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Highlights 

What are the main findings? 

• Behavioral savings are fragile, and window-opening significantly erodes the 9.8% 

gain from conservation nudges, reducing it to 7.6%. 

• Occupancy-based automation cuts heating demand by 12.9% by avoiding heating 

during unoccupied periods. 

What is the implication of the main finding? 

• Decarbonization strategies should shift away from complex, user-dependent algo-

rithms toward “set-and-forget” occupancy automation that reliably anchors lower 

thermal baselines and eliminates waste. 

• This physics-informed framework can be coupled with survey data to validate model 

parameters, design discrete choice experiments, and create more realistic representa-

tions of occupancy behavior and user motivations. 

Abstract 

Smart thermostats are a key technology for reducing residential energy consumption in 

smart cities, but their real-world effectiveness depends on the interaction between auto-

mation, occupant behavior, and the design of behavioral interventions. This study pre-

sents a physics-informed assessment of thermostat strategies across Luxembourg’s single-

family home stock, using an aggregate thermal model calibrated to eight years of hourly 

national heating demand and meteorological data. We simulate five categories of behav-

ioral scenarios: dynamic thermostat adjustments, heat-wasting window-opening behav-

ior, flexible comfort models, occupancy-based automation, and a portfolio of four proba-

bilistic nudges (social comparison, real-time feedback, pre-commitment, and gamifica-

tion). Results show that occupancy-based automation delivers the largest energy savings 

at 12.9%, by aligning heating with presence. In contrast, behavioral savings are highly 

fragile, as a stochastic window-opening behavior significantly erodes the 9.8% savings 

from eco-nudges, reducing the net gain to 7.6%. Among nudges, only social comparison 

yields significant savings, with a mean reduction of 7.6% (90% confidence interval: 5.3% 

to 9.8%), by durably lowering the thermal baseline. Real-time feedback and pre-commit-

ment fail, achieving less than 0.5% savings, because they are misaligned with high-con-

sumption periods. Thermal comfort, the psychological state of satisfaction with the ther-

mal environment drives a large share of residential energy use. These findings demon-

strate that effective smart thermostat design must prioritize robust, presence-responsive 
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automation and interventions that reset default comfort norms, offering scalable, policy-

ready pathways for residential energy reduction in urban energy systems.: 

Keywords: smart thermostats; occupancy-based automation; behavioral nudging;  

physics-informed modeling; energy performance gap 

 

1. Introduction 

Buildings are central to climate change mitigation, and the decarbonization of resi-

dential space heating represents a critical global challenge. While deep physical retrofits 

are essential for long-term solutions, they are often slow, expensive, and disruptive. Meet-

ing near-term climate targets therefore requires the immediate deployment of all available 

levers, including low-cost, scalable interventions that engage in occupant behavior. Ther-

mal comfort the psychological state of satisfaction with the thermal environment drives a 

large share of residential energy use [1,2]. This is not a passive condition but an active, 

adaptive process in which occupants continuously adjust their surroundings to maintain 

comfort [3–5]. Understanding this dynamic is essential for designing human-centered 

strategies that can deliver rapid energy reductions. 

A persistent Energy Performance Gap (EPG) exists between predicted and actual 

building energy consumption, largely due to oversimplified assumptions about occupant 

behavior. Physical building characteristics alone often fail to explain most variation in real 

energy consumption, underscoring the need to integrate realistic behavioral models into 

energy analysis. 

This challenge has created tension in the literature, particularly around smart ther-

mostats, which have become a key technology in residential energy management. It is 

important to note that a “smart building” is not defined solely by controls but also by 

adaptive envelope technologies that interact with the environment [6]. However, in exist-

ing housing stocks where deep retrofits are costly, smart thermostats often represent the 

most accessible initial layer of this intelligence. The research landscape for these devices 

has largely evolved along two parallel, yet distinct, paths: (1) “bottom-up” behavioral 

analysis, leveraging large-scale datasets to understand individual user actions; and (2) 

“top-down” control theory, focusing on advanced algorithms to aggregate thermostats 

for grid services [7]. 

The first path, driven by large datasets like the “Donate Your Data” (DYD) program, 

has robustly quantified occupant behavior. This data confirms that occupants demon-

strate significant intentionality toward energy savings, with studies finding 83% of users 

program their thermostats, setting substantial heating setbacks of 3.8 °C relative to their 

occupied “Home” setpoint [8]. Occupants are known to override automated schedules [9], 

and nearly 39% of Demand Response (DR) events are ‘adjusted’ by users. These interven-

tions are typically intentional efforts to restore immediate thermal comfort in response to 

rigid or misaligned automated schedules [10,11], yet they can lead to a net increase in 

energy use. 

The second path treats thermostats as Thermostatically Controlled Loads (TCLs) to 

be aggregated for power system management [12]. This field is dominated by the devel-

opment of complex control strategies, such as Model Predictive Control (MPC) and Rein-

forcement Learning (RL), to optimize setpoints based on weather forecasts, price signals, 

and real-time grid conditions [13,14]. While these “smart” algorithms show potential, this 

research focuses almost exclusively on the technical sophistication of the control algo-

rithm itself, often overlooking simpler, non-algorithmic strategies. This study’s relevance 

extends beyond Europe, aligning with global “Net Zero” targets [11] and mandatory 
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efficiency policies in Asian markets like China [15]. In North America, smart thermostat 

adoption is projected to exceed 43 million households [8], while large-scale U.S. field ex-

periments confirm the impact of behavioral interventions [16]. This global proliferation 

underscores a universal challenge: balancing automation potential with the reality of oc-

cupant behavior. 

This creates a research gap: the behavioral field provides deep, granular insights, 

while the controls field focuses on optimizing complex algorithms, but few studies use a 

unified, physics-informed model to quantitatively rank these competing strategies against 

each other [3,7,17]. 

What is missing is a physics-informed, computationally tractable framework that in-

tegrates realistic behavioral dynamics with validated thermal physics not to predict indi-

vidual actions, but to quantify the aggregate energy impact of specific, policy-relevant 

interventions such as smart thermostats, digital nudges, and occupancy-based automa-

tion. Such a framework must be grounded in empirical data, yet flexible enough to test 

the robustness of behavioral strategies under uncertainty. 

This study addresses this gap by applying a novel hybrid modeling approach to Lux-

embourg’s single-family home (SFH) stock. While Luxembourg’s high gross domestic 

product (GDP) per capita presents a unique socio-economic context, several of its physical 

and structural characteristics make it a compelling analog for a compact, data-rich smart 

city [18]. Its high degree of urbanization (with over 92% of the population classified as 

urban [19–21]), and small geographical footprint resemble a dense city-state, and its cen-

tralized national energy data infrastructure provides the high-resolution, aggregated data 

that is an ambition for many urban areas. Furthermore, its building stock is largely repre-

sentative of archetypes found throughout Central Europe, situated within a heating-dom-

inated climate typical for the region [19]. These factors make it a valuable case study for a 

systems-level analysis of interventions whose physical impacts can offer transferable in-

sights, even if the specific economic drivers of behavior may vary in other contexts. In 

addition, this work directly supports the survey-based or experimental studies, e.g., 

“LetzPower” initiative’s objective to identify high-impact, scalable demand-side flexibility 

measures for Luxembourg’s residential heating sector [20]. 

We combine a calibrated lumped-parameter thermal model validated against eight 

years of national heating demand with a portfolio of dynamic behavioral scenarios repre-

senting real-world smart thermostat features and behavioral interventions. These scenar-

ios are not arbitrary assumptions; they are explicitly grounded in empirical data. Occu-

pancy patterns, for example, are generated from representative national Time Use Surveys 

(TUS), and the impact of behavioral nudges is modeled using median effect sizes derived 

from large-scale experimental field studies (e.g., [16]). Rather than modeling every house-

hold, we treat the SFH stock as a single thermal entity, enabling rapid, reproducible as-

sessment of intervention efficacy at scale. 

Our research is guided by four policy-oriented research questions (RQ): 

1. What is the energy-saving potential of low-cost thermostat strategies, such as set-

backs and occupancy-based heating? 

2. Which digital behavioral nudges, such as social comparison or real-time feedback, 

are most effective and resilient to probabilistic user responses? 

3. How do these interventions interact with the physical thermal dynamics of the build-

ing stock? 

4. What is the national-scale energy reduction potential if these strategies are widely 

adopted? 

By answering these questions with quantitative rigor, this work delivers a transpar-

ent, evidence-based ranking of This study investigates not only which interventions are 

effective, but why, proposing a new concept: “intervention architecture.” We define this 
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as the alignment of an intervention’s mechanism (e.g., a trigger or setpoint change) with 

periods of high physical energy consumption. We hypothesize this alignment is a more 

critical determinant of success than its psychological framing alone. 

2. Methodology 

The research methodology, illustrated in the flowchart in Figure 1, is structured 

around three core stages that connect the physical building stock to the impacts of human 

behavior. This approach ensures that the analysis is both grounded in real-world physics 

and relevant for policy design. The three stages are: establishing a Physical Foundation, 

simulating a portfolio of behavioral Scenarios, and performing a final Quantification and 

Ranking. 

• Physical Foundation: The first stage establishes a robust physical baseline for the 

analysis. This is achieved by developing a lumped-parameter thermal model repre-

senting the aggregate single-family home stock. The model is calibrated through a 

comprehensive historical data analysis of eight years of real-world hourly heating 

demand and temperature data, ensuring all subsequent scenarios are tested against 

a physically consistent and validated foundation. 

• Behavioral Scenarios: Building on this physical model, the second stage involves the 

simulation of five distinct categories of behavioral interventions. These scenarios are 

designed to explore the impact of different human actions and policies, including: (1) 

Thermostat Adjustments like night setbacks; (2) wasteful Window-Opening Behav-

iors; (3) Thermal Comfort Strategies that allow for flexible setpoints; (4) Occupancy-

Based Thermostats that link heating to real-time presence; and (5) a Nudge Portfolio. 

The framework also incorporates Monte Carlo Simulations as a key technique to an-

alyze the uncertainty and probabilistic outcomes within these nudge-based policies 

(Scenario 5). 

• Quantification and Ranking: In the final stage, the outputs from the behavioral sce-

narios are systematically evaluated. The energy reduction potential for each inter-

vention is calculated in absolute (GWh/year) and relative (%) terms to determine the 

aggregate national impact. This process provides a clear, evidence-based ranking of 

behavioral interventions by their overall effectiveness and potential contribution to 

climate. 

To evaluate the real-world potential of smart thermostat strategies, we simulate five 

behavioral scenarios that span user-driven, technology-enabled, and policy-oriented in-

terventions. These scenarios are designed to test distinct behavioral mechanisms rather 

than to quantify savings at this stage. Scenario 1 (Dynamic Thermostat) establishes a be-

havioral baseline by comparing a standard programmable schedule with a deeper, pre-

programmed “eco-mode.” Scenario 2 (Window-Opening) introduces stochastic ventila-

tion losses to probe the fragility of thermostat-based savings. Scenario 3 (Flexible Comfort) 

examines whether algorithmic sophistication dynamic setpoints responding to weather or 

price improves efficiency and contrasts it with an anchored algorithm variant that main-

tains a lower default setpoint. Scenario 4 (Occupancy-Based) explores the boundary of 

automation, comparing ideal, presence-based control with a realistic deployment reflect-

ing partial adoption and user overrides. Finally, Scenario 5 (Nudge Portfolio) compares 

four intervention archetypes social comparison, real-time feedback, pre-commitment, and 

gamification to evaluate how behavioral design and engagement frequency influence out-

comes. 

Formal mathematical formulations, parameter definitions, and implementation steps 

are presented in Section 2.3 (Lumped-Parameter Thermal Model and Calibration). The 

qualitative structure of the scenarios is summarized in Table 1. 
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Table 1. Summary of Behavioral Scenarios and Key Modeling Features. 

Scenario * 

Interven-

tion/Vari-

ant 

Core Mechanism & Logic Key Modeling Assumption(s) 

1. Dy-

namic 

Thermo-

stat 

Standard 

Behavioral 

Realistic Baseline: Simulates a “standard” engaged 

user with a simple programmable thermostat. 

2.0 °C nighttime setback + weekend 

boost. Compared to Fixed (21 °C) 

baseline. 

Eco-

Nudge 

Test Case: The Standard Behavioral model, but with a 

deeper, pre-programmed 2.8 °C total setback. 

0.8 °C additional setback. Used to set 

“performance floor”. 

2. Win-

dow-

Opening 

With Win-

dow 

Waste 

Fragility Test: The Eco-Nudge model, but with a sto-

chastic 25% demand penalty applied to simulate heat 

waste from an open window. 

10% hourly probability of event. 

Compared to Eco-Nudge savings. 

3. Flexible 

Comfort 

Flexible 

Comfort 

“Smart” Algorithm Test: A complex 6-step algorithm 

(weather, price, pre-heating) designed to be architec-

turally flawed. 

Logic spikes setpoint during cold 

snaps, wasting energy. Compared to 

Fixed (21 °C) baseline. 

Default 

Nudge 

Control Case: The same flawed “smart” algorithm, but 

its baseline is anchored to a 19 °C default. 

Proves savings come from the an-

chor, not the algorithm. 

4. Occu-

pancy-

Based 

Occu-

pancy-

Based 

(Ideal) 

Ideal Automation Test: “Perfect” automation. Setpoint 

plunges to 16 °C when the home is unoccupied. 
100% adoption, 0% user error. 

Smart 

Thermo-

stat (Real-

istic) 

Realistic Automation Test: A probabilistic blend of the 

building stock: 80% adopt (with 10% error), 20% do 

not. 

80% adoption + 10% error (reverts to 

21 °C) + 20% non-adoption (reverts 

to 21 °C). 

5. Nudge 

Portfolio 

Social 

Compari-

son 

Successful Nudge Test: A simple, uniform 0.75 °C set-

point reduction applied 24/7 to the Standard Behav-

ioral baseline. 

Simulates a shift in the user’s default 

thermal norm. 

Real-Time 

Feedback 

Failed Nudge Test (Architecture): A nudge that is ar-

chitecturally flawed; it only activates during mild, 

low-demand periods. 

Compared to Standard Behavioral 

baseline. 

Pre-Com-

mitment 

Failed Nudge Test (Redundancy): A nudge that asks 

for a nighttime setback, which is redundant with the 

Standard Behavioral baseline. 

Compared to Standard Behavioral 

baseline. 

Gamifica-

tion 

Moderate Nudge Test: A nudge that results in a mod-

erate, proportional setpoint reduction. 

Compared to Standard Behavioral 

baseline. (Monte Carlo simulation). 

Monte Carlo simulations were ap-

plied exclusively to behavioral un-

certainty (nudge strength distribu-

tions), while physical model parame-

ters remained fixed at their cali-

brated values. 

*: All scenarios were simulated at hourly resolution across one full climatic year, using identical 

thermal parameters and random seeds for stochastic events to ensure comparability. 
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Figure 1. Schematic of the physics-informed behavioral modeling framework. (1) a calibrated 

lumped-parameter thermal model of Luxembourg’s single-family home stock, (2) simulation of five 

policy-relevant behavioral scenarios, (3) quantification of energy reduction potential. 

2.1. Physical Foundation & Calibration 

To establish a physically consistent baseline for analyzing behavioral interventions, 

this study first develops an aggregate thermal model of Luxembourg’s entire single-fam-

ily home (SFH) stock. The methodology follows the hybrid physical and data-driven ap-

proach proposed in [22], which treats the city-scale building stock as a single thermal en-

tity represented by a lumped-parameter model. This top-down approach avoids the im-

practical task of modeling thousands of individual dwellings from the bottom up, instead 

focusing on estimating two key aggregate parameters: the overall heat-loss coefficient 

(𝑈𝑏𝑢𝑖𝑙𝑑) and the balance point temperature (𝑇𝑠𝑒𝑡). 

The model calibration relies on eight years (2008–2015) of historical hourly data, con-

sisting of national space heating (SH) demand in megawatts (MW) and the corresponding 

outdoor air temperature 𝑇𝑎 in degrees Celsius [23,24]. For Luxembourg’s single-family 

homes, this dataset corresponds to approximately 84,000 dwellings, inferred by dividing 

the mean annual SH demand (2.06 TWh) by a representative specific heating demand of 

24.5 MWh per household per year [23,24]. The aggregate thermal behavior of the SFH 

stock is described by a first-order steady-state relationship between space-heating de-

mand and the temperature difference between indoor and outdoor air: 

SH(t) =  Ubuild ∗  [Tin(t) −  Ta(t)] −  qint (1) 

where 𝑆𝐻(𝑡) is the hourly space heating demand (MW), 𝑇in(𝑡) is the indoor tempera-

ture setpoint (°C), and 𝑞int  represents the effective internal heat gains (MW). The 
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constant 𝑈build  (MW/K) reflects the aggregate heat transmission losses through the 

building envelopes, while 𝑞int captures the combined effects of internal sources such as 

occupants, appliances, and solar radiation. The indoor setpoint 𝑇in(𝑡) is defined behav-

iorally for each scenario. Model calibration was conducted by isolating heating-active pe-

riods (ambient temperature below 15 °C, demand above 1 MW) and fitting a linear regres-

sion between 𝑆𝐻(𝑡) and 𝑇𝑎(𝑡) [22]. The slope of this regression yields 𝑈build, and the 

x-intercept provides the balance-point temperature 𝑇set  the ambient temperature at 

which heating ceases. The same physical relationship can be expressed as the classical 

balance-point model: 

qspace(t) =  Ubuild ∗  [Tset −  Ta(t)]
+

 (2) 

where [ ]+ denotes truncation at zero (no heating required when 𝑇𝑎 ≥ 𝑇set). In this for-

mulation, the indoor setpoint 𝑇in(𝑡) is treated as an external driver that modulates de-

mand relative to the calibrated baseline. To ensure thermodynamic consistency, the inter-

nal gains were calculated assuming a baseline indoor temperature 𝑇in,baseline = 21 ∘C 

as: 

qint =  Ubuild(TTin,baseline − Tset) (3) 

This assumption reflects the common European comfort standard for heating set-

points (EN ISO 7730) [25]. The use of a constant 𝑞int simplifies the aggregate model and 

is consistent with previous lumped-parameter studies. While internal gains vary dynam-

ically across households, their aggregate mean value is sufficiently stable over large pop-

ulations and time horizons. These assumptions balance computational tractability with 

empirical realism. Sensitivity testing indicated that variations in 𝑞int of ±10% alter an-

nual energy estimates by less than 1.5%, confirming model robustness for comparative 

scenario analysis. This baseline 𝑞int is held constant for Scenarios 1, 2, 3, and 5. The Oc-

cupancy-Based scenario (Scenario 4) uses a dynamic 𝑞int to reflect occupancy state. 

All simulations were implemented in MATLAB R2023a using Equations (1)–(3) with 

the calibrated parameters above. Each behavioral scenario modifies 𝑇in(𝑡) according to 

its behavioral rule. Hourly SH profiles are then integrated over the simulation horizon to 

produce annualized energy totals (GWh/year), providing a consistent baseline for cross-

scenario comparison. While dynamic simulation tools (e.g., EnergyPlus) offer granularity, 

they are susceptible to parameter uncertainty and the “performance gap” at the urban 

scale. In contrast, this model derives reliability from empirical calibration against eight 

years of metered demand (with high rate of 𝑅2), inherently capturing the “as-operated” 

thermal reality. Furthermore, this computational efficiency allows for the extensive Monte 

Carlo simulations required to robustly quantify behavioral uncertainty. 

Crucially, to isolate the impact of each behavioral strategy, all scenarios were simu-

lated over the exact same eight-year historical weather profile. This ensures that the re-

ported energy savings are attributable solely to the intervention and are fully normalized 

against variations in outside air temperature. 

2.2. Behavioral Scenario Simulation 

All simulations begin from a Standard Behavioral Baseline, representing typical ther-

mostat use in European single-family homes. The hourly indoor temperature setpoint, 

Tin,base(t), follows a simple, rule-based schedule: 

Tin,base(t) = {

21.0, daytime (weekdays);

19.0, nighttime (23: 00 − 06: 00);

21.3, daytime (weekends),

 18 ≤ Tin,base(t) ≤ 23. (4) 
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This profile reflects standard comfort behavior: a 2 °C night setback for energy sav-

ings, a small weekend boost (+0.3 °C) for increased occupancy, and operational limits be-

tween 18–23 °C. This setpoint aligns with ‘Category II’ design criteria (normal expectation) 

in EN 16798-1 and satisfies the Predicted Mean Vote (PMV) indices defined in ISO 7730. 

This establishes a standardized, thermally neutral baseline for sedentary occupants, 

against which subsequent behavioral deviations are measured [25–27]. All subsequent 

scenarios modify Tin(t) relative to this baseline, ensuring that differences in energy use 

arise solely from behavioral or control interventions rather than from changes in physical 

model parameters. 

2.2.1. Window-Opening Behavior 

The Window-Opening Scenario investigates the fragility of thermostat-based savings 

when occupants engage in counterproductive ventilation during the heating season. Such 

behavior is among the most common causes of unintended energy waste in dwellings, 

particularly during mild winter days when perceived stuffiness leads to short but frequent 

window-opening events. The indoor temperature setpoint in this case remains identical 

to the Standard Behavioral Baseline, Tin,base(t), but the effective space-heating demand 

is increased by a stochastic penalty factor that represents transient heat losses due to open 

windows: 

SHwin(t) = {
(1 + δ) SHbase(t), if window open event occurs,
SHbase(t), otherwise,

 (5) 

where δ = 0.25 denotes the relative heat loss multiplier (a 25% increase in heating de-

mand during open-window events) [28]. Window-opening events are modeled as random 

hourly occurrences with a probability of p = 0.10  under two conditions: (i) ambient 

temperature Ta < 15  ∘C and (ii) baseline heating demand SHbase(t) > 1 MW. These 

constraints capture the realistic context in which ventilation is most likely to occur occu-

pied hours during active heating seasons while maintaining statistical simplicity suitable 

for city-scale simulations. 

All thermal parameters (Ubuild, qint, Tset ) remain constant across runs, ensuring 

that variations in energy demand emerge solely from behavioral inefficiencies. This sce-

nario therefore functions as a behavioral fragility test, demonstrating that small deviations 

from optimal user behavior can erode a substantial portion of thermostat-induced savings 

a finding consistent with broader evidence on the “performance gap” in building energy 

use. 

2.2.2. Flexible Comfort 

The Flexible Comfort scenario is designed to quantify the energy-saving potential of 

a “smart” thermostat system that dynamically adjusts setpoints based on multiple, simul-

taneous inputs. This moves beyond simple programmatic setbacks to model a responsive 

system that optimizes comfort, cost, and weather. The analysis contrasts three distinct 

profiles: a static baseline, a fully flexible profile, and a behaviorally “nudged” profile. The 

Fixed Setpoint (Lock-in) profile serves as the control, assuming a constant indoor temper-

ature Tin,base = 21 ∘C  always. The Flexible Comfort (Tflex ) profile represents a dy-

namic system incorporating five distinct heuristic rules applied sequentially to the 21 ∘C 

baseline: 

• Night Setback: A 1.5 ∘C reduction during nighttime hours (t ∈ night). 

• Weekend Boost: A 0.2 ∘C  increase during daytime weekend hours (t ∈ weekend ∧

t ∉ night). 
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• Smart Pre-heating: A 0.5 ∘C anticipatory boost when a significant drop in outdoor 

temperature (Tout,t − Tout,t+1 > 3 ∘C) is imminent. 

• Price Response: A 0.3 ∘C reduction during predefined peak-price periods (t ∈ peak). 

• Overheat Protection: A final 0.4 ∘C reduction if the resulting setpoint exceeds 22 ∘C, 

to mitigate overheating. 

The final setpoint Tflex is constrained within a hard comfort band of [18 ∘C, 23 ∘C] 

to ensure occupant acceptability. The Default Nudge (Tnudge) profile models a behavioral 

intervention, where users are “anchored” to a lower default temperature. Its setpoint is 

calculated as a weighted blend of the fully flexible profile and a lower, energy-conscious 

anchor point of 19 ∘C. 

Tnudge = 0.7 ⋅ Tflex + 0.3 ⋅ Tanchor where Tanchor = 19 ∘C (6) 

This profile is also clamped to the [18 ∘C, 23 ∘C] comfort band. This scenario in-

vestigates the net energy impact of automated, multi-input “smart” logic, which can in-

clude both energy-saving (setback, price response) and energy-consuming (pre-heating, 

weekend boost) actions. The inclusion of the Tnudge profile allows for a nuanced com-

parison, isolating the impact of a purely behavioral “anchoring” effect from the more com-

plex technological interventions of the Tflex profile. 

2.2.3. Occupancy-Based Heating 

This scenario investigates the energy-saving potential of occupancy-based thermo-

stat controls. The methodology is distinct in that it first simulates an aggregate occupancy 

profile for the building stock and then models the energy impact of a “realistic” technol-

ogy rollout, accounting for both imperfect use and incomplete market adoption. An 

hourly occupancy profile, St, is generated using a first-order Markov chain, where the 

state is binary (St = 1 for “Home,” St = 0 for “Away”). To capture different mobility 

patterns, the transition probabilities P(St|St−1)  are defined separately for weekdays 

and weekends. This stochastic profile (generated with a fixed random seed for reproduc-

ibility) serves as the control signal for the automated heating scenarios. 

Three profiles are compared to quantify the savings: 

1. The Fixed Schedule (Baseline) profile serves as the control, representing 100% non-

adoption. It assumes a constant indoor temperature Tin,base = 21 ∘C at all times, irre-

spective of occupancy. 

2. The Ideal Automation (with Error) profile, Tideal, models a building where an occu-

pancy-based thermostat is installed. The setpoint logic is directly tied to the occu-

pancy state St: 

• Away (St = 0): A deep setback to 16 ∘C. 

• Home, Night (St = 1 ∧ t ∈ night): A night setback to 19 ∘C. 

• Pre-heat (St−1 = 0 ∧ St = 1): The setpoint is raised to 19 ∘C one hour prior to arrival. 

• Home, Day (St = 1 ∧ t ∉ night): Comfort setpoint of 21 ∘C. 

3. To simulate imperfect use, a 10% probability of human error (Perror = 0.10) is intro-

duced, which, when triggered, overrides the automated logic and reverts the setpoint 

to Tin,base = 21 ∘C for that hour. 

The Smart Thermostat (Realistic) profile does not represent a setpoint but rather the 

aggregate demand of a mixed adoption building stock. It is calculated as a weighted av-

erage of the demand from the “Fixed Schedule” (SHFixed) and the “Ideal Automation 

(with Error)” (SHIdeal) profiles. 

SHRealistic = α ⋅ SHIdeal + (1 − α) ⋅ SHFixed  
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An adoption rate of α = 0.80 is assumed, modeling a market where 80% of build-

ings use the smart system (imperfectly) and 20% remain on the fixed, non-responsive 

baseline. The purpose of this scenario is to differentiate between the technical potential of 

a technology (i.e., perfect use by all) and its realistic potential in a real-world market. By 

explicitly modeling and combining the “dilution” effects of both imperfect user adherence 

(the 10% error) and incomplete market adoption (the 20% non-adopters), this scenario 

provides a more sober and policy-relevant estimate of the energy savings achievable from 

smart thermostat interventions. The model’s internal gains ( 𝑞int ) were dynamically 

switched: 𝑞int,home  (131.0 MW) was applied when 𝑆𝑡 = 1  (Home), and 𝑞int,away 

(e.g., 39.3 MW) was applied when 𝑆𝑡 = 0  (Away). This ensures that “ghost” internal 

gains do not artificially heat unoccupied homes. 

2.3. Quantification & Ranking (Sensitivity Analysis) 

This final scenario quantifies the performance and uncertainty of four distinct, low-

cost behavioral “nudge” interventions. Unlike the previous scenarios which modeled spe-

cific, deterministic profiles, this analysis employs a Monte Carlo framework to assess the 

range of potential savings for each nudge, acknowledging that their real-world effective-

ness is variable. 

All nudges are modeled as modifications to the Standard Behavioral Baseline (Tbase) 

(the profile with a 2.0 ∘C night setback and 0.3 ∘C weekend boost). Each nudge is as-

signed a range of effectiveness, r = [rmin, rmax], derived from behavioral science liter-

ature. 

The logic for each intervention is as follows: 

• Social Comparison: Modeled as a general reduction in the setpoint, Tnudge = Tbase −

δr, where δr is a value sampled from the effectiveness range. 

• Real-Time Feedback: Modeled as a targeted intervention to reduce overheating. The 

setpoint is reduced by a factor δr only during “window-prone” hours (i.e., mild out-

door temperatures Tout > 5 ∘C and high indoor setpoints Tbase > 22 ∘C). 

• Pre-Commitment: Modeled as an enhancement to the existing night setback behav-

ior. The 2.0 ∘C setback magnitude is multiplied by a sampled factor δr, effectively 

deepening or shallowing the commitment. 

• Gamification: Modeled as a general setpoint reduction, Tnudge = Tbase − δr, like So-

cial Comparison but representing a different behavioral mechanism and effectiveness 

range. 

To quantify the uncertainty, a Monte Carlo simulation (N = 1000) is performed for 

each of the four nudges independently. In each simulation step i: 
1. An effectiveness value, δr,i, is randomly drawn from the intervention’s predefined 

range, r, assuming a uniform distribution. 

2. This value δr,i is applied to the Tbase profile according to the nudge-specific logic, 

creating a new setpoint vector Tnudge,i. 

3. The total annual heating demand, SHnudge,i, is calculated. 

4. The percentage energy saving relative to the SHbase demand is stored. 

This process generates a distribution of 1000 possible saving outcomes for each 

nudge. The objective of this analysis is to move beyond single-point estimates and provide 

a robust, statistical comparison of the interventions. By generating a mean, median, and 

90% confidence interval (5th to 95th percentile) for each nudge, this methodology allows 

for a risk-aware assessment of which interventions provide the most reliable and substan-

tial energy savings under uncertainty. 
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2.4. Dataset and Historical Data 

The empirical foundation of this study is an hourly time series representing the ag-

gregate space heating (SH) demand of Luxembourg’s single-family home (SFH) stock, 

paired with corresponding outdoor temperature data. The dataset covers the period from 

January 2008 to December 2015 and originates from the open-source When2Heat database 

which provides harmonized national heat demand profiles for 28 European countries [24]. 

For Luxembourg, the When2Heat dataset contains two synchronized hourly varia-

bles: total national space heating demand (MW) and ambient air temperature (°C). After 

ensuring temporal consistency and completeness, the analysis was performed on 70,120 

hourly observations for each variable. The dataset spans a broad climatic range (−18.7 °C 

to 35.3 °C, mean 9.0 °C), with space heating demand varying between 0 MW and 1181 

MW (mean 245.4 MW) [23]. The reliability of this dataset stems from its methodology, 

which synthesizes hourly profiles using Standard Load Profiles applied to national annual 

gas consumption statistics. These profiles are generated by combining daily gas demand 

data with population-weighted outdoor temperature measurements derived from ERA-

Interim re-analysis data, ensuring spatial representativeness. The resulting profiles are 

harmonized with Eurostat annual energy balances, providing a validated, nationally rep-

resentative baseline for heating demand sensitivity to meteorological variations. 

Data preprocessing involved removing outliers beyond three standard deviations, 

linearly interpolating less than 0.3% of missing values, and aligning timestamps between 

temperature and demand records. The processed series were retained at national hourly 

resolution and constitute the reference thermal load for model calibration and scenario 

simulations [23,24]. 

The resulting baseline annual thermal demand amounts to 2057.8 GWh year−1, re-

flecting the full heating requirement of the SFH stock predominantly supplied by fossil 

fuels (natural gas and oil). This value should not be confused with Luxembourg’s official 

residential electricity consumption (~950 GWh year−1 in 2023), which mainly covers non-

heating end-uses [23,24]. The purpose of this study is to assess how behavioral and control 

strategies, such as smart thermostat adoption, could reduce this large thermal demand as 

heating transitions toward electrification [29]. 

3. Results 

This section presents the quantitative findings of the study, structured in two main 

parts. We first establish the physical baseline by detailing the calibration of the lumped-

parameter thermal model against the eight-year historical dataset. This step validates the 

model and derives the key aggregate parameters (𝑈𝑏𝑢𝑖𝑙𝑑 and 𝑇𝑠𝑒𝑡) used in all subse-

quent analyses. 

With this calibrated model as a testbed, we then sequentially evaluate the energy-

saving impact of the five behavioral scenarios. We begin with Scenario 1 (Dynamic Ther-

mostat) to establish a performance baseline for simple, rule-based setbacks, followed by 

Scenario 2 (Window-Opening) which tests the fragility of these savings against counter-

productive user behavior. Next, Scenario 3 (Flexible Comfort) investigates whether algo-

rithmic complexity outperforms simple, anchored setpoints. Scenario 4 (Occupancy-

Based) then quantifies the high-impact potential of presence-based automation. The anal-

ysis concludes with Scenario 5 (Nudge Portfolio), which uses a Monte Carlo analysis to 

rank the effectiveness of four distinct behavioral nudges and identifies the importance of 

architectural alignment. 
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3.1. Model Calibration 

The aggregate thermal response of Luxembourg’s single-family home (SFH) stock 

was characterized using a lumped-parameter model calibrated against eight years of 

hourly space heating demand and ambient temperature data (2008–2015). Following es-

tablished practice for city-scale thermal modeling [22], the calibration focuses on steady-

state heating periods during the core winter season, defined as 1 December through 28 

February, where heat loss dominates and internal gains are relatively stable. Under these 

conditions, a strong linear relationship emerges between outdoor temperature and space 

heating demand, with a coefficient of determination of 𝑅2 = 0.89 (Figure 2). This high ex-

planatory power confirms that the dominant driver of aggregate heating demand is con-

ductive heat loss through the building envelope, a process well captured by the balance-

point framework. 

 

Figure 2. Calibration of the lumped-parameter thermal model using hourly space heating demand 

versus ambient temperature (2008–2015). The red line represents the linear regression fit (𝑅2 = 0.89), 

with parameters: 𝑈𝑏𝑢𝑖𝑙𝑑 = 28.67 MW/K and 𝑇𝑠𝑒𝑡 = 16.43 °C. 

This specific calibration window is used because it isolates the primary physical pa-

rameters of the building stock: during these cold periods, heat loss through the envelope 

dominates, and the effect of variable internal gains (from occupants, appliances) and solar 

gains is minimal. By intentionally excluding the more variable “shoulder seasons,” we 

preserve the physical interpretability of the key parameters. 

Deviations from linearity at milder temperatures or during transitional seasons arise 

from factors not explicitly modeled in this simplified framework, including solar gains, 

variable internal heat gains (from appliances, lighting, and occupancy), and non-ideal 

thermostat behavior (e.g., overrides, setbacks). While these effects reduce the overall co-

efficient of determination to 𝑅2 = 0.75 when the full annual dataset is considered, they are 

intentionally excluded from the calibration window to preserve the physical interpreta-

bility of the key parameters: the aggregate heat loss coefficient (𝑈𝑏𝑢𝑖𝑙𝑑 = 28.67 MW/K) 

and the balance point temperature (𝑇𝑠𝑒𝑡 = 16.43 °C). Critically, because all behavioral sce-

narios are evaluated on this same physically consistent baseline, the relative energy sav-

ings reported herein reflect genuine differences in behavioral strategy not artifacts of 

model misspecification. Using the 21 °C baseline indoor temperature defined in the meth-

odology, The resulting occupied aggregate internal heat gain (𝑞int,home) is calculated as 
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131.0 MW. An unoccupied gain (𝑞int,away) was estimated as, 39.3 MW (approximately 

30% of the occupied value), representing standby appliances and refrigeration [30–32]. 

These gains were held constant for all scenarios except Scenario 4 (Occupancy-Based), 

where they were applied dynamically based on the occupancy state. 

3.2. Scenario 1: The Baseline for Behavioral Savings 

Scenario 1 establishes a critical reference point by comparing a fixed 21 °C setpoint 

with two increasingly engaged behavioral profiles. The results show that a “standard be-

havioral model”, which represents the simple, rule-based adjustments many households 

already implement with programmable thermostats, such as a 2.0 °C nighttime setback 

and a modest weekend comfort boost, reduces annual heating demand by 7.0%. When an 

eco-nudge deepens the nighttime setback by an additional 0.8 °C, total savings rise to 

9.8%. 

These findings are significant not because they introduce technological novelty, but 

because they confirm that these simple, widely used strategies yield substantial energy 

reductions on a scale. As visualized in Figure 3, these reductions stem directly from sus-

tained downward shifts in the indoor temperature profile. The heating demand in the 

bottom panel visibly tracks the setpoint changes in the top panel, for instance, when the 

“Eco-Nudge” setpoint (yellow line) drops to 18.2 °C at night, the corresponding heating 

demand, as dictated by the steady-state model, immediately falls below both the ‘Behav-

ioral’ (orange line) and ‘Fixed’ (blue line) demand curves (The real-world implications of 

this instantaneous response, which omits thermal mass, are addressed in the Discussion). 

More importantly, the incremental gain from the eco-nudge reveals the outsized in-

fluence of small shifts in default settings: a less-than-1 °C change in one part of the day 

produces a 2.8 percentage-point increase in savings, underscoring that the average indoor 

temperature, not scheduling complexity, is the dominant lever. This scenario also exposes 

a key asymmetry: while deliberate conservation actions generate measurable savings, 

those gains remain vulnerable to erosion by inconsistent user behavior. It thus sets a per-

formance floor: any proposed smart thermostat feature must meaningfully exceed this 

9.8% benchmark to justify its added complexity or cost. 

 

Figure 3. Dynamic response of space heating demand to different thermostat setpoint strategies. 
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3.3. Scenario 2: The Fragility of Behavioral Savings 

The previous scenario established that a simple eco-nudge could achieve a 9.8% an-

nual saving. Scenario 2 was designed to immediately challenge this finding by testing the 

vulnerability of user-dependent savings against common, counter-productive behavior: 

opening a window while the heat is on. The results expose a critical weakness in relying 

on user compliance. The results expose a critical weakness in relying on user compliance. 

The introduction of this single, stochastic behavior does not erase the 9.8% gain from the 

eco-nudge but significantly reduces it to 7.6% saving. This 2.2 percentage-point loss 

demonstrates that the savings are highly fragile. Figure 4 provides a clear visual of this 

effect. The “With Window Waste” demand curve (yellow line) consistently rises above the 

eco-nudge baseline. During the daytime peak on Jan 13, for instance, this single behavior 

imposes an additional heat load of 50–75 MW, immediately diminishing the benefit of the 

lowered thermostat setpoint. This outcome suggests a fundamental asymmetry: deliber-

ate conservation requires sustained user effort, but a single, low-awareness action can 

erode hours of progress. It demonstrates that the resilience of an intervention to human 

fallibility is as critical as its theoretical potential. The assumed 25% transient heat-loss pen-

alty during window opening is consistent with empirical evidence on envelope perfor-

mance. It is reported that approximately 30% of a typical dwelling’s total heat loss occurs 

through windows and related ventilation actions [33]. This supports using 25% as a rep-

resentative, conservative value for short-duration window-opening events under Central 

European climatic conditions. 

 

Figure 4. The counterproductive effect of window-opening behavior on heating energy savings. 

3.4. Scenario 3: Algorithmic Complexity vs. The Thermal Baseline 

This scenario tests a central assumption of many “smart” thermostats: whether algo-

rithmic sophistication can deliver superior energy savings compared to the simple rule-

based setbacks explored in Scenario 1. 

The algorithm for the “Flexible Comfort” model (orange line) calculates the hourly 

setpoint by starting with a 21 °C baseline and then applying a series of checks in order: 

1. Night Setback: The setpoint is lowered by 1.5 °C during the night (11 PM to 6 AM). 
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2. Weekend Boost: The setpoint is raised by 0.2 °C during non-night hours on week-

ends. 

3. Pre-Heat for Comfort: If the algorithm detects a rapid outdoor temperature drop 

(more than 3 °C in the next hour), it increases the setpoint by 0.5 °C to pre-heat the 

building. 

4. Price Response: The setpoint is lowered by 0.3 °C during weekday peak price hours 

(6–9 AM and 5–8 PM). 

5. Overheat Protection: If any adjustment pushes the setpoint above 22 °C, it is reduced 

by 0.4 °C. 

6. Final Clamping: The final setpoint is bounded, ensuring it never goes above 23 °C or 

below 18 °C. 

This logic was designed to be a realistic proxy for a “comfort-focused” smart algo-

rithm, incorporating common features like night setbacks, price responses, and adaptive 

pre-heating. Its parameters are based on typical values discussed in building science lit-

erature. 

The results deliver a clear verdict: algorithmic intelligence, on its own, is functionally 

inert. The “Flexible Comfort” model achieved only a 6.0% saving. This is significantly 

worse than the 9.8% saving achieved by the simple “eco-nudge” from Scenario 1. Figure 

5 shows why. The “Flexible Comfort” profile (orange line) frequently overlaps with the 

fixed 21 °C baseline (blue line). Furthermore, its “smart” logic (Step 3) is architecturally 

flawed: during the cold snap on Jan 13, it spikes the setpoint to pre-heat for comfort, in-

creasing energy demand at the worst possible time. The algorithm’s adjustments are mis-

aligned with energy-saving goals, rendering it ineffective. It should be noted that this out-

come reflects the specific comfort-oriented control logic tested here. Algorithms designed 

with stronger coupling to occupancy or dynamic pricing signals could, in principle, 

achieve higher efficiency if properly aligned with thermal dynamics. 

 

Figure 5. Comparison of heating demand under fixed, flexible comfort, and default nudge setpoint 

strategies. 

The algorithm’s value only appears when it is combined with a lower thermal base-

line. In the second variant (labeled “Default Nudge” in the figure), the algorithm was 

blended with a lower, fixed 19 °C setpoint requirement. This anchored algorithm success-

fully matched the 9.8% savings of the simple eco-nudge. 
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This demonstrates that the savings came from the lower baseline anchor, not the al-

gorithm’s flexibility. This reinforces, within the limits of the tested configuration, the find-

ing that the average indoor temperature setpoint, not the complexity of the logic used to 

adjust it, is the dominant driver of heating demand. 

3.5. Scenario 4: The Paradigm Shift of Automation 

Scenario 4 delivers the most consequential result of this study: occupancy-based heat-

ing achieves a 12.9% reduction in annual heating demand. This finding represents a par-

adigm shift from user-dependent conservation (like nudges) to technology-enabled auto-

mation (linking heat to presence). 

This was compared against a “Smart Thermostat (Realistic)” variant, which models 

a probabilistic policy rollout. This model assumes an 80% adoption rate among the build-

ing stock, with the remaining 20% (“non-adopters”) defaulting to the fixed 21 °C baseline. 

Furthermore, the 80% “adopter” group is modeled with a 10% “user error” rate, repre-

senting hours where they override the system, which also reverts their setpoint to 21 °C. 

Even with these realistic failures blended in, the strategy still delivers a robust 8.0% sav-

ing. 

Figure 6 provides undeniable visual proof of this mechanism. During unoccupied 

periods, such as the daytime hours of Jan 14 and 15, the “Occupancy-Based (Ideal)” set-

point (orange line) plunges to 16 °C. The heating demand (orange line, bottom) also drops 

significantly but maintains a substantial baseline of ~275 MW, which is the energy re-

quired to maintain the 16 °C setback temperature. In contrast, the “Fixed Schedule” (blue 

line) remains at 21 °C, continuously consuming over 300 MW of heating power. These 

adoption and error parameters represent uniform, first-order approximations; future 

work should incorporate heterogeneity in user behavior and adoption dynamics to cap-

ture population-level diversity. The “Smart Thermostat (Realistic)” (yellow line) is visibly 

pulled up from the ideal orange line, showing the impact of the non-adopters and user 

errors. This is the physical manifestation of eliminating waste: heat is delivered only when 

and where it is needed. 

 

Figure 6. Comparison of heating demand for fixed, occupancy-based, and smart thermostat sched-

ules. 
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It is important to acknowledge a key simplification in this model. This aggregate 

thermal model does not capture the transient “ramp-up” energy costs associated with fre-

quent reheating from a deep setback. In the real world, the efficiency of this strategy can 

be dependent on the heating system type; high-mass systems (e.g., hydronic radiators) 

may struggle with frequent cycling, whereas forced-air systems can respond more 

quickly. 

Despite this limitation, the resilience of the “Smart Thermostat” variant (8.0%) 

demonstrates that the core energy-saving mechanism is exceptionally powerful. What dis-

tinguishes this scenario is its fundamental design philosophy: it removes the user from 

the decision loop, automating efficiency rather than relying on human intention. 

3.6. Scenario 5 (Part 1): The Success of Architecturally Sound Nudges 

Scenario 5 moves beyond simple rules to test a portfolio of digital behavioral inter-

ventions. To understand the results, we first isolate the most effective nudge: social com-

parison. This nudge is designed to shift user norms by framing energy use relative to 

peers, and it reveals a unique capacity to alter baseline behavior without triggering re-

sistance. 

The results, visualized in Figure 7, show that applying a uniform 0.75 °C reduction 

(an effect size consistent with large-scale field studies) to the behavioral baseline achieves 

a 7.6% saving. This is not a complex adjustment; it is a fundamental reorientation of ther-

mal comfort expectations. 

Figure 7 makes its mechanism clear: the “With Social Nudge” setpoint (orange line) 

always sits consistently below the “Behavioral Baseline” (blue line), including high-de-

mand nighttime and weekend hours. What distinguishes this intervention is its architec-

tural soundness: it does not rely on specific timing or triggers. It simply lowers the default, 

and users accept it because it feels socially validated. 

 

Figure 7. The effect of a social comparison nudge (median case) on thermostat setpoints and space 

heating demand. 

3.7. Scenario 5 (Part 2): The Monte Carlo Analysis 

Each behavioral nudge was simulated using Monte Carlo sampling (n = 1000), with 

central effect sizes set to reflect empirically observed ranges of household energy 
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reductions from social-norm and feedback-based interventions. The sampling variability 

of ±30% around these central values was chosen to represent realistic behavioral uncer-

tainty rather than arbitrary noise. The full Monte Carlo analysis of all four nudges (Figure 

8) confirms this lesson: intervention architecture is more important than psychological 

framing. 

The analysis reveals a stark divergence in effectiveness. Social comparison emerged 

as the most potent and robust strategy, delivering a mean savings of 7.6% (90% CI: 5.3–

9.8%). Gamification, which is also shown in Figure 8, delivered moderate but consistent 

gains with a mean of 3.4%. In stark contrast, real-time feedback produced negligible sav-

ings (mean 0.0%), and pre-commitment yielded a marginal 0.4%. 

These interventions failed not due to weak psychology, but due to flawed design. 

The real-time feedback nudge, for example, activates only during mild, non-night hours 

when heating demand is already minimal, rendering it irrelevant. The boxplot in Figure 

8 visually underscores this: social comparison’s results are clustered high, while real-time 

feedback’s results are clustered at zero. This reinforces a critical principle: behavioral in-

terventions must be contextually targeted at moments of high energy use to generate 

meaningful savings; otherwise, they risk being functionally inert. 

Table 2 provides a comprehensive summary of the quantitative findings for all five 

scenarios. 

 

Figure 8. Monte Carlo simulation results (n = 1000) comparing the energy savings from four behav-

ioral nudges. The median value is shown by “*” in the figure. 

Table 2. Summary of Designed Behavioral Scenario Results. 

Scenario Intervention/Variant Key Mechanism 
Energy Savings (% or 

Mean ± CI) 

Key Finding/Takea-

way 

1. Dynamic Thermo-

stat (Baseline) 

Standard Behavioral 
Programmed 

nighttime setback 
7.00% 

Simple rule-based ad-

justments are effective. 

Eco-Nudge 
Deeper nighttime set-

back 
9.80% 

Small shifts in default 

settings have an out-

sized influence. 
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2. Window-Opening 

(Behavioral Fragility) 

Stochastic Window-

Opening 

Simulates heat waste 

during active heating 
7.6% 

Conservation gains are 

highly vulnerable to in-

consistent user behav-

ior. 

3. Flexible Comfort 

(Complexity vs. Base-

line) 

Algorithmic Sophisti-

cation 

Dynamic setpoints 

based on external cues 
6.00% 

Algorithmic complex-

ity alone is weak. 

Anchored Algorithm 

Algorithm anchored 

to a lower default 

(19 °C) 

9.80% 

Intelligence without a 

reduced baseline is 

functionally inert. 

4. Occupancy-Based 

Automation (Highest 

Impact) 

Ideal Automation 

Aligns heating with 

presence (eliminates 

waste) 

12.9% 

The most effective 

strategy by a large 

margin. 

Smart Thermostat 

(Realistic) 

80% adoption with 

10% user error 
8.0% 

Automation is resilient 

and effective even with 

imperfect adoption. 

5. Nudge Portfolio 

(Architecture Matters) 

* 

Social Comparison 

(Success) 

Shifts entire thermal 

norm via social iden-

tity 

7.6% (mean) 

The most potent and 

architecturally sound 

behavioral nudge. 

Real-Time Feedback 

(Fail) 

Activates during low-

demand periods 
~0.0% (mean) 

Fails due to architec-

tural misalignment. 

Pre-Commitment 

(Fail) 

Targets nighttime (al-

ready captured by 

baseline) 

0.4% (mean) 
Fails; redundant with 

existing behavior. 

Gamification 
Proportional setpoint 

reduction 
3.4% (mean) 

Delivers moderate but 

consistent gains. 

*: Mean values for stochastic nudge scenarios are derived from Monte Carlo simulations 

(n = 1000) with sampling variability < ±1%. Deterministic scenarios yield single outputs 

and therefore no CIs. 

4. Discussion 

The findings of this study reveal a fundamental hierarchy in the drivers of residential 

heating demand, providing clear answers to the research questions guiding this analysis. 

The results consistently show that an intervention’s success hinges on its ability to durably 

alter the physical thermal baseline and its architectural alignment with high- consumption 

periods. 

4.1. The Potential of Low-Cost and Automated Strategies (RQ1 & RQ4) 

Regarding the energy-saving potential of different strategies, the analysis shows that 

occupancy-based automation is overwhelmingly the most effective intervention. By re-

moving the user from the decision loop, it achieves a 12.9% reduction in heating demand. 

This result significantly exceeds the 10–15% savings typically reported in field studies of 

programmable thermostats, which often suffer from user error or abandonment. Our 

model, which accounts for a 10% error rate and an 80% adoption scenario, still delivers 

8.0% savings, demonstrating the resilience of automation. This supports the “automation 

over agency” principle: when sustainability is passive, compliance is near-universal. 

While effective, the widespread deployment of such technologies raises valid concerns 

regarding user privacy and autonomy, which must be addressed through transparent de-

sign and policy to ensure social acceptance. 
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Simpler, low-cost strategies also yield significant savings. A standard behavioral 

model with a nighttime setback reduces demand by 7.0%, and a simple eco-nudge in-

creases this to 9.8%. This confirms that widely deployable interventions that embed mod-

est setbacks can unlock substantial national heating savings without requiring new infra-

structure or advanced algorithms. From an economic perspective, the distinction between 

these strategies is stark. While physical retrofits require significant capital investment with 

payback periods often measured in decades, the behavioral and algorithmic strategies 

identified here particularly the default setback and occupancy-based automation repre-

sent “low-cost” or “no-cost” measures. For households already equipped with program-

mable or smart thermostats, the Return on Investment (ROI) of a 9.8% energy reduction 

via an “Eco-Nudge” is immediate, as the marginal implementation cost is effectively zero. 

4.2. Effectiveness and Resilience of Digital Nudges (RQ2) 

In response to which digital nudges are most effective, the Monte Carlo analysis re-

veals that intervention architecture matters more than intent. Social comparison succeeds 

as the most potent and resilient strategy, delivering a mean savings of 7.6% (90% CI: 5.3–

9.8%) because it operates at the level of social identity to shift the entire thermal norm 

downward. This result is consistent with prior empirical work, such as [15], who found a 

similar 6% decrease in dormitory air conditioner usage, validating the robustness of this 

behavioral mechanism. In stark contrast, real-time feedback and pre-commitment fail, 

producing less than 0.5% savings. This is not due to weak psychology, but to poor timing; 

they target moments of low heating demand (mild days, nighttime), where even large 

setpoint changes have negligible energy impact, rendering them functionally inert. Our 

work demonstrates that when a nudge activates is as critical as how it is framed. 

4.3. Interaction with Thermal Dynamics and Behavioral Fragility (RQ3) 

Addressing the interaction between interventions and physical thermal dynamics, 

the findings highlight two critical mechanisms. First, the thermal baseline the average in-

door temperature exerts a far stronger influence on energy consumption than algorithmic 

sophistication. This principle explains why a simple eco-nudge, which lowers the 

nighttime setpoint by less than 1 °C, outperforms a complex “flexible comfort” model. The 

algorithm’s adjustments occur too infrequently or during low-demand periods to mean-

ingfully shift the annual energy balance, confirming that intelligence without a reduced 

baseline is functionally inert. 

Second, this interaction reveals the profound fragility of user-dependent savings. The 

significant erosion of eco-nudges by stochastic window-opening behavior illustrates this 

vulnerability. A single, low- awareness action opening a window while heating is active 

can negate weeks of conservation effort by directly conflicting with the thermal goals of 

the system. This finding, which resonates with empirical studies on “heat-wasting” be-

haviors, exposes a critical challenge for any policy that relies solely on user goodwill. 

4.4. Integration with Survey-Based Behavioral Studies 

Future work is its integration with survey or questionnaire-based studies on end-

user preferences and behavioral drivers. While our model treats occupant behavior as a 

set of probabilistic rules, surveys can reveal the why behind those rules what motivates 

users to override settings, accept defaults, or respond to social norms. For example, if sur-

vey data shows that users are willing to accept a 19 °C setpoint only if framed as “com-

fortable for sleeping,” the model could incorporate context-specific anchors rather than 

fixed reductions. Similarly, if users report resistance to pre-commitment because they fear 

being locked into uncomfortable conditions, the model could simulate dynamic commit-

ment windows or opt-out mechanisms. This would allow for a two-way calibration: 
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model outputs can be tested against survey-reported behaviors, and survey insights can 

refine model parameters. Such integration transforms the model from a predictive tool 

into a participatory design platform enabling policymakers to test interventions not just 

for their energy impact, but for their social acceptability. Recent work by [22] demon-

strates this approach in smart lighting, where user preference data was used for occu-

pancy-triggered dimming profiles, increasing both energy savings and user satisfaction. 

Applying this to heating would require coupling our physics-informed model with dis-

crete choice experiments or stated preference surveys, creating a hybrid socio-technical 

system that respects both physical constraints and human values. 

Thermostat-driven heating reductions interact with electrification and demand re-

sponse in complex ways. As heating electrifies, rebound effects may offset a portion of 

savings, while dynamic tariffs could amplify automation benefits. Integrating such cou-

plings within demand-side management frameworks remains a crucial extension of this 

modeling approach. 

4.5. Limitations of the Work 

Despite these advances, the study has limitations that must be acknowledged. First, 

the lumped-parameter model does not capture variations in insulation, window area, or 

solar gains. Furthermore, its aggregate nature does not resolve building-level physical dy-

namics such as thermal mass, which can influence the real-world effectiveness and user 

acceptance of pre-heating strategies in occupancy-based scenarios. Second, behavioral as-

sumptions such as a fixed 25% heat loss from window-opening or a uniform social com-

parison effect are stylized representations that may not reflect the full diversity of real-

world responses. Third, the analysis focuses exclusively on heating and does not account 

for potential rebound effects in other energy domains (e.g., increased appliance use). 

Fourth, while Luxembourg serves as a compelling analog for a compact smart city due to 

its size and data availability, the transferability of these results to larger, more heteroge-

neous urban contexts requires further validation. The model does not incorporate cooling 

demand, which introduces different behavioral dynamics particularly in climates where 

summer discomfort drives energy use. Finally, while Scenario 4 used a dynamic internal 

gain based on occupancy, the other scenarios (1, 2, 3, and 5) used a constant, occupied 

internal gain. This simplification, while necessary for comparing those behavioral scenar-

ios, does not capture the dynamic gains from real-time occupancy and solar radiation, 

which could be explored in future building-level analyses. These limitations do not inval-

idate the core findings but highlight areas for future refinement, particularly through 

large-scale field trials that combine sensor data, user surveys, and building-level energy 

monitoring. 

It is acknowledged that since most of the modeled existing building stock lacks me-

chanical ventilation with heat recovery (MVHR), natural ventilation remains essential for 

Indoor Air Quality (IAQ). Consequently, the “Window-Opening” scenario does not sug-

gest avoiding ventilation but rather quantifies the significant energy penalty of unregu-

lated behaviors specifically when windows remain open during active heating periods 

highlighting the need for optimized, short-duration airing strategies. 

5. Conclusions 

This study quantifies the energy-saving potential of smart thermostat strategies 

across Luxembourg’s single-family home stock, offering a policy-ready hierarchy of inter-

ventions for urban decarbonization. The results demonstrate that real-world effectiveness 

hinges not on technological sophistication, but on behavioral realism and architectural 

alignment with high-consumption periods. Key findings are summarized as follows: 
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• While the energy-saving potential of setbacks is a known principle, this study quan-

tifies its dominance over algorithmic complexity: results show that a simple 0.8 °C 

reduction in the thermal baseline outperforms complex, weather-responsive control 

logic, confirming that the average indoor temperature remains the single most critical 

lever for decarbonization, often rendering sophisticated control rules redundant if 

the baseline is not addressed. 

• Occupancy-based automation delivers the highest impact: By linking heating to real-

time presence, this strategy achieves 12.9% energy savings and remains resilient even 

at 80% adoption, proving that passive, sensor-driven control is superior to user-de-

pendent scheduling. 

• Behavioral savings are fragile and asymmetrical: The 9.8% gain from eco-nudges is 

significantly eroded by stochastic window-opening, a common, low-awareness be-

havior highlighting that conservation gains are easily undone by brief, conflicting 

actions. 

• Nudge effectiveness depends on architectural design, not just psychology: Social 

comparison succeeds (7.6% savings) by shifting the entire thermal norm, while real-

time feedback and pre-commitment fail (<0.5% savings) because they activate during 

low-demand periods, rendering them irrelevant to energy use. 

Beyond the specific numerical reductions, these findings suggest a fundamental shift 

in the role of residential heating: moving from a static load to a flexible grid resource. The 

superior performance of occupancy-based automation over user-dependent nudges im-

plies that future decarbonization strategies should prioritize ‘set-and-forget’ technologies. 

Such systems reliably reshape demand profiles without relying on continuous occupant 

engagement, thereby securing the consistent flexibility required for future low-carbon en-

ergy systems. 

Together, these insights underscore a critical principle for smart residential energy 

systems: the most effective smart thermostats are not those that learn user preferences, 

but those that automate efficiency, anchor lower norms, and protect against waste. To 

meet urgent climate targets, urban energy strategies must prioritize interventions that are 

robust to human fallibility and scalable by design. Finally, we acknowledge the limitations 

of this aggregate approach. While the lumped-parameter model provides robust national-

scale estimates, it does not capture building-level heterogeneity or cooling demand. Fu-

ture work will address these gaps by integrating this physical framework with survey-

based behavioral data to refine user archetypes and by extending the analysis to include 

summer cooling dynamics in a warming climate. 
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Abbreviations 

Symbol/Abbreviation Description Unit 

Mathematical Symbols   

SH(t) Space Heating Demand at time t MW 

𝑈𝑏𝑢𝑖𝑙𝑑  Aggregate Heat Loss Coefficient MW/K 

𝑇𝑖𝑛(𝑡) Indoor Temperature Setpoint at time t °C 

𝑇𝑎(𝑡) Ambient Outdoor Temperature at time t °C 

𝑇𝑠𝑒𝑡 Balance Point Temperature °C 

𝑞𝑖𝑛 Aggregate Internal Heat Gains MW 

𝑅2 Coefficient of Determination - 

δ Relative heat loss multiplier (Window-Opening)  - 

p Probability  - 

St Occupancy state (Home = 1, Away = 0)  - 

𝑃𝑒𝑟𝑟𝑜𝑟 Probability of human error  - 

α Adoption rate  - 

δr Sampled effectiveness value (Nudges)  - 

N Number of Monte Carlo simulations  - 

Abbreviations   

CI Confidence Interval   

DR Demand Response   

EPG Energy Performance Gap   

GDP Gross Domestic Product   

IAQ Indoor Air Quality  

MPC Model Predictive Control   

RL Reinforcement Learning   

SFH Single-Family Home   

SH Space Heating   

TCL Thermostatically Controlled Loads   

TUS Time Use Surveys   

ROI Return on Investment  
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