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Abstract—In this work, we consider the problem of distributed
precoding design in a downlink transmission scenario from a
swarm of low-Earth-orbit (LEO) satellites to multiple ground
users, under imperfect phase synchronization. The formulated
problem aims to maximize the expected sum rate under a
probabilistic constraint on the signal-to-interference plus noise
ratio (SINR). An analytical approach for solving the problem
is provided, which avoids conventional approaches that rely
on sample averaging and could result in a notable execution
time. Simulation results reveal that our approach outperforms
conventional precoding techniques and the case of collocated
antennas on a single satellite up to a certain phase error variance.

Index Terms—Satellite swarms, phase synchronization errors,
precoding design

I. INTRODUCTION

A. Background

Low-Earth-orbit (LEO) satellites are adopted in hybrid ter-
restrial and non-terrestrial communications to provide network
coverage in areas that lack an adequate terrestrial infras-
tracture, such as remote/rural areas [1]. Similar to terrestrial
base stations, LEO satellites can be deployed for multi-beam
communications, where they transmit multiple beams simul-
taneously to support data transmission to different receivers
[2]. In particular, a non-terrestrial massive multiple-input
multiple-output (MIMO) communication system is described
and analyzed in [3], where the authors consider a single
LEO satellite equipped with multiple antennas that generates
multiple beams directed at different users. Furtnermore, the
necessity of efficient precoding techniques to reduce the
effect of inter-beam interference in such multi-beam satellite
communications is discussed in [4], whereas channel state
information (CSI) estimation is addressed in [5].

Although the deployment of multiple-antenna LEO satel-
lites for network coverage shows promising results, it has
some limitations. In particular, to accommodate a large num-
ber of antennas on a single LEO satellite requires satellites of
notable dimensions, especially for sub-6 GHz communication.
This would go against the current trend of reducing the size
of LEO satellites that in turn reduces their manufacturing
and launching costs. Hence, satellite miniaturization and dis-
tributed satellite systems (DSS) have gained popularity over
the last years [6], [7].

In pursuit of such DSSs, satellite swarms have been pro-
posed [8], [9]. Swarms are a collection of satellites that fly in

close proximity to each other to form a virtual array (VA). The
size of satellites in a swarm can be small, which makes them
easily manageable as well as maneuverable and significantly
reduces the required operation cost. Additionally, the distance
separation between the satellites can be adjusted so to allow
for higher directive gain towards the intended receiver, and
hence, enhancing the received signal power [10]. A downlink
tranmission scenario from a VA to a ground station (GS) is
presented in [11].

Despite the advantages of satellite swarms in reducing the
manufacturing and launching costs of LEO satellites, there are
practical challenges in deploying them. In particular, due to
size limitations of small LEO satellites highly capable power
amplifiers cannot be accommodated. Instead, the satellites
in the swarm can be leveraged for jointly transmitting to
ground users, thus avoiding the need for a high transmit
power output per satellite. Towards this, proper coordination
among the satellites in the swarm is needed in the form
of synchronization in time, frequency, and phase which can
be achieved by inter-satellite communication [12]. Despite
the electronic advances in achieving synchronization among
distributed nodes, a level of imperfect synchronization can-
not be avoided. Among imperfect synchronization in time,
frequency, and phase, particularly impactful is the lack of
perfect synchronization in phase. This can normally arise due
to imperfect inter-satellite ranging [8].

Due to the inevitable phase errors related to the inter-
satellite ranging process, the precoding design for the swarm
must be robust to minimize the performance loss as a result
of this error. The knowledge about the phase error distribu-
tion can be leveraged to design robust precoders. Regarding
relevant literature works, a stochastic weighted minimum-
mean square error (SMMSE) approach is analyzed in [13]
to reformulate a non-convex sum-rate maximization problem
into an equivalent computationally less expensive objective
function. Although this method is effective, it relies on
sample realizations of the random variable and aggregation of
instantaneous solutions until convergence. This could result
in a considerable execution time, depending on the size of
the parameters, such as the number of satellites, number of
users, and the type of additional constraints to be included.
The authors of [14], [15] devised a method to minimize the
total power consumption of satellites under a probabilistic
QoS constraint. This method utilizes the Taylor series to ap-



proximate a function of complex exponentials to polynomial
expressions. The stochastic constraint is decomposed into a set
of convex constraints as shown in [16]. The polynomial term
is then re-defined into a set of convex expressions. Semidefi-
nite programming (SDP) and Gaussian randomization are then
used to solve the reformulated optimization problem.

B. Motivation and Contribution

1) Motivation: The few literature works on precoding
design for distributed LEO satellite swarms in a multiple- user
setup either consider perfect phase synchronization among
the satellites or precoding design under imperfect phase
synchronization with a probabilistic SINR constraint [15]. To
the best of our knowledge, there have not been literature
works that consider the practical case of robust precoding
design for LEO satellite swarms where both the objective
function and at least one of the constraints are statistical due to
the presence of phase errors. In addition, as aforementioned,
previous approaches consider sample averaging of Monte
Carlo simulations for the phase errors instead of an analytical
approach, which can lead to a considerable execution time.

2) Contribution: Based on the above, our contribution in
this work is as follows:

• We formulate a novel distributed precoding design prob-
lem for LEO satellite swarms that targets the maximiza-
tion of the expected user sum rate under a probabilistic
SINR constraint in the presence of random phase errors
from a Gaussian distribution.

• We provide analytical expression for the objective func-
tion using the phase error covariance. Due to the non-
convexity of the problem, it has to be reformulated into
a form that comprises an inner and outer optimization
problems. We combine these expressions to form a single
convex form in contrast to earlier works that iteratively
alternate and solve these problems using samples from
the error distribution.

• We provide numerical results for different scenarios and
compare the performance of our approach with a con-
ventional precoding method and also the robust precoder
in the collocated antennas on a single satellite scenario.
This allows us to identify the error threshold above which
distributed satellite systems, with the specified system
parameters, become no longer favorable.

The paper is organized as follows. Section II presents the
system model and introduces the problem under consideration.
Section III describes the proposed approach to solve the prob-
lem. It involves replacing the original non-convex problem
with an equivalent and convex substitute problem. Section IV
shows the simulation results for different cases considered.
Section V summarizes the findings and concludes the work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider 𝐾 single-antenna users and a swarm of 𝑆
single-antenna LEO satellites arranged, without loss of gen-
erality, in a spiral geometry [17]. The reason for considering

Fig. 1: Satellite swarm in spiral formation.

the spiral geometry in this work is its ability to reduce the
magnitude of the grating lobes compared to a plannar array
formation. In addition, we consider single-antenna satellites
since satellite swarms are expected to comprise small satel-
lites, such as Cubesats, with limited size. Hence, they can only
accommodate single antennas [18]. The wave vector, along
the azimuth and elevation angles of 𝜑 and 𝜃, respectively, is
defined as 𝑘 (𝜑, 𝜃) = 2𝜋

𝜆
[cos 𝜃 cos 𝜑, cos 𝜃 sin 𝜑, sin 𝜃]𝑇 . For

spiral formation, the position of the satellites is expressed as
u𝑠 = [𝑟𝑠 cos𝜓𝑠 , 𝑟𝑠 sin𝜓𝑠 , 0]𝑇 [17].

𝑟𝑠 =
𝑑
√
𝜋
×
√
𝑠, 𝜓𝑠 = 2𝜋𝜏𝑠, (1)

where 𝑟𝑠 , 𝜓𝑠 are the distance and angle (respectively) of the
center of satellite 𝑠 with respect to the swarm center (or
reference frame). 𝜏 is the golden ratio whose value is 1.618.
As indicated in [9], the array factor is expressed as

a(𝜑, 𝜃) = [a1 (𝜑, 𝜃), . . ., a𝑆 (𝜑, 𝜃)] , (2)

where a𝑠 (𝜑, 𝜃) = 𝑔(𝜃)
[
𝑒 𝑗𝑘

𝑇 (𝜑,𝜃 )u𝑠
]
, and 𝑔(𝜃) is the element

radiation pattern.
Following the model given in [19], if we denote the array

factor to user 𝑘 as a𝑘 (𝜑𝑘 , 𝜃𝑘), the channel from the swarm to
user 𝑘 , h𝑘 ∈ C1×𝑆 , can be modelled as

h𝑘 = a𝑘 (𝜑𝑘 , 𝜃𝑘)𝐿 𝑓 𝑠 (𝜃𝑘) (3)

where 𝜃𝑘 the elevation angle to user 𝑘 . 𝐿 𝑓 𝑠 (𝜃𝑘) = 𝜆
4𝜋𝑟𝑘 is

the free space attenuation from the satellite swarm to the
user at a distance of 𝑟𝑘 . The noise , 𝑛𝑘 , is assumed to be a
complex gaussian with zero mean and power of 𝜅𝐵𝑇 , where
𝜅 is Boltzmann constant, 𝑇 is the system noise temperature,
and 𝐵 is bandwidth. The received signal, 𝑦𝑘 ∈ C, at user 𝑘 is
modelled as

𝑦𝑘 = h𝑘v𝑘𝑠𝑘 +
∑︁
𝑙≠𝑘

h𝑘v𝑙𝑠𝑙 + 𝑛𝑘 , (4)

where v𝑘 and 𝑠𝑘 are the precoding vector and transmit-



ted symbol for user 𝑘 respectively. Moreover, we assume
E[𝑠𝑘𝑠𝐻𝑘 ] = 1. Then, the SINR for user 𝑘 given as

SINR𝑘 =
|h𝑘v𝑘 |2

𝑃𝑛 +
∑
𝑙≠𝑘 |h𝑘v𝑙 |2

, (5)

where 𝑃𝑛 is the noise variance. The true channel can be
modelled as the hadamard product between the phase error
vector, e = [𝑒 𝑗 𝜙1 , 𝑒 𝑗 𝜙2 , . . . 𝑒 𝑗 𝜙𝑆 ]𝐻 (arising from an imperfect
phase synchronization process) and the erroneous channel.
h𝑘 = h′

𝑘
⊙ e𝐻

𝑘
= [𝑒 𝑗 𝜙1ℎ′

𝑘1, 𝑒 𝑗 𝜙2ℎ′
𝑘2, . . . 𝑒 𝑗 𝜙𝑆 ℎ′𝑘𝑆].

We note that in this work we consider that the main factor
of imperfect phase synchronization among the satellites are
the limitations in the intersatellite ranging accuracy due to
continuous perturbations of the satellites. Depending on the
carrier frequency, even very small inaccuracies in the order
of cm/mm can result in notable phase rotations.

B. Problem formulation

We aim to find optimal precoders maximizing the expected
user sum rate in the presence of random Gaussian-distribution
phase errors and under a probabilistic SINR constraint for
each user as well as a per-satellite power constraint.

max
v1,...,v𝐾

Ee

[
𝐾∑︁
𝑘=1

𝐵

𝐾
log

(
1 +

|(h′
𝑘
⊙ e𝑘𝐻 )v𝑘 |2

𝑃𝑛 +
∑
𝑙≠𝑘 | (h′

𝑘
⊙ e𝐻

𝑘
)v𝑙 |2

)]
subject to : Tr(m𝐻

𝑠 VV𝐻m𝑠) ≤ 𝑃𝑠 ∀𝑠,
Pr{SINR𝑘 > 𝜇𝑘} ≥ 𝜖𝑘 ,

(P)

where Ee (.) represents the expectation with respect to the
phase error e, V ∈ C𝑆×𝑆 , such that the 𝑘 th column is v𝑘 ,
𝑃𝑠 is the per satellite power constraint, 𝜇𝑘 and 𝜖𝑘 are the
lower bounds for the SINR and probability, respectively.
m𝑠 ∈ R𝑆×1 is a vector, where m𝑠 (𝑠) = 1 and 0 elsewhere. The
objective function in the above problem is non-convex and
the deterministic version is shown to be NP-hard [20]. Since
a stochastic form of this objective function, which maximizes
the expectation over the error distribution, does not change the
structure of the problem, it is also non-convex and NP-hard.

III. PROPOSED SOLUTION APPROACH

Since problem (P) is NP-hard and cannot therefore be
solved in polynomial time, an alternative approach is required
to transform it into a form that is easier to solve. We adopt an
equivalent objective function proposed by [13] in which addi-
tional optimization variables are introduced to decompose the
problem into two parts. Considering that users are equipped
with single antennas and ignoring the constant terms, we have
the following.

max
v1,...,v𝐾

Ee

[
𝐾∑︁
𝑘=1

𝐵

𝐾
log

(
1 + |h𝑘v𝑘 |2

𝑃𝑛 +
∑
𝑙≠𝑘 |h𝑘v𝑙 |2

)]
≡ min

V
Ee

[
min
W,Z

𝐵

𝐾

𝐾∑︁
𝑘=1

− log w𝑘 + w𝑘E𝑘 (V, H) + 𝛽∥z𝑘 − v𝑘 ∥2

]
,

(6)

where,

E𝑘 (V, H) =(1 − (h′
𝑘 ⊙ e𝑘𝐻 )v𝑘) (1 − (h′

𝑘 ⊙ e𝑘𝐻 )v𝑘)𝐻

+
∑︁
𝑗≠𝑘

(h′
𝑘 ⊙ e𝑘𝐻 )v 𝑗v 𝑗 𝐻 (h′

𝑘 ⊙ e𝑘𝐻 )𝐻 + 𝑃𝑛. (7)

Now, we formulate a single compact form expression to
avoid alternating between the inner and outer optimization
problems by generating samples.

Proposition 1. The values of W and V that minimize inner
optimization are:

w𝑘 =
1

ln 2
E−1
𝑘 and z𝑘 = v𝑘 , ∀𝑘 . (8)

Proof: See Appendix A.
Substituting these values back into the inner function, and

ignoring constant terms yields

min
v1,...,v𝐾

Ee

[
𝐾∑︁
𝑘=1

E𝑘 (V, h𝑘)
]

. (9)

Let M𝑘 = diag(h′
𝑘
), so that h′

𝑘
⊙ e𝑘𝐻 = e𝐻

𝑘
M𝑘 , which yields

E𝑘 (V, H) =(1 − e𝐻𝑘 M𝑘v𝑘) (1 − e𝐻k M𝑘v𝑘)𝐻

+
∑︁
𝑗≠𝑘

(e𝐻𝑘 M𝑘)v 𝑗v 𝑗 𝐻 (e𝐻𝑘 M𝑘)𝐻 + 𝑃𝑛

= 1 − e𝐻𝑘 M𝑘v𝑘 − v𝐻𝑘 M𝐻
𝑘 e𝑘 + e𝐻𝑘 M𝑘v𝑘v𝐻𝑘 M𝐻

𝑘 e𝑘
+

∑︁
𝑗≠𝑘

e𝐻𝑘 M𝑘v 𝑗v 𝑗 𝐻M𝐻
𝑘 e𝑘 + 𝑃𝑛

= 1 − 2Re(e𝐻𝑘 M𝑘v𝑘) + e𝐻𝑘 M𝑘v𝑘v𝐻𝑘 M𝐻
𝑘 e𝑘

+
∑︁
𝑗≠𝑘

e𝐻𝑘 M𝑘v 𝑗v 𝑗 𝐻M𝐻
𝑘 e𝑘 + 𝑃𝑛.

(10)

Using the above equation, the expectation of E𝑘 is as follows:

Ee

[
𝐾∑︁
𝑘=1

E𝑘 (V, h𝑘)
]
= Ee

[
𝐾∑︁
𝑘=1

(
−2Re(e𝐻𝑘 M𝑘v𝑘)

+e𝐻𝑘 M𝑘v𝑘v𝐻𝑘 M𝐻
𝑘 e𝑘 +

∑︁
𝑗≠𝑘

e𝐻𝑘 M𝑘v 𝑗v 𝑗 𝐻M𝐻
𝑘 e𝑘

) ]
= Ee


𝐾∑︁
𝑘=1

−2Re(e𝐻𝑘 M𝑘v𝑘)+
𝐾∑︁
𝑗=1

e𝐻𝑘 M𝑘v 𝑗v 𝑗 𝐻M𝐻
𝑘 e𝑘

.
(11)

Since e𝐻
𝑘

M𝑘v 𝑗v 𝑗 𝐻M𝐻
𝑘

e𝑘 is a scalar number, we can rewrite it
as v 𝑗 𝐻M𝐻

𝑘
e𝑘e𝐻𝑘 M𝑘v 𝑗 = v𝐻

𝑗
Φ𝑘v 𝑗 , where Φ𝑘 = M𝐻

𝑘
e𝑘e𝐻𝑘 M𝑘 .

Let E = Ee [e𝑘e𝐻𝑘 ], and R𝑘 = Ee [Φ𝑘] = M𝐻
𝑘

EM𝑘 , then (11)
can be written as

Ee

[
𝐾∑︁
𝑘=1

E𝑘 (V, hk)
]

= −
𝐾∑︁
𝑘=1

2Re
(
Ee

[
eH
𝑘

]
M𝑘v𝑘

)
+

𝐾∑︁
𝑘=1

𝐾∑︁
𝑗=1

v𝐻𝑗 Ee [Φ𝑘] v 𝑗

=

𝐾∑︁
𝑘=1

[
−2Ee

(
e𝐻𝑘

)
Re (M𝑘v𝑘) + v𝐻𝑘

( 𝐾∑︁
𝑗=1

R 𝑗

)
v𝑘

]
.

(12)



Proposition 2. (12) is convex for uncorrelated Gaussian
phase errors.

Proof: see Appendix B.
Since the users share the same set of transmitter antennas,

we can assume e𝑘 = e, ∀𝑘 .
Regarding the probabilistic SINR constraint, we adopt the

method used in [15] to approximate the stochastic constraint
with a set of multiple deterministic constraints by leveraging
the knowledge about the nature of Gaussian phase error
distributions. We have,

Pr{SINR𝑘 > 𝜇𝑘} ≥ 𝜖𝑘 ≡ Pr(Δ) {e𝐻𝑘 Ω𝑘ek ≥ 𝜇𝑘} ≥ 𝜖𝑘 , (13)

where

Ω𝑘 = diag
(
ℎ̂𝐻𝑘

) ©­« 1
𝜂𝑘

P𝑘 −
∑︁
𝑗≠𝑘

P 𝑗
ª®¬ diag

(
ℎ̂𝑘

)
, (14)

𝚫 = [𝜙1, 𝜙2, ...𝜙𝑆], (15)

in which P𝑘 = v𝑘v𝐻𝑘 . Let’s define

[ 𝑓 (X)]𝑚,𝑛 =

{
X𝑚,𝑛 −

∑
𝑙 X𝑚,𝑙 , for𝑚 = 𝑛,

X𝑚,𝑛, for 𝑚 ≠ 𝑛,
(16)

and [𝑔(Y)]𝑚,𝑛 = 2
∑︁
𝑙

Y𝑚,𝑙 . (17)

Then, the constraint in (13) is broken down into [15]

(𝐶1) :
∑︁
𝑚,𝑛

𝛀𝑘,[𝑚,𝑛] − 𝑃𝑛 + Tr(𝜎2
𝜙F𝑘)

≥ 2
√︁
− ln (1 − 𝜖𝑘) (𝑥𝑘 + 𝑦𝑘),

(𝐶2) :
1

2
√

2
| |𝜎𝜙G𝑘 | |2 ≤ 𝑥𝑘 ,

(𝐶3) : 𝛼𝑘 | |vec(𝜎2
𝜙F𝑘) | |2 ≤ 𝑦𝑘 ,

(𝐶4) : Ω𝑘 = X𝑘 + 𝑗Y𝑘 ,
(𝐶5) : F𝑘 = 𝑓 (X𝑘) , G𝑘 = 𝑔 (Y𝑘) ,
(𝐶6) : P𝑘 ≽ 0.

where 𝛼𝑘 must satisfy the condition
(
1 − 1

2𝛼2
𝑘

)
𝛼𝑘 =√︁

− ln (1 − 𝜖𝑘) [16]. The SINR constraint parameter is P,
while the precoding vector in the objective function is v. Since
we cannot directly impose the relationship P𝑘 = v𝑘v𝐻𝑘 , which
would not be a convex constraint, we relax the condition and
add a penalty expression into the objective function to ensure
that the squared-norm of v𝑘 is close to the trace of P𝑘 . Let
𝛽 be our scaling coefficient for the penalty. We can redefine
our convex objective function function as follows,

min
V,P,x,y,𝑡

Ee

[
𝐾∑︁
𝑘=1

E𝑘 (V, h𝑘) + 𝛽𝑡
]

subject to : − Tr(P𝑘) + v𝑘Hv𝑘 ≤ 𝑡,
Tr(m𝐻

𝑠 VV𝐻m𝑠) ≤ 𝑃𝑠 ∀𝑠,
𝑡 ≥ 0,
constraints (𝐶1) − (𝐶6).

(Q)

Remark 1. If 𝜙𝑠 ⇀ 𝑁 (𝜇𝜙 ,𝜎2
𝜙
), the expected value of the

complex exponential is computed as,

Ee [𝑒 𝑗 𝜙𝑠 ] =
∫ ∞

−∞
𝑒 𝑗 𝜙𝑠

1
𝜎𝜙

√
2𝜋
𝑒
− 1

2

(
𝜙𝑠−𝜇𝜙
𝜎𝜙

)2

𝑑𝜙𝑠 = 𝑒
𝑗𝜇𝜙−

𝜎𝜙
2

2 ,

(18)
where 𝜇𝜙 , and 𝜎𝜙2 are mean and variances of 𝜙𝑠 respectively.
When 𝜇𝜙 = 0, we have

(
Ee [𝑒 𝑗 𝜙𝑠 ]

)2
= 𝑒−𝜎𝜙

2
.

From the remark given above, the covariance matrix for the
complex exponential is as follows:

[E]𝑚,𝑛 =

{
1 for 𝑚 = 𝑛,
𝑒−𝜎𝜙

2
for 𝑚 ≠ 𝑛.

(19)

Problem (Q) can be solved in polynomial time using interior
point method (IPM). The general approach to approximate the
solution of problem (P) is summarized in Algorithm 1.

Algorithm 1 Summary of proposed approach

1: Given 𝜎𝜙 , 𝐻, 𝜖𝑘 , 𝜇𝑘 , 𝑃𝑠 ∀𝑘 .
2: Compute the error covariance matrix → (19).
3: Compute R𝑘 = Ee [Φ𝑘] = M𝐻

𝑘
EM𝑘 , ∀𝑘 .

4: Define reformulated objective function → (12).
5: Solve (Q).

IV. SIMULATION RESULTS

For the simulations, a LEO satellite swarm is considered in
which each satellite has an independent phase error sampled
from a Gaussian distribution with zero mean and standard
deviation 𝜎𝜙 . TABLE I presents the simulation parameters.
We note that for the considered value of 𝑑 = 1000𝜆=100
m, where 𝜆 is the wavelength, can be supported by current
flying formation technologies [9]. To support this even further,
recently the European Space Agency has launched the Proba-
3 mission that will demonstrate formation station keeping at
distances ranging between 25 m and 250 m [21]. optimization
problem (Q) is solved with CVX modelling, and optimal
precoding weights are obtained. Fig. 2 (a) compares the
performance of the proposed scheme with the maximum-ratio-
transmission (MRT) precoder in the distributed and single
satellite (collocated) antenna cases. It can be seen that the
optimized scheme outperforms MRT for both collocated and
distributed cases. It should be noted that the case of collo-
cated antennas on a single satellite does not exhibit a phase
synchronization error. However it achieves a notably lower
sum-rate performance due to a higher channel correlation
that arises from collocated antenna in a line-of-sight scenario.
In addition, from Fig. 2 (a) we observe that in the range
(0,2) dBW, the QoS constraint cannot be met, hence there
is no output. On the other hand, when the range in the (2,5)
dBW range, the constraint is met. Moreover, we observe that
the performance is slightly lower than the case without QoS
for that specific range and the gap reduces as the transmit
power increases until they almost converge for 5 dBW. Fig
2. (b) depicts the empirical probabilities of the SINR from



(a) (b) (c)

Fig. 2: (a) - Total sum-rate comparison for transmit power per satellite range of (0,5), 𝜎𝜙 = 200, 𝜇𝑘 = 5𝑑𝐵, ∈𝑘= 0.8 ∀𝑘 .
(b) - Corresponding empirical probabilities. (c) CDF for the cases with and without QoS constraint at 2dB watt

TABLE I: Simulation parameters

Parameters Value
Number of satellites, 𝑆 50

Number of users, 𝐾 10
Antennas per satellite 1

Satellite altitude 600km
Carrier frequency 3 GHz

Bandwidth, 𝐵 30MHz
Satellite spacing unit (d) 1000𝜆

Satellite antenna gain 10dB

Service area coverage 𝜃 = (−250, 250 )
𝜑 = (−250, 250 )

System noise temperature 250K

the samples, which is approximated by running Monte-Carlo
simulations using the optimal precoders obtained from the
solution of (Q). Fig 2. (c) shows the cumulitive distribution
function (CDF) comaprison for the proposed approach with
and without QoS constraint at 2 dBW total transmit power.
The approach without QoS sacrifices the SINR of some users
in order to maximize the sum rate. Although the case with
QoS has a slightly lower total sum rate, it satisfies the SINR
constraint.

Fig. 3 shows the error standard deviation threshold above
which the sum-rate of the proposed scheme falls below the
performance achieved by a collocated set of antennas with
no error for both proposed and MRT schemes, and for
𝜇𝑘 = 2𝑑𝐵, 𝜖𝑘 = 0.5. For the selected set of parameters,
this threshold is around 780 at 5 dBW. The value depends
on the number of users and their distributions in the ser-
vice area. Since one benefit of a distributed system is high
beamforming gain, it outperforms collocated antennas until
the gain is overwhelmed by the loss in performance from
phase synchronization errors.

V. CONCLUSION

In this work, we have considered the problem of maximiz-
ing the total sum-rate in multi-user LEO satellite communica-
tions where there is a random Gaussian phase synchronization
error. It is shown that the proposed solution outperforms MRT

Fig. 3: Performance under different error standard deviations at 5
dB Watt, 𝜇𝑘 = 2𝑑𝐵, 𝜖𝑘 = 0.5.

for both collocated and distributed cases. Moreover, Monte-
carlo simulations demonstrated that the empirical probabilities
agree with the criteria defined for QoS. Despite satellite
swarms suffering from imperfect phase synchronization, they
still offer better performance than collocated antennas upto a
certain phase error variance. This is a useful information for
system designers that can be used as a maximum threshold to
be considered in order to design a distributed system which
is more advantageous than collocated antennas.

Future work will account for different phase- error distri-
butions, e.g. uniform, as well as error correlations.

APPENDIX

A. Proof of Proposition 1

We prove (8) as follows. Let

𝑓 (W, Z) =
𝐾∑︁
𝑘=1

− log w𝑘 + w𝑘E𝑘 + 𝛽∥z𝑘 − v𝑘 ∥2. (20)

We use the first derivative to find the values of W and Z that
minimize the objective function.



Taking the derivative with respect to z𝑘 and equating to

zero, gives 𝑑 𝑓 (W,Z)
𝑑zk

= 0 → z𝑘 − v𝑘 = 0 → z𝑘 = v𝑘 . Similarly,
𝑑 𝑓 (W,Z)
𝑑wk

= 0 → − 1
ln 2

1
w𝑘 + E𝑘 = 0 → w𝑘 = 1

ln 2E−1
𝑘

.

B. Proof of Proposition 2

We show that (12) is convex by dividing it into two parts.
The first part, which is

∑𝐾
𝑘=1 −2Ee

(
e𝐻
𝑘

)
Re (M𝑘v𝑘) is a linear

function of v𝑘 , and therefore, is convex.
We prove that second part,

∑𝐾
𝑘=1 v𝐻

𝑘

(∑𝐾
𝑗=1 R𝑘

)
v𝑘 is convex

as follows:
Note that R𝑘 = M𝐻

𝑘
EM𝑘 , and since M𝑘 is a diagonal matrix,

we can rewrite the above equation as R𝑘 = M𝐻
𝑘

M𝑘 ⊙ E.
M𝐻
𝑘

M𝑘 is positive semidefinite (PSD) given that it is a
diagonal matrix with positive diagonal entries.
Assuming a Gaussian phase error, E, given in (19), it can
be seen that all diagonal elements are 1, and non-diagonal
elements are 𝑒−𝜎𝜙

2
. Hence, E1 = (1 + 𝑒−𝜎𝜙2 (𝑆 − 1))1, where

1 is a column vector of ones, and if we consider the vector
x ∈ R𝑆×1, where

∑
𝑖 x𝑖 = 0, (meaning x has dimension 𝑆 − 1),

then Ex = (1 − 𝑒−𝜎𝜙2 )x, Therefore, (1 + 𝑒−𝜎𝜙2 (𝑆 − 1)) and
(1− 𝑒−𝜎𝜙2 ) are the only eigen values of E as we have a total
of 𝑆 − 1 + 1 = 𝑆 eigen vector dimensions (multiplicity).
Both eigen values are non-negative since 𝑒−𝜎𝜙

2 ≤ 1 for
∀ 𝜎𝜙 ≥ 0. Invoking the Schur product theorem (which
states that the element-wise product of two PSD matrices
is also PSD), we conclude that R𝑘 = M𝐻

𝑘
M𝑘 ⊙ E =

M𝐻
𝑘

EM𝑘 is PSD. Therefore, the sum of the quadratic forms∑𝐾
𝑘=1 v𝐻

𝑘

(∑𝐾
𝑗=1 R 𝑗

)
v𝑘 is convex. Since we showed that the

first and second part of (12) are convex, it implies that it is
convex, and this concludes the proof.
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