome sam-
ples, with minimal sample loss, though both methods
achieved similar peptide and protein identifications
[113]. Careful selection of lysis buffers is also critical
to avoid interference with downstream MS analysis.
For example, ion suppression-inducing detergents like
Tween-20 should be avoided unless they are removed
during cleanup, as in methods like suspension trapping
(S-trap) or FASP.
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Table 1 compares commonly used protein sample
preparation methods, summarizing their key advantages
and disadvantages. The choice of lysis method depends
on factors such as sample type, desired protein yield, and
sensitivity of proteins to denaturation or degradation.
The listed lysis methods can also be combined, for ex-
ample, detergent-containing urea lysis buffers are often
coupled with ultrasonication to achieve fast and unbiased
bacterial cell lysis in complex microbiome samples.

Protein clean-up: Precipitation and alternative
methods

Protein precipitation addresses the challenges of complex
environmental and fecal samples by removing contami-
nants such as lipids, nucleic acids, and polysaccharides
that can interfere with downstream MS analysis. Fol-
lowing microbial cell lysis, effective separation of pro-
teins from cellular debris and contaminants is essential
to ensure high protein yield and purity. Removing con-
taminants not only improves protein recovery but also
enhances MS sensitivity, enabling more accurate and
reliable protein identification.

The trichloroacetic acid (TCA)/acetone precipitation
method is widely employed for this purpose. This method
involves adding cold (—20°C) TCA or acetone, or both, to
the protein lysate to precipitate proteins, followed by cen-
trifugation to pellet the proteins. The pellets are then
washed with cold acetone (—20°C) to remove residual
contaminants and insoluble particles [118]. This approach
has proven effective for high-yield protein precipitation in
diverse sample types, including marine sediment and for-
est soil samples, which contain complex organic matrices
[119]. Similarly, acidified acetone/ethanol buffer has also
been used in metaproteomics [120].

An alternative method, phenol extraction, separates
proteins into the organic phase while partitioning nucleic
acids into the aqueous phase. This approach is particu-
larly beneficial for “dirty” samples, such as soil and
wastewater sludge, which are rich in organic and
inorganic contaminants. Phenol extraction can reduce
the interference caused by contaminants, thus improving
the downstream analysis of target proteins [121]. Phenol
extraction also enables the simultaneous extraction of
nucleic acids from the same sample, making it highly
suitable for integrated omics studies, especially in mi-
crobiome research [122].

For samples with low microbial load, such as fecal
samples, river sediment, or air filters, maximizing protein
recovery is critical. Organic solvent systems, such as
chloroform/methanol or chloroform/methanol/water
mixtures, have proven effective for enhancing protein
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TABLE 1 Comparison of standard protein sample preparation methods. This table summarizes commonly used protein sample

preparation techniques, outlining their key advantages and potential disadvantages.

Method Description

Chemical Lysis Disrupts cell membranes with
chemicals like urea or guanidine

hydrochloride.

Detergent Lysis Uses detergents (e.g., SDS,
Triton X-100) to solubilize cell

membranes.

Freeze-Thaw Cycles Repeatedly freezes and thaws
the sample to rupture cell

membranes.

needed.

Bead beating Physical force such as using bead

beating to break cell walls.

Uses ultrasound waves to break
cell membranes/walls and
release proteins.

Ultrasonication

Advantages

Can unfold complex proteins.

Mild, preserves protein function,
ideal for membrane proteins.

Simple, no special equipment

Effective for bacterial cell lysis.

Fast, effective and can be
noncontact for small samples,
no need for harsh chemicals.

Disadvantages

If not removed or sufficiently diluted, it
can interfere with protease activity. Risk of
urea-induced carbamylation.

If a detergent is not removed or sufficiently
diluted, it can interfere with protease
activity.

Time-consuming, may not fully lyse cells,
risk of protein degradation.

Requires specific instrument, sample loss
due to contact with beads, can generate
heat, risk of protein degradation.

Can denature proteins if overused, heat
generation requires sample cooling.

recovery and minimizing the loss of low-abundance
proteins by optimizing solvent ratios and conditions
[123]. Biphasic systems, such as phenol/chloroform or
Triton X-114, can also be used to selectively partition
proteins and facilitate the removal of contaminants [124].

Traditional protein precipitation methods, while
effective, can be labor-intensive and may not always
completely eliminate contaminants that interfere
with downstream analyses. To address these limitations,
alternative methods have been developed to improve
protein clean-up and digestion efficiency. Techniques
such as FASP, single-pot, solid-phase-enhanced sample
preparation (SP3), and suspension trapping (S-Trap)
have shown promise for processing challenging samples
like human fecal protein extracts [125]. Solid-phase
alkylation, a novel strategy designed for low-loss and
anti-interference sample preparation, utilizing covalent
binding and purification of proteins, has also been
proved effective for marine microbiome samples [76].
These approaches integrate clean-up and digestion steps
into a single workflow, facilitating high-throughput
applications.

Measuring protein concentration

Accurate protein concentration measurement ensures
uniform loading in downstream LC-MS/MS analyses and
facilitates reliable data interpretation [126]. Consistent
peptide loading in LC-MS/MS is essential for accurate
peptide quantification, as it maintains signal intensity

and ensures reliable peptide detection across samples.
Uniform loading also optimizes column performance,
reducing variability in peak shapes and retention times.
This consistency minimizes technical artifacts, enabling
clearer biological insights when comparing samples.

Various methods are commonly used to determine
protein concentration. The Bradford Assay, which uti-
lizes Coomassie Brilliant Blue dye, measures protein
concentration through a colorimetric change, requiring a
standard curve prepared with known protein concen-
trations to ensure precision. The bicinchoninic acid
(BCA) assay forms a purple-colored complex for protein
quantification, with sensitivity optimized by adjusting
reagent ratios and incubation conditions. Fluorescence-
based assays, such as the Qubit Protein Assay, use dye-
binding technology for highly sensitive quantification
with minimal interference, making them suitable for
samples with low protein concentrations.

The 2D Quant Kit is another option, which quanti-
tatively precipitates proteins while leaving interfering
substances in solution. This method produces a color
density inversely related to protein concentration, with a
linear response in the range of 0-50 ug and a volume
range of 1-50 uL. When selecting a protein concentration
method, it is important to consider the required sensi-
tivity, dynamic range, and compatibility with buffer
components, as some assays show varying tolerance to
substances like SDS or protease inhibitors, including
phenylmethylsulfonyl fluoride (PMSF).

If no suitable quantification assay is available,
running sodium dodecyl-sulfate polyacrylamide gel
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electrophoresis (SDS-PAGE) can provide a rough
estimate of protein abundance. Though less precise, this
method offers a practical alternative for assessing protein
concentrations in specific scenarios. This systematic
approach ensures consistency and reliability in down-
stream analyses, especially when dealing with complex
microbial samples containing proteins of varying
abundances.

Protein digestion

Bottom-up (shotgun) metaproteomic studies involve the
enzymatic digestion of proteins into peptides, a process
known as proteolysis, for untargeted protein identifica-
tion. This method requires several preparatory steps to
ensure efficient proteolysis. Initially, proteins are
denatured using agents such as urea or guanidine
hydrochloride to expose cleavage sites. Disulfide bonds
are then reduced using reducing agents like dithio-
threitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP).
To prevent the re-formation of disulfide bonds, cysteine
residues are alkylated with agents like iodoacetamide,
which react with sulfhydryl groups to form stable
thioether adducts [127]. This alkylation introduces mass
changes that must be accounted for during peptide
identification, as discussed in Section Peptide identifica-
tion with proteomics search engines.

Following these preparatory steps, proteins are en-
zymatically cleaved into peptides suitable for down-
stream LC-MS/MS analysis [128]. The most commonly
used protease is trypsin due to its high specificity and
efficiency. It cleaves proteins at the C-terminal side of
lysine and arginine residues, producing peptides ideal for
shotgun MS analysis. Lys-C, another commonly used
protease, complements trypsin digestion by cleaving at
the C-terminal side of lysine residues, particularly in
high urea concentrations (8 M), enhancing peptide cov-
erage. Alternative proteases such as chymotrypsin, Glu-
C, and Asp-N may also be used to increase peptide
diversity or for specific applications. However, the com-
bination of trypsin and Lys-C is often the most practical
and widely applied choice.

The enzyme-to-substrate ratio is another important
factor, with typical ratios ranging from 1:50 to 1:100
(w/w). Digestion time is also critical and usually involves
incubating the proteome mixture at an appropriate
temperature (e.g., 37°C) for several hours to overnight,
depending on sample complexity and enzyme properties.
Digestion is quenched by acidification, commonly using
formic acid or trifluoroacetic acid to achieve a pH of 2-3.
In methods such as S-trap or FASP, peptides may also be
eluted without an acidification step.
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Peptide lysates are subsequently desalted or purified
to remove salts and contaminants. Solid-phase extraction
(SPE), C18 ZipTips (Millipore), or ultrafiltration are
commonly used for this purpose. In some cases, the
desalting step can be omitted if peptides are desalted on a
trap column in the liquid chromatography (LC) system.

Direct in-solution protein digestion methods have
been developed to streamline the workflow, offering
efficient and high-throughput options. Notable examples
include SP3 [129], FASP [130], S-trap [131], and a com-
mercial kit based on the in-StageTip (iST) [132]. These
methods are designed to ensure high protein recovery
and compatibility with downstream MS analysis, even
when working with low protein amounts.

Separation and fractionation techniques

Separation and fractionation enable researchers to
reduce sample complexity and enhance the depth and
sensitivity of protein identification and quantification.
These processes can be performed at multiple levels,
including the peptide, protein, and cellular stages,
depending on the specific goals of the analysis [133].
Techniques such as peptide fractionation are frequently
used to enhance LC-MS/MS performance, while enrich-
ment approaches allow for the targeted analysis of PTMs.
At the protein or cellular level, fractionation strategies
can further refine sample complexity or enrich specific
components of interest.

On-line and off-line peptide fractionation

Peptide separation workflows can generally be categorized
into one-dimensional (1D) and two-dimensional (2D) or
multi-dimensional approaches. In 1D-LC, which is widely
used in metaproteomics, reverse-phase (RP) nano-high-
performance liquid chromatography (nanoHPLC, mostly
just abbreviated as LC or HPLC) employs C18 columns to
separate peptides based on their hydrophobicity and is
coupled directly with mass spectrometry for peptide anal-
ysis. 2D-LC, often based on multidimensional protein
identification technology (MudPIT) [134], combines strong
cation exchange (SCX) with RP-HPLC. Peptides are first
fractionated on the SCX column based on their charge
using salt or pH gradients for elution, and then further
separated based on hydrophobicity on an RP-HPLC
column [135]. The 2D-LC strategy has been applied in
metaproteomic analyses to improve identification depth,
with online 2D LC-MS setups used for shotgun proteomics
in studies of human gut and environmental micro-
biomes [135].
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Off-line pre-fractionation, although less commonly
used in metaproteomics due to its labor-intensive nature
and the increased MS time required, offers potential for
deeper peptide and protein identification [136]. High-pH
RP chromatography is one such method and is orthog-
onal to low-pH RP-LC-MS gradients. This fractionation
can be achieved using either stage-tip methods or HPLC
systems. Stage-tip-based fractionation is straightforward
to implement and is supported by commercially available
kits (e.g., Pierce High pH Reversed-Phase Peptide
Fractionation Kit). On the other hand, micro-flow HPLC
systems enable higher-resolution fractionation through
continuous collection of numerous fractions and step-
wise concatenation.

While extensive fractionation can significantly
enhance the depth of metaproteomic analysis, it also
increases costs, sample requirements, and instrument
time, making it less feasible for large cohort studies. The
adoption of multiplexing techniques, such as tandem
mass tags (TMT) [137], has mitigated these limitations by
reducing MS time and the required sample quantity per
condition. The combination of off-line peptide fraction-
ation and multiplexing presents a promising and acces-
sible option for researchers, particularly beginners, aim-
ing to conduct in-depth metaproteomic analyses to
investigate microbiome functionality.

Enrichment of peptides with posttranslational
modifications

PTMs are critical regulators of protein activity and function,
and their study is uniquely possible through metapro-
teomics. Unlike other omics approaches, metaproteomics
provides the direct capability to identify and quantify PTMs
in microbial proteins, offering unparalleled insights into
microbiome functionality. While analyzing PTMs at the
metaproteome level is particularly challenging, several
studies have successfully performed metaPTMomics on
environmental and human gut microbiomes [70, 138-140].
These studies identified various PTMs, including methyla-
tion, hydroxylation, acylations, citrullination, deamination,
phosphorylation, and nitrosylation, among others, with
abundances varying across different microbiome types.
Understanding the diversity and distribution of PTMs is
essential for uncovering microbiome functionality. Recent
advancements in the field have been detailed in two com-
prehensive reviews [141, 142].

Microbiome PTMs can be analyzed using non-
enriched samples combined with tailored bioinformatics
workflows [138, 139] or quantitatively profiled using
enrichment techniques at the peptide or protein level
[70, 140]. Depending on the type of PTM, specific

enrichment strategies may be employed to facilitate
detection during MS analysis.

Immuno-affinity enrichment is widely used for pro-
tein acylations, such as lysine acetylation, propionyla-
tion, and succinylation, and has recently been applied
to human gut microbiomes [140]. This technique uses
antibodies bound to agarose or magnetic beads to selec-
tively enrich acylated peptides, improving MS sensitivity
and specificity. However, this approach can be limited
by the availability of motif-specific antibodies and
the inability to capture the full spectrum of modified
peptides.

Immobilized metal affinity chromatography (IMAC)
is a commonly used strategy in proteomics to enrich
phosphorylated peptides for phosphoproteomic studies.
Ti-IMAC and Fe-IMAC are typical examples, offering
robust enrichment before LC-MS/MS analysis [143].

Hydrophilic interaction liquid chromatography
(HILIC) is another effective technique, particularly
for enriching glycopeptides. This method capitalizes on
its high selectivity and specificity for hydrophilic
glycan moieties [144]. These enrichment approaches
have been extensively applied to mammalian cells, tis-
sues, and single bacterial strains, and they show potential
for broader applications in microbiome studies.

Protein, cell-level, and functional fractionation
techniques

The high complexity of microbiomes often necessitates
cellular and protein-level separations to complement
peptide-level fractionation, enhancing the depth and
resolution of metaproteomic analysis. Although high-
speed, high-resolution mass spectrometers have made
peptide fractionation sufficient for many proteomics
workflows, the added complexity of microbiomes can
still benefit from upstream fractionation approaches.

Capillary zone electrophoresis (CZE), a technique
used to separate charged particles, shows promise for
separating intact proteins and even bacterial cells [133].
Another method for separating proteomes from different
bacteria is differential lysis, which, despite its relatively
low granularity, can distinguish between bacterial types
based on cell wall structure [117]. In this approach,
sequential lysis is achieved using buffers of increasing
strength, such as those containing urea or varying con-
centrations of SDS. This method can separate the pro-
teomes of Gram-negative bacteria, which have thinner
cell walls, from those of Gram-positive bacteria with
thicker, multilayered cell walls [117].

For host-associated microbiomes, removing abundant
host cells is often critical to improving microbial signal
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detection. Techniques such as differential centrifugation
and density gradient centrifugation [145] are commonly
used to enrich microbial cells. Following lysis, additional
separation of cellular components can be achieved
through methods like ultracentrifugation [146], further
increasing protein identification coverage.

Functional fractionation techniques, such as
activity-based protein probing (ABPP), can be used to
study enzymatic functions at the proteome level [147].
ABPP employs small-molecule probes that covalently
bind to active sites of proteins with specific functions or
residues. These labeled proteins can then be captured
or enriched for LC-MS/MS analysis, enabling detailed
profiling of protein functions and aiding in drug target
discovery. ABPP is particularly useful for annotating
proteins with unknown functions [148], making it a
relevant approach in microbiome studies. Recent
applications of ABPP in both host-associated and
environmental microbiomes have uncovered diverse
microbial enzymes, including thiol-containing prote-
ases, bile salt hydrolases (BSHs), glycoside hydrolases
(GHs), and B-glucuronidases [149].

Automation

High-throughput techniques have transformed sample
preparation, simplifying labor-intensive steps and revolu-
tionizing workflows in proteomics, especially as datasets
continue to grow in scale and complexity [150, 151].
These advancements have facilitated applications such as
chemical proteomics [152], biomarker detection [153],
and drug target discovery [154]. Although automation in
metaproteomics has not advanced as rapidly as in
proteomics, its potential for transforming the field is
immense.

Automating metaproteomics workflows offers multi-
ple benefits, including reduced sample handling time,
minimized operator-induced variability, and enhanced
reproducibility. These improvements provide broader
coverage of microbiome responses to environmental
factors within limited experimental timeframes. Fur-
thermore, high-throughput automated workflows allow
researchers to scale up the discovery of microbiome-
associated biomarkers and explore dynamic functional
landscapes across diverse microbiomes. Automation
also generates large datasets, enabling the application
of artificial intelligence (AI) to uncover hidden patterns
within metaproteomic profiles.

Automated sample processing in metaproteomics can
be broadly divided into four key steps: microbial cell
disruption and protein extraction, protein digestion and
peptide clean-up, and multiplexing.
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Microbial cell disruption and protein extraction

In certain scenarios, such as working with complex
clinical samples like human stool or saliva, microbial
cell enrichment is often required but poses significant
challenges. Sample properties can vary greatly within a
data set, complicating efforts to standardize technical
parameters for automated microbial cell purification. As
a result, current automated metaproteomics workflows
often exclude fully automated raw sample handling
steps. For example, the RapidAIM 2.0 pipeline [155]
includes manual bacterial enrichment and cell washing,
with a 96-channel liquid handler accelerating pipetting
steps. In contrast, the SHT-Pro protocol [107], the first
high-throughput pipeline specifically designed for large-
scale stool sample processing, begins with the lysis of raw
stool samples without prior microbial enrichment. This
approach is particularly beneficial when both host and
microbial proteins are of interest.

Microbial cell disruption for protein extraction can
be effectively automated in a 96-well format using
ultra-sonication devices designed for high-throughput
workflows. These instruments facilitate efficient protein
extraction, enabling downstream high-throughput pro-
tein clean-up. Several methods, including FASP, SP3, and
S-Trap, have been successfully adapted to microplate-
based formats, with studies showing that the combina-
tion of FASP and SP3 with iST yields the most robust
results for high-throughput protein processing [125].

Protein digestion and peptide clean-up

Similar to manual metaproteomics workflows, auto-
mated protein preparation typically involves protein
denaturation, reduction, alkylation, and protease
digestion. These steps are relatively straightforward to
automate and can be performed using liquid handling
platforms equipped with low-volume pipetting accu-
racy and heater-shaker capabilities. Therefore, protein
digestion is often considered one of the least complex
steps to automate metaproteomic workflows.

Peptide clean-up, however, presents greater chal-
lenges. Typically, this step is carried out manually by
skilled personnel using solid-phase extraction (SPE), C18
ZipTips, or ultrafiltration, as described in Section Protein
digestion. During automation, sample heterogeneity at
this stage can introduce variability, complicating experi-
mental parameter control. A promising solution involves
replacing centrifugation through reverse-phase columns
with pipette-based mixing of reverse-phase resins. This
approach has been incorporated into workflows like
RapidAIM 2.0 [155] and is supported by established
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proteomics automation protocols. For example, the au-
toSISPROT system offers all-in-tip sample preparation
capabilities, demonstrating compatibility with automated
platforms [154].

Multiplexing

The integration of automated sample handling with tech-
niques like tandem mass tag (TMT) labeling significantly
enhances throughput and accelerates the discovery process
in metaproteomics. However, the high cost of TMT re-
agents might be a challenge for broader applications. One
solution involves pre-aliquoting and drying TMT reagents
in a 96-well plate format, a strategy that reduces reagent
waste and preparation time. This approach is compatible
with automated workflows, such as those used in the Ra-
pidAIM 2.0 platform, and facilitates more efficient reagent
utilization [155].

While advancements in automation have enabled
notable progress in metaproteomics, most current sys-
tems are semi-automated rather than fully automated.
Continued development of automation technologies is
essential to further streamline workflows, enhance
sample processing speed, and achieve higher throughput.

Mass spectrometry data acquisition
methods

Mass spectrometry analysis of (meta)proteomes is pre-
dominantly carried out using (HP)LC-MS/MS. A funda-
mental limitation of mass spectrometers, even when
combined with multidimensional separations, is their
inability to generate fragmentation spectra (or MS/MS
spectra) for all peptides in a sample within a single run.
This constraint has led to the widespread adoption of
data-dependent acquisition (DDA) as the dominant
approach in proteomics over the past 25 years.

DDA, as discussed in Section DDA, involves selecting
the most abundant precursor ions from the MS1 spectra for
fragmentation in the MS2 (or MS/MS) stage, dynamically
excluding previously fragmented ions to prioritize un-
fragmented targets. This strategy increases the diversity
of identified peptides and proteins. In metaproteomics,
however, the complexity of the samples presents
significant challenges for DDA, particularly in achieving
comprehensive sequencing depth and coverage. Even
with the latest high-resolution and highly sensitive mass
spectrometers, DDA is inherently biased toward the
most abundant ions, leaving many lower-abundance pep-
tides uncharacterized. Nevertheless, DDA remains the
most widely used method due to its extensive validation,

established workflows, and compatibility with a broad
range of analytical tools.

Data-independent acquisition (DIA), as discussed in
Section DIA, is a more recent advancement that offers an
alternative approach by fragmenting all peptide ions
within predefined mass-to-charge (m/z) windows, rather
than selectively targeting the most abundant ones. DIA
addresses some of the limitations of DDA, particularly in
terms of peptide coverage and reproducibility, making it
increasingly attractive for metaproteomics. However, the
broader data capture in DIA results in significantly more
complex datasets that require advanced computational
tools for processing and analysis. While progress has
been made in developing such tools, further validation
and optimization are needed before DIA can become a
routine method for metaproteomics.

Both DDA and DIA have distinct advantages and
limitations, and their choice depends on the specific
goals of the experiment, the complexity of the sample,
and the available computational resources.

DDA

DDA is the most widely used method in proteomics,
particularly in shotgun proteomics, for identifying
peptides in biological samples. In DDA mode, the mass
spectrometer dynamically selects a specified number of
the most abundant precursor ions (commonly referred to
as the “topN”) for fragmentation. This prioritization en-
sures that the most intense ions within each acquisition
cycle are fragmented into smaller ions, generating
MS/MS spectra that serve as unique fingerprints for
peptide identification. To enhance the detection of lower-
abundance peptides, DDA incorporates a process known
as dynamic exclusion. Previously selected precursor ions
are temporarily excluded from subsequent fragmenta-
tion, increasing the diversity of peptides analyzed within
a single run. These MS/MS spectra are then analyzed
using proteomics software packages (Section Peptide
identification with proteomics search engines).

DDA has several advantages, making it a popular
choice for metaproteomics workflows. It is relatively
simple to configure and analyze compared to more com-
plex approaches like DIA, making it accessible for both
beginners and experienced researchers. The one-to-one
relationship between spectra and peptides reduces com-
putational demands during data analysis, particularly
when a well-curated protein database is available. More
information on creating a protein database is provided in
Section Database construction or selection. Furthermore,
DDA supports relative quantification of proteins using
both label-free quantification (LFQ) and labeling
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approaches, offering flexibility for various experimental
designs (Section Protein quantification). Its longstanding
use in proteomics has also led to the development of
numerous software tools and well-established workflows,
enhancing its reliability and versatility.

Despite its strengths, DDA has notable limitations. Its
reliance on selecting the most intense precursor ions
means that low-abundance proteins may go undetected,
especially in complex samples. Additionally, DDA
often fails to identify the same peptides consistently
across multiple runs, resulting in missing values for
low-abundance proteins and complicating large-scale
quantitative studies.

Overall, while DDA is not without its limitations, it
remains the most widely used and versatile technique in
metaproteomics [156]. For studies requiring deeper pro-
teome coverage or greater reproducibility, alternative
methods like DIA may offer complementary advantages.

DIA

DIA mass spectrometry has emerged as a powerful
approach in proteomics, providing broad protein cover-
age, high reproducibility, and quantitative accuracy.
Unlike DDA, which focuses on fragmenting a limited
number of the most intense precursor ions, DIA frag-
ments all ions within predefined m/z windows. These
windows are repeatedly scanned across the entire m/z
range, generating complex MS/MS spectra that provide a
more comprehensive view of the proteome. This inclu-
sivity is particularly advantageous in metaproteomics,
where samples contain an overwhelming diversity of
peptides and low-abundance proteins that might be
missed by DDA.

DIA has demonstrated significant potential in meta-
proteomics applications. Its application in metaproteomics
was first evaluated in gut microbiome studies [157] and
has since expanded to various contexts, including Chinese
liquor fermenter starters [158], and multicenter diagnostic
research on tongue coating samples for gastric cancer [63].
Recent advances in MS instrumentation, such as data-
independent acquisition—parallel accumulation serial
fragmentation (DIA-PASEF) [36] and the Orbitrap Astral
[37], have significantly improved DIA's sensitivity and
resolution, enabling deeper proteome coverage in highly
complex microbial communities.

One of DIA's key advantages lies in its ability to
capture a broader range of peptides compared to DDA,
enabling deeper proteome coverage and improved
detection of low-abundance proteins [36, 63, 157-161].
Another significant advantage is its reproducibility across
samples, as it is less susceptible to variations in
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ionization efficiency [162]. This consistency makes DIA
particularly well-suited for large-scale quantitative
studies.

Despite its advantages, DIA also comes with chal-
lenges, particularly in data analysis. Indeed, analyzing
the complex MS/MS spectra generated by DIA requires
advanced computational tools and specialized expertise
which is further discussed in Section Peptide identifica-
tion with proteomics search engines. Additionally,
because DIA fragments all ions within a given m/z
window simultaneously, the resulting spectra are more
complex and less specific to individual peptides com-
pared to DDA. This reduced specificity can make it
challenging to confidently resolve detailed structural or
sequence-level information for single peptides, limiting
DIA's utility for applications that require precise char-
acterization, such as studying PTMs or differentiating
highly similar peptide sequences. These inherent trade-
offs highlight the importance of carefully tailoring DIA
workflows to specific research objectives.

Nevertheless, DIA's rapid advancements make it a
promising tool for metaproteomics, providing the depth
and reproducibility required to explore the functional
landscape of microbial communities comprehensively.

Critical parameters to optimize the HPLC and
MS methods

Optimization of HPLC and MS methods is crucial for
obtaining high-quality data in metaproteomics workflows.
Each parameter below plays a significant role in ensuring
accurate peptide separation, identification, and quantifi-
cation. Metaproteomics, with its added complexity com-
pared to standard proteomics workflows, requires specific
adjustments to many of these parameters.

(i) Analytical column quality, gradient and flow rates

Peptides are commonly separated using HPLC, which
is directly coupled to the MS, using either commercial or
in-house analytical HPLC columns. These separations
are achieved with a mobile phase composed of increasing
concentrations of acetonitrile (ACN). For laboratories
using in-house columns, stringent QC checks are crucial
to ensure consistent column performance, as explained
in Section Quality control of LC-MS/MS.

Metaproteomics samples present significantly greater
chromatographic challenges than single-species proteo-
mics due to their inherent complexity [163]. To address
this, typical mobile phase gradients of 5%-35% of 80%
ACN or 5%-30% of 100% ACN over 1-2h are generally
sufficient for tryptic peptide elution. However, adjust-
ments may be required for specific experimental setups.
For example, chemically labeled digests with increased
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hydrophobicity often require a steeper gradient with a
higher final concentration of ACN for complete peptide
elution.

Efficient gradient design is essential to optimize
runtime and achieve an even distribution of peptide
elution across the gradient. Since fewer peptides elute at
the beginning and end of the gradient, tailoring the
gradient can improve separation and detection [164].
Accurate peptide quantification requires sufficient sam-
pling points per LC peak, making short gradients (e.g.,
10-min gradients) generally unsuitable for metapro-
teomics in DDA mode. Comprehensive tutorials on gra-
dient optimization are available for general proteomics
[165], and metaproteomics specifically [166].

LC flow rates typically range from 200 to 300 nL/min.
Recently, higher flow rates have gained popularity to
accelerate sample duty cycles. However, these higher
flow rates compromise sensitivity. Strategies to offset this
limitation include increasing the sample loading amount
or using dimethyl sulfoxide to boost signal intensity,
making higher flow rates more viable for metaproteomics
workflows.

(ii) MS settings in DDA workflows

Optimizing MS parameters plays a key role in
obtaining high-quality data in metaproteomics. While
those new to the field are generally not expected to
configure MS settings, understanding key optimization
steps can provide valuable context for interpreting data
and troubleshooting issues.

Accurate mass measurements require regular cali-
bration of the mass spectrometer, which is crucial for
reliable peptide identification and quantification. Addi-
tionally, source parameters such as source temperature,
flow rates, and nebulizer gas pressure must be optimized
to enhance ionization efficiency and maximize signal
intensity. The specific optimization steps vary depending
on the type of mass analyzer used, such as time-of-flight
(TOF) or Orbitrap instruments. Key parameters for these
analyzers include scan range, resolution, and scan speed,
which must be fine-tuned to ensure precise mass mea-
surements and resolve closely spaced peptide ions. Sim-
ilarly, collision energy settings for peptide fragmentation
need careful adjustment to generate high-quality frag-
ment spectra for peptide identification.

Dynamic exclusion is a critical parameter in DDA
workflows, requiring careful calibration to align with the
chromatographic gradient and peak width. This setting
prevents repeated fragmentation of the same peptide by
excluding it temporarily after its initial fragmentation,
thereby increasing peptide diversity. However, this
approach poses challenges, particularly in metapro-
teomics. Many researchers rely on spectral counting for
relative quantification, as it has been shown robust for

metaproteomic datasets with significant differences in cell
numbers and total protein amounts between community
members [167]. Nonetheless, dynamic exclusion can limit
the number of spectra acquired for abundant peptides,
leading to fewer spectral counts than expected and
potentially skewing quantification accuracy. This issue is
exacerbated with modern high-resolution instruments,
where the correlation between peptide abundance and
peptide-spectrum matches (PSMs) becomes less relevant
due to faster scan rates and increased resolving power.
Dynamic exclusion times must therefore strike a balance,
ensuring high-quality fragmentation spectra while max-
imizing the diversity of peptides analyzed. The choice
between spectral counting and MS1-based quantification
methods like area under the curve (AUC) remains a topic
of debate in metaproteomics.

In DDA, selecting the isolation window width for
precursor ions is a critical optimization step. A wider
isolation window, up to 2 Da, allows the collection of
more ions, resulting in higher-quality MS spectra. How-
ever, this increases the risk of generating chimeric
spectra, where fragments from multiple precursor ions
are combined, complicating peptide identification. Con-
versely, narrower isolation windows, down to 0.7 Da,
reduce the likelihood of chimeric spectra but limit the
number of ions isolated, potentially impacting signal
intensity. In metaproteomics, the high density and
diversity of precursor ions in certain mass ranges com-
plicate this balance, as even narrow windows can capture
multiple ions. Advances in mass spectrometers, such as
faster scan speeds, now enable higher topN settings in
DDA workflows, helping to address this challenge by
acquiring more fragmentation spectra within a given run.

(iii) MS settings in DIA workflows

Optimizing DIA workflows requires careful calibra-
tion of several key parameters to achieve accurate and
comprehensive peptide identification. The width of mass
isolation windows is particularly critical, as narrower
windows, such as 2 m/z, provide higher resolution and
more precise fragmentation spectra, which are essential
for resolving complex peptide mixtures. However, nar-
rower windows can reduce proteome coverage, as fewer
ions are isolated in each cycle. Balancing resolution with
proteome coverage is thus a central challenge in DIA
optimization. Recent advancements, such as the Orbitrap
Astral mass spectrometer, support exceptionally narrow
isolation windows while maintaining high scanning
speeds, effectively bridging the gap between DDA and
DIA methodologies.

In addition to tuning isolation windows, optimizing
collision energy is required for generating high-quality
fragment ions, while chromatographic conditions,
including gradient length and flow rate, must be
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carefully calibrated to align with the DIA cycle time.
Ensuring sufficient acquisition points across peptide
elution peaks is essential for accurate quantification and
peptide identification. DIA workflows in metaproteomics
are advancing rapidly, providing enhanced resolution
and deeper proteome coverage in complex microbial
samples [37, 168]. Detailed guidelines for these optimi-
zation strategies can be found in recent studies exploring
advancements in DIA methodologies [169-171].

Quality control of LC-MS/MS

A comprehensive QC workflow begins with a blank
injection of solvent without any sample to check for
background contamination. Ideally, a blank run should
produce minimal identifications, which can be verified
visually or through database searches. Contamination
sources can include transport solvents used in HPLC
systems, so these should be carefully monitored. Next, a
standard injection of a known peptide mixture, such as
cytochrome C or bovine serum albumin (BSA) digest, is
performed to confirm instrument calibration and per-
formance. Simple mixtures like these are useful for
testing HPLC performance, while more complex peptide
mixtures, such as HeLa digest, assess the mass spectro-
meter's ability to analyze complex samples. A repre-
sentative microbiome sample digest can also be injected
to refine the LC gradient profile, and such standards
should be injected regularly throughout the run.
Additionally, using reference microbiome material as a
positive control can help verify the efficiency of protein
extraction protocols. This ensures that the extraction
method reliably captures a representative set of proteins
from the sample, which is particularly important for
metaproteomic studies. Database searches on complex
standards should be used to monitor metrics like number
of PSMs, peptide and protein identifications. Consistently
tracking these values over time helps detect performance
declines, signaling when the instrument requires clean-
ing or recalibration.

During the LC-MS/MS run, retention times for
known peaks should be monitored closely, as significant
shifts compared to previous runs may indicate issues
such as column blockage, connector leakage, or valve
wear. Similarly, column back pressure should be mon-
itored as a potential indicator of problems. Peak shape
should also be evaluated for symmetry and sharpness;
tailing or broadening peaks may suggest problems with
chromatography or ionization efficiency. Signal intensity
is another important parameter, and any significant drop
compared to expected values may point to reduced
instrument sensitivity or ionization issues.
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After the run, each raw file must be carefully
reviewed to identify potential issues. Failed runs should
be rerun immediately to avoid batch effects caused by
delayed reanalysis. The total ion current (TIC) chro-
matogram provides valuable information on instrument
performance, and it should be examined for unexpected
peaks or a noisy baseline, both of which may point to
contamination or hardware issues. The base peak chro-
matogram provides additional insights into LC resolu-
tion. Comparing the TIC-to-base peak intensity ratio is
also informative, as higher values often reflect increased
sample complexity or poor chromatographic perform-
ance. Retention times and peak intensities across sam-
ples should be consistent, indicating good repeatability.
Additional QC checks, such as principal component
analysis (PCA) or heatmaps, can help pinpoint variations
between runs and ensure data quality.

Metrics collected after protein identification and
quantification are also essential for evaluating QC [172].
For example, the number of identified PSMs to the total
number of MS2 spectra, the PSM identification rate,
serves as a key indicator of data quality. Using a 1-h
gradient on a Q-Exactive mass spectrometer with opti-
mized conditions and high-quality sample preparation,
metaproteomic samples can achieve an ID rate of
approximately 50%, meaning that 50% of spectra yield
identified peptide sequences after 1% FDR filtering. Note
that for samples in less trivial environments, such as soil,
the PSM identification rate will be much lower. It is
crucial to analyze high-quality QC samples using the
same LC-MS/MS methods, as the identification rate
depends heavily on both the instrument's performance
and sample preparation.

In large-scale projects lasting several weeks, retention
time drift and signal drops are common. Blocking and
randomizing samples during analysis is recommended to
reduce systematic biases caused by these performance
variations [173]. Implementing rigorous QC procedures
at each step of LC-MS/MS is essential to maintain data
reliability and consistency, with standardized QC sam-
ples serving as valuable benchmarks for long-term per-
formance evaluation.

Several dedicated QC tools, such as MaCProQC [174],
QCloud2 [175], and Rawtools [176], are available to
evaluate the quality of LC-MS/MS data. These tools pro-
vide a range of functionalities, from tracking performance
metrics to generating clustering analyses for data quality
evaluation. However, more recently, the HUPO-PSI
Quality Control working group has introduced the
mzQC file format, a JSON-based standard designed to
streamline the reporting and exchange of MS quality
control metrics. To facilitate adoption, they have also
developed open-source software libraries in Python
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(pymzqc), R (rmzqc), and Java (jmzqc), which provide
functionalities for creating, validating, and analyzing
mzQC files. These libraries enable researchers to integrate
mzQC into diverse workflows for proteomics, metabo-
lomics, and other MS applications, ensuring consistent
data quality assessment and fostering interoperability
across different analytical platforms [177].

Data management and data sharing

Effective data management and sharing are essential to
advancing metaproteomics research, ensuring data
integrity, reproducibility, and collaboration. A robust
data management plan should include secure, redundant
storage solutions to protect against data loss, particularly
for large-scale studies conducted over extended periods.
Implementing version control for raw and processed data
facilitates systematic tracking of updates and reanalyses,
improving reproducibility and transparency.

Adhering to community standards, such as those es-
tablished by the Human Proteome Organization Proteo-
mics Standards Initiative (HUPO-PSI) [178], is crucial for
consistency and interoperability. The HUPO-PSI defines
data representation standards in proteomics to facilitate
data comparison, exchange, and verification. Using
standardized formats like mzML for mass spectrometry
data [179], mzIdentML for identification results [180],
and the Universal Spectrum Identifier (USI) for referring
to any mass spectrum in publicly deposited proteomics
datasets [181], ensures compatibility across platforms
and tools, thereby streamlining collaborative efforts and
enabling more efficient data use.

Metadata plays a critical role in making datasets
interpretable, reusable, and comparable across studies.
Comprehensive metadata should capture sample origins,
preparation protocols, instrument settings, and data
processing workflows, ideally using standardized ontol-
ogies like PSI-MS Ontology. In proteomics, this infor-
mation is collected in the Sample and Data Relationship
Format for Proteomics (SDRF-Proteomics) format, which
provides a structured, tab-delimited format for describing
the relationships between samples and data files, mir-
roring the experimental workflow in proteomics [182].
Tools like lesSDRF offer user-friendly interfaces to
annotate metadata in SDRF format, facilitating stan-
dardization [183]. Recognizing the added complexity of
microbial environments, the Metaproteomics Initiative is
developing SDRF-Proteomics templates tailored for me-
taproteomics, as current formats for single-species pro-
teomics do not fully address the nuances of microbial
data. Standardized metadata not only supports compu-
tational analyses but also ensures structured inputs for

machine learning models, advancing reproducibility and
consistency across the field.

Depositing both data and metadata in recognized
international ProteomeXchange repositories [184], such
as PRIDE [185], aligns with the FAIR (Findable, Acces-
sible, Interoperable, and Reusable) principles, promoting
open science and innovation. These repositories make
data accessible to the broader research community,
enabling others to validate findings, conduct systematic
reviews, and perform large-scale analyses. Sharing
practices in metaproteomics helps with benchmarking
studies, development of new interpretation tools, and
the ability to draw broader conclusions, significantly
improving the field's collaborative potential and impact.

COMPUTATIONAL ANALYSIS OF
METAPROTEOMICS DATA

Peptide identification, protein inference,
and quantification

After acquiring MS/MS spectra from mass spectrometry,
the next step is to identify the peptides present in the
sample. This involves analyzing the fragmentation pat-
terns in the MS/MS spectra to determine the specific
amino acid sequences of the peptides. This process is
performed using search engines, often integrated into
comprehensive proteomics software packages (Section
Peptide identification with proteomics search engines).
Typically, these algorithms match the experimental MS/
MS spectra to a theoretical protein sequence database,
and the success of this step depends heavily on the
selection or construction of an appropriate database, as
outlined in Section Database construction or selection.
The search engine then applies a false discovery rate
(FDR) threshold to filter out postential false positives
(Section PSM FDR control). Peptides passing this filter
are subsequently used for protein inference (Section
Protein inference) and quantification (Section Protein
quantification). All these sections focus on DDA MS,
while Section DIA data analysis is dedicated to tools
specifically designed for analyzing DIA MS data.

Peptide identification with proteomics search
engines

Shotgun metaproteomics experiments generate large
datasets of MS1 and MS2 spectra, which form the basis
for downstream analysis. With advancements in high-
throughput MS, these datasets now range from thousands
to millions of spectra, making manual interpretation
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impractical. To address this challenge, search engines are
essential for interpreting the data and identifying peptides.
Peptide identification relies on three main strategies:
(i) sequence database searching, where experimental
spectra are matched to theoretical spectra derived from
protein or peptide sequences in a database; (ii) de novo
sequencing, which directly infers peptide sequences from
spectra without a reference database; and (iii) spectral
library searching, where experimental spectra are com-
pared to curated libraries of previously validated spectra.
These methods are often complemented by post-
processing steps to enhance accuracy and confidence in
peptide identification, as outlined in Section PSM FDR
control. Additionally, most proteomics software packages
integrate peptide identification with protein inference and
quantification, a topic discussed in Sections Protein
inference and Protein quantification. Some specific meta-
proteomics software also integrates taxonomic and func-
tional analyses, as outlined in Section Taxonomic and
functional analysis.

(i) Protein sequence database searching

Database search algorithms are fundamental for
interpreting mass spectrometry data, particularly in
metaproteomics, where the complexity of microbial
communities poses significant analytical challenges.
These algorithms match experimental MS/MS spectra to
theoretical spectra generated from protein sequence
databases. The success of this process depends on the
choice of search engine, the search parameters used, and
the composition of the database, all of which influence
the number and type of peptides and proteins detected.

Database search engines start by using a selected
reference protein sequence database, which is in silico
digested to emulate the cleavage rules of the enzyme
used during protein digestion, most commonly trypsin.
From these digested sequences, theoretical MS/MS
spectra are generated and compared to the experimental
MS/MS spectra obtained during mass spectrometry.
Each combination of theoretical peptide and spectrum
(peptide-spectrum match, PSM) is assigned a similarity
score, with the search engine ranking and filtering
potential PSMs based on the score and peptide propert-
ies. The exact method of score calculation varies between
search engines, and these differences can affect both
sensitivity and specificity. An in-depth explanation of the
various scoring algorithms used in database search en-
gines can be found in this comprehensive review [186].

Each database search engine offers unique ad-
vantages and limitations, including variations in proces-
sing speed, compatibility with input and output formats,
support for post-processing tools, and overall user-
friendliness. These factors significantly influence their
performance in metaproteomics workflows, where the
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complexity and scale of datasets demand highly efficient
and reliable analysis tools. A detailed discussion of these
tools and their applications is available in a compre-
hensive review [187]. A selection of database search
engines and proteomics software commonly used in
metaproteomics research is highlighted below:

SearchGUI [188] provides simultaneous access to
multiple complementary search algorithms, including
X!Tandem [189], Comet [190], Andromeda [191],
OMSSA [192], Sage [193], and others. Its companion tool,
PeptideShaker [194], seamlessly imports SearchGUI
output and offers a comprehensive, user-friendly inter-
face for interpreting and visualizing results. Additionally,
PeptideShaker includes a direct export feature to Uni-
pept, enabling streamlined downstream taxonomic and
functional analysis [195, 196]. A detailed tutorial is
available on the CompOmics web page to guide users
through these workflows [197]. Andromeda [191], used
in MaxQuant [198], is widely used for its ease of use and
MS1 quantitative capabilities. Users benefit from a well-
established community, including annual user meetings
and a dedicated forum for support. Mascot (Matrix Sci-
ence) and Proteome Discoverer (Thermo Fisher Scien-
tific) are popular commercial tools with extensive user
bases. FragPipe, using MSFragger [199], and pFind [200]
incorporate open search strategies, which improve
sensitivity by enabling the identification of PTMs.
Sipros [201], ProteoStorm [202] and COMPIL 2.0 [203]
are tailored specifically for metaproteomics but are per-
ceived less user-friendly than mainstream software. Tools
such as Sage [193] and MSFragger [199] leverage
advanced spectral and sequence indexing strategies to
significantly accelerate database searches, making them
highly promising for improving the speed of metapro-
teomics analysis.

For researchers who want more integrated solutions,
several software suites can simplify metaproteomics work-
flows by consolidating multiple steps and managing the
high density of information inherent to the field. Galaxy for
Proteomics (Galaxy-P) is another versatile platform offering
numerous tools and workflows tailored to metaproteomics,
including database generation, discovery analysis, verifica-
tion, quantitation, and statistical analysis [204-206]. With
public gateway availability [207] and access to training
resources via the Galaxy Training Network [208], Galaxy-P
is a valuable resource for researchers seeking an open and
user-friendly platform for users to access metaproteomic
workflows. The MetaProteomeAnalyzer (MPA) software
suite [209] offers modules for protein database creation,
database searching, protein grouping, annotation, and
results visualization. Its user-oriented design makes it a
suitable option for both beginners and experienced re-
searchers. MetaLab [210] is an integrated data processing
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pipeline that includes tools for sample-specific database
generation, peptide determination, taxonomic and func-
tional profiling, and abundance analysis. Its open search
strategy enables comprehensive profiling of PTMs and im-
proved sensitivity. Additionally, MetaLab offers workflows
for taxonomic analysis based on metagenome-assembled
genome (MAG) databases, allowing peptide-to-genome
linkages for improved specificity compared to traditional
lowest common ancestor (LCA) methods.

In these tools, selecting appropriate search parameters
is essential for reliable and meaningful results. The choi-
ces regarding modifications, enzyme specificity, and mass
tolerance significantly impact the identification of PSMs.
Below are key considerations:Selection of modifications:
It is important to distinguish between modifications
introduced by the experimental workflow and biological
modifications. Fixed modifications, like carbamido-
methylation of cysteine, are commonly applied across all
peptides to account for standard sample preparation arti-
facts, as discussed in Section Protein digestion. Variable
modifications, such as methionine oxidation, are applied
selectively to explore biologically relevant modifications.
However, including too many variable modifications can
expand the search space excessively, reducing identifica-
tion rates. It is often best to limit variable modifications to
the most biologically relevant ones.

Enzyme specificity and number of missed cleavages:
Choosing the correct enzyme and setting an appropriate
number of allowed missed cleavages affects the range of
detectable peptides. For instance, trypsin, the most com-
monly used enzyme in proteomics, may occasionally miss
cleavages after lysine (K) or arginine (R). Allowing one or
two missed cleavages is generally a good compromise in
metaproteomics, as it accounts for incomplete digestion
without excessively broadening the search. Semi-specific
or nonspecific cleavage settings might be useful in some
cases but can lead to longer processing times and a lower
identification rate due to the expanded search space.

Mass tolerance: Mass tolerance settings should match
the resolution capabilities of the mass spectrometer. For
example, on a high-resolution Q Exactive instrument
with higher-energy collisional dissociation (HCD) data,
setting a precursor mass tolerance of 10 ppm (for MS1)
and a fragment mass tolerance of 0.02 Da (for MS2) can
balance accuracy and computational efficiency, restrict-
ing the search to relevant matches while taking advan-
tage of the instrument's resolution.

Thoughtful parameter selection helps balance sensi-
tivity and specificity, leading to high-quality data that
accurately reflects the sample's biological characteristics.
Parameter adjustments should consider the mass spec-
trometer type, sample complexity, and specific research
objectives.

(ii) De novo searching

De novo peptide sequencing assigns amino acid
sequences to MS/MS spectra without requiring a protein
sequence database for spectral matching. This approach
provides an unbiased method for detecting peptides,
independent of the quality and completeness of the pro-
tein sequence database. Several de novo sequencing al-
gorithms have been introduced in recent years, including
PEAKS, Casanovo [211], PepNovo [212], and the newly
developed m-HelixNovo [213], metaSpectraST [214], and
NovoBridge [215].

When applied effectively, de novo sequencing can
sensitively and accurately estimate the taxonomic com-
position and functional content of the microbiome
without prior knowledge of the system under study. It
also has the potential to identify unsequenced members
of the microbial community. Furthermore, de novo
sequencing can be used to evaluate the completeness
and suitability of a protein sequence database for meta-
proteomics research [216]. Recently, the progress and
opportunities in de novo sequencing for metaproteomics
were reviewed, emphasizing its potential for un-
sequenced species detection and deeper functional in-
sights into microbial communities [217].

Despite its promise, there remains a need for
systematic benchmarking of de novo sequencing tools
to assess their applicability to metaproteomics. In
particular, most tools and approaches for de novo
metaproteomic analysis still require some input from
databases either to help selecting peptides or to gain
information from the identified peptides. Evaluating
their performance in terms of sensitivity, accuracy,
and throughput is essential to ensure their effective-
ness in the complex and diverse datasets characteristic
of microbiome studies.

(iii) Spectral library searching

Spectral library search engines operate on principles
similar to database searching but differ by directly
comparing experimental MS/MS spectra to pre-existing
libraries of validated spectra. These libraries consist of
MS/MS spectra previously acquired through the analysis
of complex peptide mixtures and conventional sequence
database searches or generated using predictive deep-
learning algorithms. Unlike sequence database search-
ing, spectral library searching can incorporate additional
parameters, such as retention time on the LC column
and the relative intensities of fragment peaks within the
spectra, enhancing both accuracy and confidence in
peptide identification.

The development of Al-based tools like MS2PIP
[218] and Prosit [219] has made it possible to generate
high-quality spectral libraries from protein sequence
databases [220]. These advancements have expanded
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the applicability of spectral library searches by en-
abling the generation of predictive libraries tailored to
specific experiments. Newer spectral library search
tools designed for DDA data, such as Mistle [221] and
Scribe [222], have also emerged for metaproteomics
research.

Spectral library searching offers a fast and efficient
approach to match peptide sequences to MS/MS data,
often outperforming traditional database searching in
terms of speed and precision for well-curated libraries.
However, despite its potential, spectral library tools for
metaproteomics require further evaluation, particularly
regarding their usability and effectiveness for highly
complex microbial data sets.

Database construction or selection

For single-organism proteomics, constructing a protein
sequence database is relatively straightforward, as it
can be derived directly from the organism's genome. In
metaproteomics, however, the complexity of microbial
communities, the diversity of organisms, and the preva-
lence of unknown proteins present significant chal-
lenges. Selecting or generating an appropriate database is
crucial, as the database must balance comprehensiveness
and specificity. An incomplete database risks missing or
falsely identifying proteins, while an excessively large
database decreases the sensitivity of the analysis and
inflates the FDR, as detailed in Section PSM FDR control
[223, 224].

An optimal database for metaproteomics should be
both comprehensive and specific. Comprehensive, as it
should include all proteins potentially present in the
sample. Missing sequences lead to false negatives,
reducing peptide and protein identification rates. Spe-
cific, because it should exclude sequences unexpected to
be present in the sample. Including irrelevant sequences
increases random matches, inflates the FDR, and there-
fore negatively affects peptide (and protein) identification
(see also Section PSM FDR control). Additionally,
metaproteomic analyses often include contaminants
from sample processing, such as leftover trypsin, BSA
carry-over, or keratin from handling. Incorporating these
contaminants into the database, using resources like the
common Repository of Adventitious Proteins (cRAP,
https://www.thegpm.org/crap/), allows for their accurate
identification and prevents misidentification with other
proteins in the sample.

To create a suitable database, prior knowledge of the
community composition is essential. This information can
be derived from various sources, including prior literature,
16S rRNA amplicon sequencing, or metagenomic and/or
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metatranscriptomic sequencing, each offering different
levels of resolution and success. Literature reviews provide
only limited insights, whereas meta-omics approaches
offer the most comprehensive and detailed characteriza-
tion of the community [225-227]. Additionally, depending
on the sample's environment, host or dietary proteins may
need to be included in the database. While adding these
proteins can improve identification rates, it also increases
database size and complexity, potentially complicating the
analysis. The inclusion of nearly identical sequences, often
inevitable in large databases, can further exacerbate pro-
tein inference issues (see Section Protein quantification).
Sequence clustering algorithms [228] or protein grouping
tools [229, 230] can address these challenges by consoli-
dating redundant entries while retaining essential taxo-
nomic and functional annotations.

The choice of database type depends on the sample
type, the level of understanding of the microbial com-
munity, and the available resources. Based on these fac-
tors, different types of databases can be used, each with its
own set of advantages and limitations (see Table 2). These
include public repositories, reference catalogs, and meta-
omics databases, as detailed below.

(i) Public repositories

Public repositories like UniProtKB [231] and NCBI
RefSeq [232] provide extensive reference collections
of protein sequences. However, these untailored (or
unrestricted) databases often lack specificity and contain
many unrelated sequences, leading to reduced identifi-
cation rates and increased FDR (Section PSM FDR con-
trol). Furthermore, public repositories are biased toward
well-characterized microbes, such as model organisms or
pathogens, and heavily studied environments or systems,
such as clinical and human samples. This bias results in
significant gaps for less-studied environmental microbial
communities, making these repositories incomplete
for many metaproteomics applications. Filtering (or
restricting) these repositories based on 16S rRNA analy-
sis results can improve specificity, but the resolution of
16S rRNA sequencing is limited. Entire genera or sets of
species often need to be included, preventing strain-level
specificity [233, 234].

(ii) Reference catalogs

Reference catalogs are curated collections of protein
sequences tailored to specific environments or systems.
They are available for well-studied ecosystems such as
the human gut [235, 236], the cow rumen [237, 238], and
the mouse gut [239-241]. These catalogs are typically
constructed by combining data from isolated microbes
and metagenomic studies [242]. Although smaller and
more targeted than public repositories, reference catalogs
can still be relatively large for metaproteomic analyses
and often aggregate data from many samples, including
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TABLE 2 Comparison of database types for metaproteomics: public repositories, reference catalogs, and meta-omics databases. The

color indicates our preference: green represents favorable choices, yellow indicates intermediate choices, and red highlights unfavorable

choices.

Monetary cost

Time cost (labor &
computation)

Comprehensiveness
Identification probability
Specificity

Misidentification probability
Sequence Redundancy and

Impact

Taxonomic Annotation and
Resolution

Certainty/Applicability

Public repositories®

Free

Days

Low to Medium depending on
the sample representation in
the repository

Low

Low due to high diversity of
the repository
High

High and difficult to resolve
due to high diversity of the
repository

Taxonomy not curated and
potentially outdated

Easily available but lacks the
guarantee of appropriate

Reference catalogs

Free

Days

Medium to High depending on
sequencing effort and multi-omics
integration

Medium

Medium due to lack of strains
resolution

Medium

Medium but can be resolved
depending the curation level

Depends on curation level
(potential for misidentification due
to closely related taxa)

Available for few sample types only
and lacks of accuracy

Meta-omics databases

Sample type dependent
$100-$2000/sample or pooled
samples

Genome-resolved month-year,
otherwise weeks

Medium to High depending on
sequencing effort and multi-
omics integration

High

High due to sample specificity

Low

Low and can be resolved as part
of the metagenomic processing

Possibility of de novo annotation
and species resolution based on
metagenomic processing

High accuracy but requires
particular expertise and extra

sequences

time/cost

“Restricted repositories have similar characteristics to reference catalogs in terms of specificity and sequence redundancy.

different individuals and studies—yet, not from the study
itself, therefore also called unmatched meta-omics data-
bases. This composite nature introduces challenges, as
even samples from similar environments can exhibit
substantial variation in species composition and strain
diversity. Consequently, reference catalogs can suffer
from inaccuracies, incompleteness, and overrepresen-
tation of certain subsamples [156, 243]. Like repositories,
the specificity of reference catalogs can be improved by
incorporating prior knowledge of the microbial commu-
nity, such as results from 16S rRNA analysis, to narrow
down the included sequences to those most relevant to
the sample.

Alternatively, to address the challenges posed by
large and composite catalogs, database-reduction meth-
ods have been developed. These methods include the
two-step search approach [244], iterative workflows such
as MetaPro-IQ [120] and MetaLab [210], next to others.
While these methods are often used in the field and
increase the number of identified PSMs and peptides,
some have been shown to significantly raise the number
of false positives at both levels, exceeding the FDR esti-
mate [245]. These methods should therefore be treated

with caution, and additional validation might be appro-
priate before drawing biological conclusions.

(iii) (Matched) meta-omics databases

Meta-omics databases are constructed using metage-
nomic and/or metatranscriptomic data collected from
the same sample as the metaproteomic analysis, making
them the most specific databases available. These
databases accurately reflect the species composition and
strain diversity of the sample [11, 224, 246]. However,
generating a high-quality meta-omics database requires
significant sequencing effort, cost, computational
resources, and technical expertise. Although the specific
details of this process are beyond the scope of this
manuscript, they have been extensively covered
elsewhere [224, 247]. Briefly, constructing a meta-omics
database involves four key steps: sequencing, assembly,
binning, and annotation.

To create a comprehensive database suitable for
metaproteomic analysis, the sequencing effort must be
sufficiently deep to capture the complexity of the com-
munity. One major advantage of meta-omics databases is
their ability to provide precise insights into the species
and strain diversity of the sample, enabling direct linkage
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between genomes and identified proteins. This requires
genome reconstruction through binning, where contigs
are grouped into MAGs based on shared features. How-
ever, due to the complexity of microbial communities
and limitations in sequencing depth, some MAGs
may remain incomplete. Therefore, a robust meta-omics
database should include both binned and unbinned
sequences to retain as much information as possible
[248, 249].

Once reconstructed, MAGs and contigs are taxonom-
ically annotated, and protein sequences or open-reading
frames (ORFs) are predicted and functionally annotated.
The choice of tools and resources for these steps depends
on the study's objectives [250]. Despite their specificity,
meta-omics databases can still be incomplete due to
insufficient sequencing depth or the inability to recover all
relevant MAGs from the sample. This issue can be par-
tially addressed by performing exploratory 16S rRNA gene
sequencing to assess the required sequencing depth for
optimal metagenomic analysis [226].

Combining metagenomic data with metatran-
scriptomic data further improves the quality and
specificity of the database [249, 251]. Since metatran-
scriptomics focuses on mRNA, it captures the active
portion of the community, providing a gene-centric
view that aligns closely with the functional content of
interest for metaproteomics.

PSM FDR control

A critical step in the process of peptide identification is
acquiring a set of reliable PSMs. After PSMs are acquired,
they are evaluated based on the scoring function of the
search engine, retaining the highest-ranked PSM for each
spectrum—that is, the peptide sequence whose theoret-
ical spectrum most closely matches the experimental
MS/MS spectrum. However, regardless of the scoring
algorithm used, some PSMs will inevitably represent
false matches, making robust control of false positives
essential.

The most commonly used strategy to manage false
positives in (meta)proteomics is the target-decoy approach
[252]. In this approach, the protein sequences in the target
database are processed in silico to emulate enzymatic
digestion, generating theoretical peptides. The same pro-
cedure is applied to the reversed or shuffled sequences of a
decoy database, ensuring that these decoy peptides are
biologically implausible and not present in the sample.
During the search, the experimental spectra are matched
to both the target and decoy sequences in a concatenated
target-decoy database. This process results in PSMs being
labeled as either target or decoy. The proportion of decoy
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PSMs in the final result serves as an estimate of the FDR,
calculated as the number of decoy PSMs divided by the
total number of accepted PSMs (Figure 4). The FDR is
typically controlled at 1% in proteomics and metapro-
teomics experiments, but for highly complex samples such
as soil microbiomes, the FDR threshold can be increased
to 5% to retain a sufficient number of identifications for
biological interpretation.

The specific challenges of metaproteomics add com-
plexity to FDR control. The larger, more diverse protein
sequence databases required for metaproteomics often
increase the search space significantly, leading to a
greater overlap between the score distributions of target
and decoy PSMs. This overlap reduces the resolution of
FDR estimation and necessitates careful database con-
struction to limit irrelevant sequences, as discussed in
Section Database construction or selection. Overly large
but unspecific databases inflate the FDR by increasing
random matches to both target and decoy sequences,
resulting in fewer confident peptide identifications
[187, 254]. Conversely, overly restrictive databases risk
excluding true target sequences, resulting in missed
matches, false negatives, and reduced proteome cover-
age. Therefore, achieving an optimal balance between
database specificity and comprehensiveness is crucial to
minimize false positives from decoy matches while
maximizing target identifications, ensuring effective FDR
control.

Metaproteomics workflows often rely on advanced
post-processing tools to improve the accuracy and con-
fidence of peptide identifications. MS?Rescore [255]
refines PSM scores by leveraging Percolator's search
engine-dependent features [256] while incorporating
additional features derived from MS2PIP [257] and
DeepLC [258]. By integrating these predictive features
with Percolator's semi-supervised machine learning
model, MS2Rescore improves the separation between
target and decoy PSMs, resulting in more accurate FDR
estimation. These refinements not only increase peptide
identification rates but also improve the reliability of
downstream taxonomic and functional analyses, making
them particularly valuable for complex microbiome data
sets [259].

In metaproteomics, where samples often contain
thousands of species, the challenge of FDR control is
even larger by the inherent complexity and diversity
of the microbial communities under study. Careful da-
tabase construction (Section Database construction or
selection), combined with robust FDR control during
the search and advanced post-processing techniques, is
critical to ensure reliable peptide and protein identifica-
tions, thereby enabling meaningful biological insights
from metaproteomics data sets.
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FIGURE 4 Principle of target-decoy analysis and false discovery rate (FDR) calculation. (Top) The experimentally obtained MS/MS

spectra are matched to in silico generated spectra of the concatenated target/decoy protein sequence database. (Middle) For each obtained

spectrum, the match with the highest score is retained, together with the assigned in silico digested (ISD) peptide sequence and its target or

decoy label. (Bottom) The score distribution is used to select which peptide-spectrum matches (PSMs) will be considered as true matches.

The metric to control the false positives is the FDR, and is calculated as the number of decoy PSMs divided by the number of target PSMs (in

the Figure depicted as area B divided by the sum of areas B and A). Figure of (schematic) target/decoy distribution adjusted from Kill

et al. [253].

Protein inference

Protein inference is a fundamental challenge in shotgun
proteomics where the goal is to determine the proteins
present in a sample based on the peptides identified
through tandem mass spectrometry [223]. This process is
complicated by the fact that peptides can often be map-
ped to multiple proteins or protein isoforms present in
the commonly large protein database. This is especially
the case in complex samples such as microbial commu-
nities where multiple species may contribute homolo-
gous proteins, making it difficult to conclusively infer
which proteins are actually present [260].

To address this complexity, protein grouping is
commonly used to generate a more manageable list of
identified protein (sub)groups for downstream analysis.
However, different methods for protein grouping exist, as
depicted in Figure 5, and these are typically performed by
the search engine. It is essential to verify the default
settings of the search engine to understand which
grouping approach it applies, and if needed, adjust it to
align with your research hypothesis. The two main ap-
proaches are Occam's razor and anti-Occam's razor.

Occam'’s razor is based on the principle of maximum
parsimony, providing the smallest set of proteins that can

explain all observed peptides. However, this approach
discards proteins not matched by a unique peptide,
potentially losing their associated taxonomy and func-
tions that might be present in the sample. Occam's razor
is particularly suited for simpler, single-species samples
or targeted proteomics experiments, where reducing
complexity is key.

In contrast, anti-Occam's razor adopts a more inclu-
sive strategy, retaining all proteins that can be mapped to
at least one peptide, regardless of whether those peptides
are shared with other proteins. This approach is benefi-
cial for complex metaproteomic samples, where the goal
is to capture as much protein diversity as possible. By
being more inclusive, anti-Occam'’s razor ensures that
proteins from different species with minimal unique
peptides are not overlooked, providing a more compre-
hensive picture of the microbial community. However,
this inclusivity comes at the cost of increased complexity
in the resulting protein list.

After choosing between Occam's and anti-Occam's
razor principles, proteins can then be grouped into pro-
tein groups or protein subgroups. Protein groups cluster
proteins that share at least one peptide, offering a
broader overview of potential protein identifications.
Protein subgroups, on the other hand, are more specific
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FIGURE 5 Practical example of (sub)grouping approaches. This grouping case deals with distant group members, meaning that certain
proteins in the group don't share a single peptide, in this case proteins 1 and 3. Applying the rule of parsimony separates the group in this
specific case. In the anti-Occam case, protein 2 remains in a separate subgroup.

and include proteins that share the exact same set of
peptides. For example, the anti-Occam's razor approach
often benefits from subgrouping to prevent excessively
large and uninformative protein groups. In metapro-
teomics, this approach helps disentangle the contribu-
tions of individual species, even when closely related
proteins share substantial sequence similarity [260].
The choice of protein inference approach should
align with the complexity of the sample and the research
objectives. For single-species or targeted studies, Occam's
razor combined with protein grouping is advantageous
for reducing false positives and simplifying downstream
analyses. This strategy was used, for example, in ana-
lyzing the extended simplified human intestinal micro-
biota (STHUMIx) mock community [261] as part of the
CAMPI study [156]. For complex, multi-species meta-
proteomic samples, anti-Occam's razor combined with
protein subgrouping is often preferred, as it maximizes
protein diversity while maintaining manageable group
sizes. This inclusive approach was used for fecal sample
analysis in the CAMPI study [156]. Ultimately, the
selection of a protein inference method depends on the
specific characteristics of the sample and the research
objectives. Researchers must balance the need for com-
prehensive protein identification with the practical con-
siderations of data complexity and interpretability [260].

Protein quantification

Protein quantification is a central component of meta-
proteomics, offering valuable insights into the functional
dynamics of microbial communities. By quantifying pro-
teins, researchers can assess how microbes respond to
environmental changes, revealing shifts in physiology and
metabolic processes. For example, changes in nutrient
availability can trigger significant alterations in protein
expression within individual microbes [262] or entire

microbial populations [263]. This section outlines the key
concepts, strategies, and challenges in metaproteomic
quantification, focusing on label-free and labeling-based
approaches, as well as methods for downstream data
analysis.

Metaproteomics workflows typically rely on two main
quantification strategies: label-free quantification (LFQ)
and labeling-based quantification. LFQ methods are
widely used because they do not require stable isotope
labels, making them more suitable for diverse and com-
plex samples. Two common LFQ approaches are MS1
intensity-based quantification and MS2 spectral count-
ing. MS1 quantification measures precursor ion intensi-
ties by calculating the area under the curve or apex
intensity for each identified peptide, with tools such as
MaxQuant [264] or standalone alternatives like moFF
[265] or FlashLFQ [266]. MS2 spectral counting, in
contrast, quantifies peptides based on the number of
matched MS2 spectra. Although simpler to implement,
spectral counting typically has a narrower dynamic range
and slightly lower precision. Currently, there is limited
validation to determine which of the two primary
quantification approaches—MSI1 intensity-based quanti-
fication or MS2 spectral counting—is more accurate for
metaproteomics, or under which conditions one might
outperform the other. One study demonstrated that
spectral counting provided a more accurate measure of
the proteinaceous biomass of members within a synthetic
community compared to MS1 intensities [167]. None-
theless, the prevailing consensus in the field suggests that
both methods are generally suitable for metaproteomic
quantification, with their applicability depending on the
specific context and experimental goals.

Labeling-based quantification approaches, while valu-
able in proteomics, are less commonly used in metapro-
teomics due to the complexity of microbial communities.
These methods, including TMT and SILAC, enable
absolute quantification and are particularly effective for
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controlled experimental designs requiring precise com-
parisons across samples. However, applying these meth-
ods to metaproteomics presents significant challenges.
The diverse microbial populations and high sample
complexity of environmental or clinical samples make
labeling-based approaches less practical, favoring label-
free strategies for most metaproteomics workflows.
Nevertheless, labeling remains a viable option for targeted
studies with well-defined microbial communities.

Quantification in metaproteomics faces several chal-
lenges, particularly in aggregating peptide-level data to
infer protein abundances. This aggregation process is
influenced by the protein inference problem [223], which
determines how peptides are assigned to proteins or
protein (sub)groups (see also Section Protein inference).
Most software tools automatically assign peptides to
proteins or protein groups, facilitating the quantification
process. Once protein abundance data is obtained, nor-
malization and transformation steps are crucial for
meaningful statistical analysis. While various normal-
ization methods have been proposed for proteomic data
[267-269], the optimal approach for metaproteomics
remains an area of active research.

One widely used normalization method, particularly
for spectral count data, is the normalized spectral
abundance factor (NSAF) [270]. This approach compen-
sates for biases introduced by protein length and sample
variability. It involves dividing a protein's PSM count by
its amino acid length to account for protein size, followed
by normalizing against the total PSM count within the
sample to reduce between-run batch effects. NSAF is
relatively simple to calculate, robust to missing values,
and particularly suited to the sparse data often en-
countered in metaproteomics. Further transformation,
such as log or square root normalization, is typically
applied to meet the assumptions of statistical tests.

A key distinction between standard proteomics and
metaproteomics is the need to account for the diverse
and complex nature of microbial communities. In
metaproteomics, it may be advantageous to normalize
protein abundances specifically for organisms or groups
of organisms within the community. This targeted
normalization allows researchers to focus on changes in
gene expression and function within specific taxa, pro-
viding more granular insights into microbial activity. The
normalized spectral abundance factor per organism
(orgNSAF) normalization method has been proposed as a
solution for this purpose, as it enables normalization of
protein abundances within defined taxonomic groups
[271-273].

A unique advantage of metaproteomic data is its
ability to generate multiple data sets based on the
research question. These data sets generally involve

summing the abundance of constituent proteins into
relevant categories. Broadly, there are three main cate-
gories: (i) individual proteins or groups of proteins with
similar sequences, which can offer insights into the
specific functionalities of individual organisms within
the community; (ii) categories of biological functions
assigned to proteins associated with the measured pep-
tides, enabling researchers to investigate shifts in overall
community functions; and (iii) taxonomic categories,
where protein abundances can be used to estimate the
relative contributions of different organisms within a
microbial community.

The accuracy of both functional and taxonomic
quantification is heavily dependent on the quality and
completeness of protein annotations in the databases
used. Functional categories can range from highly spe-
cific annotations, such as biochemical reactions, to
broader descriptions of cellular processes like metabo-
lism, gene expression, transport, or replication. Similarly,
taxonomic quantification can achieve high resolution,
down to the strain or species level [274, 275], but this
depends on the depth and accuracy of protein annota-
tions. In some cases, it is limited to higher taxonomic
ranks when annotations are incomplete or ambiguous
[43]. Metaproteomic measurements, when processed
correctly, can provide an accurate representation of the
relative proteinaceous biomass of microbial species
within a community [167]. However, the specificity and
accuracy of these measurements are closely tied to the
reliability of the annotations used for protein classifica-
tion [224, 254].

While these approaches enable the generation of
robust data sets for understanding microbial abundance
and function, further validation is necessary to refine
these methodologies. Current quantification strategies in
metaproteomics require additional benchmarking to
identify optimal or equivalent approaches for various
types of studies. Future research using mock communi-
ties with defined compositions and spike-in proteins will
be crucial for systematically evaluating the accuracy,
reproducibility, and reliability of protein quantification
methods in metaproteomics.

DIA data analysis

The application of DIA-MS in metaproteomics, as dis-
cussed in Section DIA, demands tailored analytical
workflows to manage the unique challenges posed by the
complexity and scale of microbial communities. Unlike
DDA, which prioritizes peptide selection, DIA generates
complex spectra by fragmenting all ions within a pre-
defined m/z range simultaneously. This comprehensive
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approach requires advanced computational tools and
strategies to handle the resulting data.

Extracting quantitative and identification data from
DIA-MS involves specialized software, such as Spectro-
naut [276], DIA-NN [277], and EncyclopeDIA [278].
These tools rely heavily on pre-existing spectral libraries
to match experimental spectra to theoretical peptides.
Such libraries are often generated through prior DDA
experiments or predicted from protein sequence data-
bases. While promising, library-free approaches that
predict spectra directly from protein sequences remain
computationally intensive and impractical for complex
metaproteomics samples without additional data reduc-
tion strategies. One effective approach is using genome
sequencing to limit the database search space or per-
forming a preliminary DDA step to construct a targeted
spectral library. These steps, although resource-intensive,
are essential for reducing ambiguity in protein and pep-
tide identifications.

Metaproteomics data sets amplify the inherent ana-
lytical challenges of DIA-MS due to their immense scale,
which frequently involves millions of proteins and pep-
tides. This complexity can lead to significant computa-
tional demands and requires extensive data processing
pipelines. Direct library-free DIA analysis for such data
sets is virtually impossible with current technology
unless supplemental genome sequencing or DDA-based
library construction is performed. These preparatory
steps add complexity but are critical for optimizing DIA's
utility in resolving the intricate dynamics of microbial
communities.

Recent advancements in MS, including DIA-PASEF
[36] and the Orbitrap Astral analyzer [37], have shown
potential for enhancing the application of DIA-MS in
metaproteomics. These technologies allow for deeper
proteome coverage, improved sensitivity, and more
accurate quantification. However, their integration into
workflows must be carefully aligned with the computa-
tional tools and spectral library strategies mentioned
above to fully exploit their capabilities.

A recent benchmarking study has demonstrated the
reproducibility and accuracy of DIA-MS for metapro-
teomic workflows in comparison to DDA-MS methods
[279]. Using mock communities of known taxonomic
composition, DIA-MS consistently identified and quan-
tified more peptides and proteins across laboratories.
Additionally, the reproducibility of protein and peptide
identifications was higher in DIA-MS workflows, which
also provided accurate quantification of both protein
abundances and taxonomic groups. These findings un-
derscore the advantages of DIA-MS for metaproteomics,
including its capacity for deep sequencing, robust quan-
titation, and reproducibility across samples. However,
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current studies also highlight the limitations of existing
DIA tools when applied to metaproteomic data sets,
emphasizing the need for improvements in software
capabilities to handle the unique complexities of micro-
biome samples. These insights stress the importance of
optimizing library generation, computational tools, and
workflows to fully leverage the potential of DIA-MS for
microbial community analysis.

Although DIA-MS presents substantial benefits for
reproducible and quantitative analysis, its application in
metaproteomics is still evolving and faces several technical
and computational challenges. Advances in mass spec-
trometry and bioinformatics hold promise for addressing
these hurdles, enabling deeper insights into microbial
community dynamics. Ongoing research is needed to
refine workflows, optimize computational methods, and
explore the potential of library-free approaches to broaden
their applicability in metaproteomics.

Taxonomic and functional analysis

In metaproteomics, researchers aim to -characterize
microbial communities by determining the organisms
present (taxonomic analysis) and elucidating their physi-
ological roles (functional analysis). These analyses provide
critical insights into the composition, diversity, and eco-
logical functions of microbial communities across diverse
environments. The accuracy of these assignments depends
on the quality of peptide and protein identifications (see
Section Peptide identification with proteomics search en-
gines) and is significantly influenced by the choice of
database (see Section Database construction or selection).
Below, we describe the methodologies and tools available
for taxonomic and functional annotation in metapro-
teomics, emphasizing the importance of robust annotation
strategies and computational resources.

Taxonomic analysis

Taxonomic analysis in metaproteomics identifies the
organisms present in a sample based on their expressed
proteins. This analysis provides insights into microbial
community composition and diversity, linking proteins
to their taxonomic origins. Taxonomic assignment can
be achieved using exact matching or homology-based
searches against comprehensive databases such as Uni-
ProtKB [231] or NCBI NR [232].

While numerous metaproteomics-specific tools are
available (described in Section Metaproteomics tools for
taxonomic and functional analysis), researchers can also
use tools originally developed for metagenomics, such as
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Centrifuge [280] and Kraken 2 [281]. These tools match
peptides or proteins to known taxa, but their accuracy
depends on the completeness of publicly available
genome databases. If organisms in the sample have not
been previously sequenced and deposited, taxonomic
assignments may be incomplete or inaccurate.

Alternatively, taxonomic assignments can leverage
meta-omics databases derived from metagenomic
assemblies. Proteins are inherently tied to genomes, and
clustering metagenomic sequences into MAGs enables
genome-centric taxonomy assignment. Tools like GTDB-
Tk [282] use MAG taxonomy to assign taxa to proteins.
For proteins not linked to MAGs, tools such as CAT [283]
can infer taxonomy based on the context of all the genes in
an assembled contig. Advances in long-read sequencing
are revolutionizing genome assembly from metagenomes,
further improving taxonomic assignments [284].

Functional analysis

Functional analysis of metaproteomes reveals how
microbial communities contribute to environmental
processes, human health, and disease. By measuring the
abundance of proteins involved in processes such as
metabolism, transport, replication, and defense, func-
tional analysis provides a window into microbial com-
munity dynamics and their roles in ecosystems.

To describe microbial functions, various functional
ontologies are used: (i) Gene Ontology (GO): Organizes
annotations into three categories: molecular functions,
biological processes, and cellular components. GO terms
are used to describe what a gene product does (molecular
function), the biological goals it helps achieve (biological
process), and where in the cell it acts (cellular compo-
nent) [285]; (ii) Enzyme Commission (EC) numbers:
Categorizes enzymes by the chemical reactions they
catalyze, particularly useful in studies of enzymatic
activity and the role these enzymes play in metabolic
pathways; (iii) Kyoto Encyclopedia of Genes and
Genomes (KEGG): Maps proteins to metabolic and sig-
naling pathways, illustrating their interactions within
larger biological systems [286].

There are also more specialized ontologies such as
MEROPS [287] for proteases and CAZy [288] for
carbohydrate-active enzymes, including glycoside hydro-
lases, offer enhanced specificity for analyzing distinct
functional categories within microbial communities.

Functional annotations can rely on computational
tools commonly used in metagenomics, such as Ko-
FamKOALA [289], InterProScan [290], and eggNOG-
mapper [291]. However, while these tools provide robust
frameworks for mapping protein functions, more tailored

tools specifically designed for the unique requirements of
metaproteomics are available and discussed in Section
Metaproteomics tools for taxonomic and functional
analysis.

Peptide-centric versus protein-centric approach

In metaproteomics, taxonomic and functional analyses
can be performed using either a peptide-centric or
protein-centric approach. In the peptide-centric
approach, peptides identified through MS are directly
annotated with taxa and functions based on their mat-
ches to in silico tryptic digests of known protein
sequences. This approach ensures that all potential pro-
tein matches are retained during annotation, providing a
broader view of possible taxa and functions. In the
protein-centric approach, peptides are first mapped to
their corresponding proteins or protein (sub)groups,
aggregating peptides that share common proteins. This
step addresses the protein inference problem, a challenge
in assigning peptides to proteins due to shared sequences
among multiple proteins.

The peptide-centric approach typically considers all
proteins that a peptide could originate from, whereas
protein-centric tools may discard information deemed
redundant based on the chosen protein (sub)grouping
strategy. These different approaches may lead to variations
in the resulting annotations, and the debate over which
method provides the most accurate results remains an
active topic in metaproteomics research [156].

Metaproteomics tools for taxonomic and
functional analysis

Various tools have been developed for taxonomic
and functional analysis in metaproteomics, each with
distinct features and applications [292]. Unipept is a
powerful ecosystem of tools for the taxonomic and
functional analysis of metaproteomics samples, offering a
command-line interface (CLI), a desktop application, a
web application, and an application programming inter-
face (API) to accommodate diverse user preferences and
workflows [195, 293, 294]. It follows a peptide-centric
approach, assigning taxa and functions directly to pep-
tides by mapping them to the UniProtKB database. For
taxonomic classification, Unipept calculates the LCA by
identifying the most specific, or lowest, shared taxonomic
rank among all taxa associated with a peptide’'s matched
proteins (Figure 6). More details on how the LCA is
calculated can be found in a recent comprehensive
tutorial [295]. Unipept also supports extensive functional
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Family 1. Figure adjusted from Van Den Bosschee et al. [295].

analysis by reporting functions based on the GO, EC, and
InterPro classifications. For each peptide, it aggregates all
annotations associated with proteins matching the input
peptide and counts their occurrences. This information is
displayed in a table within the web application. Detailed
tutorials and examples for using Unipept have been
published [295, 296], and the documentation available on
the website (https://unipept.ugent.be/) offers additional
guidance to help users navigate the tool.

The Peptonizer2000 is a novel metaproteomics pipe-
line for taxonomic inference that models the errors and
uncertainties introduced by a typical metaproteomics
analysis pipeline [297]. Indeed, the analysis of mass
spectra is inherently challenging: researchers need to
match observed data to databases of protein sequences,
where factors such as database bias, ambiguous spectra,
degenerate peptide sequences, and inter-species sequence
homology come into play. The Peptonizer2000 pipeline
uses Bayesian statistics to model peptide sequences,
associated taxa, and the possible errors and uncertainties
introduced earlier as a graph. Subsequently, the Belief
Propagation algorithm is utilized on this graph to compute
probability scores that indicate the potential presence of a
taxon in a sample under study.

MetaLab [210, 298-300] is an integrated software
platform that provides a streamlined pipeline for

microbial identification, quantification, and taxonomic
profiling using mass spectrometry raw data. Employing a
hybrid approach, MetaLab combines information derived
from both peptide-centric and protein-centric metapro-
teomics analyses. MetaLab utilizes a precomputed index
of the UniProtKB for taxonomic classification of identi-
fied peptides and retrieves functional annotations from
the eggNOG database [301]. The latest version supports
DDA and DIA workflows across various mass
spectrometry platforms [302]. Comprehensive resources
on iMetaLab [300] can be found on their dedicated Wiki-
page (https://wiki.imetalab.ca/).

Prophane [303] is a software tool designed for taxo-
nomic and functional annotation of metaproteomes,
offering interactive result visualization and an intuitive
web-based interface. It integrates data from various anno-
tation databases, including NCBI [304], UniProtKB [231],
eggNOG [301], or Pfam [305]. Unlike tools such as Unipept
and MetalLab, Prophane adopts a purely protein-centric
approach for its analyses. The software is accessible
both as a Conda package (https://anaconda.org/bioconda/
prophane) and via a web service (https://prophane.de/
login). Tutorials and example data sets are available on the
tool's website (https://prophane.de/about/tutorial).

The MetaProteomeAnalyzer (MPA) [209] is an
open-source Java tool designed for the taxonomic and


https://unipept.ugent.be/
https://wiki.imetalab.ca/
https://anaconda.org/bioconda/prophane
https://anaconda.org/bioconda/prophane
https://prophane.de/login
https://prophane.de/login
https://prophane.de/about/tutorial

VAN DEN BOSSCHE ET AL.

32 of 53 Wl LEY—iMetQ

functional analysis of metaproteomics data. MPA
employs both sequence-based and spectral-based
approaches to identify organisms and functional
pathways in a sample, enabling researchers to explore
the metabolic activities of microbial communities
and their environmental interactions. The software
supports multiple search engines and incorporates
features to reduce data redundancy by grouping pro-
tein hits into so-called meta-proteins. MPA is available
as a desktop application, and extensive tutorials,
documentation, and other resources are provided on
its homepage (www.mpa.ovgu.de).

Downstream statistics

A common question among researchers is how to
determine the optimal approach for downstream pro-
cessing of metaproteomic data. Unfortunately, there is no
universal workflow that fits every scenario. This section
aims to guide readers in constructing a tailored decision
tree for analyzing metaproteomic data sets. In earlier
sections, we detailed the generation of various metapro-
teomic data tables, including peptides, proteins, taxon-
omy, and functional attributes. The next step involves
uncovering the underlying patterns and biological in-
sights within these data sets through statistical analysis.
Designing a robust statistical analysis pipeline for
metaproteomics requires researchers to make several
informed decisions, which are summarized in a “cheat
sheet” in Figure 7.

Identifying relevant scientific questions

The foundation of any metaproteomics analysis begins
with defining the key scientific question(s) of the
study. Metaproteomics allows us to address a variety of
research objectives. Below are some common examples
of questions that can be explored (Figure 7A):
(i) Cohort studies: What differential features distin-
guish healthy individuals from those with a disease?
Are there potential biomarkers for specific conditions?
(ii) Microbiome dynamics: How does the microbiome
vary over space and time? Can beta diversity be
observed at the functional ecological level? What is
the impact of specific environmental factors on the
microbiome? (iii) Perturbation study: How do micro-
bial communities respond to external perturbations at
the taxonomic, functional, and ecological levels?
(iv) Multi-omics study: What (holistic) insights can be
gained by integrating metaproteomics with other
omics approaches?

Selecting appropriate levels of analytical
insights

Once the primary research questions are defined, the
next step is to determine the level of insights required to
address these questions (Figure 7B). This involves
selecting between different analytical approaches tailored
to the objectives of the study.

(i) Feature-centric analysis

Feature-based methods are the most commonly
applied in metaproteomics. These analyses focus on
identifying differential features, which are quantifiable
variables that exhibit statistically significant differences
between groups or conditions. Examples include specific
peptides, proteins, taxonomic groups, or annotated
functions that vary significantly under different experi-
mental condition.

There are two key considerations that underpin
feature-centric analysis: (i) the assumption of standard
statistical distributions, such as normality, to validate
analytical methods, and (ii) the treatment of features as
independent variables, enabling the use of widely-applied
statistical approaches like parametric or non-parametric
tests. By adhering to these principles, feature-centric
analyses enable robust identification of biologically
meaningful differences across data sets.

(ii) Community-centric analysis

Unlike feature-centric analysis, community-centric
analysis considers the data set as a reflection of a living
ecological community. Here, proteins are viewed not as
isolated features but as components of interconnected
networks, with functions linked through evolutionary
relationships and taxonomic origins. For example,
proteins from different taxa may exhibit functional
redundancy, while ecological dynamics may influence
functional and taxonomic interactions.

Due to these complex interactions, traditional statis-
tical methods that assume feature independence may not
be suitable. To address these challenges, novel ecological
approaches have been developed in metaproteomics,
inspired by advancements in metagenomics.

For example, metrics for functional redundancy
utilize bipartite networks to link taxonomic and func-
tional attributes, serving as indicators of community
health and stability [43, 306]. Similarly, PhyloFunc,
integrates phylogenetic composition into functional
beta diversity analysis by incorporating functional dis-
tances at nodes of phylogenetic trees and applying a
unifrac-like weighting scheme [307]. This approach
distinguishes whether functional changes result from
compensation among closely related species or shifts
between distantly related taxa, offering valuable insights
into ecological dynamics.
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(iii) Cross-omics analysis

The metaproteome is intrinsically linked to other
meta-omes, making the integration of multiple omics
data sets essential for a deeper understanding of micro-
biome systems ecology. Different meta-omics approaches
possess complementary strengths as they collectively
capture variations along the central dogma of molecular
biology (DNA - RNA - Protein), favoring a comprehen-
sive understanding of biological processes and ecological
interactions within microbiomes.

Despite the complementary nature of these data sets,
most studies have traditionally analyzed meta-omics

using separate, stand-alone workflows. However, recent
advances in bioinformatics tools and platforms, such as
Galaxy [308] and MOSCA [309], have facilitated the
integration of these data sets, enabling more seamless
and coherent analysis. Cross-omics analysis can also
provide an in-depth view of the functional dynamics of
community ecology.

In a recent study, metagenomics and metaproteomics
were paired to assess whether certain proteins serve as
niche proteins (proteins that contribute to the ecological
role or niche that a microbial community occupies
within its environment) or play essential metabolic roles
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within a community [310]. To achieve this, genome- and
proteome-level functional redundancy within the com-
munity were compared simultaneously. A larger dis-
crepancy might indicate that certain genes are present
but not expressed as proteins, suggesting a more spe-
cialized or niche role. Smaller discrepancies might indi-
cate that the genes are actively translated into proteins,
suggesting essential metabolic functions.

Data preprocessing strategies

After selecting appropriate levels of analytical insights,
the first step in downstream analysis is data preproces-
sing. Common preprocessing steps include data filtering,
data transformation, data imputation, and data scaling
(Figure 7C). However, there is no universal approach for
data preprocessing; the best strategy depends on the
specific research questions under investigation.

(i) Data transformation

Common data transformations used in proteomics
and metaproteomics include logarithmic transforma-
tions (e.g., log2 or logl0) and square root transforma-
tions. However, not all scenarios are suitable for data
transformation.

When to use data transformation: Transformation is
recommended when achieving near-normality in the data is
necessary. For feature-level analyses, log transformation of
peak intensities can make the data approximate a normal
distribution. Normal distributions are crucial for many
commonly applied metaproteomic feature selection meth-
ods, such as linear models, empirical Bayes, univariate
t-tests, partial least squares discriminant analysis (PLS-DA),
and orthogonal partial least squares discriminant analysis
(OPLS-DA). If the data are not normally distributed, alter-
native non-parametric methods may be considered to meet
the assumptions of the chosen analysis.

When not to use data transformation: Transformation
should be avoided when reflecting protein abundance. For
example, volcano plots, often used for identifying differen-
tial features, plot statistical significance (—log;q(p-value))
against fold change (log, fold change). While fold change
values are log-transformed for visualization purposes, the
original fold change data should remain untransformed
during statistical analyses or comparisons. Additionally, in
community-level analyses, log transformation can obscure
protein biomass information, which is essential for esti-
mating taxonomic and functional compositions. Protein
intensities or PSM counts can serve as reliable measures of
protein biomass contributions by taxa [167]. Therefore,
composition-based analyses, such as alpha and beta
diversity or functional redundancy assessments, should use
untransformed data.

(ii) Data centering and scaling

In standard metaproteomics workflows, an equal
amount of protein is typically extracted from each sample,
digested, and loaded into the mass spectrometer to ensure
consistency and comparability. However, in specific cases,
metaproteomics may quantify overall protein biomass
responses based on the total protein biomass in a given
system volume rather than standardizing based on protein
content [42]. In such cases, centering and scaling are not
recommended. Alternative normalization techniques, such
as total spectral count normalization or median normal-
ization, may be more appropriate for these scenarios.

(iii) Data filtering

Filtering the data set typically helps remove noise,
irrelevant features, or outliers. The application of data
filtering should be tailored to the specific context of the
study.

For feature-centric analysis, stringent data filtering is
crucial, particularly when identifying biomarkers. This
process involves setting a higher threshold for protein
presence across samples to ensure that identified bio-
markers are consistently detected in the majority of
subjects. By requiring proteins to be present in a large
percentage of samples (e.g., 70%-90%), researchers can
improve the reliability and relevance of the identified
biomarkers. This consistency is critical for validating
potential biomarkers, as it reduces the likelihood of
identifying false positives. Data filtering is also typically
stringent for other types of feature-centric analysis to
ensure the validity of statistical hypotheses. However, the
threshold and method of filtering (e.g., by the whole data
set or by group) must be properly applied to prevent over-
filtering, which could remove features that are truly
missing in specific subgroups.

For community-centric data analysis, filtering is
optional, with less stringent thresholds allowing for a
more comprehensive view of community dynamics.
While some filtering helps remove obvious noise, it is
applied more flexibly than in feature-centric analysis. For
example, unfiltered taxon-specific functional data can
provide a better review of the degree distribution of
functions in a microbiome [306].

(iv) Data imputation

In a metaproteomic data set, missingness often arises
from two simultaneous mechanisms. First, the diversity
and sparse nature of the metaproteome lead to a signif-
icant proportion of true missing proteins (missing not at
random). Second, the inherent depth limitation of cur-
rent common metaproteomic techniques results in highly
sparse detection of low-abundance proteins across sam-
ples (missing at random) [311].

Data imputation is the step that requires the most
caution. Improper selection of the data imputation
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approach can induce false positives. When a large pro-
portion (e.g.,>50%) of a feature is missing, excessive
imputation can lead to the creation of artificial values
that do not reflect the true biological scenario and, in
some cases, can further lead to false positives. If the
imputation method does not accurately reflect the nature
of the missing data, it can introduce bias, particularly if
the data contains a mixture of both missingness mecha-
nisms. If features have been selected through a statistical
test following data imputation, it is recommended to
always revisit the un-imputed data to double-check if the
feature-level difference is true before drawing solid
conclusions.

Alternatively, a univariate selection method has been
which combines a test of association between missing-
ness and classes with a test for the difference in observed
intensities between classes. This method provides a
robust alternative for handling missing data without
relying on imputation [311].

Notably, data imputation is essential for feature
selection analysis, whereas for community-level ap-
proaches, it is typically unnecessary, for reasons similar
to those explained above.

Choosing data analysis methods

After a thorough understanding and careful selection
of preprocessing steps, the final step in downstream
data analysis is the selection of appropriate methods
(Figure 7D). This stage presents significant opportunities
for deriving diverse insights from the data set and is often
the most engaging and time-consuming phase, allowing
researchers to explore the data and uncover meaningful
biological or ecological patterns and conclusions. These
strategies typically include, but are not limited to:

Dimensionality reduction: Dimensionality reduction
methods are commonly used to uncover underlying
patterns or structures within the data set and to assess
similarities between samples. Unsupervised methods
such as PCA, t-distributed Stochastic Neighbor Embed-
ding (t-SNE), hierarchical clustering, and k-means clus-
tering are frequently applied. Supervised methods, such
as Partial Least Squares Discriminant Analysis (PLS-DA),
are also widely utilized. Dimensionality reduction is
applicable not only to peptide, protein, taxonomic, and
functional tables but also at the MSI1 level, especially
when the primary goal is to reveal patterns between
samples [312].

Enrichment analysis: Enrichment analysis determines
whether a subset of selected features is significantly
over-represented compared to a background database.
While enrichment analysis can be implemented using
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programming languages such as R, iMetaShiny [300] offers
interactive functionality for taxonomic and functional en-
richment analysis of protein IDs or Clusters of Orthologous
Groups (COG) IDs. However, protein ID-based enrichment
analysis is currently restricted to human gut metaproteome
analysis using the Integrated Gene Catalog (IGC) database.

Feature Selection: Several online tools, such as
MetaFS [313], MetaQuantome [314], MetaX [315],
iMetaShiny [300], and stand-alone tools, such as Meta4P
[316], have been developed to facilitate feature-based
metaproteomic data analysis without requiring extensive
programming expertise.

Pathway analysis: Pathway analysis is typically em-
ployed to gain an overview of detected functions or to
compare differentially expressed or enriched pathways
across groups. The most commonly used tools for path-
way analysis include KEGG mapper [286] and iPath
[317]. More recently, PathwayPilot was developed to
easily compare functions at the KEGG pathway level,
either between selected taxa within a single sample
or across different samples, by leveraging Enzyme
Commission numbers (EC numbers) to identify active
enzymes as proxies for metabolites linked to KEGG
maps, thereby facilitating investigations into functions
associated with specific conditions while allowing tar-
geted analysis of selected species [318].

Community analysis: Beyond feature-driven analysis,
community-level analysis focuses on viewing the entire
metaproteome as a dynamic system. Such analyses may
include inferring community composition, alpha diver-
sity, beta diversity, and functional redundancy using
metaproteomic data.

A COLLABORATIVE EFFORT:
WRITING A COMPREHENSIVE
REVIEW WITH MEMBERS OF THE
METAPROTEOMICS INITIATIVE

The Metaproteomics Initiative is an international com-
munity dedicated to advancing the field of metaproteomics
within microbiome research. Supported by the European
Proteomics Association (EuPA) and the Human Proteome
Organization (HUPO), and in collaboration with the Eur-
opean life sciences infrastructure ELIXIR [319], this ini-
tiative serves as a central hub for researchers to dissemi-
nate advancements, share methodologies, and establish
standards across the metaproteomics community.

This Initiative aims to facilitate communication
between experts and newcomers, standardize practices,
and accelerate developments in metaproteomic method-
ologies. Its primary mission is to be the go-to resource
for metaproteomics fundamentals, advancements, and
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applications, fostering a collaborative network to drive
forward experimental and bioinformatic methodologies.

The Metaproteomics Initiative supports on three
pillars: (i) Communication and Collaboration: This pillar
focuses on sharing field advancements, organizing
benchmark studies like CAMPI, and hosting the Inter-
national Metaproteomics Symposium (IMS); (ii) Educa-
tion & Outreach: The initiative educates the broader
microbiome community through accessible resources,
including webinars and workshops, and facilitates
expert interactions; and (iii) Standardization: Efforts are
directed toward developing robust (meta)data standards,
promoting FAIR data principles to ensure accessible and
reusable research outputs.

As part of our commitment to Education & Outreach,
we created this review to make metaproteomics accessi-
ble to a broad audience. To ensure a thorough and well-
rounded perspective, we first invited experts in various
areas to draft individual sections. These drafts were then
reviewed internally, where initial feedback helped refine
each section. Once authors made adjustments, the doc-
ument went through additional rounds, allowing all
contributors to share insights and address any remaining
comments. The specific contributions of each author are
documented in the Supplementary Information.

In the next step, we brought in microbiome researchers
who were new to metaproteomics to review the manu-
script, helping us ensure it was clear and approachable to
those outside the field. With their feedback integrated, all
co-authors—including section authors and both expert and
novice reviewers—had a final opportunity to review the
work. This collaborative approach allowed us to prepare a
comprehensive, accessible resource, which we shared as a
preprint before journal submission.

CONCLUSION

This Microbiologist's Guide to Metaproteomics is designed
for microbiome researchers starting in metaproteomics,
offering a practical introduction to reduce barriers to
entry. It covers the essentials of metaproteomics,
including experimental design, sample preparation, mass
spectrometry data acquisition, peptide identification,
protein inference, taxonomic and functional analysis,
and basic statistical methods. The guide provides the
foundational knowledge needed to apply metaproteomic
technologies in microbiology and microbiome studies.
Metaproteomics is a rapidly evolving field with
unresolved technical challenges and unexplored areas.
This guide focuses on foundational concepts rather
than providing exhaustive coverage. To address these
challenges, the Metaproteomics Initiative launched the

“Critical Assessment of Metaproteome Investigations
(CAMPI)” series, which facilitates multi-laboratory col-
laborations to compare and improve workflows, includ-
ing sample preparation, mass spectrometry methods, and
bioinformatics. Looking ahead, the next decade promises
remarkable advancements in mass spectrometry, with
continually improving performance deepening the cov-
erage of metaproteomic analysis. These advancements,
coupled with ongoing and future enhancements in
wet-lab protocols, strategies, and bioinformatic tools, will
further propel the field. Collaborative efforts, such as the
CAMPI series of the Metaproteomics Initiative, under-
score the power of cooperation in driving metaproteomic
progress. These developments, supported by input from
microbiome researchers, will help deepen our under-
standing of microbiomes and their functions in diverse
ecosystems.
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