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Abstract—Quantum key distribution (QKD) offers exception-
ally high levels of data security during transmission by using
principles of quantum physics. It is renowned for its provable
security features. However, a gap between theoretical models and
real-world applications, known as quantum hacking, challenges
the reliability of QKD networks. Trojan-horse attacks represent
a significant threat to the Bob subsystem in QKD, allowing
Eve to infer Alice’s basis choices through back-reflected pulses.
This can compromise security without detection in severe cases,
especially when quantum bit error rates (QBER) fall below the
abort threshold. The proposed method combines a category-
based Gaussian Mixture Model (GMM) with the Kolmogorov-
Smirnov test to estimate the posterior QBER distribution and
assess risks in practical QKD systems. By processing the QBER,
the approach also evaluates the dependability of the QKD
scenario. Numerical results are presented using a state-of-the-
art point-to-point QKD device operating over optical quantum
channels of 1 m, 1 km, and 30 km lengths. The results of
the experimental analysis of a 30 km optical link suggest that
the QKD device provided prior information to the proposed
learner. Consequently, our proposed trustworthy monitor offers
a defensive mechanism that identifies potential Eve attacks,
effectively mitigating the risk of security vulnerabilities.

I. INTRODUCTION

The deployment of quantum key distribution (QKD) net-
works in the future and forthcoming scenarios has garnered
significant interest due to their potential to provide ultra-
secure communication services. Analyzing the current state of
critical components in quantum networks enables the ability
to link quantum devices across long distances, resulting in sig-
nificant improvements in communication, network efficiency,
and security [1]. The authors in [2] demonstrate the potential
for building global quantum networks by transmitting essential
information through free-space optical channels (FSO). To
attain a state of absolute security, QKD is used as a protocol
that, in principle, ensures the confidentiality of information
sent between two distant nodes by establishing secure keys.
This approach has been extensively studied and documented
in the literature, as seen in [3] and [4].

QKD has emerged as an extensively investigated quantum
communication system [5]. Long-distance FSO quantum com-
munications have been successfully implemented across very
long distances, as shown in [6]. Various experiments have
been conducted, such as those presented in [7] and [8]. In the
following discourse, we present our methodology, supported

by ID Quantique (IDQ), a business based in Switzerland that
offers cutting-edge industrial solutions for QKD networks [9].
This technique entails the establishment of a QKD infras-
tructure using the BB84 communication protocol [10] or a
similar invention. The QKD device is usually implemented
using the BB84 protocol, but Eve cannot access the key
sent in QKD communication. However, ensuring the precise
alignment of practical implementations of QKD systems with
their corresponding theoretical requirements is challenging.
Discrepancies between theory and practice can potentially
create vulnerabilities and undermine the integrity of security
measures [11].

Trojan-horse attacks have been recognized as a specific
risk, primarily targeting the Bob subsystem. The nature of the
attack [12] is that Eve employs a method of attack against Bob
by transmitting luminous Trojan-horse pulses to ascertain the
specific bases Alice chose during the execution of the QKD
protocol. The transmission of this information is facilitated by
the back-reflected pulses emitted from Alice. In adherence to
a general principle, Eve must minimize interference with the
authentic quantum signals transmitted from Alice to Bob, as
her primary objective is to ascertain the foundation settings.
In this hypothetical scenario [12], when Eve successfully
achieves correlations over 48% using the key obtained through
an identical forward error code, Alice and Bob cannot detect
the parameters being attacked. Additionally, the QBER of 5%
is significantly lower than the QBER abortion rate of 11%. It
may be concluded from this extreme case that the security of
the QKD system has been compromised and does not elicit
any significant concern, as the percentage to be deducted
throughout the process of privacy amplification is 47.8%, a
value lower than the extent of Eve’s understanding. While Eve
continues to interfere, the escalating QBER to the abortion rate
leads to the complete loss of the key sequence, while Alice
and Bob are compelled to engage in retransmission.

In addition to the interference caused by Eve, a time-
invariant quantum channel can also be observed, resulting in a
decrease in the key rate reported in the experimental outcomes
of the IDQ QKD device when used in long-distance 30km
QKD networks. The risks arising from Eve’s interference
residing in the characteristics of the time-variant quantum
channel in QKD networks are considered. This situation



Figure 1: An illustration of the QKD scenario with trustworthy monitor against quantum hacking

poses a certain level of risk contingent upon the QKD key
consumption while eavesdropping occurs. As shown in Fig.
1, the risk of quantum hacking can be demonstrated by
figuring out a loss function that takes into account what is
known about the software-defined network (SDN) controller’s
assigned traffic, eavesdropping, changes in quantum channel
parameters that cause time-varying effects, and what is known
about the past from the empirical QBER data. IDQ DV-
QKD Cerberus XGR devices obtain the empirical data via the
optical quantum channel in our single and multiple campus
dark fiber experiments. The primary objective of Trojan-horse
detection [13] is to improve the overall reliability of the
system and ensure the integrity of the circuits. By emulating
the approach taken by detection networks [14], deep learning
networks encapsulate the unidentified trigger shape and de-
viations in decision boundaries introduced by backdoors by
acquiring features derived from adversarial patterns and their
characteristics. The application of adversarial perturbations
to get their imprint is an approach. The introduction of a
backdoor alters the decision limits of a network, which are
effectively communicated through adversarial perturbations.
Because of the approach above, our contributions are summa-
rized as follows:

1) To establish reliable assurance, we initiate risk analysis
to provide a trust paradigm that mitigates the gap
between theory and practice by considering the potential
eavesdropping interference on top of the loopholes of
practical concern.

2) The proposed approach involves utilizing the category-
based Gaussian Mixture Model (GMM) in conjunction
with the Kolmogorov-Smirnov (KS) test for assessing
goodness-of-fit. This method aims to estimate the pos-
terior probability distribution of the empirical QBER
dataset to evaluate the potential risks associated with
practical QKD systems.

3) The deployment of trustworthy QKD networks enables
risk awareness and validation of the trust condition [15].
We evaluated Trojan horse attacks in a trusted QKD
setup, where Eve’s intrusion follows a Poisson process
and induces a small, uniformly distributed increase in
QBER. Our proposed trustworthy monitor effectively
detects these attacks by identifying violations of the
trust condition, with sensitivity determined by the de-
fense gate level and risk loss thresholds.

The subsequent sections of this paper are structured as
follows. Section II introduces the proposed learner that can
learn the QBER distribution of the QKD device. Section
III presents the numerical results for the trustworthy QKD
scenario to apply the aforementioned risk analysis and the
learning procedure. Section IV concludes with a summary of
the key insights gained from the study.

II. CATEGORY-BASED GMM-ASSISTED
GOODNESS-OF-FIT OF QBER ESTIMATION FOR RISK

MEASUREMENT

In this section, we provide a novel approach to unsupervised
machine learning, specifically designed for the learner denoted
Q̂ = λ(θ̂). The category-based GMM [16] uses statistical
tools as an integral component of a data-driven approach. This
evaluation procedure entails implementing a method known as
soft clustering, where data samples are assigned to distinct
groups based on specific criteria, generating a numerical
categorization output.

We propose using unsupervised learning techniques to facil-
itate the model-fitting process as an alternative to the method-
ology presented in [16]. The selection of the Kolmogorov-
Smirnov (KS) criteria is based on its status as the only
extensively established goodness-of-fit criterion that exhibits
competitiveness when compared to other methods examined
in the literature, particularly regarding shift and comparable



alternatives. Furthermore, this method allows for the develop-
ment of straightforward confidence processes and tests. The
approach we propose combines the use of the two-sample
KS test [17] to assess the similarity of the two samples in
terms of their distribution. This technique is employed as
a means of presenting an innovative methodology. This is
achieved by evaluating the P-value [18] between empirical
QBER data and the data generated by the tentative GMM.
In [18], the resolution to a well-recognized constraint of the
conventional P-value lies in its limited ability to identify
deviations occurring at the extreme ends of the distribution.
This test is employed to evaluate the goodness of fit and
determine the appropriate categorization for new data points
when the dataset does not conform well to the present category
of GMM cluster distribution. With the core of the Expecta-
tion Maximization (EM) algorithm, we present the proposed
category-based GMM KS learning to provide the estimated
QBER pdf for the aforementioned empirical risk analysis.

As presented in Algorithm 1, we apply this learning
methodology as the core of the proposed GMM KS learner
λ(θ̂). In the Ensure, the parameter θ̂ can be obtained as {Gs}c.
In line 7 and 8, an exhaustive search Tmax×Imax is performed
to fit the empirical data by comparing the similarity between
gmms(Gs, c,m) and Fs. The GMM parameter {Gs}c is
recorded in line 10 along with its corresponding maximum P-
value {ps}c. Next, the training phase of the proposed learner
is presented in Algorithm 2 using the core of Algorithm 1. As
the Input, the empirical training dataset can be partitioned into
many folds to establish a suitable correspondence between the
two samples; a threshold ς is provided. As indicated in line
7, the purpose of this threshold is to maximize the probability
P (ϵ = ϵ̂ | Q̂) while minimizing the number of categories.
Upon the failure of Algorithm 1 to adequately maintain the
desired level of fit, a new category is established at line
10. Finally, the testing phase regarding Algorithm 3 involves

Algorithm 1 GMM Model Fitting using EM KS-Test

1: Input: Target dataset Fs, GMM parameter Gs, number of
GMM clusters 2, . . . , cmax, GMM maximum trial number
Tmax, EM maximum iteration Imax

2: Output: Distribution set of GMMs {Gs}c and {ps}c as
p-values of KS test

3: Initialize: GMM with random parameter Gs

4: for c = 2 to cmax do
5: for m = 1 to Tmax do
6: Run EM algorithm to fit Fs

7: gmm(Gs, c,m)← EM(Fs, c, Gs, Imax)

8: p
(m)
s ← KS test(gmm(Gs, c,m), Fs)

9: end for
10: m′ ← argmaxm∈{1,...,Tmax} p

(m)
s

11: gmm(Gs, c)← gmm(Gs, c,m
′)

12: {ps}c ← p
(m′)
s

13: end for
14: return {Gs}c, {ps}c

performing the same learning as Algorithm 2 and is stated
as follows. In lines 6 to 12, the sole distinction lies in the
absence of enhanced categories during the test phase. Instead,
the focus is on identifying the most suitable match within the
pre-existing categories. Following completion of the learning
process, the learner performs a thorough and comprehensive
search of TTest for each category, as indicated on lines 14 to
17.

Algorithm 2 Category-based GMM KS-Test Learning in
Training Phase

1: Input: Training dataset divided into K folds: F1, . . . , FK ;
Threshold τ for KS-test p-value

2: Output: Category dataset: {C1, . . . , CH}; GMM pa-
rameters: {{Gs}c}h; KS p-values: {{ps}c}h, for h =
1, . . . ,H;

3: Initialize: Set first category C1 ← F1, set category index
h← 1

4: for s = 2 to K do ▷ Process remaining folds
5: Run Algorithm 1 on fold Fs with Tmax = Ttraining
6: Obtain: {Gs}c → {{Gs}c}h, and ps → {{ps}c}h
7: if {ps}c > τ then
8: Assign Fs to current category: Fs → Ch

9: else
10: Create new category: Fs → Ch+1

11: Increment category index: h← h+ 1
12: end if
13: end for
14: return Category set {C1, . . . , Ch}, GMM parameters
{{Gs}c}h, and p-values {{ps}c}h

Algorithm 3 Category-based GMM KS-test Learning During
Testing Phase

1: Input: Testing folds F1, . . . , FZ ; KS-test threshold ς;
Category datasets C1, . . . , CH from training

2: Output: {{Gs}c}h and {{ps}c}h for h = 1, . . . ,H
3: Initialize: Use training parameters to set {{Gs}c}h
4: for s = 1, . . . , Z do ▷ Loop over test folds
5: for h = 1, . . . ,H do ▷ Check each category
6: Run Algorithm 1 on Fs using {{Gs}c}h with

Tmax = TTraining
7: Output: {{Gs}c}h and {{ps}c}h
8: if {{ps}c}h > ς or h = H then
9: Assign Fs → Ch

10: break
11: end if
12: end for
13: end for
14: for h = 1, . . . ,H do ▷ Final category-wise refinement
15: Run Algorithm 1 on Ch using {{Gs}c}h with Tmax =

TTest
16: Output: updated {{Gs}c}h, {{ps}c}h
17: end for
18: return {{Gs}c}h and {{ps}c}h



III. NUMERICAL RESULT

A. Trusted QKD Scenario Configuration

The statistical data for the QBER was acquired via the
LUQCIA project1. This data was gathered using the QNET
WEBAPI interface version 1.168 at constant intervals over
many months. These data points were used to establish the
sample space for our observations.

• The experimental setup for measuring the quantum chan-
nel distance consists of three different distances: 1 m,
1 km, and 30 km. The number of QBER experiments
N = {N1m, N1km, N30km} = {57471, 52104, 47768}.

• In the context of IDQ QKD devices, if visibility is
below 0.9 or QBER exceeds the abortion rate of 11%,
it can be shown that Bob is unlikely to receive any
raw keys reduced by privacy amplification, leading to
a key rate of 0. Eve believes that eavesdropping cannot
affect the visibility of data transmission, which is only
influenced by the presence of an optical fiber link. The
various distance quantum channel experiments can obtain
statistical QBER data via IDQ QKD device pairs.

• In the proposed learning scenario, the values of TTraining

and TTest are determined as 100 and 10000, respectively.
The value cmax is selected as 15 and 45. The maximum
number of iterations of the EM algorithm Imax is set to
100.

B. QBER Estimation and Risk Analysis for a Trustworthy
Monitor

Figure 2: Multiple folders model fitting using Algorithm 2
over the 1 m optical quantum channel

The P-value in Algorithm 2 is shown in Fig. 2, where
the value of K is set to 5, 6, 7, and 8, and N is set to
N1m. This presentation illustrates the application of GMM

1https://www.uni.lu/en/news/a-first-testbed-for-quantum-communication-
infrastructure-in-luxembourg/

Figure 3: 4-fold cross-validation for Algorithm 3 where ς =
0.95 over the 1 km optical quantum channel

Figure 4: AIC Results of Algorithm 3 where ς = 0.95 over
the 1 km optical quantum channel

fitting to empirical QBER data. In the test phase, cross-
validation [19] is a highly effective method to evaluate the
performance of the proposed learner. The empirical sample
QBER N = {N1km, N30km} is divided into four folds. In
each cross-validation iteration, one fold is designated as the
test set. In contrast, the remaining folds serve as the training
set, as illustrated by the P-value in Fig. 3 over 1 kilometer and
in Fig. 5 over the 30km optical quantum channel. As shown
in Fig. 4 using Algorithm 3, the Akaike Information Criterion
(AIC) is utilized to assess the performance of statistical
models and determine their efficiency level when applied to
a certain data set. The risk analysis assumes that the risk
control weighting HMj

follows a normal distribution. In order
to demonstrate the effectiveness of the proposed approach,
risk control weighting has a mean value that is uniformly



Figure 5: 4-fold cross-validation for Algorithm 3 where ς =
0.95 over the 30km optical quantum channel

Figure 6: Risk analysis of cross-validation using Algorithm 3
where ς = 0.95 and ρ = 0.05 over the 1km optical quantum
channel

distributed between 0.5 and 1, with a standard deviation equal
to the mean value.

Finally, we implement Trojan horse attacks on our trusted
QKD scenario, wherein the QKD system is subjected to Eve
attacks following a Poisson distribution using the parameter
υe. Each instance of a Trojan horse attack is assumed to
increase the QBER to a uniform distribution ranging from
0.05 to 0.055. The observation of Alice’s examination of
the defense gate associated with Eve’s arrival is intriguing.
In Fig. 8 and Fig. 9, the proposed trustworthy monitor can
recognize the occurrence of Eve’s Trojan horse attacks due
to the violation of the trust condition [15]. The value of α

Figure 7: Risk analysis of cross-validation using Algorithm 3
where ς = 0.95 and ρ = 0.05 over the 30km optical quantum
channel

Figure 8: Risk analysis of cross-validation using Algorithm 3
where ς = 0.95, ρ = 0.05, α = 0.2% and υe = 500 with
Eve’s Trojan-horse attacks over the 30km optical quantum
channel

has been established using the value of 0.2% according to
the maximum value of the risk loss function of 30 km, as
shown in Fig. 7. Additionally, Fig. 9 sets υe to 4000, and
500 has the identical trend, where the total number of Eve
attacks is 10 times compared with 100 times as shown in Fig.
8. It is noteworthy that the risk analysis of Fig. 8 is compar-
atively greater than Fig. 9, and the proposed QKD scenario
can detect Trojan-horse attacks with only the proposition of
0.02%. This discrepancy signifies a distinct sensitivity level in
Eve’s detection, demonstrating our proposed trustworthy QKD



Figure 9: Risk analysis of cross-validation using Algorithm 3
where ς = 0.95, ρ = 0.05, α = 0.2% and υe = 4000 with
Eve’s Trojan-horse attacks over the 30km optical quantum
channel

scenario using the trust condition. Interestingly, the defense
gate 0.25% is too high and less sensitive to detect potential
Eve attacks, comparing the risk analysis of Fig. 8 and Fig. 9.
Consequently, the potential Trojan horse Eve’s attack can be
successfully detected by our proposed trusted QKD scenario,
as shown in the risk difference and loss difference of value
between 0.02% and 0.05% in Fig. 7 and Fig. 8. The design of
the proposed trustworthy monitor is predominantly determined
by the level of defense gate portrayed as obstructing Eve’s
attacks. We presume that Eve is not acquainted with the time-
variant channel effect to preserve generality.

IV. CONCLUSION AND FUTURE DIRECTIONS

This study is to examine the incorporation of risk-aware
machine learning methods [15] into QKD networks, with a
particular emphasis on the vulnerability of credentials over
a time-variant quantum channel. To accomplish this task,
we employ IDQ QKD devices as a means of support. The
empirical QBER dataset is effectively estimated by the pro-
posed GMM KS learner, as indicated by the numerical results.
The QKD device developed by IDQ is at the forefront of
technology and meets the trust condition, making it trustwor-
thy for ultra-secure communication. The simulation can be
designed by integrating an SDN controller traffic model with
a trust-monitoring component, enabling effective detection of
potential Trojan-horse attacks.
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