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Chapter 1. Introduction



Big picture
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From Coerver et al. (2021)



San Joaquin Valley, California
Land surface subsidence 9m
from 1925 to 1977

From Galloway & Burbey (2011)



Ascending
u 7V satellite pass

e InSAR: a powerful technique for

measuring surface displacement.

e Recent work (Alghamdi et al.,
2024; Salehian Ghamsari et al.,
2025) has proposed InSAR
(Interferometric Synthetic
Aperture Radar) data to improve

aquifer property estimation.



PDE model linking flow and deformation

e Poroelastic PDE couples:
e Groundwater flow
e Surface displacement
e Enables inversion: infer aquifer properties (storage coefficients and hydraulic
conductivity) from InSAR observations (Boni et al., 2020; Hu et al., 2018; Boni
et al., 2016; Chaussard et al., 2014).

Forward problem

Aquifer parameters | _— Predicted LOS displacement

Poroelastic model

Estimated parameters Observed LOS displacement

Inverse problem



Anisotropic hydraulic conductivity (AHC) in fractured aquifer

e Many aquifers show anisotropic flow
created by fractures and faults.

e Most Bayesian methods (Alghamdi,
2020) assume isotropy, oversimplifying
reality.

e Use an AHC tensor in poroelasticity to
capture anisotropy.
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InSAR-observed deformation of Nevada aquifer pumping test (Burbey et al., 2006;
Alghamdi et al., 2021) 7



Research questions

1. Can a poroelastic finite element model, incorporating AHC, reliably simulate
aquifer behavior and predict its signature in InNSAR LOS surface displacements?

2. Does InSAR surface displacement contain valuable information about
anisotropic hydraulic conductivity (AHC) in groundwater models?

3. Can structural geological data be incorporated into a probabilistic model to
represent prior knowledge of AHC?

4. How can a complex model of an aquifer with PDE and probabilistic components
be automatically differentiated?



Forward model



Prior work

e Papadopulos (1965) — the
importance of AHC in aquifers

— Principal AHC direction

©  Pumping well

©  Observation well

e Heilweil & Hsieh (2006)— AHC
could be inferred from two
observation wells assumed to be
aligned with the principal
directions of AHC




InSAR: full field data for Aquifer Models

Does InSAR surface displacement contain valuable information about anisotropic
hydraulic conductivity (AHC) in groundwater models?




Case study

Utah, USA.
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Case study

Legend
‘Anderson Juncton

Washington, Utah, USA.
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Case study

Legend
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Google Earth

Anderson Junction aquifer, Utah.
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Cross-section
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Cross section of the Anderson Junction area (Hurlow, 1998).
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Observation
Well A (117 meters)

Observation
Well B (115 meters) 1

Rose diagram (Heilweil & Hsieh, 2006).
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Observation
Well A (117 meters)

Observation
Well B (115 m«

y

Rose diagram Heilweil & Hsieh (2006).

\ Major principal direction

\ Minor principal direction
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Three-field Biot equations with AHC

Find the fluid-pore pressure p, deformation u and fluid flux ¢ such that:

(Sep+aV - -u)+V-q=fp,

q+kVp=20

We take hydraulic conductivity (k) to be a diagonal matrix when the principal
directions of anisotropy align with the model coordinate system

ke O 0
k=0 ky O
0 0 ka
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Simplified conceptual model of the Anderson Junction aquifer system

Upper confining
~40m layer (alluvial and
colluvial deposits)

Aquifer layer
(Navajo sandstone-
Jn)

~180 m

Lower confining
~200m layer (Kayenta
formation- Jk)

U

N
E
20°

19



3D deformation
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Magnified 3D deformation in the pumping phase and relaxation phase
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INSAR precision

Ascending
u 7V satellite pass

e Sentinel-1 InSAR time series
precision — less than 8 mm
(Duan et al., 2020) or even 5 mm
(Manunta et al., 2019).

e At least 8 mm of LOS surface
displacement in a region around
the well that shows the elliptical
displacement to be able to
demonstrate the AHC of the
aquifer.
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Anderson Junction surface displacement

Did the Anderson Junction aquifer test produce surface displacement that could be
measured with InSAR?
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Line of sight displacement of different scenarios

What modifications to the Anderson Junction aquifer test (4d, P,) are necessary to
enable displacement detection using INSAR?
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Conclusion

1. Can a poroelastic finite element model, incorporating AHC, reliably simulate
aquifer behavior and predict its signature in INSAR LOS surface displacements?
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Conclusion

2. Does InSAR surface displacement contain valuable information about
anisotropic hydraulic conductivity (AHC) in groundwater models?
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Stochastic extention




Methodology
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Conclusion

3. Can structural geological data be incorporated into a probabilistic model to
represent prior knowledge of AHC?

e First scenario e Second scenario
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S. Salehian Ghamsari, T. van Dam, J. S. Hale. “A random model of anisotropic

hydraulic conductivity tailored to the INSAR-based analysis of aquifers”. (2025).
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Inverse model




Probabilistic inverse problem (what we have accomplished)

Eigentensor NumPyro model \ Az, >‘y ~ Lognormal

i ~ VonMises
ki ~ Gamma

¢; ~ VonMises
w ~ Dirichlet
m ~ Categorical
¢ ~ Mixture

u ~ Normal

F WP J;_)bs cR

Simple NumPyro/Firedrake model

p = number of samples
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Probabilistic inverse problem (overall NumPyro model and future work)

Az, Ay ~ Lognormal
i ~ VonMises
ki ~ Gamma
¢; ~ VonMises
w ~ Dirichlet
m ~ Categorical

¢ ~ Mixture
u ~ Normal

(o,
YF wp : u;?bs € R |

J=1,2..p

Last piece of puzzle (future work)

p = number of samples

¢ = number of observation points
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Deterministic inverse problem: Adjoint-based optimization

Forward model: 2D aquifer flow model
Find the fluid pore pressure
ps : Qs X (0,7] — R such that

Ops
ot

The AHC is modeled as a second-rank

S

— V- (kVps) = fp on Qg x (0,7

SPD tensor in the x-y plane.
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Location of synthetic observation wells
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Inverse problem results
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Take home messages

Aim:
e understanding aquifer system and estimating aquifer properties

e using InSAR technique instead of digging wells to make the process easier and

cheaper
Contribution:

v/ we built a poroelastic finite element model to simulate an aquifer system with
anisotropic hydraulic conductivity (AHC)
v/ we developed a flexible stochastic model of the AHC tensor

v/ we solved the deterministic inverse problem to estimate AHC

= we will solve the probabilistic inverse problem using an automatic Bayesian
framework to estimate AHC
34
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