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Abstract
The Federated Learning paradigm facilitates ef-1

fective distributed machine learning in settings2

where training data is decentralized across multi-3

ple clients. As the popularity of the strategy grows,4

increasingly complex real-world problems emerge,5

many of which require balancing conflicting de-6

mands such as fairness, utility, and resource con-7

sumption. Recent works have begun to recog-8

nise the use of a multi-objective perspective in an-9

swer to this challenge. However, this novel ap-10

proach of combining federated methods with multi-11

objective optimisation has never been discussed in12

the broader context of both fields. In this work,13

we offer a first clear and systematic overview of14

the different ways the two fields can be integrated.15

We propose a first taxonomy on the use of multi-16

objective methods in connection with Federated17

Learning, providing a targeted survey of the state-18

of-the-art and proposing unambiguous labels to cat-19

egorise contributions. Given the developing nature20

of this field, our taxonomy is designed to provide a21

solid basis for further research, capturing existing22

works while anticipating future additions. Finally,23

we outline open challenges and possible directions24

for further research.25

1 Introduction26

The Federated Learning (FL) paradigm allows the training of27

machine learning models in the difficult setting where train-28

ing data is distributed and compartmentalised. Instead of cen-29

tralising available data, FL performs local training in distribu-30

tion, with the resulting local models aggregated periodically31

across participants. Though originally designed to mitigate32

privacy concerns, the method has also shown great success in33

other use cases, including communication-restricted settings34

such as drone networks [Brik et al., 2020] or computation-35

ally costly settings such as the tuning of large language mod-36

els [Che et al., 2023].37

However, as Federated Learning is being adopted for in-38

creasingly diverse applications and real-world use cases, new39

challenges are emerging, many linked to the need to balance40

different conflicting requirements: (i) Heterogeneity between41

participants caused by data imbalances or differing hardware 42

capabilities can lead to divergent local models that cannot 43

easily be aggregated without loss of model utility [Karim- 44

ireddy et al., 2019]. Designing mitigation strategies for this 45

raises the problem of fairness – the choice between sacrific- 46

ing the performance of some individual clients or that of the 47

global model. (ii) The cost of FL in terms of communica- 48

tion and computation resources scales with the size of the 49

model and the number of update messages; yet reducing ei- 50

ther may come at the cost of decreasing model utility [Zhu 51

et al., 2021]. (iii) Strategies for mitigating privacy leakage, 52

the problem of exposing confidential information to potential 53

attackers through client updates, may degrade other aspects 54

of the federated system in turn. For example, adding noise to 55

client updates may obscure sensitive information effectively, 56

but reduce model performance as well [Geng et al., 2024]. 57

All these scenarios can be modelled as multi-objective 58

problems, with each problem-specific performance metric 59

represented as a separate objective. Under this multi- 60

objective perspective, problems are solved with explicit con- 61

sideration for several characteristics, potentially conflicting, 62

and solutions can represent different optimal trade-offs be- 63

tween all objectives. As such, the approach can assist users 64

in making informed decisions about complex FL problems by 65

presenting explicit choices where a single-objective approach 66

would yield none. Indeed, these general advantages of multi- 67

objective methods have been recognised across disciplines, 68

and the field of multi-objective optimisation (MOO) has been 69

thriving for decades. This success opens another interesting 70

avenue of research in connection with federated learning: de- 71

ploying FL methods to facilitate multi-objective learning in 72

distribution, where problems would otherwise be difficult to 73

solve for participants that cannot share local training data. 74

Recent works in the literature have begun to combine feder- 75

ated learning with MOO methods to address a wide range of 76

challenges. However, the broader context of the intersection 77

between MOO and FL has not yet been discussed. This work 78

aims to provide a first such systematic overview, identifying 79

general challenges and parallels, and formulating a novel tax- 80

onomy to classify existing work while highlighting open di- 81

rections of research. Many FL strategies already use (linear) 82

combinations of multiple functions as objectives, but do not 83

consider the problem from a multi-objective angle. The first 84

works to explicitly introduce multi-objective methods to Fed- 85



erated Learning aimed to improve federated aggregation and86

introduce fairness between clients [Hu et al., 2022], followed87

by approaches introducing other, system-wide aggregation88

parameters [Mehrabi et al., 2022]. Another early adoption of89

MOO was in hyperparameter optimisation for FL [Zhu and90

Jin, 2020]. More recently, research has also begun into sup-91

porting the inverse scenario: developing strategies to federate92

the solving of multi-objective problems by distributed clients,93

e.g. [Yang et al., 2023][Hartmann et al., 2023]. The contribu-94

tions of this work can be summarised thus:95

• We propose a novel taxonomy of algorithms combining96

MOO methods and FL, offering a unified naming system97

for works at the intersection of two previously largely98

separate fields with separate naming conventions.99

• We present a thorough review of the state of the art, cat-100

egorising and contrasting existing works.101

• We highlight open questions and offer perspectives on102

open avenues for future research.103

The rest of this work is organised as follows: Section 2 re-104

views important notions from the fields of FL and MOO. Sec-105

tion 3 introduces our taxonomy, discussing in detail each cat-106

egory and relevant works from the literature. Finally, we offer107

a conclusion and perspectives on future research in Section 4.108

2 Background109

In this section, we briefly introduce fundamental concepts110

from the fields of federated learning and multi-objective op-111

timisation in preparation for the main body of the survey.112

2.1 Federated Learning113

The Federated Learning [McMahan et al., 2017] paradigm114

was originally designed to solve arbitrary (neural network-115

based) machine learning problems in a difficult distributed116

setting. This setting is characterised by (i) the available data117

originating in distribution, with no control over the composi-118

tion of the resulting datasets, and (ii) a restriction on transmit-119

ting private client information, including raw training data,120

between participants. FL overcomes the constraint intro-121

duced by (ii) by training separate local models in distribution122

on each dataset holder, or client, and aggregating only the re-123

sulting models across clients – see Figure 1.124

A more detailed general framework of the Federated Learning125

strategy is presented in Algorithm 1, with colours highlight-126

ing the correspondence of code segments to different levels of127

the federated system (to be presented in detail in Section 2.3).128

First, the federated system is initialised with the identity of129

the server, a list of participating clients, and the definition130

of the underlying learning problem to be solved. Additional131

hyperparameters are passed depending on the specific algo-132

rithm, defining e.g. the architecture of the neural network133

to be trained, a client sampling rate, gradient thresholds, or134

any other parameter required by the algorithm. Then, the lo-135

cal learning process begins. During each federated training136

round, a set of clients is selected for participation. These137

clients each carry out local training and return the resulting138

models to the server. These local models are aggregated pe-139

riodically by the server into a single global model incorpo-140

rating the locally learned information. The global model is141

Figure 1: The FL paradigm. During each round, clients perform lo-
cal model training (1), then transmit their local models to the server
(2) for aggregation into a single global model (3). The global model
is returned to the clients (4) to begin the next training round.

Algorithm 1 The general Federated Learning framework.
Input: Server, list of clients, local learning problem.
Parameter: Optional list of hyperparameters.
Output: Global model θ.

1:1: Initialise system parameters.
2: while stopping condition not satisfied do
3: for all participating clients do
4: while local stopping condition not satisfied do
5: Perform training on local data.
6: end while
7: Transmit local model to server.
8: end for
9: Aggregate local models to obtain new global model.

10: Return global model to clients.
11: end while
12: return global model.

then passed back to the local clients to continue the next local 142

training round. Expressed formally, the FL process aims to 143

find a global model θ that generalises to all available data, i.e. 144

minimiseθf(θ,D), (1)

where D :=
⋃n

i Di, with Di the dataset of the i-th client. Im- 145

balances between client datasets, as can be caused by char- 146

acteristic (i), represent a significant challenge to the model 147

aggregation step of FL algorithms. Indeed, any type of het- 148

erogeneity between clients, e.g. in terms of hardware capa- 149

bility or feature distribution, may have an adverse impact on 150

the convergence of the federated model. Mitigating the im- 151

pact of various types of client heterogeneity remains an active 152

field of study. Other major research topics in FL include the 153

reduction of resource consumption – mainly computing and 154

communication cost – and how to protect against malicious 155

actors. For a comprehensive overview of the state of the art 156

in the field, we refer to [Kairouz et al., 2021]. 157

2.2 Multi-objective optimisation 158

Multi-objective optimisation is concerned with solving prob- 159

lems in the presence of more than one objective. As an exam- 160

ple, consider the problem of selecting hyperparameters for 161

a neural network to simultaneously maximise model utility 162

and minimise the cost of training. Instead of a single objec- 163

tive f(x), such a multi-objective problem is expressed as a 164



vector of n objectives f⃗(x) := (f1(x), . . . , fn(x))
T . Note165

that individual objectives can conflict, i.e. in general no sin-166

gle solution can optimise all objectives simultaneously. In-167

stead, MOO methods typically focus on identifying solutions168

that represent an optimal trade-off between objectives, where169

objective values are balanced so that no single objective can170

be improved without sacrificing the performance of another.171

Such trade-off solutions are known as Pareto-optimal. Pareto172

optimality can be difficult to determine in practice, where the173

optimal values achievable for each objective are unknown,174

so the weaker notion of Pareto-dominance is commonly used175

instead. A solution x is said to Pareto-dominate another so-176

lution y iff it outperforms y in at least one objective while177

matching or improving the value of all others. Formally,178

x ≻P y ⇐⇒ ∃jfj(x) > fj(y) ∧ ∀ifi(x) ≥ fi(y) (2)

for a maximisation problem. Pareto-optimal solutions are not179

dominated by any others. The set of such solutions is known180

as the Pareto front (see Fig. 2). Most MOO algorithms are181

either designed to find such a Pareto front, or a single solution182

based on predefined requirements such as user preferences. A183

wide range of algorithmic approaches exists for both variants,184

tailored to different problem characteristics. In this work, we185

will discuss relevant MOO strategies as they appear; for a186

comprehensive overview we refer to [Talbi, 2009].187

Figure 2: Pareto front and Pareto dominance. Shaded markers rep-
resent solutions on the Pareto front of a bi-objective maximisation
problem; x is Pareto-dominated by p1 and p2.

2.3 Integrating multi-objective methods and188

Federated Learning189

We note that multi-objective methods can be integrated with190

FL at different levels of the federated system, each with dis-191

tinct implications for the algorithmic components involved.192

Based on this insight, we propose a three-level view of the193

federated system – see Fig. 3 and corresponding colours in194

Alg. 1. Adding multi-objective methods on top of a fed-195

erated algorithm necessitates no modification of the under-196

lying federation or local learning process; an example for197

such a method is offline hyperparameter tuning with respect198

to multiple requirements. On the other hand, introducing199

multi-objectivity at the federated level, e.g. for model aggre-200

gation on the server, forces adaptation at the top level as well:201

any hyperparameter algorithm running on the federated sys-202

tem must accommodate new parameters introduced by multi-203

objective methods. Finally, adding a multi-objective perspec-204

tive to the lowest level in Fig. 3 – the client level – requires205

modifications across the entire system: (i) The local learning206

algorithm on each client must handle multi-objective prob-207

lems; (ii) the federated algorithm must aggregate client sub-208

Figure 3: Relation of major categories of the taxonomy. Multi-
objective methods can be integrated at different levels of the feder-
ated system: in the local learning process of clients, at system-level
in the federated algorithm, or outside of the federated system.

missions, which may include multi-objective gradients or be 209

influenced by heterogeneous client objectives, and (iii) any 210

hyperparameter must be adjusted once again. 211

3 Taxonomy: multi-objective methods in FL 212

In this section, we introduce our proposed taxonomy, dis- 213

cussing each category and the related existing work. The full 214

taxonomy is shown in Figure 4. A first fundamental distinc- 215

tion is the purpose that multi-objective and federated meth- 216

ods each serve in an algorithm. We can identify two main 217

broad categories: one where MOO methods are applied to 218

enhance the functionality of a federated system, and the in- 219

verse, where FL is used in support of solving a general multi- 220

objective problem in distribution. We refer to these categories 221

as Multi-Objective Federated Learning (MOFL) and Feder- 222

ated Multi-Objective Learning (FMOL), respectively, to in- 223

dicate the different chaining of strategies. MOFL covers the 224

majority of existing research, and is notably precisely equiv- 225

alent to the top two layers as shown in Fig. 3 and introduced 226

in Section 2.3. Works in this section can accordingly be di- 227

vided further into top-level and federation-level methods, and 228

will be discussed as such in the following sections. FMOL, 229

in contrast, corresponds to the lowest layer in Fig. 3, and ex- 230

tends the “standard” FL scenario, where Federated Learning 231

is used to solve an arbitrary learning problem in distribution, 232

to include multi-objective learning problems. 233

3.1 Multi-objective federated learning at top level 234

Methods at the top level of a federated system, as defined 235

in Fig. 3, are decoupled from the federated learning and ag- 236

gregation process and can treat the federated algorithm as a 237

black-box system. As such, this class of algorithms is ar- 238

guably the least specific to the FL context, since modifica- 239

tions at this level require no particular adaptation to the fed- 240

erated setting. Current work can largely be divided into two 241

major applications: multi-objective neural architecture search 242

(MO-NAS), focused on optimising the architecture of a neu- 243

ral network with respect to multiple objectives, and more gen- 244

eral multi-objective hyperparameter tuning, where other hy- 245

perparameters of the federated system are tuned. Both types 246

typically employ population-based multi-objective strategies, 247

known to offer effective search space exploration. 248

Offline hyperparameter tuning 249

Multi-objective hyperparameter tuning can find algorithm pa- 250

rameters for additional requirements beyond the utility of the 251



Figure 4: Proposed taxonomy. Colours denote the level of the federated system where MO methods are integrated (see Fig. 3 and Sec. 2.3).
Some categories arise from the unique properties of the FL setting; these are marked by a shaded corner. Categories in dashed boxes are
currently unexplored in the literature.

global model. Depending on the use case, FL systems may252

face challenges such as privacy restrictions, resource limita-253

tions, or malicious attacks. This approach allows users to ex-254

plicitly model such requirements and make informed choices255

about the trade-offs inherent to different solutions.256

[Kang et al., 2024b] assert that optimising hyperparameters257

solely for model performance may expose the federation to258

a risk of data leakage. The proposed mitigation approach259

optimises the three objectives of model performance, train-260

ing cost and privacy leakage simultaneously. This algorithm,261

derived from NSGA-II [Deb et al., 2002], a well-known262

population-based baseline algorithm, is designed to find a263

Pareto front of possible configurations representing different264

trade-offs between these objectives. [Morell et al., 2024] also265

introduce a second objective in addition to the model accu-266

racy, based on the mean amount of data transmitted and re-267

ceived by clients. This approach is designed to optimise a268

large number of hyperparameters and algorithmic choices, in-269

cluding the number of local training steps, the number of bits270

used to encode local updates, and whether clients submit gra-271

dient or weight updates. All variables are optimised using a272

hybrid of NSGA-II and an estimated distribution-based algo-273

rithm (EDA). [Geng et al., 2024] formulate a similar strategy,274

also using NSGA-II, but considering the four objectives of275

minimising global model error rate, the variance of model ac-276

curacy, the communication cost, and a privacy budget.277

Offline neural architecture search278

Neural architecture search aims to optimise the structure of279

a neural network for given objectives. Federated NAS can280

be seen as an inherently multi-objective problem [Zhu et al.,281

2021], as changes to the model structure impact not only the282

model utility, but also other aspects of the federated system,283

such as the communication and training cost. One of the284

first works on multi-objective federated neural architecture285

search [Zhu and Jin, 2020] proposes an offline federated NAS286

algorithm that constructs models with the two objectives of287

minimising the validation error obtained by the model, and288

the cost of communicating the model. Solutions are once289

again generated using NSGA-II. The same problem is tackled290

in [Chai et al., 2022], but with the use of a multi-objective291

evolutionary algorithm (MOEA) instead of NSGA-II to im-292

prove the exploration of the multi-objective search space.293

Federated split learning is a related problem, where partial294

blocks of the global model are assigned to clients, with blocks295

of different size assigned to clients depending on the avail-296

able resources. [Yin et al., 2023] propose to optimise this 297

splitting decision, along with communication bandwidth and 298

computing resource allocation, as a multi-objective problem, 299

minimising training time and energy consumption of the sys- 300

tem. The proposed algorithm yields a Pareto front of solu- 301

tions using a hybrid of NSGA-III and a generative adver- 302

sarial network trained to identify configurations generating 303

Pareto-dominated solutions. Research on offline MO-NAS 304

algorithms for FL is arguably more advanced than other areas 305

of MOFL, as existing approaches can be applied to the feder- 306

ated setting without change. The main challenge remains the 307

high computational cost of these methods. 308

3.2 Multi-objective federated learning at 309

federation-level 310

MOO methods can also be integrated with FL at the server- 311

level to solve challenges inherent to the FL paradigm – a brief 312

overview of representative works from the literature is pre- 313

sented in Table 1. The majority of existing works focus on 314

one of two design aspects of a federated system: the aggre- 315

gation strategy used on the federated server, and the selection 316

of relevant hyperparameters for the FL algorithm. We discuss 317

both separately, beginning with multi-objective aggregation. 318

Multi-objective aggregation 319

The aggregation of local model updates by the server can be 320

modelled as a MOO problem, permitting the use of more than 321

one criterion for computing the global model. This multi- 322

objective version of federated aggregation can be formulated 323

in general terms as follows: 324

minθ(f1(θ), . . . , fn(θ)),
T (3)

where θ is the global model and fi is the loss function of 325

the i-th objective. Solving this problem typically translates to 326

finding optimal aggregation weights λi to compute the global 327

model from the local models: 328

minλ1...,λn
(f1(θ), . . . , fn(θ)),

T , with θ =

n∑
i

λiθi. (4)

The literature on FL algorithms with multi-objective aggre- 329

gation can be categorised based on the nature of the objec- 330

tives [Kang et al., 2024a]. One line of work derives objectives 331

from the performance of individual clients; the other uses ob- 332

jectives that describe the federation as a whole. This distinc- 333

tion is significant, as the different mathematical properties 334

of these variants permit the use of different multi-objective 335

methods. The following sections discuss both types in detail. 336



Reference Taxonomy label System level MOO method Objectives

[Hu et al., 2022] Clients as objectives federation-level MGDA Local model utilities
[Ju et al., 2024] Clients as objectives federation-level dynamic preferences Fairness, convergence
[Mehrabi et al., 2022] Multi-criteria

aggregation
federation-level obj.-contribution

scoring
Arbitrary system objs.

[Zhu and Jin, 2022] online MO-NAS federation-level NSGA-II Global model utility,
evaluation speed

[Kang et al., 2024b] offline MO-HPO top-level NSGA-II Model utility, training
cost, privacy leakage

Table 1: Comparison of selected MO-FL algorithms. Each row lists the level of the federated system where multi-objective notions are
introduced, as well as the method used to solve the multi-objective problem.

Clients as objectives. These algorithms consider the per-337

formance of individual clients and the global model as sep-338

arate objectives. In client-heterogeneous settings, this ap-339

proach can balance the interests of both the clients and the340

general system. This perspective enables explicit fairness341

guarantees for selfish participants, ensuring that the perfor-342

mance of individual clients is not sacrificed for that of the sys-343

tem in computing the global model. Crucially, performance344

criteria in this class of MOFL problems are tied directly to the345

client models and thus differentiable with respect to model346

parameters. As such, they can be solved efficiently using347

gradient-based multi-objective algorithms such as the clas-348

sical multi-gradient descent algorithm (MDGA) [Désidéri,349

2012], established in the field of MOO.350

The FedMGDA+ algorithm [Hu et al., 2022] leverages this351

insight, defining the performance of each participating client352

as a separate objective. Using MGDA yields aggregation353

weights for a common descent gradient for all clients, thus354

guaranteeing that no client suffers a reduced performance by355

participating in an aggregation step. An added constraint on356

the divergence of aggregation weights serves as protection357

against false updates by malicious participants. The FedMC+358

algorithm [Shen et al., 2025] is also designed to reconcile359

individual client updates and the global model in the pres-360

ence of heterogeneous data. A secondary objective, minimis-361

ing conflict between the global and local gradients, is intro-362

duced during the aggregation step and solved by transforma-363

tion into a convex optimisation problem. [Cui et al., 2021]364

formulate the aggregation step as a parameterised min-max365

optimisation problem. Fairness constraints serve to optimise366

model utility for the single worst-performing client while en-367

suring that (i) the utility of all clients improves, and (ii) no368

client improves much less than another. The solution ob-369

tained from this formulation is optimised further to guarantee370

Pareto-stationarity, a prerequisite for local optimality [Ye and371

Liu, 2022].372

The three methods have different implications for the ultimate373

balance of client models. While both [Hu et al., 2022] and374

[Cui et al., 2021] (in its pure form) guarantee that all clients375

improve during an aggregation step, only the latter considers376

the magnitude of gradients in the calculation. Thus, [Cui et377

al., 2021] may force a greater balance between clients, to the378

potential detriment of overall performance in highly hetero-379

geneous settings. In contrast, [Shen et al., 2025] may sacrifice380

an outlier for the benefit of the system. Though undesirable 381

to selfish clients, the latter could offer a defence against in- 382

tentionally divergent updates submitted by a malicious client. 383

Multi-criteria aggregation. These algorithms perform ag- 384

gregation based on multiple metrics that describe different 385

characteristics of the federated system, such as the accuracy 386

of the global model and fairness between clients. Such crite- 387

ria are not generally differentiable with respect to the model, 388

and thus cannot be optimised using gradient-based meth- 389

ods [Kang et al., 2024a]. Solution approaches rely instead on 390

heuristic insights or the formulation of the aggregation step 391

into a mathematically solvable optimisation problem. 392

[Mehrabi et al., 2022] propose an algorithm that can incor- 393

porate multiple arbitrary system objectives, including fair- 394

ness metrics, on the server. Aggregation is accomplished 395

by assigning weighted ranking scores to each client for its 396

contribution to optimising each objective, calculated using a 397

validation dataset possessed by the server. These scores are 398

used to compute aggregation weights. In contrast, [Ju et al., 399

2024] formulate fairness-controlled FL as a dynamic multi- 400

objective problem, where the optimisation problem consists 401

of a linear combination of client losses, with weights ad- 402

justed dynamically to balance the progress of all component 403

objectives. This approach yields different trade-off solutions 404

between fairness and convergence depending on the value 405

chosen for a fairness parameter. The idea of optimising a 406

weighted linear combination of objectives in the federated ag- 407

gregation step was proposed before in [Li et al., 2020], gen- 408

eralising ideas from [Mohri et al., 2019]; but neither work 409

explicitly acknowledges a multi-objective view of the prob- 410

lem. Both aggregation strategies have different strengths and 411

weaknesses. [Mehrabi et al., 2022] offers transparent server- 412

side evaluation of clients, including the potential to automat- 413

ically recognise low-quality or malicious clients. However, 414

the need for a validation dataset on the server may violate 415

the privacy requirements of clients, and renders the method 416

vulnerable to data poisoning attacks. Conversely, [Ju et al., 417

2024] offers mathematical fairness guarantees, but little trans- 418

parency in the aggregation process. In addition, this algo- 419

rithm may be vulnerable to malicious client participation. 420

Online multi-objective hyperparameter optimisation 421

Algorithms that use MOO to optimise hyperparameters for 422

the federated system may run off-line or on-line. In on-line 423

algorithms, the optimisation process is integrated into the fed- 424



erated algorithm, i.e. parameters are changed during the run-425

time of the FL process. On-line candidate generation is typ-426

ically integrated on the federated server at the aggregation427

step, with local training rounds used for evaluation. Existing428

works on online MO-HPO in FL can again be divided into429

hyperparameter tuning and neural architecture search.430

Online hyperparameter tuning. The work by [Badar et431

al., 2024] performs on-line hyperparameter optimisation for432

clients, generating and transmitting new parameters during433

each aggregation step. These parameters, a fairness constraint434

regularisation parameter and the learning rate designed to en-435

force fairness locally, are recomputed on the server-side by436

using multi-objective Bayesian optimisation. Finally, [Baner-437

jee et al., 2022] propose a multi-objective on-line device se-438

lection approach to speed up the learning process in the pres-439

ence of stragglers. The selection algorithm is designed to440

maximise the available computing and communication re-441

sources on selected clients, using NSGA-II.442

Online neural architecture search. NAS algorithms may443

be designed run on-line, modifying during the execution of444

the federated algorithm the structure of the neural network to445

be trained by each client. Such a strategy could significantly446

reduce the computational cost of the search, at the price of447

complicating the training and aggregation process by intro-448

ducing dynamic parameters. The only such algorithm cur-449

rently existing in the MOFL literature dynamically optimises450

the accuracy and evaluation speed of federated model train-451

ing [Zhu and Jin, 2022]. The NSGA-II algorithm is used dur-452

ing each aggregation step to generate partial samples of the453

full model to assign to clients for training. On-line MO-NAS454

presents a difficult challenge and is currently underexplored455

in the literature, but could offer significant efficiency benefits.456

3.3 Federated multi-objective learning457

In federated multi-objective learning, the solving of a multi-458

objective learning problem (MOLP) is the ultimate goal, and459

FL acts as an auxiliary tool to facilitate learning in distribu-460

tion. A major challenge compared to the class of MOFL al-461

gorithms is that in this setting, there is no control or infor-462

mation about the compatibility of the objectives involved in463

the problem, whereas in MOFL the objectives were designed464

to suit the federated setting. Note also that FL techniques465

have largely been developed for neural networks, so the fo-466

cus in this setting is on MO-algorithms that train such mod-467

els. Compared with the application of MO techniques to FL468

algorithms, the federated solving of MOLPs has received very469

little attention so far. Here we aim to offer a classification of470

the few existing works, and extrapolate the open challenges471

and problems that remain to be solved. See also Table 2 for a472

representative overview of existing works. On the most fun-473

damental level, algorithms in this category can be separated474

by the number of solutions they are designed to find: one sin-475

gle solution to the MOLP, or multiple solutions representing476

different trade-offs between the underlying objectives.477

Methods finding a single solution478

FMOL algorithms designed to find a single solution aim to479

find an arbitrary Pareto-stationary solution. The advantage480

of such approaches is a relatively quick convergence, e.g. by481

exploiting gradients to locate the nearest solution. The main 482

disadvantage is a lack of control over which solution out of 483

all possible ones is found, and thus a lack of choice for poten- 484

tial users. One of the earliest such works [Yang et al., 2023] 485

once again extends the MGDA algorithm to the federated set- 486

ting, this time with respect to client objectives. Local training 487

sequentially updates client models with respect to each com- 488

ponent objective. Then, clients submit a gradient vector for 489

aggregation to the server, where MGDA yields optimal ag- 490

gregation weights to update the global model. This algorithm 491

is shown to converge to a Pareto-stationary solution. A subse- 492

quent work [Askin et al., 2024] points out a risk of local drift 493

in this approach, as well as a high communication load caused 494

by transmitting separate gradient updates for all objectives. 495

The algorithm proposed to mitigate these issues is also based 496

on server-side MGDA, but clients reduce communication cost 497

by transmitting a compressed matrix of all objective gradi- 498

ents. Local drift is avoided via a similar modification: client 499

updates are computed from a linear combination of all objec- 500

tive gradients rather than a series of single-objective updates. 501

Tackling a different use case, [Kinoshita et al., 2024] dis- 502

cuss data-driven MOO problems, where a federated server at- 503

tempts to solve a multi-objective problem, e.g. clustering, us- 504

ing only indirect information from distributed clients. In this 505

unsupervised setting, no gradient-based strategies are possi- 506

ble; the server instead utilises a MOEA to solve the problem. 507

Methods finding multiple solutions 508

Federated algorithms designed to find multiple solutions have 509

one of two goals: they either attempt (1) to find a full Pareto 510

front, i.e. a set of trade-off solutions, or (2) to find a person- 511

alised model for each participant. For both variants, partici- 512

pants may have different preferences over the same objective 513

functions, or may even be solving entirely disjoint tasks. 514

Finding a Pareto front. Algorithms that aim to find a 515

Pareto front of solutions must explore a wide range of the 516

search space to identify a diverse spread of trade-off solu- 517

tions. In the distributed setting, this may happen at different 518

levels of the federated system: server-led exploration sees the 519

federated server managing the exploration and constructing a 520

Pareto front. A first framework for such a scenario has been 521

proposed in [Hartmann et al., 2023], utilising a metaheuris- 522

tic on the federated server to decompose the multi-objective 523

problem in into single-objective candidate subproblems. This 524

approach bears similarities to some of the top-level algo- 525

rithms discussed in Section 3.2, in that each candidate is eval- 526

uated separately by a full federated system. Unlike those ap- 527

proaches, however, the full system is not strictly required for 528

an effective evaluation. Thus, the efficiency of the evaluation 529

could be improved by the use of an algorithm that can fed- 530

erate candidates with different objective preferences. To the 531

best of our knowledge, such an algorithm has not yet been 532

proposed in the literature. Future contributions may be able 533

to leverage client-specific solution algorithms in combination 534

with server-led Pareto exploration strategies. 535

In contrast, client-led exploration would have each client at- 536

tempting to find a Pareto front, e.g. in cases where the server 537

is untrusted or lacks computing resources. This scenario has, 538

to the best of our knowledge, not yet been addressed in the 539



Reference Taxonomy label Local MOO method Global MOO method Objectives

[Yang et al., 2023] single-solution successive
single-obj. updates

MGDA arbitrary

[Askin et al., 2024] single-solution linearised objectives MGDA arbitrary
[Hartmann et al., 2023] server-led linearised objectives offline metaheuristic arbitrary
[Sen and Borcea, 2024] multi-task multi-task layer similarity-based

partial aggregation
arbitrary separable
tasks

[Hartmann et al., 2024] preference-driven linearised preferences similarity-based ag-
gregation+clustering

arbitrary

Table 2: Comparison of selected Federated Multi-objective Learning (FMOL) algorithms. Note that all algorithms are dedicated to handling
local multi-objective learning. As noted in Section 2.3, this requires modifications at several levels of the federated system.

literature, but would carry its own challenges and opportuni-540

ties inherent to the federated setting, most importantly a shift541

of control from server to clients, and the alignment of local542

Pareto fronts. Possibly related is the fully-distributed setting,543

where no server is involved in the training process and aggre-544

gation is decentralised across the client network.545

Finding client-specific solutions. Here, the goal of the al-546

gorithm is to find a solution for each client in the system,547

based on different local requirements. Crucially, and in con-548

trast to single-solution algorithms, this approach yields a dif-549

ferent model for each client, matching that client’s objectives,550

instead of finding a global model that generalises over all551

clients. This variant is known as Personalised FL, and is typ-552

ically used in highly heterogeneous settings where the focus553

is on individual client performance [Tan et al., 2023]. Note554

that this type of algorithm is arguably unique to the federated555

setting, arising from its properties that participants in FL are556

heterogeneous and may have different, independent interests.557

In a preference-driven setting, client heterogeneity is in-558

duced by different preference weights assigned by each client559

to the same underlying multi-objective problem [Hartmann560

et al., 2024]. Formally, the objectives of the i-th client are561

weighted by that client’s unique preference weights wi:562

f⃗ i(x) := w⃗i ⊙ f⃗(x) = (wi
1f1(x), . . . , w

i
nfn(x))

T (5)

Where objective components are conflicting, learning trajec-563

tories of clients could diverge even on the same underlying564

model; the PFL approach is intended to embrace this diver-565

sity instead of counteracting it. Only a handful of works so566

far have considered a personalised approach to objective het-567

erogeneity. In the first such work [Hartmann et al., 2024],568

client preferences are assumed to be private, and local train-569

ing is performed on a weighted linear combination of the ob-570

jectives. The challenge in this setting is to aggregate clients571

whose current training trajectory is compatible, and separate572

clients where it is not. As little direct information about573

the mutual compatibility of clients is available on the server,574

many classical MOO methods cannot be applied. Instead, the575

proposed algorithm performs clustering and weighted aggre-576

gation based on the similarity of model updates.577

Federated multi-task learning is an edge case scenario where578

clients solve mutually different subsets of tasks (i.e. objec-579

tives). A number of works in the FL literature, e.g. [Ghosh et580

al., 2020] and [Huang et al., 2023], have addressed a sim-581

plified setting where each client is assigned a single task1 582

without acknowledging a multi-objective perspective. To the 583

best of our knowledge, only one work currently considers 584

the problem where each client is assigned a set of several 585

tasks [Sen and Borcea, 2024]. Similarly to other works on 586

FMOL, this task assignment is private. Under the proposed 587

algorithm, clients jointly train a block of shared model param- 588

eters plus a separate parallel model layer for each task to be 589

solved by the client. Once again, clients are aggregated based 590

on a model similarity score, computed here based both on the 591

shared parameters and a matching of task-specific layers. 592

4 Conclusion and perspectives 593

In this work, we have presented the first comprehensive sur- 594

vey on the use of multi-objective methods in connection with 595

Federated Learning. We have proposed a novel taxonomy to 596

classify existing works in the literature, and offered a per- 597

spective on recent trends, open challenges and possible ap- 598

proaches. Existing work demonstrates that MOO is a promis- 599

ing tool to improve transparency and effectiveness of FL tech- 600

niques when navigating real-world problems. As in the wider 601

field of FL, further work remains to be done. Open avenues 602

of research in MO-FL include, most prominently, (i) effective 603

defence against malicious attackers in multi-objective aggre- 604

gation; (ii) the use of MOO methods specifically to recognise 605

low-quality clients; (iii) enhancing transparency and control 606

of MO-preferences for users, e.g. by generating multiple dif- 607

ferent Pareto-optimal solutions, and (iv) exploring more so- 608

phisticated MOO techniques, e.g. to replace the baseline NS- 609

GA-II algorithm that is currently used in many of the works 610

discussed here. The area of FMOL, enabling the federated 611

solving of multi-objective learning problems, remains largely 612

open. Initial contributions to the field could include, for ex- 613

ample, (v) improving the efficiency of server-led strategies 614

finding a Pareto front; (vi) exploring the effect of prefer- 615

ence heterogeneity on convergence in single- and multi-solu- 616

tion algorithms; (vii) exploring the cumulative effect of data 617

heterogeneity on FMOL problems; (viii) considering variant 618

FMOL settings, e.g. where client preferences are not private. 619

1Note that the ‘multi-task’ label is assigned inconsistently in the
existing FL literature, referring variously to clients with heteroge-
neous datasets or objectives.
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Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar 716

Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang 717
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