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Abstract—This paper investigates the effectiveness of em-
ploying multiple reconfigurable intelligent surfaces (RIS) for
simultaneous wireless information and power transfer (SWIPT)
in a vehicle-to-infrastructure (V2I) system. The optimal RIS is
selected for transmission based on instantaneous signal-to-noise
ratio (SNR) values, with the objective of optimizing the SWIPT
system employing the power-splitting (PS) protocol and non-
linear energy harvesting (NL-EH). A unified objective is proposed
to maximize information rate and harvested energy via joint
optimization of transmit power and power splitting factor. Non-
convexity is addressed via an iterative algorithm, supported by
closed-form expressions obtained through Karush-Kuhn-Tucker
(KKT) conditions. Monte-Carlo simulations are performed to
validate the accuracy of the analytical expressions. Additionally,
a deep neural network (DNN) framework is introduced for real-
time optimization prediction, achieving superior SWIPT perfor-
mance over single RIS configurations with reduced complexity
and faster execution.

Index Terms—Deep neural network (DNN), multi-RIS, simul-
taneous wireless information and power transfer (SWIPT), recon-
figurable intelligent surfaces (RIS), and vehicle-to-infrastructure
V2I).

1. INTRODUCTION

Simultaneous wireless information and power transfer
(SWIPT) has emerged as a pioneering concept aimed to
meet the escalating demand for sustainable high data-rate
services. SWIPT technology enables wireless devices not only
to receive data but also to harvest energy from the received
signals concurrently [1]. SWIPT operates via two primary
protocols: time-switching (TS) and power-splitting (PS). TS
divides the channel coherence interval into distinct time slots,
enabling simultaneous information decoding and energy har-
vesting (EH). Conversely, PS partitions the received signal
power for distinct operations, facilitating efficient utilization
of the available energy resources [2].

To address the inherent challenges faced by SWIPT systems,
particularly in adverse radio propagation environments, recent
research proposes an integration of reconfigurable intelligent
surfaces (RISs) with SWIPT systems [3]. RISs are composed
of electromagnetic meta-materials and exhibit the ability to
manipulate electromagnetic waves by introducing controlled
delays and phase shifts [4]. This enhances the signal-to-noise
ratio (SNR) at the receiver, which facilitates more effective
utilization of SWIPT.

In [5], the authors presented a novel framework utilizing
RISs to enhance SWIPT in non-orthogonal multiple access
(NOMA) networks for the ultramassive machine type commu-
nications (umMTC) scenario, aiming to maximize the uplink
sum rate of the IoT devices by optimizing the TS coefficient,
the transmit power of the base station, the RIS phase shifts, and
the power allocation coefficients, by alternating optimization
(AO) algorithm. The RIS-aided SWIPT system performance
was investigated in [3], deriving bounds for rate and energy
with TS and PS protocols considering both linear and non-
linear (NL) EH models.

In [6], the authors investigated a SWIPT-enabled RIS-
assisted multiple-input-multiple-output (MIMO) communica-
tion network. A power minimization problem was formulated,
which jointly optimizes the active beamforming matrix at the
base station (BS) and passive beamforming matrix at the RIS.
Authors in [7] studied resource allocation for a multiuser
RIS-aided SWIPT system, highlighting the trade-off between
maximizing data sum-rate and total harvested energy by jointly
optimizing beamforming at the BS and phase shifts at the
RIS using a multiobjective optimization framework. In [8], the
system’s energy efficiency was maximized by jointly designing
transmit beamforming at the BS, phase shifts at the RIS,
and the PS ratio at users, while adhering to minimum rate,
minimum harvested energy, and transmit power constraints.
Authors in [9] investigated the outage and symbol error
rate performance analysis of a multi-RIS assisted vehicle-to-
vehicle (V2V) system over a generalized fading channel. In
[10], the authors examined a multi-RIS assisted vehicle-to-
infrastructure (V2I) system with SWIPT integration. However,
their work does not consider an incorporation of a deep neural
network (DNN) architecture. Authors in [11] formulated the
computation offloading policy using deep reinforcement learn-
ing in a vehicle-assisted vehicular edge computing network.
Previous research has mainly concentrated on single RIS-
assisted SWIPT for V2I communication, creating a gap in the
exploration of SWIPT with multiple RISs over generalized
fading channels, as well as the implementation of a DNN
model.

From exisiting works in the literature, it is evident that



only a few have addressed multi-RIS assisted V2I systems
which incorporate SWIPT, small-scale path loss, the double
generalized gamma (dGG) fading channel model, along with
a DNN architecture. Therefore, a comprehensive analysis is
crucial for the practical implementation of such systems. In
this regard, this paper introduces a multi-RIS assisted V2I
SWIPT system, alongside a DNN architecture designed to
predict the optimal values. The key contributions of this paper
are as follows

1) This paper explores enhancing V2I communication via
integration of multiple RISs, using a dGG fading channel
model, and introduces a strategic RIS selection method
based on instantaneous SNR to achieve improved signal
quality.

2) A unified optimization problem is formulated to maxi-
mize the rate and harvested energy and it is solved using
an iterative algorithm along with a closed-form solution
derived using Karush-Kuhn-Tucker (KKT) conditions. In
addition, a DNN architecture is also proposed to predict
the optimal values for rate and harvested energy.

3) The proposed analytical expressions have been thor-
oughly validated using extensive Monte-Carlo simula-
tions. The results show a marked improvement in system
performance and a notable reduction in execution time,
highlighting the effectiveness of DNN-based multi-RIS
enabled SWIPT systems for future wireless networks.

II. SysTEM AND CHANNEL MODELS

We consider a multi-RIS aided V2I SWIPT system, as
shown in Fig. 1. Here, a single-antenna source (S) vehi-
cle simultaneously transmits both information and power to
the destination (D) vehicle through L multiple RISs, each
{RIS }j=1.. 1 consisting of M elements. The setup assumes
that direct communication between S and D is not feasible,
thus requiring the RISs as the exclusive transmission medium.
Furthermore, SWIPT is employed at D using the PS protocol.
We consider g = |gim|e® and By, = |hyu|e®n as the
channel fading coefficients between S and m" element of
RIS and between the m™ element of RIS, and D respectively,
with phases &, 9, € [0, 27]. The fading channel coefficients
|gl,m| and |h1m| follow an independent and non-identically

distributed dGG distribution with shaping parameters (@)
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EJBL, a/;”)l, Enl) and (a/g,rzl, En)l, ain)l, ﬁg,n))’ respectively [9].

The dGG distribution is considered in a V2I scenario due
to its versatility in accurately modeling different distributions
like double-Rayleigh and gamma-gamma as its special case.
Further, we consider a low speed vehicular (LSV) mobility
model, where vehicles remain static during consecutive time
slots of transmission [12]".

The signal received at D, assisted by RIS, is expressed as

M
y = VPA (Z gz,mfzz,mej‘”"’"]x +np, (D
m=1

I'This is a realistic assumption, as vehicles typically drive slowly at road
intersections, junctions, etc., or parked at a place.

Figure 1: A road intersection scenario where vehicles in blocked line-of-sight
can communicate via multi-RIS.

where P, represents the transmit power of the signal, e/® is
the phase shift of the m" reflecting element of the RIS; ¢;,, €
[0, 27), x is the transmit signal/symbol, np denotes the additive
white Gaussian noise (AWGN) with np ~ CN( 0, Np), and
A; represents free-space path-loss given by [9]
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where A denotes the wavelength, G| and G, are the transmit
and receive antenna gains, respectively, and d;; and dy;
represent distance from S to RIS; and RIS, to D, respectively.

The received instantaneous SNR associated with RIS, at D
is expressed as

M ; 2
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where 7 = AﬂZf‘ﬁl gl,mhl,m|2 and the phase shift of m™ element
in RIS is adjusted such that the total phase shift &, + ¥, +
¢l,m =0.

A. Optimal RIS selection

It is to be noted that adopting a strategy to select the optimal
RIS can lead to a more energy-efficient multi-RIS aided
system. The RIS with the highest end-to-end instantaneous
SNR among the available RISs will be considered at D for
further processing and the signals coming from other RISs
will be discarded [9], [13]%. Consequently, the end-to-end
instantaneous SNR of the selected RIS can be expressed as

Ymax = . 4
Ymax lr?axL{yl} ( )

,,,,,

The channel state information (CSI) is estimated at D using
pilot symbols before each transmission phase and the corre-
sponding instantaneous SNR of each RIS is calculated at the
D to perform the best RIS selection.

%Discarding signals from non-selected RISs offer low signal processing
complexity, as only N received signals need to be processed instead of the
L « N signals from all participating RISs.



B. Energy harvesting model and SWIPT protocol

The energy gathered in real-life scenarios is a NL function
of the input radio frequency (RF) signal. Normally, when input
power increases, the efficiency of converting radio frequency
(RF) energy to direct current (RF-to-DC) energy rises to a
peak and then levels out at a constant amount. In a high power
regime, the harvesting of energy could be overestimated, when
the traditional linear EH model is applied. In order to eliminate
the inaccuracy of the conventional linear EH receiver model
and capture the NL characteristic of the RF-to-DC power
conversion, we adopt a sigmoidal function based NL-EH
mechanism [14].

We take into consideration the PS scheme for SWIPT, which
involves block transmission over 7" seconds. In the PS scheme,
the signal received at D is split into two parts: a fraction By
is provided to EH at D and the remaining +/1 — By signal
decodes the information. The PS-SWIPT receiver yields an
expression for the harvested energy as

T 1
Ej = — —o).  ©)
1 - ®\1+ exp(-paP,z2,, + ab)
where @ = #p(ab) is a constant for the zero-input/zero-

output response of EH, z,,,, is channel corresponding to ¥4y,
a and b are the constants related to circuit specifications, 3
is the PS factor, and & is the EH circuit saturation point.
Correspondingly, the overall rate at the D is given by

R =1logy(1 + (1 = B)¥max)- (6)

The formulation of the optimization problem and the proposed
solutions are discussed in the subsequent section.

III. ProBLEM FORMULATION AND PROPOSED SOLUTION

This section provides the unified problem formulation for
optimizing two separate objectives: rate and harvested energy.
The optimal values of 8 and P, are sought while ensuring
rate, harvested energy, P;,, and 8 stay within defined limit.
The metric we define is ;{P;,8}. It takes the following two
different cases: rate ¢, {P,,3} and harvested energy ¥, {P,,[}.
These cases are expressed as follows

YulPrBl =R
P, B} = Ep

The objective of problem (P1) is to maximize the metric
Y i{P;, B}, where j corresponds to maximizing either the rate
v.{P;, B} or harvested energy v, {P;,5}. The unified optimiza-
tion problem is mathematically defined as

: Rate

: EH )

YitP,BY =

Vjelu,v]

(P1) : ma)i()inﬁiize YilP, B} Vje€lu,v]
subject to: (Cl): 0< P, < Py,
(C2): 0<p<1,
(C3): R>Ry,
(C4): Ep =2 En, (3)

Algorithm 1 Iterative AO Algorithm.
1: Initialize ¥ ;{P;, B}

: Repeat

: Solve (P1) for fixed S to obtain P

: Solve (P1) by putting P; obtained in 3:, to find §*

: Find y;{P;, B} using P; and B*, save y;{P;, B}(n)

andn=n+1
6: Until: y {P;, B}(n) > Y {P;,B}(n— 1)

Vjelu,v]

WA W

where P,uy, Ry, and Ey, are the maximum transmit power,
rate threshold, and harvested energy threshold, respectively.

To address the non-convexity of (P1), we adopt an iterative
optimization approach inspired by AO and proposed Algo-
rithm 1. In Algorithm 1, we initialize ¢ ;{P;,8} Vj € [u,v].
Firstly, we fix f and compute P;. Secondly, we find §* by
using obtained P; values from step 3. Then the optimized §*
and P; values are used to solve i ;{P;, B}. If the current value
of ¥ ;{P;, B} is less than the past value or if the iterations reach
their maximum limit, then we stop the iteration. Otherwise,
we save the values and the iterations keep going until a lower
value is encountered. With n iterations, its computational com-
plexity is O(nST), where S and 7 represent computational
parameters.

Next, we discuss an alternative method to obtain a closed-
form solution for the aforementioned problem (P1), wherein
we solve it directly using the KKT conditions [15]. To proceed,
the Lagrangian corresponding to (P1) is denoted as follows

L(Pr, B A1, A2, A3, A4) = [(Pr, B) — 118(Pr. B) — h(P1, B)
— A3i(P1, B) = A4 (P B), €))

where f(P,8) = Y {P, B}, 8(Pr.B) = Pi=Prax, h(P1,B) = B—1,
i(P,B) = Ry —logy(l + (1 = BYmax), jPup) = Eun —
L m — @) and A, Ay, A3, A4 are the Lagrange
multipliers for the constraints (C1), (C2), (C3), and (C4),
respectively.

For optimal value, VL(P;,3; 41, A2, A3, 44) = 0 must hold.
Thus, we can represent the equations for satisfying the opti-
mality conditions as

OL(P;, 85 A1, A2, A3, As) - oy i{ Py, 5}
0P, 0P,

) - /l]
Jjeluv]

+ 431 =By + A4fuz =0, (10)
0L(P;,B; A1, A2, A3, Ay) (a%bj{PmB})
= — /12
6ﬂ 8'8 Jeluy]
B3Py + 4Py =0, (11)
where 2R = (1 - By, T = B gy =
2 2 (—aPfty+ab) .
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and wa—ﬁﬁ = Pu.



The conditions for feasibility are given as
g(Pu.p), h(P:,B),i(P1, ), j(P,f) <0. The complementary
slackness expressions are represented as follows

A -gPLp) =0, A-h(P,p) =0;
A3 - i(PL,B) =05 As- j(PrB) =0.

The conditions for non-negativity are {P,,3, A1, A2, A3, A4} > 0,
with the additional constraint being h(P;,5) > 0. If 4, # 0,
then h(P,,3) = 0 implying 8 = 1, which is infeasible. Thus,
Ay must be equal to 0. In the case where the KKT condition
holds with A3 = 0 and A;,44 # 0, we obtain P, = P,,, and

(12)

By = P,zb%.ux - aP,Lﬁm 1n(E[h(1_1¢)+<D - 1) for ¥,{P,,B}. The case
where A1, 43,44 # 0, we get B = 1 — (2% — 1);2%— and g,
for v, (P,, B}, and for ,{P,, B}, the optimal values are P;,, S,
and 8;.

The possible solutions for the unified problem is outlined
in below theorem.

Theorem 1. The optimal values of P; and 8 for y j{P;, B} are,
respectively, given by

proc [Po o wdPep) 13
Py UniPLBY.
L min(ﬂl’ﬁZ) wu{Pt’ﬂ} (14)
max(ﬂl’ﬁZ) wv{Pt’ﬁ}-
Proof. See Appendix A. O

In the following section, we introduce a DNN framework
to address the aforementioned challenges.

IV. DNN Basep OpTIMAL SOLUTION PREDICTION

In this section, we present a DNN framework for predicting
optimal solutions efficiently, offering reduced computational
complexity and faster execution.

A. DNN design, datasets generation, and learning model

Herein, we introduce a DNN design for the prediction of
optimal solutions, treating optimal RIS selection criteria as a
regression problem in supervised learning for L = 2 surfaces.
The DNN architecture consists of single input, multiple hid-
den, and single output layers [16]. The system parameters,
which include P, € [1,10], M € [80,240], o’ € [1,3],
B e [1.3], diy € [1.5], doy € [1,5], oY) € [1.3],
BY € [1.3] dip € [1,5] and dop € [L,5], are given
as an input to our DNN model. Optimal values given by
KKT conditions for rate and EH optimization are treated as
output variables. The resultant dataset  comprises a row
vector containing h = [F[h], Ys], where each sample # is
characterized by feature vector F[h] encompassing all 10 input
variables. Each F[h] undergoes simulation, producing distinct
output Y. To prevent overfitting on the training set and attain
accurate results on the test set, Yy samples are normalized
using log normalization for harvested energy dataset. Linear
functions are applied to output units, while nonlinear activation

Hidden Layer 1 Hidden Layer 4

Output Layer

Yopt

Figure 2: DNN design model.

-5
30 5 =10

25 -

20

Rate (bpcu)
Harvested energy (J)

1 2 3 4 5

Iterations Iterations

Figure 3: Convergence of rate (bpcu) and harvested energy (J) with iterations.

functions are used for hidden-level units. We generate 103
samples, partitioning them into 80% training and 20% testing
sets. The exponential linear unit (eLU) activation function
is applied at each hidden layer, offering advantages over
ReLU by simplifying optimization, reducing computational
complexity, and mitigating vanishing gradient issues. The
proposed DNN model consists of 10 input variables, with the
input layer and each of the four hidden layers containing 150
neurons, while the output layer consists of a single neuron.

The DNN framework comprises training and prediction
phases. During training, adaptive moment estimation (Adam)
optimization is utilized for learning input-output relationships.
Adam’s efficiency in updating model parameters via back-
propagation enhances training speed compared to alternatives
such as stochastic gradient descent and Nesterov. Evaluation
of model performance on k™ testing datasets for predicted
output Y, involves computing the mean squared error (MSE)

between actual (Y¥) and expected (z(,];)t) output values as
1 & —~\2
LK) = 2 > (Y0 -TP), (15)
k=1

where K, Y,®, Y are the training samples, the expected
value, and the predicted value, respectively. Adam optimiza-
tion is employed during back-propagation to iteratively update
weights and biases, minimizing the training loss. A proficiently
trained DNN enables precise real-time predictions. When new
input data becomes available, the DNN model predicts corre-
sponding optimal values. During training, DNN configurations
can be adjusted to minimize errors and capacity enhancement
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by adding more neurons or hidden layers. In the DNN model,
computational complexity is mainly determined by the number
of floating point operations (FLOPs) and the total number
of parameters. For the proposed model, the total number of
parameters is 69,601, while the FLOPs are calculated to be
138,901.

V. NuMERIcAL RESULTS AND DiScuUSSIONS

In this section, we evaluate the numerical results for the
considered multi-RIS aided V2I system. The simulation pa-
rameters assumed for obtaining the numerical results are given
as follows: Transmitter and receiver antenna gains, are chosen
as G; = 8 dBi and G, = 2 dBi, respectively, Ry, = 5 bpcu,
Ey = 1uW, N, = =120 dBW, 8 =0.5, Pys = 10 W, £ = 2.8
mW, a = 1500, and b = 0.0022 [17]. We assume identical dGG
fading channel parameters for all links for simplicity without
loss of generality (i.e. af}”)l: afﬂ)l and ﬁfn)l: Bfn)l). Specific dGG
fading channel parameters and distances in meters for various
RISs are given by o) =25 8" =2 d, =1, dy; =5,

1m I,m

@) =2, B =2.diy =2 dyy=4,0)) =15p =2,
di3 = 3, dr3 = 3, azl,,)n =1, /35;]’,)" =2, dig =4, drg =2,
a/(slt)n =1, ﬁgll)n =1,di5 =75, dr5 = 1. All the results have been

evaluated across 500 Monte-Carlo channel realizations.
Fig. 3 illustrates the convergence of both the maximized
rate and harvested energy over an average of 500 Monte-

Carlo channel realizations, validating the proposed algorithm
in Section III. The maximized rate converges in about four
iterations, whereas harvested energy convergence takes nearly
five iterations.

Fig. 4(a) shows the rate versus E; plot for various P,
values. The rate is inversely related to the required EH. The
plot indicates that a rate gain of 1 bpcu is attained when
P,.x ranges from SW to 10W at E, = 3ul. The analytical
solutions, which are derived using KKT conditions, align with
the simulations. Fig. 4(b) compares harvested energy versus
Ry, plots for various P,,, values. The rate-EH trade-off is
evident, showing an inverse relationship. The plot indicates
that a harvested energy of 15mJ is attained at P,,,, = 10W,
while 6mJ is achieved at P,,. = SW, both at R, = 23 bpcu.
There is a trade-off between data rate and EH based on the
PS ratio 8. Compared to the baseline with partial optimization
of single variable by fixing value of § = 0.5, increasing the
transmit power P,,,, improves both the data rate and harvested
energy.

In Fig. 5(a), we examined the rate change with P, across dif-
ferent M and L values. As expected, higher transmitted power
boosts the rate. Moreover, increasing the M and L significantly
enhances the rate due to improved instantaneous SNR at D.
For P, = 9 W, increasing elements to M = 120 results in a 2
bpcu rate gain, while transitioning from L =2 to L =5 yields



a 4 bpcu rate gain. The analytical solutions obtained via KKT
conditions are validated by Monto-Carlo simulations. Notably,
it is observed that the predictions from the DNN model closely
align with the simulation results. The simulation takes 46.72
seconds, while the DNN predicts the optimized value in 0.2504
seconds. The MSE between simulation and DNN predictions
is 0.4252. Fig. 5(b) illustrates the variations in maximized
harvested energy varies with P, for different M values and
L RISs. As P, increases, the SNR for M = 240 surpasses that
for M = 120, boosting harvested energy. More RIS elements
and RISs notably enhance harvested energy due to optimal RIS
selection. Similar to Fig. 5(a), analytical solutions using KKT
conditions are validated by simulations. Further, the DNN’s
predictions closely match the simulation results, achieving
a 98.54% time reduction. While the simulation takes 17.65
seconds, the DNN completes the prediction in 0.2572 seconds
with an MSE of 0.0039.

VI. CoNcCLUSION

This paper investigated a unified optimization problem in a
V2I SWIPT system with multiple RISs to maximize both data
rate and EH using the PS protocol under an NL-EH model. We
selected the optimal RIS based on the maximum end-to-end
instantaneous SNR values between S and D. The optimization
problems were solved using iterative AO algorithms, and the
closed-form solutions were derived using KKT conditions. Nu-
merical results verified our analysis and provided key insights,
showing that the rate-energy trade-off is highly sensitive to
the number of reflective elements and RISs. Our analysis also
showed that increasing the number of reflecting elements and
RISs not only enhances both rate and EH but leads to increased
computational time. To address this, we proposed a DNN
framework to predict optimized values efficiently with high
accuracy and low computational time. Our model currently
lacks consideration of mobility and imperfect CSI, which will
be explored in the future for a more practical scenario.

VII. ACKNOWLEDGEMENT

This research is supported by CRG (CRG/2021/0008813)
and MATRICS schemes (MTR/2021/000553) of SERB, Govt.
of India.

APPENDIX A
EvaruarioN oF Various Cases FrRom KKT CONDITIONS FOR
UNIFIED PROBLEM

Analyzing (9)-(12) using standard KKT procedures gives
below feasible solutions.

Case I: 1, A3, A4 = 0, this case is not possible as log,(1 +
v) # 0 for both v, {P;, B8} and ¥, {P;,B}.

Case II: 11,45 = 0,44 # 0, from (10) = A4 < 0, which is
contradictory for both v, {P;, 3} and ¥, {P;,B}.

Case III: 1,14 = 0,123 # 0, from (10) = A3 < 0, which is
contradictory for both v, {P;, 8} and ¢, {P;,B}.

Case IV: 1; = 0,123,144 # 0, from (10) and (11)= A4 < O,
its contradictory for both ,{P,, 8} and ¥, {P;,B}.

Case V: 13,44, = 0,4, # 0, from (10) and (11) = A4 <0,
which is contradictory for both ¢, {P;, 8} and ¥, {P;,[}.

Case VI: 13 = 0,4;,44 # O, then for y,{P, B}, from
8PP = 0= Py = Puax, j(P.P) =0 = 1 = 55—~

i 0 (g = 1) and for w4 (Py . from (1) = ¢ <0,

AP Zoay
which is contradictory.

Case VII: A4 = 0,2;,43 # 0, for y,{P;, B}, from (11) =
A3 < 0, which is contradictory and for ¢,{P;, 8}, from i(P,, ) =
0= 6.

Case VIII: A,,43,44 # 0, for y,{P;,B}, from i(P,,B) = 0
=B = 1— QR - 1)% and j(P,,8) = 0 = f; and for
U {Pr. B}, from g(P.p) =0 = P,, i(P,p) = 0 = B, and
JPLB) =0 =B,

Based on the above-mentioned findings, the optimal values
of P; and 8* are, respectively, given by (13) and (14).
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