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Chapter I

Introduction

This thesis is devoted to the statistical analysis of interacting particle systems and
their mean-field limits, with a particular focus on McKean–Vlasov stochastic differ-
ential equations (SDEs), based on discrete observations over a fixed time interval.
We study fundamental inference problems, including parameter estimation for drift
and diffusion coefficients, local asymptotic normality of the associated likelihood
functions, and goodness-of-fit testing for volatility structures. Overall, this work
provides a comprehensive framework for statistical inference in interacting particle
systems and nonlinear stochastic models.
In this chapter, we introduce the general framework of interacting particle systems
and their mean-field counterparts. We present the class of SDEs arising in this
context and discuss key mathematical results, such as the existence and uniqueness
of solutions. We also describe the concept of propagation of chaos, which explains
how the behaviour of individual particles becomes increasingly independent as the
population size grows. Afterwards, we review recent developments in the statistical
estimation of these models. The introduction concludes with an overview of the
thesis structure and a summary of the main results.

I.1 Interacting Particle Systems andMcKean-Vlasov

Equations

Let us consider a system of N particles in Rd, where the dynamics of each particle
are described by the following SDE:dX i,N

t = b
(
X i,N

t , µN
t

)
dt+ a

(
X i,N

t , µN
t

)
dW i

t , i = 1, ..., N, t ∈ [0, T ],

(X i
0)1≤i≤N ∼ µ⊗N

0

(I.1.1)
where (W i

t )1≤i≤N denotes a family of independent d-dimensional Brownian mo-
tions, and the initial positions (X i

0)
1≤i≤N are independent and identically distributed

(i.i.d.) random variables with common law µ0, independent of Brownian motions.
The functions b and a represent the drift and diffusion coefficients, respectively, and

1



2 Chapter I. Introduction

depend on both the current position of the particle and the empirical distribution
of the system at time t, which is given by

µN
t =

1

N

N∑
i=1

δXi,N
t

. (I.1.2)

This model describes an interacting particle system, where each particle evolves
not in isolation but under the influence of the whole system. The interaction appears
through the dependence on the empirical measure. The study of such systems began
with McKean’s work in the context of plasma physics [76]. Since then, they have
been widely explored and extended in the probabilistic literature; see for example
[19,45,65,78,90].
As the number of particles N becomes large, one typically observes a limiting be-
haviour where the effect of any single particle becomes negligible, but the influence
of the collective distribution remains. In this regime, the dynamics of the system
are described by a mean-field equation, which is a d-dimensional SDE of the form{

dXt = b(Xt, µt)dt+ a(Xt, µt)dWt, t ∈ [0, T ],

L(Xt) = µt

(I.1.3)

These equations are often referred to as McKean–Vlasov SDEs, distribution-
dependent SDEs, or non-linear SDEs in the sense of McKean. Their distinctive
feature is that the drift and diffusion coefficients depend on the law of the solution.
This dependence on the evolving distribution introduces a non-linearity that sets
them apart from classical SDEs and, in particular, means that the resulting processes
are generally not Markovian.
To make this convergence precise, we introduce some basic assumptions on the
coefficients.

IA1. The drift b : Rd × P2(Rd) → Rd and diffusion coefficient a : Rd × P2(Rd) →
Rd×d satisfy:

(i) Lipschitz continuity: there exists C > 0 such that for all x, y ∈ Rd and µ, ν ∈
P2(Rd),

|b(x, µ)− b(y, ν)|+ |a(x, µ)− a(y, ν)| ≤ C
(
|x− y|+W2(µ, ν)

)
where W2(µ, ν) denotes the 2-Wasserstein distance.

(ii) Linear growth: there exists C > 0 such that for all x ∈ Rd and µ ∈ P2(Rd),

|b(x, µ)|2 + |a(x, µ)|2 ≤ C
(
1 + |x|2 +

∫
Rd

|y|2µ(dy)
)

Under these conditions, both the particle system (I.1.1) and the limiting equation
(I.1.3) are well-posed in the strong sense. These types of results can be found in
standard references such as Sznitman’s notes on propagation of chaos [90] or in more
recent texts such as [79].
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A central conceptual link between the N -particle system (I.1.1) and its correspond-
ing mean-field counterpart (I.1.3) is provided by the concept of propagation of
chaos, first introduced by [61] and later developed rigorously in the probabilistic
setting in [76, 90]. This concept formalises the idea that, as N → ∞, the joint be-
haviour of any fixed number of particles increasingly resembles that of independent
copies of a single process. The common distribution of these limiting processes is
precisely the law of the solution to the McKean–Vlasov equation. This idea forms
the bridge between finite-particle models and their mean-field limit, and we recall
its precise mathematical formulation below.
We say that the particle system exhibits pointwise propagation of chaos if the tra-
jectory of any fixed particle converges, in the mean-square sense, to that of its mean-
field counterpart uniformly on [0, T ]. Formally, let X i,N

t denote the i-th component
of the solution to (I.1.1), and let X i

t solve the McKean–Vlasov SDE{
dX i

t = b(X i
t , µt)dt+ a(X i

t , µt)dW
i
t , t ∈ [0, T ],

L(X i
t) = µt

driven by the same initial conditions and Brownian motions as in (I.1.1). The
propagation of chaos holds if

lim
N→∞

sup
t∈[0,T ]

E
[∣∣∣X i,N

t −X i
t

∣∣∣2] = 0.

This property implies, in particular, the weak convergence µN
t → µt, for each fixed

t ∈ [0, T ]. More precisely, the empirical measure µN
t converges in distribution to the

deterministic law µt. By coupling the particle system with independent copies of the
corresponding mean-field dynamics, one can establish that in the classical setting
with Lipschitz coefficients, the system exhibits propagation of chaos. Furthermore,
the existence and uniqueness of solutions to the mean-field equation follow from a
fixed point argument (see [68], Theorem 3.3).
This not only justifies the mean-field approximation, but also underpins statistical
procedures, since it allows one to replace large but finite systems with a tractable
limit model. As a consequence, the particle system provides not only an approxima-
tion of the limiting dynamics, but also a practical tool for simulating or analysing
such models numerically.
While propagation of chaos provides the fundamental probabilistic link between par-
ticle systems and their mean-field limits, the statistical analysis of such models relies
on another cornerstone concept: the local asymptotic normality (LAN) prop-
erty, which characterises the asymptotic behaviour of the log-likelihood ratio under
local perturbations of the model parameters and underpins inference for estimators
and tests.
LAN is a central notion in asymptotic statistics, originally introduced by Le Cam
[70]. Intuitively, it describes the behaviour of a statistical model when the parameter
of interest is perturbed in a neighbourhood of its true value while the sample size
grows. More precisely, LAN provides a quadratic approximation of the log-likelihood
ratio between two nearby parameter values, revealing an underlying Gaussian struc-
ture in the limit. This perspective is powerful: it characterises the asymptotic
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efficiency of estimators and tests, shows that the statistical experiment behaves lo-
cally like a Gaussian shift experiment, and forms the foundation for minimax theory
in parametric inference [56,71].
Formally, consider a sequence of statistical models {Pm,θ : θ ∈ Θ ∈ Rd}. The LAN
property at θ ∈ Θ holds if, for every local perturbation of the form θm = θ + r−1

m h
with h ∈ Rd, the log-likelihood ratio admits the expansion

log
dPm,θm

dPm,θ

= h⊤N − 1
2
h⊤Iθh+ oPm,θ

(1), as m → ∞,

where N ∼ N (0, Iθ), and Iθ ∈ Rd×d denotes the Fisher information matrix. This
expansion captures the idea that, locally, the model behaves like a Gaussian shift
experiment with known information structure. The LAN property allows the appli-
cation of minimax theorems to derive lower bounds on the asymptotic variance of
estimators, providing a benchmark for optimal statistical procedures.
The LAN framework thus unifies the study of asymptotic efficiency and optimality,
and it underlies likelihood-based estimation and testing in classical i.i.d. models,
Markov processes, and diffusion processes [58, 67, 72]. Its generality makes it a
natural tool for extending inference methods to more complex dependent settings.
In particular, it motivates the investigation carried out in this thesis, where we aim
to extend LAN-type results to McKean–Vlasov dynamics and develop statistical
procedures for discretely observed particle systems.
While classical SDEs have been extensively studied in both theory and statistics,
their inference techniques rely on the fact that the drift and diffusion coefficients
depend only on the current state of the process. In contrast, McKean–Vlasov models
incorporate the evolving law of the system into the dynamics. This fundamental
difference means that many classical tools, such as likelihood expansions or quadratic
variation methods, cannot be applied directly. The dependence on the unknown
distribution µt introduces additional layers of complexity: one must account not
only for the randomness of individual trajectories but also for the fluctuations of
the empirical law that drives the dynamics. This dual source of randomness makes
statistical inference in McKean–Vlasov models particularly delicate.
From the statistical viewpoint, interacting particle systems and their mean-field
limits raise difficulties because standard approaches based on transition densities or
Girsanov transformations become intractable. The empirical measure of the particle
system appears as a high-dimensional, random object that must itself be estimated,
further complicating likelihood-based arguments and asymptotic analysis.
For classical SDEs, a comprehensive toolkit for parametric inference has been estab-
lished: likelihood-based methods, martingale estimating functions, and Girsanov-
type changes of measure yield consistent and often efficient estimators under both
low- and high-frequency sampling regimes (see, e.g., [58, 67, 72]). The theory of
LAN provides the foundation for asymptotic efficiency and the construction of op-
timal statistical procedures [58, 67]. These approaches, however, rely crucially on
transition densities and the Markov property—features that do not carry over to
McKean–Vlasov models. Here the coefficients depend on the law of the solution,
the transition structure is implicit and typically intractable, and the dynamics in-
herit mean-field effects that break simple Markovian arguments.



I.2. Literature Overview 5

As a result, while a growing literature addresses propagation of chaos and estimation
in specific mean-field models, rigorous results on joint estimation of drift and dif-
fusion from discretely observed particle systems, on LAN in the mean-field regime,
and on formal goodness-of-fit testing for volatility remain limited. This thesis devel-
ops asymptotic frameworks that address these inference challenges by establishing
theoretical guarantees for estimation, extending LAN theory to mean-field settings,
and proposing testing procedures for volatility structures. The approach combines
probabilistic techniques for distribution-dependent dynamics with modern statisti-
cal theory, aiming to bridge the gap between mathematical modelling and practical
inference in particle systems.

I.2 Literature Overview

The statistical inference of interacting particle systems and McKean–Vlasov equa-
tions has attracted increasing interest only in recent years. Originally introduced as
models in plasma physics and first studied in [76], these systems have since inspired
numerous contributions across a range of directions. In this section, we focus on
those developments most relevant to the present thesis.

I.2.1 Parametric and Nonparametric Estimation for McKean–
Vlasov Models

In this part, we review existing contributions on parameter estimation for McKean–
Vlasov SDEs and closely related interacting particle systems. The focus lies primar-
ily on parametric approaches, where the coefficients of the model are specified up to
a finite-dimensional parameter, and maximum likelihood methods or related estima-
tors are applied. We then conclude with a brief account of semi- and nonparametric
results.
The statistical study of interacting diffusion processes can be traced back to the
seminal contribution of Kasonga [63], who first analysed maximum likelihood esti-
mation in systems of mean-field type. He considers a model of interacting diffusions
where the drift coefficient depends linearly on an unknown parameter, and shows
that, based on continuous observation of the system over a fixed interval [0, T ], the
resulting estimator is both consistent and asymptotically normal as the number of
particles N → ∞.
Subsequent contributions extend this framework in several directions. Wen et al. [92]
investigate maximum likelihood estimation for a class of McKean–Vlasov SDEs, they
reformulate the model into a homogeneous diffusion of the form

dXt = b(θ,Xt, µt)dt+ dWt,

where the unknown parameter θ enters through the drift coefficient, while the diffu-
sion term is the standard Brownian motion. Based on continuous-time observations
of the trajectory, they construct a likelihood function and establish estimation pro-
cedures for θ. The structure here is relatively simple: the diffusion coefficient is unit,
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and the parametric dependence is confined to the drift. Later, Liu and Qiao [73] gen-
eralise this approach to path-dependent McKean–Vlasov SDEs with non-Lipschitz
coefficients, constructing maximum likelihood estimators and establishing strong
consistency.
Sharrock et al. [88] pursue a different approach by systematically analysing maxi-
mum likelihood estimation in both offline and online settings, providing a unified
treatment of inference for distribution-dependent models. They consider a general
family of McKean–Vlasov SDEs parametrised by θ ∈ Rp:

dXt = b(θ,Xt, µt) dt+ a(Xt) dWt,

together with the corresponding particle system approximation. Their approach
relies on a Girsanov-type representation of the likelihood, under the simplifying
assumption that the diffusion coefficient is constant, where for convenience it is
normalised to a = 1. They investigate two statistical scenarios: observing inde-
pendent trajectories of the McKean–Vlasov SDE, and observing particles from the
interacting system, and in both cases characterise the asymptotic behaviour of the
maximum likelihood estimator as t → ∞, as well as in the joint limit t → ∞ and
N → ∞. In the offline setting, they establish consistency and asymptotic normality
of the MLE, while in the online setting they propose a continuous-time stochastic
gradient ascent algorithm that converges to the stationary points of the asymptotic
log-likelihood. This dual perspective illustrates inference strategies both at the level
of the mean-field limit and through finite-particle approximations.
In related directions, Bishwal [12] investigates parameter estimation in systems of
interacting diffusions, when only discrete observations of the system are available
and the parameter is a function of time. He studies both sieve and approximate
maximum likelihood estimators of the drift parameters by analysing their asymptotic
behaviour as the number of particles N increases, which contrasts with the large-
time asymptotics considered in other works. While not formulated explicitly in
McKean–Vlasov terms, these results provide important insight into drift estimation
in interacting particle systems.
Another significant contribution is due to Chen [22], who focuses on the estimation
of quadratic potential by maximum likelihood in interacting particle systems from
continuous-time and single-trajectory data. The model is specified as

dX i,N
t = Θ

(
X̄N

t −X i,N
t

)
dt+ a dW i

t , X̄N
t =

1

N

N∑
j=1

Xj,N
t ,

with an unknown positive-definite matrix parameter Θ. Remarkably, he establishes
that the plain maximum likelihood estimator (without regularisation) achieves op-
timal convergence rates simultaneously in the mean-field limit and in long-time
asymptotics, thereby overcoming the high dimensionality of the system through the
symmetry of the interaction structure.
Recent advances in semiparametric and nonparametric inference have significantly
enriched the range of tools available for analysing McKean–Vlasov models and in-
teracting particle systems.
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In the semiparametric realm, estimation strategies have been proposed that com-
bine a finite-dimensional parameter of interest with an infinite-dimensional nuisance
component, often arising from the interaction structure or law dependence of the
system. Such frameworks allow efficient inference for the parametric part while re-
taining flexibility for the unspecified dynamics. Methods in this area typically build
on profile likelihood, contrast minimisation, or estimating equations, and they adapt
naturally to the mean-field setting where law-dependence complicates full paramet-
ric modeling. Recent advances include applications to McKean–Vlasov dynamics
and related particle systems, highlighting both theoretical optimality and practical
feasibility; see, for instance [10,93].
On the nonparametric front, a variety of estimation strategies have been adapted
to handle the complexity of mean-field dynamics. This includes kernel-based esti-
mators, orthogonal projection methods, data-driven adaptive selection procedures,
and deconvolution techniques. These approaches make it possible to estimate drift
functions, interaction potentials, or law-dependent coefficients without imposing
parametric assumptions, while still achieving optimal or near-optimal convergence
rates. Noteworthy developments include [4, 29,94].

I.2.2 Local Asymptotic Normality for Diffusions andMcKean–
Vlasov models

In this part, we review some of the key contributions to the study of the LAN prop-
erty for diffusion models and their extensions to McKean–Vlasov processes. The
literature in this direction begins with classical diffusion models and has more re-
cently advanced to law-dependent systems, providing the methodological foundation
for our work.
The study of the LAN property for discretely observed SDEs is developed extensively
in the classical diffusion setting. Gobet [53] investigates the LAN property for a d-
dimensional diffusion process

dXα,β
t = b(α,Xα,β

t )dt+ a(β,Xα,β
t )dWt. (I.2.1)

The process is assumed to be elliptic and ergodic under mild regularity conditions,
ensuring the existence of a unique invariant distribution. The statistical experiment
is based on discrete observations (Xk∆n)0≤k≤n with mesh size ∆n. The asymptotic
regime considered is ∆n → 0 and n∆n → ∞, so that the horizon of observation
increases to infinity while the sampling step decreases. He proves that the likelihood
function associated with these discrete observations satisfies the LAN property, with
different convergence rates for the drift and diffusion parameters: the rate for the
drift parameter is

√
n∆n, while for the diffusion parameter it is

√
n. This rate

separation reflects the fact that drift parameters accumulate information only over
time, whereas diffusion parameters can be estimated more efficiently from high-
frequency data.
The proof relies on Malliavin calculus, which is used to transform the log-likelihood
ratio into a form that admits a stochastic expansion. Since the transition density
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is typically not available in closed form, direct analysis of the likelihood becomes
intractable. Malliavin calculus provides a way around this difficulty: by exploiting
integration-by-parts formulas to express the derivatives of the log-likelihood in terms
of conditional expectations of functionals of the diffusion. This representation yields
Gaussian-type approximations for the score functions. The ergodicity assumption
plays a crucial role in controlling long-time averages, ensuring that the information
matrix stabilises as n → ∞.

The result represents a foundation in the theory of LAN for discretely observed
diffusions. By addressing both drift and diffusion parameters in a multidimensional
and ergodic setting, and by quantifying their different asymptotic rates, it provides
a methodological scheme for later studies–including extensions to non-ergodic or
mean-field systems–where explicit likelihoods are unavailable and Malliavin calculus
becomes the primary analytical tool.

Another cornerstone contribution is due to Della Maestra and Hoffmann [30], who
extended the study of the LAN property to interacting particle systems and their
mean-field limits. They consider a system of N interacting diffusions evolving ac-
cording to

dX i,N
t = b(θ,X i,N

t , µN
t )dt+ a(X i,N

t )dW i
t . (I.2.2)

The statistical experiment consists of observing the full trajectory of the system
(X i,N

t )i=1,...,N
t∈[0,T ] over a fixed time horizon T > 0, while letting N → ∞.

A key simplification of this setting, compared to discretely observed diffusions, lies
in the construction of the likelihood. Since the trajectory is observed continuously,
the likelihood ratio with respect to a reference parameter can be expressed explicitly
by Girsanov’s theorem. This differs from the discrete-time case, where the transi-
tion densities of multidimensional diffusions are typically intractable and Malliavin
calculus is required to approximate their derivatives. Thus, while the interacting
structure of the model poses new challenges, the continuous-time observation frame-
work yields a closed-form likelihood representation that facilitates the LAN analysis.

They prove that the LAN property holds for estimating a multidimensional parame-
ter in the drift, in a mean-field regime N → ∞. Their proof builds upon the classical
Ibragimov and Hasminski theory of statistical experiments, adapted to the nonlinear
dependencies of the McKean–Vlasov regime. A central feature of the result is that
the maximum likelihood estimator enjoys not only asymptotic normality but also
a sharper characterization via Hájek’s convolution theorem. More precisely, they
show that the MLE is asymptotically minimax optimal (up to constants), owing
to strong probabilistic controls on the likelihood process. Furthermore, they de-
rive explicit identifiability and non-degeneracy conditions for the Fisher information
matrix, ensuring that the asymptotic variance is well-defined.

In addition to establishing LAN, the study provides structural insights into the
associated nonlinear McKean–Vlasov model, since the Fisher information can be
expressed in terms of the law of the limiting nonlinear diffusion. In this way, the
work forms a bridge between the classical diffusion-based LAN results of Gobet and
the modern theory of statistical inference for McKean–Vlasov dynamics.
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I.2.3 Goodness-of-Fit Testing for Volatility in Diffusion Mod-
els

A central line of research on statistical testing for diffusion models has focused on the
volatility function, which governs the local variability of the process. An important
contribution in this direction is the paper by [35], which is motivated by the need
to validate the functional form of the volatility in continuous-time financial models,
where model misspecification can lead to substantial pricing and risk management
errors. The authors consider a diffusion process of the form

dXt = b(t,Xt)dt+ a(t,Xt)dWt, t ∈ [0, 1]

observed discretely over a fixed time horizon. The central problem is to test whether
the variance function a2(t, x) belongs to a prescribed parametric family. They base

their test on estimates of integrated volatility functionals
∫ 1

0
a2(t,Xt)dt, and consider

the more general case where the volatility depends on both time and the state
variable Xt.
In this setting, the asymptotic behaviour of integrated volatility estimators becomes
substantially more delicate. The authors prove that the estimators no longer con-
verge to a normal distribution but instead converge stably in law to random variables
with a non-standard limit distribution depending on the underlying process itself.
Conditionally on the observed diffusion path, however, the limiting distribution is
Gaussian. This work established a rigorous framework for linking high-frequency
volatility estimation with formal model validation in diffusion processes.
Other related contributions to goodness-of-fit testing in diffusion models include the
specification tests of [3,26], and [34], as well as more recent extensions to fractional
diffusions, such as [87]. Collectively, these studies provide the methodological foun-
dation for volatility testing in diffusion models, although they remain confined to
classical, non-interacting settings.

I.3 Contributions of the thesis

In this concluding section, we provide a summary of the principal findings of this
thesis, as presented in Chapter II, Chapter III, and Chapter IV, and their main
contributions.

I.3.1 Chapter II: Parameter estimation of discretely observed
interacting particle systems

This subsection is devoted to presenting the principal result of Chapter II, derived
from the paper:

• ”Parameter estimation of discretely observed interacting particle systems”,

in collaboration with C. Amorino, V. Pilipauskaitė and M. Podolskij. Stochas-
tic Processes and Their Applications, 163, 350–386, 2023.
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We focus on the problem of joint parameter estimation in an interacting particle
system of McKean–Vlasov type, given bydXθ,i,N

t = b
(
θ1, X

θ,i,N
t , µθ,N

t

)
dt+ a

(
θ2, X

θ,i,N
t , µθ,N

t

)
dW i

t , i = 1, ..., N, t ∈ [0, T ],

L
(
Xθ,1,N

0 , ..., Xθ,N,N
0

)
:= µ0 × ...× µ0.

Since the transition densities of this system are not available in closed form, the
standard maximum likelihood approach is infeasible. Instead, we construct an esti-
mator by minimising a contrast function SN

n (θ), defined in (II.2.1), which is based
on an Euler-type approximation of the dynamics. The estimator θ̂Nn = (θNn,1, θ

N
n,2) is

then defined as
θ̂Nn ∈ argmin

θ∈Θ
SN
n (θ).

Our main results establish that θ̂Nn is consistent and asymptotically normal.

Theorem I.3.1. (Consistency) Assume that IIA1-IIA5 hold, with only condition
(I) in IIA4. Then the estimator θ̂Nn is consistent in probability:

θ̂Nn
P−→ θ0 as n,N → ∞.

To establish the asymptotic normality of θ̂Nn , we study the asymptotic behaviour of
the first and second derivatives of the contrast function. After suitable normalisa-
tion, the first derivative converges in law to a Gaussian random variable, while the
second derivative converges in probability to a deterministic matrix. This permits
the use of a classical Taylor expansion around the true parameter to deduce the
asymptotic distribution of the estimator. In this analysis, we impose an additional
condition on the relative rates of N and ∆n, requiring that N∆n → 0 as N, n → ∞.

Theorem I.3.2. (Asymptotic normality) Assume that IIA1-IIA7 hold. If N∆n → 0
then(√

N(θ̂Nn,1 − θ0,1),
√
N/∆n(θ̂

N
n,2 − θ0,2)

) L−→ N
(
0, 2(Σ(θ0))

−1
)

as n,N → ∞,

where
2(Σ(θ0))

−1: = 2 diag
(
(Σ(1)(θ0))

−1, (Σ(2)(θ0))
−1
)

with Σ(j)(θ0), j = 1, 2, being defined in IIA6.

Compared to the classical SDE setting, our analysis highlights the interplay between
the number of particles and the observation frequency, and extends the contrast-
based methodology developed by [40,64] and [95] to the McKean–Vlasov framework.
The results show that, despite the additional complexity introduced by the inter-
action through the empirical measure, consistent and asymptotically normal esti-
mation of both drift and diffusion parameters is achievable. Moreover, the analysis
reveals the distinct convergence rates for drift and diffusion parameters, reflect-
ing their different sensitivities to the discretisation step and particle number. This
provides a precise characterisation of the asymptotic regime necessary for reliable
parameter estimation in discretely observed interacting particle systems.
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I.3.2 Chapter III: Local asymptotic normality for discretely
observed McKean-Vlasov diffusions

In this subsection, we present the main result of Chapter III, which is based on the
paper:

• ”Local asymptotic normality for discretely observed McKean-Vlasov diffu-
sions”,

in collaboration with M. Podolskij, 2025.

In this chapter, we establish the local asymptotic normality (LAN) property for the
likelihood function arising from discretely observed d-dimensional McKean–Vlasov
SDEs over a fixed time horizon. We consider an i.i.d. array of d-dimensional pro-
cesses governed bydX i,θ

t = bθ1
(
X i,θ

t , µθ
t

)
dt+ aθ2

(
X i,θ

t

)
dW i

t i = 1, ..., N, t ∈ [0, T ]

L(X i,θ
t ) = µθ

t

The asymptotic regime of interest combines high-frequency sampling ∆n := T/n →
0 with a growing number of particles N → ∞, over a fixed time horizon T .
The main methodological difficulty stems from the absence of tractable transition
densities, which prevents a direct likelihood expansion. To overcome this, we employ
Malliavin calculus techniques, in particular an integration-by-parts representation,
to derive an explicit expression for the logarithmic derivative of the transition den-
sity. This approach, inspired by earlier work of [52,53] on classical diffusions, allows
us to obtain a stochastic expansion of the log-likelihood ratio.
Under local perturbations of the form

(θ+1 , θ
+
2 ) :=

(
θ01 +

u√
N
, θ02 +

v√
N/∆n

)
, θ+ := (θ+1 , θ

+
2 ),

we study the log-likelihood ratio between the measures Pθ+ and Pθ0 , given by

z(θ0, θ+) := log
dPθ+

dPθ0
(Xtk)k=1,...,n =

n∑
k=1

N∑
i=1

log

(
pθ

+

pθ0

)(
tk, tk+1, X

i
tk
, X i

tk+1

)
,

where pθ(s, t, x, y) denotes the transition density of the Euler scheme associated with
parameter θ. The LAN property can now be stated as follows:

Theorem I.3.3. Assume that Assumptions IIIA1–IIIA5 hold. Then,

z(θ0, θ+)
Pθ0−law−−−−−→

(
u
v

)⊤

N θ0 − 1

2

(
u
v

)⊤

Σθ0
(
u
v

)
,

where N θ0 is a centred Gaussian vector with covariance matrix Σθ0 ∈ R2×2 defined
as

Σθ0 =

(
Σθ0

b 0

0 Σθ0

a

)
,
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with

Σθ0

b =

∫ T

0

∫
Rd

zθ
0

s (x)⊤a−2
θ02
(x)zθ

0

s (x)µθ0

s (dx) ds,

Σθ0

a = 2

∫ T

0

∫
Rd

tr
(
∂θ2aθ02(x)a

−1
θ02
(x)∂θ2aθ02(x)a

−1
θ02
(x)
)
µθ0

s (dx) ds.

where

zθt (x) := ∂θ1bθ1
(
x, µθ

t

)
+

∫
Rd

∂µbθ1
(
x, y, µθ

t

)
∂θ1µ

θ
t (dy)

Compared with existing contributions, our analysis extends the LAN framework
of [53] to the McKean–Vlasov setting with discrete-time observations, without re-
quiring ergodicity. It complements recent contrast-based estimation methods for dis-
crete particle systems [7], as well as the continuous-observation LAN results of [30],
where likelihood representations are more explicit. More generally, our work can be
seen as a mean-field extension of the classical LAN theory for discretely observed
diffusion processes [40, 64, 95], addressing the additional challenges introduced by
distributional dependence and the mean-field regime.

I.3.3 Chapter IV: On goodness-of-fit testing for volatility in
McKean–Vlasov models

In this subsection, we state the principal result of Chapter IV, which is derived from
the paper:

• ”On goodness-of-fit testing for volatility in McKean–Vlasov models”,

in collaboration with M. Podolskij, 2025.

The central problem addressed in this chapter is the development of statistical
goodness-of-fit tests for volatility in McKean–Vlasov particle systems based on em-
pirical data. We consider a system of N independent particles (X i

t)
i=1,...,N evolving

over a fixed time interval [0, T ]. Each particle follows nonlinear dynamics governed
by the McKean–Vlasov SDE:dX i

t = b
(
X i

t , µt

)
dt+ a

(
X i

t , µt

)
dW i

t , i = 1, . . . , N, t ∈ [0, T ]

L(X i
t) = µt

The statistical question is whether the squared volatility function a2(x, µ) belongs to
a prescribed parametric family spanned by a collection of basis functions a21, . . . , a

2
d.

Formally, the null hypothesis can be expressed as

H0 : L := min
(λ1,...,λd)∈Rd

∫ T

0

∫
R

(
a2(x, µt)−

d∑
k=1

λka
2
k(x, µt)

)2
µt(dx) dt = 0.
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This criterion provides a natural foundation for our test construction, as it measures
the discrepancy between the true volatility function and its parametric approxima-
tion within a Hilbert space framework. To make the procedure operational, we
introduce the empirical counterpart ŜN of the functional L, which is built from the
observed particle trajectories and forms the basis of our goodness-of-fit procedure.
Our main theoretical contributions establish the asymptotic properties of ŜN in a
joint high-frequency and large-population regime, where the number of particles
N → ∞ and the observation mesh ∆n := T/n → 0, over a fixed horizon T . Within

this framework, we prove consistency of the empirical estimators underlying ŜN and
derive stochastic expansions that allow us to characterize their asymptotic distribu-
tion:

Corollary I.3.4. If the Assumptions (IVA1)-(IVA3) are satisfied and N∆2
n → 0,

then √
N(ŜN − L)

L−→ G ∼ N (0, τ 2)

where τ 2 denotes the asymptotic variance, which can be consistently estimated from
the data (see Corollary IV.4.3).

This result provides a valid testing procedure at any prescribed significance level α.
Moreover, under the alternative H1 : L > 0, the test statistic diverges to infinity in
probability, guaranteeing consistency against fixed alternatives.
In comparison with existing literature, goodness-of-fit testing for volatility has been
extensively investigated in classical diffusion models and their extensions (see [33–
35, 87]), but all these contributions are confined to non-interacting settings. In
contrast, no general methodology has been available for McKean–Vlasov particle
systems, where the volatility depends on the evolving distribution of the process.
Our approach provides a rigorous and practical framework for goodness-of-fit testing
in interacting particle systems and fills this gap by establishing the first asymptotic
theory for volatility testing in the mean-field regime, based on high-frequency and
large-population asymptotics.





Chapter II

Parameter estimation of discretely
observed interacting particle
systems

Abstract: In this paper, we consider the problem of joint parameter estimation
for drift and diffusion coefficients of a stochastic McKean-Vlasov equation and for
the associated system of interacting particles. The analysis is provided in a general
framework, as both coefficients depend on the solution and on the law of the solution
itself. Starting from discrete observations of the interacting particle system over a
fixed interval [0, T ], we propose a contrast function based on a pseudo likelihood
approach. We show that the associated estimator is consistent when the discretiza-
tion step (∆n) and the number of particles (N) satisfy ∆n → 0 and N → ∞, and
asymptotically normal when additionally the condition ∆nN → 0 holds.

15
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interacting particle systems

II.1 Introduction

In this paper we focus on parametric estimation of interacting particle system of the
formdXθ,i,N

t = b
(
θ1, X

θ,i,N
t , µθ,N

t

)
dt+ a

(
θ2, X

θ,i,N
t , µθ,N

t

)
dW i

t , i = 1, . . . , N, t ∈ [0, T ],

L
(
Xθ,1,N

0 , . . . , Xθ,N,N
0

)
:= µ0 × . . .× µ0.

(II.1.1)
Here the unknown parameter θ := (θ1, θ2) belongs to the set Θ := Θ1 × Θ2, where
Θj ⊂ Rpj , j = 1, 2, are compact and convex sets; we set p := p1 + p2. The processes
(W i

t )t∈[0,T ], i = 1, . . . , N , are independent R-valued Brownian motions, independent

of the initial value (Xθ,1,N
0 , . . . , Xθ,N,N

0 ) of the system and µθ,N
t is the empirical

measure of the system at time t, i.e.

µθ,N
t :=

1

N

N∑
i=1

δXθ,i,N
t

.

The model coefficients are functions b : U1 ×R×P2 → R and a : U2 ×R×P2 → R,
where U1 and U2 are two open sets containing Θ1 and Θ2, respectively, and P2

denotes the set of probability measures on R with a finite second moment, endowed
with the Wasserstein 2-metric

W2(µ, ν) :=
(

inf
m∈Γ(µ,ν)

∫
R2

|x− y|2m(dx, dy)
) 1

2
, (II.1.2)

and Γ(µ, ν) denotes the set of probability measures on R2 with marginals µ and ν.
The underlying observations are (

Xθ,i,N
tj,n

)i=1,...,N

j=1,...,n
,

where tj,n := Tj/n and ∆n := T/n is the discretization step. We assume that the
time horizon T is fixed, and N, n → ∞.
The interacting particle system is naturally associated to its mean field equation as
N → ∞. The latter is described by the 1-dimensional McKean-Vlasov SDE

dX̄θ
t = b

(
θ1, X̄

θ
t , µ̄

θ
t

)
dt+ a

(
θ2, X̄

θ
t , µ̄

θ
t

)
dWt, t ∈ [0, T ], (II.1.3)

where µ̄θ
t is the law of X̄θ

t and (Wt)t∈[0,T ] is a standard Brownian motion, independent
of the initial value X̄θ

0 having the law µ̄θ
0 := µ0. This equation is non-linear in the

sense of McKean, see e.g. [76, 77, 90]. It means, in particular, that the coefficients
depend not only on the current state but also on the current distribution of the
solution. It is well known that, under appropriate assumptions on the coefficients
a and b, it is possible to obtain a phenomenon commonly named propagation of
chaos (see e.g. [90]). It implies that the empirical law µθ,N

t weakly converges to
µ̄θ
t as N → ∞. The McKean-Vlasov SDE in (II.1.3) links to a non-linear non-

local partial differential equation on the space of probability measures (see e.g.
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[19]), which naturally arises in several applications in statistical physics. Indeed,
stochastic systems of interacting particles and the associated McKean non-linear
Markov processes have been introduced in 1966 in [76] starting from statistical
physics, to model the dynamics of plasma. Their importance has increased in time,
and a huge number of probabilistic tools have been progressively developed in this
context (see [19, 39,74,78], just to name a few).
On the other hand, however, statistical inference in this framework remained out of
reach for many years (except for the early work of Kasonga in [63]), mainly as micro-
scopic particle systems derived from statistical physics are not directly observable.
Later on, McKean-Vlasov models found applications in several other fields, in which
the data is observable. Nowadays, these models are used in finance (smile calibration
in [54]; systemic risk in [42]) as well as social sciences (opinion dynamics in [21]) or
mean-field games (see e.g. [15,36,50]). Moreover, some applications in neuroscience
and population dynamics can be found respectively in [8] and [80]. At the same
time, the interest in analysis of statistical models related to PDEs has gradually
increased. A clear illustration of that is provided by the works on nonparametric
Bayes and uncertainty quantification for inverse problems, as in [1, 83, 84].
Motivated by the increasing interest in statistical inference for McKean-Vlasov pro-
cesses, we aim at estimating jointly the parameters θ1, θ2 starting from the discrete
observations of the interacting particle systems (II.1.1) over a fixed time interval
[0, T ]. Despite recent interest in the study of the McKean-Vlasov SDEs, the prob-
lem of parameter estimation for this class has received relatively little attention.
In [92] the authors established asymptotic consistency and normality of the max-
imum likelihood estimator for a class of McKean-Vlasov SDEs with constant dif-
fusion coefficient, based on the continuous observation of the trajectory. This has
been extended to the path dependent case in [73]. The mean field regime has been
firstly considered by Kasonga in [63], who studied a system of interacting diffusion
processes depending linearly in the drift coefficient on some unknown parameter.
Starting from continuous observation of the system over a fixed time interval [0, T ],
he showed that the MLE is consistent and asymptotically normal as N → ∞. This
has been extended in [88] to the case where the parametrisation is not linear, while
Bishwal [12] extended it to the case where only discrete observations of the system
are available and the parameter to be estimated is a function of time. In [50] the
authors develop an asymptotic inference approach based on the approximation of
the likelihood function for mean-fields models of large interacting financial systems.
Moreover, Chen [22] has established the optimal convergence rate for the MLE in
the large N and large T case. Even in this work the drift coefficient is linear and
the diffusion coefficient is constant.
Let us also mention the works [48, 49], where parametric inference for a particular
class of nonlinear self-stabilizing SDEs is studied, starting from continuous observa-
tion of the non-linear diffusion. Some different asymptotic regimes are considered,
such as the small noise and the long time horizon. The problem of the semipara-
metric estimation of the drift coefficient starting from the observation of the particle
system at time T , for T → ∞ is studied in [10], while [29] considers non-parametric
estimation of the drift term in a McKean-Vlasov SDE, based on the continuous
observation of the associated interacting particle system over a fixed time horizon.
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None of these works, however, consider the problem of the joint estimation of the
drift and diffusion coefficients. Moreover, not only we are not aware of any work
about parameter estimation for interacting particle system where the diffusion co-
efficient can depend on the solution and on the law of the solution itself, but in the
majority of the above mentioned work the diffusion coefficient is directly assumed to
be constant. We consider a more general model, as in (II.1.1), motivated by several
applications in which the diffusion coefficient depends on the law. For example,
this is the case in mathematical finance for the calibration of local and stochastic
volatility models, with applications connected to the Dupire’s local volatility func-
tion (see [13,55,69]). Moreover, they are used to capture the diversity of a financial
market, as in [81].
We underline that the joint estimation of the two parameters introduces some sig-
nificant difficulties: since the drift and the diffusion coefficient parameters are not
estimated at the same rate, we have to deal with asymptotic properties in two dif-
ferent regimes. Another challenge comes from the fact that both coefficients depend
on the empirical law of the process. This introduces some complexity compared to
the case where a is constant.
A natural approach to estimation of unknown parameters in our context would be
to use a maximum likelihood estimation. However, the likelihood function based on
the discrete sample is not tractable in this setting, since it depends on the transition
densities of the process, which are not explicitly known. To overcome this difficulty
several methods have been developed, in the case of high frequency estimation for
discretely observed classical SDEs. A widely-used method is to consider a pseudo
likelihood function, for instance based on the high frequency approximation of the
dynamic of the process by the dynamic of the Euler scheme, see for example [40,64,
95].
Our statistical analysis is based upon minimisation of a contrast function, which is
similar in spirit to the methods [40, 64, 95] that have been proposed in the setting
of classical SDEs. The main result of the paper is the consistency and asymptotic
normality of the resulting estimator, which is showed by using a central limit theorem
for martingale difference triangular arrays. The convergence rates for estimation of
the two parameters are different, which leads us to the study of the asymptotic
properties of the contrast function in two different asymptotic schemes. Moreover,
to illustrate our main results, we present numerical experiments for two models of
interacting particle systems. Specifically, the first model is linear, while the second
is a stochastic opinion dynamics model. While it is feasible to express the estimator
explicitly for the linear model, the estimator for the stochastic opinion dynamics
model is implicit and can only be obtained numerically. Our results show that the
proposed estimators perform well in both cases.
We emphasize that our inference is made on the time horizon [0, T ] with T being
fixed. It is well known that it is impossible to estimate the drift parameter of a clas-
sical SDE on a finite time horizon. However, due to increasing number of particles,
we are able to consistently estimate the drift even when T is fixed. Moreover, it is
worth remarking that our results apply to the system of N independent copies of a
diffusion process as a special case. Non-parametric statistical inference for this type
of system can be found for example in [23,32,75] (see also references therein). Closer
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to the purpose of our work, [28, 31] discuss parameter estimation from discrete ob-
servations of independent copies of a diffusion process with mixed (or fixed) effects.
Specifically, joint estimation of a fixed effect in the diffusion coefficient and param-
eters of the special distribution of a random effect (or a fixed effect) in the drift
coefficient of the SDE is shown possible with the same rates of convergence in the
same asymptotic framework as ours. Interested readers can find further references
about SDEs with random effects in the aforementioned papers.
The outline of the paper is as follows. In Section II.2 we present the estimation
approach, list the required assumptions and demonstrate some examples. Section
II.3 is devoted to main results of the paper, which include consistency and asymp-
totic normality of the estimator. Section II.4 is devoted to numerical experiments.
In Section II.5 we provide the technical lemmas we will use in order to show our
main results. The proofs of the main results are collected in Section II.6 while the
technical results are shown in Section II.7.

Notation

Throughout the paper all positive constants are denoted by C or Cq if they depend on
an external parameter q. All vectors are row vectors, ∥·∥ denotes the Euclidean norm
for vectors. We write f(θ) = f(θ1, θ2) for θ = (θ1, θ2). For r = 0, 1, . . . , we denote
by Cr(X;R) the set of r times continuously differentiable functions f : X → R. We
denote by ∂xf the partial derivative of a function f(x, y, . . . ) with respect to x. We
denote by ∇θjf the vector (∂θj,1f, . . . , ∂θj,pj f), j = 1, 2, and ∇θf = (∇θ1f,∇θ2f).
We say that a function f : R× Pl → R has polynomial growth if

|f(x, µ)| ≤ C(1 + |x|k +W l
2(µ, δ0)) (II.1.4)

for some k, l = 0, 1, . . . and all (x, µ) ∈ R×Pl, where Pl denotes the set of probability
measures on R with a finite l-th absolute moment. For p ∈ [1,∞), the Wasserstein
p-metric between two probability measures µ and ν in Pp is given as

Wp(µ, ν) :=
(

inf
m∈Γ(µ,ν)

∫
R2

|x− y|pm(dx, dy)
) 1

p
;

where Γ(µ, ν) denotes the set of probability measures on R2 with marginals µ and ν.
Finally, we suppress the dependence of several objects on the true parameter θ0. In
particular, we write P := Pθ0 , E := Eθ0 , X i,N

t := Xθ0,i,N
t , X̄t := X̄θ0

t , µN
t := µθ0,N

t and

µ̄t := µ̄θ0
t . Furthermore, we denote by

P−→,
L−→,

Lp

−→ the convergence in probability, in
law, in Lp respectively. We also denote the value a2(θ2, x, µ) as c(θ2, x, µ).

II.2 Minimal contrast estimator, assumptions and

examples

We aim at estimating the unknown parameter θ0 = (θ0,1, θ0,2) ∈ Θ◦ given equidistant
discrete observations of the system introduced in (II.1.1). We study the asymptotic
regime N, n → ∞.
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The estimator we propose is based upon a contrast function, which originates from
the Gaussian quasi-likelihood. Starting from discrete observations of the model there
are difficulties due to the fact that the transition density of the process is unknown.
A common way to overcome this issue is to base the inference on a discretization of
the continuous likelihood (see for example [46], [64] and [95] where classic SDEs are
considered). This motivates us to consider the following contrast function:

SN
n (θ) :=

N∑
i=1

n∑
j=1

{(
X i,N

tj,n −X i,N
tj−1,n

−∆nb
(
θ1, X

i,N
tj−1,n

, µN
tj−1,n

))2
∆nc

(
θ2, X

i,N
tj−1,n

, µN
tj−1,n

) + log c
(
θ2, X

i,N
tj−1,n

, µN
tj−1,n

)}
,

(II.2.1)

for θ = (θ1, θ2). The estimator θ̂Nn = (θNn,1, θ
N
n,2) of θ0 is obtained as

θ̂Nn ∈ argmin
θ∈Θ

SN
n (θ).

Comparing SN
n (θ) with the contrast function for parameter estimation for classical

SDEs, the main difference consists in the fact that we have now an extra sum over the
number of interacting diffusion processes. The interaction depends on the empirical
measure of the system. The dependence of the drift and diffusion coefficients on the
measure can take a general form. In order to meet this challenge and prove some
asymptotic properties for θ̂Nn we need to introduce a set of assumptions. The first
two assumptions ensure the system’s existence and uniqueness, while the next two
impose additional regularity conditions on the coefficients a and b.

IIA1. (Boundedness of moments) For all k ≥ 1,∫
R
|x|kµ0(dx) ≤ Ck.

IIA2. (Lipschitz condition) The drift and diffusion coefficients are Lipschitz con-
tinuous in (x, µ), i.e. for all θ there exists C such that for all (x, µ), (y, ν) ∈ R×P2,

|b(θ1, x, µ)− b(θ1, y, ν)|+ |a(θ2, x, µ)− a(θ2, y, ν)| ≤ C(|x− y|+W2(µ, ν)).

IIA3. (Regularity of the diffusion coefficient) The diffusion coefficient is uniformly
bounded away from 0:

inf
(θ2,x,µ)∈Θ2×R×P2

c(θ2, x, µ) > 0.

IIA4. (Regularity of the derivatives) (I) For all (x, µ), the functions b(·, x, µ),
a(·, x, µ) are in C3(U1;R), C3(U2;R) respectively. Furthermore, all their partial
derivatives up to order three have polynomial growth, in the sense of (II.1.4), uni-
formly in θ.
(II) The first and second order derivatives in θ are locally Lipschitz in (x, µ) with
polynomial weights, i.e. for all θ there exists C > 0, k, l = 0, 1, . . . such that for all
r1 + r2 = 1, 2, h1, h2 = 1, . . . , p1, h̃1, h̃2 = 1, . . . , p2, (x, µ), (y, ν) ∈ R× P2,∣∣∂r1

θ1,h1
∂r2
θ1,h2

b(θ1, x, µ)− ∂r1
θ1,h1

∂r2
θ1,h2

b(θ1, y, ν)
∣∣+ ∣∣∂r1

θ2,h̃1
∂r2
θ2,h̃2

a(θ2, x, µ)− ∂r1
θ2,h̃1

∂r2
θ2,h̃2

a(θ2, y, ν)
∣∣

≤ C(|x− y|+W2(µ, ν))
(
1 + |x|k + |y|k +W l

2(µ, δ0) +W l
2(ν, δ0)

)
.
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Remark II.2.1. (i) It is possible to relax assumption IIA2 on the drift coefficient to
allow for a locally Lipschitz condition in x with polynomial weights, cf. [37, Assump-
tion 2.1]. In this setting the boundedness of moments shown in our Lemma II.5.1
can be replaced by [38, Theorem 3.3] and the propagation of chaos needed in order
to prove Lemma II.5.2 would follow from [37, Proposition 3.1]. As a consequence
the main results of this paper still hold.

(ii) IIA4(I) is sufficient to show consistency of the estimator θ̂Nn . We require the
additional condition (II) of IIA4 to prove the asymptotic normality.

We now state an assumption on the identifiability of the model and some further
conditions that are required to prove the asymptotic normality. For this purpose we
define the functions I : Θ → R, J : Θ2 → R as

I(θ) :=

∫ T

0

∫
R

(b(θ1, x, µ̄t)− b(θ0,1x, µ̄t))
2

c(θ2, x, µ̄t)
µ̄t(dx)dt, (II.2.2)

J(θ2) :=

∫ T

0

∫
R

(c(θ0,2, x, µ̄t)

c(θ2, x, µ̄t)
+ log c(θ2, x, µ̄t)

)
µ̄t(dx)dt, (II.2.3)

where recall that µ̄t stands for µ̄θ0
t . The next set of conditions are the following

assumptions.

IIA5. (Identifiability) The functions I, J defined above satisfy that for every ε > 0,

inf
θ∈Θ:∥θ1−θ0,1∥≥ε

I(θ) > 0 and inf
θ2∈Θ2:∥θ2−θ0,2∥≥ε

(J(θ2)− J(θ0,2)) > 0.

IIA6. (Invertibility) We define a p×p block diagonal matrix Σ(θ0): = diag(Σ(1)(θ0),Σ
(2)(θ0))

whose main-diagonal blocks Σ(j)(θ0) = (Σ
(j)
kl (θ0)) are defined via

Σ
(j)
kl (θ0): =


2

∫ T

0

∫
R

∂θ1,kb(θ0,1, x, µ̄t) ∂θ1,lb(θ0,1, x, µ̄t)

c(θ0,2, x, µ̄t)
µ̄t(dx)dt, j = 1, k, l = 1, . . . , p1,∫ T

0

∫
R

∂θ2,kc(θ0,2, x, µ̄t) ∂θ2,lc(θ0,2, x, µ̄t)

c2(θ0,2, x, µ̄t)
µ̄t(dx)dt, j = 2, k, l = 1, . . . , p2.

We assume that det(Σ(j)(θ0)) ̸= 0, j = 1, 2.

IIA7. (Integral condition on the diffusion coefficient) At θ0,2 for all (x, µ) the
diffusion coefficient takes the form

a(θ0,2, x, µ): = ã
(
x,

∫
R
K(x, y)µ(dy)

)
for some functions ã, K ∈ C2(R2;R), which satisfy |∂r1

x ∂r2
y ã(x, y)|+|∂r1

x ∂r2
y K(x, y)| ≤

C(1 + |x|k + |y|l) for some k, l = 0, 1, . . . and all r1 + r2 = 1, 2, (x, y) ∈ R2.

Assumptions IIA1- IIA5 are required to prove the consistency of our estimator and
are relatively standard in the literature for statistics of random processes. However,
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Assumption IIA5 deserves some extra attention, as the quantities I(θ) and J(θ) are
not at all explicit due to the presence of µ̄t. Hence, it may be difficult to check As-
sumption IIA5 in practice and the identifiability of all parameters may not always
be possible. In order to delve deeper into the topic, we refer to Section 2.4 in [30],
where the authors have provided a thorough analysis. More specifically, for estimat-
ing the drift from continuous observations, they have identified explicit criteria that
enable obtaining both identifiability and non-degeneracy of the Fisher information
matrix. Notably, for a certain type of likelihood, they have established a connection
between global identifiability and non-degeneracy of the Fisher information, which
is highlighted in [30, Proposition 16]. It could be interesting to understand if it
possible to prove an analogous proposition in our context, even if this is out of the
purpose of the paper and it is therefore left for further investigation.
The additional conditions IIA6- IIA7 are needed to obtain the central limit theorem,
even if they are not of the same type. Indeed, IIA6 is an invertibility condition
which is always required when one wants to prove asymptotic normality. In IIA6,
note that ∂θ1,kb(θ0,1, x, µ̄t) and ∂θ2,kc(θ0,2, x, µ̄t) are respectively ∂θ1,kb(θ0,1, x, µ)|µ=µ̄t

and ∂θ2,kc(θ0,2, x, µ)|µ=µ̄t , whereas µ̄t stands for µ̄θ0
t . On the other hand, IIA7 is a

technical condition needed in order to obtain the first statement of Lemma II.5.3.
We shed light to the fact that the bounds in Lemma II.5.3 are stated for θ0 and
similarly we ask to IIA7 to be valid exclusively for the true parameter value θ0,2.
Naturally, both ã and K in IIA7 can be functions on Θ2×R2 with the first argument
fixed at θ0,2.
We also remark that, in the case where the unknown parameter θ appears only in
the drift coefficient, there is no need to add a further assumption on the derivatives
of the diffusion coefficient to estimate it, even if the diffusion coefficient still depends
on the law of the process.

Example II.2.2. A number of interacting particle models (and associated mean
field equations) have been analyzed in the literature. We highlight a few here to
illustrate the scope of our paper.
We start by considering some examples where the diffusion coefficient is a constant
on a compact set that does not include the origin. This case has several applications
(see (i) and (ii)). After that, some more general examples are presented.

(i) The Kuramoto model is the most classical model for synchronization phenomena
in large populations of coupled oscillators such as a clapping crowd, a population of
fireflies or a system of neurons (see Section 5.2 of [20] and references therein). Let
N oscillators be defined by N angles X i,N

t , i = 1, . . . , N (defined modulo 2π, in this
way they can actually be considered as elements of the circle), evolving in t ∈ [0, T ]
according to

dX i,N
t = −θ0,1

N

N∑
j=1

sin
(
X i,N

t −Xj,N
t

)
dt+ θ0,2dW

i
t .

This variant of the model satisfies our assumptions.
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(ii) A popular model for opinion dynamics (see e.g. [21,82]) takes the form

dX i,N
t = − 1

N

N∑
j=1

φθ0,1

(∣∣X i,N
t −Xj,N

t

∣∣)(X i,N
t −Xj,N

t

)
dt+ θ0,2dW

i
t

for i = 1, . . . , N , t ∈ [0, T ], where φθ0,1(x) := θ0,1,11[0,θ0,1,2](x), x ∈ R, is the influence
function which acts on the “difference of opinions” between agents. To have our
regularity assumptions hold true in practice we can replace the function φθ0,1 by its
infinitely differentiable approximation as it is done in Section 5.2 of [88]. In [88] we
also note that the proxy of φθ0,1 depends non-linearly on the parameter θ0,1,2.

(iii) Another example is

dX i,N
t =

(
θ0,1,1 +

θ0,1,2
N

N∑
j=1

Xj,N
t − θ0,1,3X

i,N
t

)
dt+ θ0,2

√
1 +

(
X i,N

t

)2
dW i

t

for i = 1, . . . , N , t ∈ [0, T ]. We note that in the case θ0,1,2 = 0 the interacting
particle system reduces to N independent samples of a special case of the Pearson
diffusion, which has applications in finance, see [41] and references therein.

(iv) We consider the dynamic of the system

dX i,N
t =

(
θ0,1,1+

θ0,1,2
N

N∑
j=1

Xj,N
t −θ0,1,3X

i,N
t

)
dt+

(
θ0,2,1+θ0,2,2

√√√√ 1

N

N∑
j=1

(
Xj,N

t

)2)
dW i

t

for i = 1, . . . , N in t ∈ [0, T ], where both the coefficients b and a depend on the law
argument. We remark that the mean field limit of the above interacting particle
system is a time-inhomogeneous Ornstein-Uhlenbeck process. See [63] for the case
θ0,1,1 = θ0,2,2 = 0.

Some remarks are in order. Example (iv), where θ0,2,2 = 0, has been thoroughly
discussed in Section 4.1 of [30], specifically, with regard to the restrictions on µ0 and
θ0,1 that ensure the latter parameter satisfies A5, A6. In examples (i), (iii) and (iv),
where either θ0,2,1 or θ0,2,2 is set to 0, it is obvious that A5, A6 hold for θ0,2 ̸= 0.
Finally, we note that in examples (i), (iii), and (iv), where either θ0,2,1 or θ0,2,2 is
set to 0, the drift and diffusion coefficients are respectively linear and multiplicative
functions of θ, which allows us to solve our estimator in closed form.

II.3 Main results

Our main results demonstrate the consistency and the asymptotic normality of the
estimator θ̂Nn .

Theorem II.3.1. (Consistency) Assume that IIA1- IIA5 hold, with only condition
(I) in IIA4. Then the estimator θ̂Nn is consistent in probability:

θ̂Nn
P−→ θ0 as n,N → ∞.
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In order to obtain the asymptotic normality of our estimator we need to add an
assumption on the relation between the rates N and ∆n. In particular, we require
that N∆n → 0 as N, n → ∞.

Theorem II.3.2. (Asymptotic normality) Assume that IIA1- IIA7 hold. If N∆n →
0 then(√

N(θ̂Nn,1 − θ0,1),
√
N/∆n(θ̂

N
n,2 − θ0,2)

) L−→ N
(
0, 2(Σ(θ0))

−1
)

as n,N → ∞,

where

2(Σ(θ0))
−1: = 2 diag

(
(Σ(1)(θ0))

−1, (Σ(2)(θ0))
−1
)

with Σ(j)(θ0), j = 1, 2, being defined in IIA6.

As common in the literature on contrast function based methods, understanding the
asymptotic behaviour of SN

n (θ1, θ2) and its derivatives is key to obtain the statements
of Theorems II.3.1 and II.3.2. In particular, we show that, under proper normali-
sation, the first derivative of SN

n (θ1, θ2) converges to a Gaussian law with mean 0
and covariance matrix 2Σ(θ0) (see Proposition II.6.2), while the second derivative
converges in probability to the matrix Σ(θ0) defined in IIA6 (see Proposition II.6.3).
These results lead to the statement of Theorem II.3.2.
The condition on the rate, at which the discretization step ∆n converges to 0, has
been discussed in detail in the framework of classical SDEs. In this context, one
disposes discrete observations of the trajectory of only one particle up to a time T :=
n∆n → ∞. In [40] the corresponding condition was T∆n = n∆2

n → 0 as n → ∞,
which has been later improved to n∆3

n → 0 in [95] thanks to a correction introduced
in the contrast function. Finally, Kessler [64] proposed a contrast function based on
a Gaussian approximation of the transition density, which allowed him to consider
a weaker condition n∆p

n → 0 for an arbitrary integer p. Similar developments have
been made in the setting of classical SDEs with jumps in [5, 6, 51,89].
One may wonder if it possible to weaken the condition on the discretization step
in the context of interacting particle systems. For a system of independent copies
of a diffusion process with random and/or fixed effects, [27, 28, 31] require it in
the same asymptotic framework as ours. In [28] also the rates of convergence of
the estimators towards the parameters θ1 of the distribution of a random effect in
the drift coefficient, and the fixed effect θ2 in the diffusion coefficient, are shown
to be the same as ours. On the one hand, the condition N∆n → 0 allows us
to approximate the derivative of the contrast function with a triangular array of
martingale increments, as it is the case for classical SDEs. For this step, higher
order approximations, similar to those in [64], could potentially help us relax this
condition. On the other hand, we need it because of the correlation between particles
and higher order approximations do not seem to solve this issue. Thus, we leave
this investigation for future research.
A recent paper [30] establishes the LAN property for drift estimation in d-dimensional
McKean-Vlasov models under continuous observations and with diffusion coefficient
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being a function of (t, X̄t) only. The authors show that the Fisher information
matrix is given as(∫ T

0

∫
Rd

∂θ1,k(c
− 1

2 b)(θ0,1, t, x, µ̄t)
⊤∂θ1,l(c

− 1
2 b)(θ0,1, t, x, µ̄t)µ̄t(dx)dt

)
1≤k,l≤p1

(II.3.1)
(cf. [88] where the diffusion coefficient is an identity matrix). This is consistent with
our Theorem II.3.2 when restricted to drift estimation. In other words, our drift
estimator is asymptotically efficient. When considering joint estimation of the drift
and diffusion coefficients, the LAN property has not yet been shown, although the
results of Gobet [53] in the classical diffusion setting give some hope. Indeed, Gobet
[53] has shown that for classical SDEs, in the ergodic case, the Fisher information
for the drift parameter is given by

(Γθ0
b )k,l =

∫
R

∂θ1,kb(θ0,1, x) ∂θ1,lb(θ0,1, x)

c(θ0,2, x)
π(dx)

for k, l = 1, . . . , p1, while the one for the diffusion parameter is given by

(Γθ0
a )k,l =

∫
R

∂θ2,kc(θ0,2, x) ∂θ2,lc(θ0,2, x)

c2(θ0,2, x)
π(dx)

for k, l = 1, . . . , p2, where π is the invariant density associated to the diffusion.
As Γθ0

b modifies to (II.3.1) for McKean-Vlasov models, one could expect that Γθ0
a

modifies to our asymptotic variance as well. This is left for further investigation.

II.4 Numerical examples

We will now examine the finite-sample performance of the introduced estimator θ̂Nn
on two examples of interacting particle systems.

II.4.1 Linear model

Consider an interacting particle system of the form:

dX i,N
t = −

(
θ1,1X

i,N
t +

θ1,2
N

N∑
j=1

(X i,N
t −Xj,N

t )
)
dt+

√
θ2dW

i
t , (II.4.1)

where i = 1, . . . , N , t ∈ [0, T ], for some θ1 = (θ1,1, θ1,2) ∈ R2, θ1,1 ̸= 0, θ1,1+ θ1,2 ̸= 0,
θ2 > 0 and

∫
R xµ0(dx) ̸= 0. In this model, the parameter θ1,1 determines the

intensity of attraction of each individual particle towards zero, while θ1,2 governs
the degree of interaction, which is the attraction of each individual particle towards
the empirical mean. Notably, for θ1,2 = 0, the processes (X i,N

t )t∈[0,T ], i = 1, . . . , N ,
are independent.
Recall that for θ2 = 1, estimation of the parameter θ1 from a continuous observation
of the system has been studied in [63, 88]. Since the drift and squared diffusion
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coefficients in (II.4.1) are linear in θ := (θ1, θ2), it is possible to find our estimator
θ̂Nn in the closed form similarly as in [63,88]:

θ̂Nn,1,1 =
AN

n −BN
n

DN
n − CN

n

, θ̂Nn,1,2 =
AN

n D
N
n −BN

n CN
n

(CN
n )2 − CN

n DN
n

, (II.4.2)

where

AN
n :=

1

N

N∑
i=1

n∑
j=1

(X i,N
tj−1,n

− X̄N
tj−1,n

)(X i,N
tj,n −X i,N

tj−1,n
), BN

n :=
1

N

N∑
i=1

n∑
j=1

X i,N
tj−1,n

(X i,N
tj,n −X i,N

tj−1,n
),

CN
n :=

∆n

N

N∑
i=1

n∑
j=1

(X i,N
tj−1,n

− X̄N
tj−1,n

)2, DN
n :=

∆n

N

N∑
i=1

n∑
j=1

(X i,N
tj−1,n

)2

with X̄N
tj−1,n

:= N−1
∑N

k=1 X
k,N
tj−1,n

, and then

θ̂Nn,2 =
1

NT

N∑
i=1

n∑
j=1

(
X i,N

tj,n−X i,N
tj−1,n

+∆n

(
θ̂Nn,1,1X

i,N
tj−1,n

+
θ̂Nn,1,2
N

N∑
j=1

(X i,N
tj−1,n

−Xj,N
tj−1,n

)
))2

.

(II.4.3)
To illustrate the finite sample performance of θ̂Nn , we choose θ = (θ1,1, θ1,2, θ2) =
(0.5, 1, 1) and µ0 = δ1 as in [88]. We simulate 1000 solutions of the system given by
(II.4.1) using the Euler method with a step size of 0.01. We obtain observations of the
system — data sets for all possible combinations of T = 50, 100, ∆n = 0.1, 0.05, 0.01
and N = 50, 100. Table II.3 presents the effect of N , ∆n, T on the performance of
θ̂Nn . As N or T increases, the sample RMSE and bias of θ̂Nn,1 decrease, whereas that

of θ̂Nn,2 do not change significantly. However, as ∆n gets smaller, the performance of

θ̂n,2 improves, as well as that of θ̂Nn,1,2.
We note that the numerical results presented above for ∆n = 0.01 can be viewed as
the maximum likelihood estimation. Indeed, our contrast function up to a negative
constant is the log-likelihood function for the Euler approximation with the same
step ∆n. Therefore, it is difficult to improve upon the estimation provided in the
last lines of Table II.1. Interestingly, the performance of our estimator for ∆n = 0.1
and ∆n = 0.05 is quite similar to that of ∆n = 0.01, particularly with respect to the
RMSE for the estimation of θ̂Nn,1,1 and θ̂Nn,1,2.

One possible application of our Theorem II.3.2 is to test the hypothesis of nonin-
teraction of particles similarly as in [63]. Consider the null hypothesis H0 : θ1,2 = 0
and the alternative H1 : θ1,2 ̸= 0. According to Theorem II.3.2, if N∆n → 0, then

√
N(θ̂Nn,1,2 − θ1,2)

L−→ N (0, V (θ)),

where
V (θ) := 2Σ

(1)
11 (θ)/(Σ

(1)
11 (θ)Σ

(1)
22 (θ)− Σ

(1)
12 (θ)Σ

(1)
21 (θ)),

and for all i, j = 1, 2,

Σ
(1)
ij (θ) :=


2θ−1

2

∫ T

0

∫
R
x2µ̄t(dx)dt, i = j = 1,

2θ−1
2

∫ T

0

∫
R

(
x−

∫
R
yµ̄t(dy)

)2
µ̄t(dx)dt, else,
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N = 50 100 50 100
(∆n, T ) = (0.1, 50) (0.1, 50) (0.1, 100) (0.1, 100)

θ̂Nn,1,1 0.10 (0.00) 0.08 (0.00) 0.08 (0.00) 0.07 (0.00)

θ̂Nn,1,2 0.15 (-0.10) 0.13 (-0.10) 0.13 (-0.10) 0.12 (-0.10)

θ̂Nn,2 0.12 (-0.12) 0.12 (-0.12) 0.12 (-0.12) 0.12 (-0.12)

(∆n, T ) = (0.05, 50) (0.05, 50) (0.05, 100) (0.05, 100)

θ̂Nn,1,1 0.10 (0.01) 0.08 (0.01) 0.08 (0.01) 0.07 (0.00)

θ̂Nn,1,2 0.12 (-0.05) 0.10 (-0.05) 0.10 (-0.05) 0.09 (-0.05)

θ̂Nn,2 0.06 (-0.06) 0.06 (-0.06) 0.06 (-0.06) 0.06 (-0.06)

(∆n, T ) = (0.01, 50) (0.01, 50) (0.01, 100) (0.01, 100)

θ̂Nn,1,1 0.11 (0.01) 0.08 (0.01) 0.09 (0.01) 0.07 (0.01)

θ̂Nn,1,2 0.11 (-0.02) 0.09 (-0.01) 0.09 (-0.01) 0.07 (-0.01)

θ̂Nn,2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Table II.1: Sample RMSE (and bias in brackets) of θ̂Nn for θ = (0.5, 1, 1) and different
values of N , ∆n, T . The number of replications is 1000.

can be explicitly computed in terms of the model parameters, see [63,88]. By using
Lemma II.5.2 and Theorem II.3.1, we have that

V N
n :=θ̂Nn,2D

N
n /((D

N
n − CN

n )CN
n )

P−→ V (θ) as n,N → ∞.

Therefore, if N∆n → 0, under H0, we can conclude that

ZN
n :=θ̂Nn,1,2

√
N/V N

n
L−→ N (0, 1) as n,N → ∞.

Thus, we reject H0 if
|ZN

n | > zα/2,

where α ∈ (0, 1) is the chosen level of significance and zα denotes the α-quantile of
the standard normal distribution.
Next, we examine the performance of the test statistic ZN

n . We simulate 1000
solutions of the system given by (II.4.1) with µ0 = δ1, using the Euler method with
a step size of 0.01. Table II.2 reports the rejection rates of H0 in favor of H1 at a
significance level of α = 5% using ZN

n for all possible combinations of N, T = 50, 100,
∆n = 0.1 and θ = (0.5, θ1,2, 1), where θ1,2 = 0, 0.1, 0.25, 0.5, or 1. The empirical size
is quite well observed. Rejection rates of incorrect H0 increase with increasing θ1,2
or N and T .

II.4.2 Stochastic opinion dynamics model

We now consider an interacting particle system that can model opinion dynamics:

dX i,N
t = − 1

N

N∑
j=1

φθ1(|X
i,N
t −Xj,N

t |)(X i,N
t −Xj,N

t )dt+
√

θ2dW
i
t , (II.4.4)
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θ1,2 (N, T ) = (50, 50) (100, 50) (50, 100) (100, 100)
0 4.8 4.6 4.2 4.1
0.1 17.8 22.5 21.4 28.9
0.25 61.3 78.2 75.6 87.0
0.5 97.2 99.7 99.8 99.9
1 100.0 100.0 100.0 100.0

Table II.2: Rejection rates (in %) of H0 : θ1,2 = 0 vs. H1 : θ1,2 ̸= 0 at level α = 5%
with ZN

n for θ = (0.5, θ1,2, 1), ∆n = 0.1 and different values of N, T . The number of
replications is 1000.

where i = 1, . . . , N , t ∈ [0, T ], and

φθ1(x) := θ1,2 exp
(
− 0.01

1− (x− θ1,1)2

)
1[θ1,1−1,θ1,1+1](x), x ∈ R,

for some −1 < θ1,1 ≤ 1, θ1,2 > 0, θ2 > 0. The interaction kernel φθ1(x) pro-
vides an infinitely differentiable approximation to the scaled indicator function
θ1,21[0,θ1,1+1](x), x ≥ 0. We interpret that θ1,1 governs the intensity of attraction of
each individual particle towards the scaled empirical mean of all the others within a
distance θ1,1+1. The position of each particle represents its opinion, and over time,
the opinions of particles merge into metastable ”soft clusters”. For further informa-
tion on this stochastic opinion dynamics model, see [88] and references therein.

Note that the squared diffusion coefficient is a multiplicative function of θ2 which
enables us to express θ̂Nn,2 in terms of (θ̂Nn,1,1, θ̂

N
n,1,2). However, the latter estimator

is implicit and can only be found using a numerical method. To illustrate the per-
formance of θ̂Nn = (θ̂Nn,1,1, θ̂

N
n,1,2, θ̂

N
n,2) we choose the parameter θ = (θ1,1, θ1,2, θ2) =

(−0.5, 2, 0.04) as in [88], and the initial distribution µ0 = N (0, 1) for each individual
particle. We simulate 1000 solutions of the system given by (II.4.4) using the Euler
method with a step size of 0.01. We obtain 1000 data sets for ∆n = 0.1 and all
possible combinations of N, T = 50, 100 as in the previous subsection. Table II.3
presents the effect of N , T on the performance of θ̂Nn . As N increases, the sam-
ple RMSE and bias of θ̂Nn decrease, whereas they do not change that much with
increasing T . We can also see that θ̂Nn,1,1 is more accurate than θ̂Nn,1,2.

(N, T ) = (50, 50) (100, 50) (50, 100) (100, 100)

θ̂Nn,1,1 0.0340 (0.0159) 0.0263 (0.0145) 0.0280 (0.0154) 0.0206 (0.0137)

θ̂Nn,1,2 0.1652 (-0.1378) 0.1503 (-0.1347) 0.1526 (-0.1420) 0.1472 (-0.1416)

θ̂Nn,2 0.0027 (-0.0026) 0.0026 (-0.0025) 0.0033 (-0.0032) 0.0033 (-0.0033)

Table II.3: Sample RMSE (and bias in brackets) of θ̂Nn for θ = (−0.5, 2, 0.04),
∆n = 0.1 and different values of N, T . The number of replications is 1000.
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II.5 Technical lemmas

Before proving the main statistical results stated in previous section, we need to
introduce some additional notations and to state some lemmas which will be useful
in the sequel.
Define FN

t := σ{(W k
u )u∈[0,t], X

k,N
0 ; k = 1, . . . , N} and Et[·] := E[·|FN

t ]. For a set

(Y i,N
t,n ) of random variables and δ ≥ 0, the notation

Y i,N
t,n = Ri

t(∆
δ
n)

means that Y i,N
t,n is FN

t -measurable and the set (Y i,N
t,n /∆δ

n) is bounded in Lq for all
q ≥ 1, uniformly in t, i, n,N . That is

E
[∣∣Y i,N

t,n /∆δ
n

∣∣q]1/q ≤ Cq

for all t, i, n,N , q ≥ 1.
We will repeatedly use some moment inequalities gathered in the following lemma.

Lemma II.5.1. Assume IIA1-IIA2. Then, for all p ≥ 1, 0 ≤ s < t ≤ T such that
t− s ≤ 1, i ∈ {1, . . . , N}, N ∈ N, the following hold true.

1. supt∈[0,T ] E[|X
i,N
t |p] < C, moreover, supt∈[0,T ] E[W q

p (µ
N
t , δ0)] < C for p ≤ q.

2. E[|X i,N
t −X i,N

s |p] ≤ C(t− s)
p
2 .

3. Es[|X i,N
t −X i,N

s |p] ≤ C(t− s)
p
2Ri

s(1).

4. E[W p
2 (µ

N
t , µ

N
s )] ≤ C(t− s)

p
2 .

5. Es[W
p
2 (µ

N
t , µ

N
s )|] ≤ C(t− s)

p
2Rs(1).

The asymptotic properties of the estimator are deduced by the asymptotic behaviour
of our contrast function. To study it, the following lemma will be useful.

Lemma II.5.2. Assume IIA1-IIA2. Let f : R × Pl → R satisfy for some C > 0,
k, l = 0, 1, . . . and all (x, µ), (y, ν) ∈ R× Pl,

|f(x, µ)− f(y, ν)| ≤ C(|x− y|+W2(µ, ν))(1 + |x|k + |y|k +W l
l (µ, δ0) +W l

l (ν, δ0)).
(II.5.1)

Moreover, let the mapping (x, t) 7→ f(x, µ̄t) be integrable with respect to µ̄t(dx)dt
over R× [0, T ]. Then

∆n

N

N∑
i=1

n∑
j=1

f(X i,N
tj−1,n

, µN
tj−1,n

)
P−→
∫ T

0

∫
R
f(x, µ̄t)µ̄t(dx)dt as n,N → ∞.
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It is worth underlining that the boundedness of the moments and the convergence
of the Riemann sums, which are obtained almost for free in the classical SDE case,
are more complex in our setting. In particular, the proof of Lemma II.5.2 consists
now in three steps, the first deals with the convergence of the proper Riemann sums,
in the second step we move from the interacting particle system to the iid system
though the propagation of chaos property, while the third step is an application of
the law of large numbers.
Another challenge compared to the classical SDE case is gathered in next lemma.
Indeed, our main results heavily rely on the study of derivatives of our contrast
function and so on the moment bounds of its numerator. To accomplish this, we need
to use Itô’s lemma on the squared diffusion coefficient as a function of the particle
system’s state. Therefore, we must understand how to express derivatives of a with
respect to the measure argument. That is the purpose of the extra hypothesis IIA7,
thanks to which the problem reduces to study the derivatives of K.
We recall that, in the sequel, we will denote by c(θ2, x, µ) the value a2(θ2, x, µ).

Lemma II.5.3. Assume IIA1-IIA2. Then, the following hold true.

1. If also IIA7 is satisfied, then
Etj,n [(X

i,N
tj+1,n

−X i,N
tj,n−∆nb(θ0,1, X

i,N
tj,n , µ

N
tj,n

))2] = ∆nc(θ0,2, X
i,N
tj,n , µ

N
tj,n

)+Ri
tj,n

(∆2
n).

2. Etj,n [(X
i,N
tj+1,n

−X i,N
tj,n−∆nb(θ0,1, X

i,N
tj,n , µ

N
tj,n

))4] = 3∆2
nc

2(θ0,2, X
i,N
tj,n , µ

N
tj,n

)+Ri
tj,n

(∆
5
2
n ).

3. |Etj,n [X
i,N
tj+1,n

−X i,N
tj,n −∆nb(θ0,1, X

i,N
tj,n , µ

N
tj,n

)]| = Ri
tj,n

(∆
3
2
n ).

We underline that IIA7 is needed in order to prove that the size of the remainder
function in the first point is ∆2

n. Without it, the size of the rest function would have

been ∆
3
2
n , which would not have been enough to obtain the asymptotic normality as

in Proposition II.6.2 (see the proof of (II.6.23)). The proof of the lemmas stated in
this section can be found in Section II.7.

II.6 Proofs

II.6.1 Consistency

Let us prove the (asymptotic) consistency of θ̂Nn = (θ̂Nn,1, θ̂
N
n,2) component-wise. Our

approach is similar to that taken in the proof of [91, Theorem 5.7]. In particular,
we consider a criterion function θ 7→ SN

n (θ) as a random element taking values in
(C(Θ;R), ∥ · ∥∞). The uniform convergence of criterion functions is proved in the
following lemma.

Lemma II.6.1. Assume IIA1- IIA3, IIA4(I), IIA5. Then as N, n → ∞,

sup
(θ1,θ2)∈Θ

∣∣∣∆n

N
SN
n (θ1, θ2)− J(θ2)

∣∣∣ P−→ 0, (II.6.1)
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sup
(θ1,θ2)∈Θ

∣∣∣ 1
N
(SN

n (θ1, θ2)− SN
n (θ0,1, θ2))− I(θ1, θ2)

∣∣∣ P−→ 0, (II.6.2)

where the functions I, J are defined in (II.2.2), (II.2.3) respectively.

Proof. It suffices to show the following steps:

1. ∆n

N
SN
n (θ1, θ2)

P−→ J(θ2) for every (θ1, θ2) ∈ Θ.

2. The sequence (θ1, θ2) 7→ ∆n

N
SN
n (θ1, θ2) is tight in (C(Θ;R), ∥ · ∥∞).

3. 1
N
(SN

n (θ1, θ2)− SN
n (θ0,1, θ2))

P−→ I(θ1, θ2) for every (θ1, θ2) ∈ Θ,

4. The sequence (θ1, θ2) 7→ 1
N
(SN

n (θ1, θ2)−SN
n (θ0,1, θ2)) is tight in (C(Θ;R), ∥·∥∞).

Let us omit the notation for dependence on N, n, in particular, write X i
t for X i,N

t ,
µt for µ

N
t , tj for tj,n. Denote f(·, X i

t , µt) by f i
t (·) for a function f , for example equal

to h or g defined as

h(θ, x, µ) =
(b(θ0,1, x, µ)− b(θ1, x, µ))

2

c(θ2, x, µ)
, g(θ, x, µ) =

b(θ0,1, x, µ)− b(θ1, x, µ)

c(θ2, x, µ)
(II.6.3)

for all θ = (θ1, θ2) ∈ Θ1 ×Θ2 = Θ, x ∈ R, µ ∈ P2.

• Step 3. We start proving that for every θ = (θ1, θ2) ∈ Θ1 ×Θ2 = Θ,

1

N
(SN

n (θ1, θ2)− SN
n (θ0,1, θ2))

P−→ I(θ) =

∫ T

0

∫
R
h(θ, x, µ̄t)µ̄t(dx)dt.

Let us first decompose the left hand side as a sum of a main term and remainder.
We have

SN
n (θ1, θ2) =

N∑
i=1

n∑
j=1

(H i
j +∆n(b

i
tj−1

(θ0,1)− bitj−1
(θ1)))

2

∆ncitj−1
(θ2)

+ (log c)itj−1
(θ2),

where H i
j = X i

tj−1
−X i

tj−1
−∆nb

i
tj−1

(θ0,1) for all i, j. We decompose

1

N
(SN

n (θ1, θ2)− SN
n (θ0,1, θ2)) = INn (θ) + 2ρNn (θ), (II.6.4)

where

INn (θ) =
∆n

N

N∑
i=1

n∑
j=1

hi
tj−1

(θ), ρNn (θ) =
1

N

N∑
i=1

n∑
j=1

gitj−1
(θ)H i

j. (II.6.5)

Then
INn (θ)

P−→ I(θ)

follows from Lemma II.5.2 if the function h(θ, ·) is locally Lipschitz with polynomial
growth. To check this assumption we note that the functions b(θ0,1, ·) − b(θ1, ·),
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a(θ2, ·) are Lipschitz continuous and have linear growth by IIA2. We also recall that
infx,µ c(θ2, x, µ) > 0 by IIA3. Hence, h(θ, ·) satisfies the assumption of Lemma II.5.2.
It remains to show that

ρNn (θ)
P−→ 0. (II.6.6)

With H i
j = Bi

j + Ai
j, where

Bi
j =

∫ tj

tj−1

(bis(θ0,1)− bitj−1
(θ0,1))ds, Ai

j =

∫ tj

tj−1

ais(θ0,2)dW
i
s ,

for all i, j, let us further decompose

ρNn (θ) = ρNn,1(θ) + ρNn,2(θ), (II.6.7)

where

ρNn,1(θ) =
1

N

N∑
i=1

n∑
j=1

gitj−1
(θ)Bi

j, ρNn,2(θ) =
1

N

N∑
i=1

n∑
j=1

gitj−1
(θ)Ai

j.

It is enough to show that

ρNn,k(θ)
Lk

−→ 0, k = 1, 2. (II.6.8)

First, let us show (II.6.8) in case k = 2. Note that for all i1 = i2 and j1 ̸= j2,

E[gi1tj1−1
(θ)Ai1

j1
gi2tj2−1

(θ)Ai2
j2
] = 0 (II.6.9)

follows from Etj1−1
[Ai1

j1
] = 0, whereas independence of Brownian motions implies

(II.6.9) for all i1 ̸= i2 and j1, j2. We conclude that

E[(ρNn,2(θ))2] =
1

N2

N∑
i=1

n∑
j=1

E[(gitj−1
(θ)Ai

j)
2]. (II.6.10)

Next, the Itô isometry gives

E[(gitj−1
(θ)Ai

j)
2] =

∫ tj

tj−1

E[(g2)itj−1
(θ)cis(θ0,2)]ds,

where E[(g2)itj−1
(θ)cis(θ0,2)] = O(1) uniformly in tj−1 ≤ s ≤ tj, j, i thanks to infx,µ c(θ2, x, µ) >

0 by IIA3, linear growth of a(θ0,2, ·), b(θ1, ·) by IIA2 and moment bounds in Lemma II.5.1(1).
We conclude that E[(gitj−1

(θ)Ai
j)

2] = O(∆n) uniformly in i, j, which in turn implies

E[(ρNn,2(θ))2] = O
(
N−1

)
.

Finally, let us show (II.6.8) in case k = 1. For this purpose, use

E[|gitj−1
(θ)Bi

j|] ≤
∫ tj

tj−1

E[|gitj−1
(θ)(bis(θ0,1)− bitj−1

(θ0,1))|]ds
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and then the Cauchy–Schwarz inequality. Note E[(g2)itj−1
(θ)] = O(1) uniformly in

j, i follows in the same way as above. Lipschitz continuity of b(θ0,1, ·) by IIA2 and
moment bounds in Lemma II.5.1(2) and (4) imply E[(bis(θ0,1)−bitj−1

(θ0,1))
2] = O(∆n)

uniformly in tj−1 ≤ s ≤ tj, j, i. We conclude that

E[|ρNn,1|] = O(∆
1
2
n ).

This completes the proof of Step 3.

• Step 4. Recall the decomposition (II.6.4), (II.6.7). It is enough to show tightness
of

θ 7→ INn (θ), θ 7→ ρNn,k(θ), k = 1, 2.

Our approach to showing tightness of both sequences are based upon [62, Theorem
14.5]. We need to show that for all N, n:

E
[
sup
θ

∥∇θI
N
n (θ)∥

]
≤ C, E

[
sup
θ

∥∇θρ
N
n,1(θ)∥

]
≤ C. (II.6.11)

The above bounds follow if for all N, n, and i, j, tj−1 ≤ s ≤ tj,

E
[
sup
θ

∥∇θh
i
tj−1

(θ)∥
]
≤ C, E

[
|bis(θ0,1)| sup

θ
∥∇θg

i
tj−1

(θ)∥
]
≤ C, (II.6.12)

where h, g : Θ × R × P2 → R are defined by (II.6.3). In ∇θkh,∇θkg, k = 1, 2,
we note ∇θ1(b(θ0,1, ·) − b(θ1, ·)) = −∇θ1b(θ1, ·). Moreover, by the mean value theo-
rem, |b(θ0,1, ·) − b(θ1, ·)| ≤ C supθ1 ∥∇θ1b(θ1, ·)∥ for all θ1 ∈ Θ1, since Θ1 is convex,
bounded. Additionally using infθ2,x,µ c(θ2, x, µ) > 0 by IIA3, we get

∥∇θ1g(θ, ·)∥ ≤ C sup
θ1

∥∇θ1b(θ1, ·)∥, ∥∇θ2g(θ, ·)∥ ≤ C sup
θ1

∥∇θ1b(θ1, ·)∥ sup
θ2

∥∇θ2a(θ2, ·)∥,

and

∥∇θ1h(θ, ·)∥ ≤ C sup
θ1

∥∇θ1b(θ1, ·)∥2, ∥∇θ2h(θ, ·)∥ ≤ C sup
θ1

∥∇θ1b(θ1, ·)∥2 sup
θ2

∥∇θ2a(θ2, ·)∥

for all θ. We have the polynomial growth of supθ1 ∥∇θ1b(θ1, ·)∥, supθ2 ∥∇θ2a(θ2, ·)∥
thanks to assumption IIA4 and linear growth of b(θ0,1, ·) thanks to IIA2. The
Cauchy-Schwarz inequality and moment bounds in Lemma II.5.1(1) yield (II.6.12)
and so (II.6.11).
Following the approach of [58, Theorem 20 in Appendix 1], we want to show that
for all N, n and θ, θ′ ∈ Θ,

E[|ρNn,2(θ)|2] ≤ C, E[|ρNn,2(θ)− ρNn,2(θ
′)|2] ≤ C∥θ − θ′∥22.

We note that the second relation implies the first one because ρNn,2(θ) = 0 with
θ1 = θ0,1 and Θ2 is bounded. In the same way as in (II.6.10) we get

E[|ρNn,2(θ)− ρNn,2(θ
′)|2] = 1

N2

N∑
i=1

n∑
j=1

E[|(gitj−1
(θ)− gitj−1

(θ′))Ai
j|2],
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where the Itô isometry gives

E[|(gitj−1
(θ)− gitj−1

(θ′))Ai
j|2] =

∫ tj

tj−1

E[(gitj−1
(θ)− gitj−1

(θ′))2cis(θ0,2)]ds.

By the mean value theorem,

|g(θ, ·)− g(θ′, ·)| ≤ ∥θ − θ′∥ sup
θ

∥∇θg(θ, ·)∥

since Θ is convex. Then

E
[
sup
θ

∥∇θg
i
tj−1

(θ)∥2cis(θ0,2)
]
≤ C

for all tj−1 ≤ s ≤ tj, j, i and N, n follows in a similar way as the second bound in
(II.6.12) does using, in addition, linear growth of a(θ0,2, ·), which follows from its
Lipschitz continuity by IIA2.

• Step 1. We want to prove that for every θ ∈ Θ,

∆n

N
SN
n (θ)

P−→ J(θ2) =

∫ T

0

∫
R
f(θ2, x, µ̄t)µ̄t(dx)dt, (II.6.13)

where

f(θ2, x, µ) =
c(θ0,2, x, µ)

c(θ2, x, µ)
+ log c(θ2, x, µ)

for every (θ2, x, µ) ∈ Θ2 × R× P2. For this purpose, in ∆nS
N
n (θ) let us decompose

every term as

(X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))
2

citj−1
(θ2)

+ ∆n(log c)
i
tj−1

(θ2) = ∆nf
i
tj−1

(θ2) + rij. (II.6.14)

We can decompose rij further with

X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1) = Bi
j(θ1) + Ai

j, (II.6.15)

where

Bi
j(θ1) =

∫ tj

tj−1

bis(θ0,1)ds−∆nb
i
tj−1

(θ1), Ai
j =

∫ tj

tj−1

ais(θ0,2)dW
i
s , (II.6.16)

note

Etj−1
[(Ai

j)
2] =

∫ tj

tj−1

cis(θ0,2)ds.

We get

rij =
2∑

k=0

rij,k, where rij,k =
H i

j,k

citj−1
(θ2)

, k = 0, 1, 2, (II.6.17)
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and

H i
j,2 = (Ai

j)
2 − Etj−1

[(Ai
j)

2], H i
j,1 = 2Ai

jB
i
j(θ1) + (Bi

j(θ1))
2,

H i
j,0 = Etj−1

[(Ai
j)

2]−∆nc
i
tj−1

(θ0,2).

Our proof of (II.6.13) consists of the following steps:

∆n

N

N∑
i=1

n∑
j=1

f i
tj−1

(θ2)
P−→ J(θ2),

1

N

N∑
i=1

n∑
j=1

rij,k
L1

−→ 0, k = 0, 1, 2. (II.6.18)

Let us start from the convergence in (II.6.18) for k = 2. It is enough to show
that supi E[(

∑
j r

i
j,2)

2] = o(1). We note that E[rij1,2r
i
j2,2

] = 0, j1 ̸= j2, since

Etj−1
[rij,2] = 0. We are left to show that supi

∑
j E[(rij,2)2] = o(1). Thanks to assump-

tion IIA3 it reduces to showing supi

∑
j E[(H i

j,2)
2] = o(1), where Etj−1

[(H i
j,2)

2] =

Etj−1
[(Ai

j)
4]− (Etj−1

[(Ai
j)

2])2 leads to E[(H i
j,2)

2] ≤ E[(Ai
j)

4] for all i, j. Furthermore,
by the Burkholder-Davis-Gundy inequality and Jensen’s inequality,

E[(Ai
j)

4] ≤ CE
[( ∫ tj

tj−1

cis(θ0,2)ds
)2]

≤ C∆n

∫ tj

tj−1

E[(c2)is(θ0,2)]ds = O(∆2
n)

(II.6.19)
uniformly in i, j, where the last relation follows thanks to linear growth of a(θ0,2, ·) by
IIA2 and moment bounds in Lemma II.5.1(1). We conclude that supi,j E[(Ri

j,2)
2] =

O(∆2
n).

We now turn to the convergence in (II.6.18) for k = 1. It is enough to show
that n supi,j E[|rij,1|] = o(1). Assumption IIA3 implies E[|rij,1|] ≤ CE[|H i

j,1|] for all
i, j, where supi,j E[(Ai

j)
2] = O(∆n) follows from (II.6.19). Moreover, by Jensen’s

inequality,

E[(Bi
j(θ1))

2] ≤ 2∆n

∫ tj

tj−1

E[(bis(θ0,1))2]ds+ 2∆2
nE[(bitj−1

(θ1))
2] = O(∆2

n)

uniformly in i, j, where the last relation follows thanks to linear growth of b(θ1, ·)
for every θ1 by IIA2 and moment bounds in Lemma II.5.1(1). We conclude that

supi,j E[|rij,1|] = O(∆
3
2
n ).

Next, we consider the convergence in (II.6.18) for k = 0. It is enough to show that
n supi,j E[|rij,0|] = o(1). Assumption IIA3 implies E[|rij,0|] ≤ CE[|H i

j,0|], where

E[|H i
j,0|] ≤

∫ tj

tj−1

E[|cis(θ0,2)− citj−1
(θ0,2)|]ds.

Lipschitz continuity of a(θ0,2, ·) and Lemma II.5.1(2) and (4) imply E[(ais(θ0,2) −
aitj−1

(θ0,2))
2] = O(∆n) uniformly in tj−1 ≤ s ≤ tj, j, i. Finally, linear growth of

a(θ0,2, ·) and moment bounds in Lemma II.5.1(1) guarantee E[(ais(θ0,2)+aitj−1
(θ0,2))

2] =
O(1) uniformly in tj−1 ≤ s ≤ tj, j, i. We conclude by Cauchy-Schwarz inequality

that E[|cis(θ0,2) − citj−1
(θ0,2)|] = O(∆

1
2
n ) uniformly in tj−1 ≤ s ≤ tj, j, i, whence

supi,j E[|rij,0|] = O(∆
3
2
n ).
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The first relation in (II.6.18) follows from Lemma II.5.2 if the function f(θ2, ·) is
locally Lipschitz with polynomial growth. To check this assumption, use | log y1 −
log y2| ≤ |y1 − y2|/min(y1, y2) for y1, y2 > 0 and assumption IIA3. Note b(θ1, ·),
a(θ2, ·) are Lipschitz continuous and have linear growth by IIA2. Hence, the function
f(θ2, ·) satisfies the assumption of Lemma II.5.2.
• Step 2. We want to prove that the sequence ∆n

N
SN
n (θ) in (C(Θ;R), ∥ · ∥∞) is tight.

So we have to show that for all N, n,

∆n

N
E
[
sup
θ

2∑
k=1

∥∇θkS
N
n (θ)∥

]
≤ C.

We have

∇θkS
N
n (θ) =

N∑
i=1

n∑
j=1

ζ ij,k(θ), k = 1, 2,

where

ζ ij,1(θ) = −
2(X i

tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))

citj−1
(θ2)

∇θ1b
i
tj−1

(θ1),

ζ ij,2(θ) = −
(X i

tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))
2

∆n(c2)itj−1
(θ2)

∇θ2c
i
tj−1

(θ2) +
1

citj−1
(θ2)

∇θ2c
i
tj−1

(θ2).

It suffices to show that for all N, n and i, j,

E
[
sup
θ

∥ζ ij,k(θ)∥
]
≤ C, k = 1, 2. (II.6.20)

Using IIA3 and the Cauchy-Schwarz inequality, we get

E
[
sup
θ

∥ζ ij,1(θ)∥
]
≤ C

(
E
[
sup
θ1

|X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1)|2
]) 1

2
(
E
[
sup
θ1

∥∇θ1b
i
tj−1

(θ1)∥2
]) 1

2 ,

E
[
sup
θ

∥ζ ij,2(θ)∥
]
≤ C

∆n

(
E
[
sup
θ1

|X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1)|4
]) 1

2
(
E
[
sup
θ2

∥∇θ2a
i
tj−1

(θ2)∥2
]) 1

2

+ CE
[
sup
θ2

∥∇θ2a
i
tj−1

(θ2)∥
]
.

We use polynomial growth of supθ1 ∥∇θ1b(θ1, ·)∥, supθ2 ∥∇θ2a(θ2, ·)∥ and moment
bounds in Lemma II.5.1(1). Moreover, Lemma II.5.1(2) gives supi,j E[|X i

tj
−X i

tj−1
|4] =

O(∆2
n). Finally, b(θ0,1, ·) has a linear growth and the mean value theorem implies

b(θ1, ·)− b(θ0,1, ·) =
∫ 1

0
∇θ1b(θ0,1+(θ1− θ0,1)u, ·)du · (θ1− θ0,1) for all θ1 in Θ1, where

Θ1 is convex, bounded and we recall that supθ1 ∥∇θ1b(θ1, ·)∥ has polynomial growth.
The moment bounds in Lemma II.5.1(1) imply E[supθ1 |b

i
tj−1

(θ1)|4] ≤ C, completing
the proof of (II.6.20).

II.6.1.1 Proof of Theorem II.3.1

Proof. Assumption IIA5 implies that for every ε > 0 there exists η > 0 such that
J(θ2) − J(θ0,2) > η for every θ2 with ∥θ2 − θ0,2∥ ≥ ε. Thus {∥θ̂Nn,2 − θ0,2∥ ≥ ε} ⊆
{J(θ̂Nn,2)−J(θ0,2) > η}. The probability of the latter event converges to 0 in view of

J(θ̂Nn,2)− J(θ0,2) = JN
n,0 + JN

n,1,
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where the definition of θ̂Nn and (II.6.1) imply respectively

JN
n,0 :=

∆n

N
(SN

n (θ̂Nn,1, θ̂
N
n,2)− SN

n (θ̂Nn,1, θ0,2)) ≤ 0,

JN
n,1 := J(θ̂Nn,2)− J(θ0,2)− JN

n,0 ≤ 2 sup
(θ1,θ2)∈Θ

∣∣∣∆n

N
SN
n (θ1, θ2)− J(θ2)

∣∣∣ = oP(1).

Consistency of θ̂Nn,1 follows in a similar way. Assumption IIA5 implies that for every
ε > 0 there exists η > 0 such that I(θ1, θ2) > η for every (θ1, θ2) with ∥θ1−θ0,1∥ ≥ ε.

Thus {∥θ̂Nn,1 − θ0,1∥ ≥ ε} ⊆ {I(θ̂Nn,1, θ̂Nn,2) > η}. The probability of the latter event
converges to 0 because

I(θ̂Nn,1, θ̂
N
n,2) = INn,0 + INn,1,

where the definition of θ̂Nn and (II.6.2) imply respectively

INn,0 :=
1

N
(SN

n (θ̂Nn,1, θ̂
N
n,2)− SN

n (θ0,1, θ̂
N
n,2)) ≤ 0,

INn,1 := I(θ̂Nn,1, θ̂
N
n,2)− INn,0 = oP(1).

II.6.2 Asymptotic normality

The proof of the asymptotic normality of our estimator is obtained following a
classical route. It consists in proving the asymptotic normality of the first derivative
of the contrast function (II.2.1) (see for example [47, Section 5a]). We introduce in
particular the appropriate normalization matrix

MN
n := diag

( 1√
N
, . . . ,

1√
N︸ ︷︷ ︸

p1 times

,

√
∆n

N
, . . . ,

√
∆n

N︸ ︷︷ ︸
p2 times

)
.

The proof of Theorem II.3.2 is based on the following proposition.

Proposition II.6.2. Assume IIA1- IIA4(I) and (II), IIA7. If N∆n → 0 then as
N, n → ∞,

∇θS
N
n (θ0)M

N
n

L−→ N (0, 2Σ(θ0)),

where Σ(θ0) is a p× p matrix defined in IIA6.

We observe that, as ∇θS
N
n (θ̂Nn ) = 0, by Taylor’s formula we obtain

(θ̂Nn − θ0)

∫ 1

0

∇2
θS

N
n (θ0 + s(θ̂Nn − θ0))ds = −∇θS

N
n (θ0). (II.6.21)

Multiplying the equation (II.6.21) by MN
n , we obtain

(θ̂Nn − θ0)(M
N
n )−1

∫ 1

0

ΣN
n (θ0 + s(θ̂Nn − θ0))ds = −∇θS

N
n (θ0)M

N
n , (II.6.22)
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where

ΣN
n (θ) := MN

n ∇2
θS

N
n (θ)MN

n =

(
Σ

N,(1)
n (θ) Σ

N,(12)
n (θ)

Σ
N,(21)
n (θ) Σ

N,(2)
n (θ)

)
with

ΣN,(1)
n (θ) = (1/N)∇2

θ1
SN
n (θ),

ΣN,(21)
n (θ) = (

√
∆n/N)∇θ2∇θ1S

N
n (θ),

ΣN,(12)
n (θ) = (

√
∆n/N)∇θ1∇θ2S

N
n (θ),

ΣN,(2)
n (θ) = (∆n/N)∇2

θ2
SN
n (θ).

The analysis of the second derivatives of the contrast function is gathered in the
following proposition, which will be proven at the end of this section.

Proposition II.6.3. Assume IIA1- IIA5 with both (I) and (II) in IIA4. Then as
N, n → ∞,

1. ΣN
n (θ0)

P−→ Σ(θ0),

2. sups∈[0,1] ∥ΣN
n (θ0+s(θ̂Nn −θ0))−ΣN

n (θ0)∥
P−→ 0, where ∥ ·∥ refers to the operator

norm on the space of p×p matrices induced by the Euclidean norm for vectors.

By Proposition II.6.3 assumption IIA6 implies that the probability that
∫ 1

0
ΣN

n (θ0+

s(θ̂Nn − θ0))ds is invertible tends to 1. Applying its inverse to the equation (II.6.22),
by Proposition II.6.2 and the continuous mapping theorem, we get(√

N(θ̂Nn,1 − θ0,1),
√

N/∆n(θ̂
N
n,2 − θ0,2)

)
= (θ̂Nn − θ0)(M

N
n )−1 L−→ N

(
0, 2(Σ(θ0))

−1
)
.

II.6.3 Proof of Proposition II.6.2

Proof. As in the proof of consistency, we omit the notation for dependence on N, n.
In particular, we writeX i

t forX
i,N
t , µt for µ

N
t , tj for tj,n. Denote by f

i
tj−1

(θ) the values

of f(θ,X i
tj−1

, µtj−1
). We note that −∇θS

N
n (θ)MN

n consists of −∂θ1,hS
N
n (θ)/

√
N =:∑n

j=1 ξ
(1)
j,h(θ) and −

√
∆n/N∂θ2,h̃S

N
n (θ) =:

∑n
j=1 ξ

(2)

j,h̃
(θ), where

ξ
(1)
j,h(θ): =

1√
N

N∑
i=1

2
∂θ1,hb

i
tj−1

(θ1)

citj−1
(θ2)

(X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1)),

ξ
(2)

j,h̃
(θ): =

√
∆n

N

N∑
i=1

∂θ2,h̃c
i
tj−1

(θ2)

∆n(citj−1
(θ2))2

(X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))
2 −

∂θ2,h̃c
i
tj−1

(θ2)

citj−1
(θ2)

for h = 1, . . . , p1, h̃ = 1, . . . , p2. To prove the asymptotic normality of−∇θS
N
n (θ0)M

N
n

we want to use a central limit theorem for martingale difference arrays, in accor-
dance with Theorems 3.2 and 3.4 of [57]. Approximation of −∇θS

N
n (θ0)M

N
n by a

martingale array follows from

n∑
j=1

Etj−1
[ξ

(1)
j,h(θ0)]

P−→ 0,
n∑

j=1

Etj−1
[ξ

(2)

j,h̃
(θ0)]

P−→ 0 (II.6.23)
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for h = 1, . . . , p1, h̃ = 1, . . . , p2. Moreover, application of the central limit theorem
requires that for some r > 0 the following convergences hold:

n∑
j=1

Etj−1
[ξ

(1)
j,h1

(θ0)ξ
(1)
j,h2

(θ0)]
P−→ 4

∫ T

0

∫
R

∂θ1,h1 b(θ0,1, x, µ̄t)∂θ1,h2 b(θ0,1, x, µ̄t)

c(θ0,2, x, µ̄t)
µ̄t(dx)dt,

(II.6.24)
n∑

j=1

Etj−1
[ξ

(2)

j,h̃1
(θ0)ξ

(2)

j,h̃2
(θ0)]

P−→ 2

∫ T

0

∫
R

∂θ2,h̃1
c(θ0,2, x, µ̄t)∂θ2,h̃2

c(θ0,2, x, µ̄t)

c2(θ0,2, x, µ̄t)
µ̄t(dx)dt,

(II.6.25)
n∑

j=1

Etj−1
[ξ

(1)
j,h(θ0)ξ

(2)

j,h̃
(θ0)]

P−→ 0, (II.6.26)

n∑
j=1

Etj−1
[|ξ(1)j,h(θ0)|

2+r]
P−→ 0,

n∑
j=1

Etj−1
[|ξ(2)

j,h̃
(θ0)|2+r]

P−→ 0, (II.6.27)

where h, h1, h2 = 1, . . . , p1, h̃, h̃1, h̃2 = 1, . . . , p2.

• Proof of (II.6.23).
Assumptions IIA3 and IIA4(I) imply that F i

j,h := 2∂θ1,hb
i
tj−1

(θ0,1)(c
i
tj−1

(θ0,2))
−1 sat-

isfies |F i
j,h| ≤ C(1 + |X i

tj−1
|k1 + W l1

2 (µtj−1
, δ0)). Hence, from Lemma II.5.1(1) it is

easy to see that F i
j,h = Ri

tj−1
(1). If N∆n → 0 then Lemma II.5.3(3) implies

n∑
j=1

Etj−1
[ξ

(1)
j,h(θ0)] =

1

N
1
2

N∑
i=1

n∑
j=1

Ri
tj−1

(1)Ri
tj−1

(∆
3
2
n )

L1

−→ 0

and so the convergence in probability. In a similar way, using Lemma II.5.3(1), we
obtain

n∑
j=1

Etj−1
[ξ

(2)

j,h̃
(θ0)] =

(∆n

N

) 1
2

N∑
i=1

n∑
j=1

∂θ2,h̃c
i
tj−1

(θ0,2)

∆n(citj−1
(θ0,2))2

(∆nc
i
tj−1

(θ0,2) +Ri
tj−1

(∆2
n))−

∂θ2,h̃c
i
tj−1

(θ0,2)

citj−1
(θ0,2)

=
(∆n

N

) 1
2

N∑
i=1

n∑
j=1

∂θ2,h̃c
i
tj−1

(θ0,2)

∆n(citj−1
(θ0,2))2

Ri
tj−1

(∆2
n)

=
(∆n

N

) 1
2

N∑
i=1

n∑
j=1

Ri
tj−1

(∆n),

which converges to 0 in L1 and so in probability if N∆n → 0.

• Proof of (II.6.24).
We have

Etj−1
[ξ

(1)
j,h1

(θ0)ξ
(1)
j,h2

(θ0)] =
1

N

N∑
i1,i2=1

Etj−1
[(Ai1

j +Bi1
j )(A

i2
j +Bi2

j )]F
i1
j,h1

F i2
j,h2

, (II.6.28)



40
Chapter II. Parameter estimation of discretely observed

interacting particle systems

where

F i
j,h := 2

∂θ1,hb
i
tj−1

(θ0,1)

citj−1
(θ0,2)

= Ri
tj−1

(1),

and

Bi
j :=

∫ tj

tj−1

(bis(θ0,1)− bitj−1
(θ0,1))ds, Ai

j :=

∫ tj

tj−1

ais(θ0,2)dW
i
s . (II.6.29)

We have Etj−1
[(Bi

j)
2] = Ri

tj−1
(∆3

n) and Etj−1
[(Ai

j)
2] = Ri

tj−1
(∆n), whereas if i1 ̸= i2

then Etj−1
[Ai1

j A
i2
j ] = 0 because of the independence of Brownian motions. Hence,

by the Cauchy-Schwarz inequality,

Etj−1
[(Ai1

j +Bi1
j )(A

i2
j +Bi2

j )] = Etj−1
[(Ai1

j )
2]1(i1 = i2) +Ri1,i2

tj−1
(∆2

n).

We get

n∑
j=1

Etj−1
[ξ

(1)
j,h1

(θ0)ξ
(1)
j,h2

(θ0)] =
1

N

n∑
j=1

N∑
i=1

Etj−1
[(Ai

j)
2]F i

j,h1
F i
j,h2

+
1

N

n∑
j=1

N∑
i1,i2=1

Ri1,i2
tj−1

(∆2
n),

where the last sum converges to 0 in L1 and so in probability if N∆n → 0. We
can therefore focus on the first sum. We decompose the term Etj−1

[(Ai
j)

2] into
∆nc

i
tj−1

(θ0,2) and

Etj−1
[(Ai

j)
2]−∆nc

i
tj−1

(θ0,2) =

∫ tj

tj−1

Etj−1
[cis(θ0,2)− citj−1

(θ0,2)]ds = Ri
tj−1

(∆
3
2
n ).

The result follows from ∆n → 0 and application of Lemma II.5.2.

• Proof of (II.6.27), first convergence.
We want to show (II.6.27) with r = 2. We use the same notation as in (II.6.28) and
consider the terms

Etj−1
[(Ai1

j +Bi1
j )(A

i2
j +Bi2

j )(A
i3
j +Bi3

j )(A
i4
j +Bi4

j )]F
i1
j,hF

i2
j,hF

i3
j,hF

i4
j,h. (II.6.30)

We have F i
j = Ri

tj−1
(1), moreover, Etj−1

[(Ai
j)

4] = Ri
tj−1

(∆2
n), Etj−1

[(Bi
j)

4] = Ri
tj−1

(∆6
n)

and so Etj−1
[(Ai

j+Bi
j)

4] = Ri
tj−1

(∆2
n). Application of the Cauchy-Schwarz inequality

shows that the term in (II.6.30) is also Ri1,i2,i3,i4
tj−1

(∆2
n). In case where i1, i2, i3, i4 are

pairwise distinct we decompose Ai
j into

Ai
j,2 :=

∫ tj

tj−1

(ais(θ0,2)− aitj−1
(θ0,2))dW

i
s , Ai

j,1 :=

∫ tj

tj−1

aitj−1
(θ0,2)dW

i
s , (II.6.31)

which satisfy Etj−1
[(Ai

j,k)
4] = Ri

tj−1
(∆2k

n ), k = 1, 2. In particular the independence
of the Brownian motions implies

Etj−1
[Ai1

j,1A
i2
j,1A

i3
j,1A

i4
j,k]F

i1
j,hF

i2
j,hF

i3
j,hF

i4
j,h = 0
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for k = 1, 2. The term converging to 0 at the slowest rate in (II.6.30) is then, up to
a permutation of the indices i1, i2, i3, i4,

Etj−1
[Ai1

j,1A
i2
j,1A

i3
j,2A

i4
j,2 + Ai1

j,1A
i2
j,1A

i3
j,1B

i4
j ]F

i1
j,hF

i2
j,hF

i3
j,hF

i4
j,h = Ri1,i2,i3,i4

tj−1
(∆3

n).

We get

n∑
j=1

Etj−1
[(ξ

(1)
j,h(θ0))

4] =
1

N2

n∑
j=1

(∑
i∈I

Ri
tj−1

(∆3
n) +

∑
i∈Ic

Ri
tj−1

(∆2
n)
)
, (II.6.32)

where I denotes a set of all i = (i1, i2, i3, i4) ∈ {1, . . . , N}4 such that i1, i2, i3, i4
are pairwise distinct. We note that card(I) = O(N4) and card(Ic) = O(N3). We
conclude that (II.6.32) converges to 0 in L1 and so in probability if N∆n → 0.

• Proof of (II.6.25).
We rewrite the left hand side of (II.6.25) as

∆n

N

n∑
j=1

N∑
i1,i2=1

∆−2
n Ci1

j,h̃1
Ci2

j,h̃2
Etj−1

[Di1
j D

i2
j ], (II.6.33)

where

Ci
j,h̃

:=
∂θ2,h̃c

i
tj−1

(θ0,2)

(citj−1
(θ0,2))2

= Ri
tj−1

(1), Di
j := (X i

tj
−X i

tj−1
−∆nb

i
tj−1

(θ0,1))
2−∆nc

i
tj−1

(θ0,2).

We consider the term Etj−1
[Di1

j D
i2
j ] in (II.6.33). By Lemma II.5.3(1) it equals

Etj−1
[(X i1

tj −X i1
tj−1

−∆nb
i1
tj−1

(θ0,1))
2(X i2

tj −X i2
tj−1

−∆nb
i2
tj−1

(θ0,1))
2] (II.6.34)

−∆nc
i1
tj−1

(θ0,2)∆nc
i2
tj−1

(θ0,2) +Ri1,i2
tj−1

(∆3
n).

If i1 = i2 then Lemma II.5.3(2) implies

Etj−1
[(X i

tj
−X i

tj−1
−∆nb

i
tj−1

(θ0,1))
4] = 3∆2

n(c
i
tj−1

(θ0,2))
2 +Ri

tj−1
(∆

5
2
n ),

whence
Etj−1

[(Di
j)

2] = 2∆2
n(c

i
tj−1

(θ0,2))
2 +Ri

tj−1
(∆

5
2
n ). (II.6.35)

If i1 ̸= i2 then to deal with the term in (II.6.34) we decompose

X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ0,1) = Ai
j,1 + Ai

j,2 +Bi
j

as in (II.6.29), (II.6.31), where Etj−1
[(Ai

j,k)
4] = Ri

tj−1
(∆2k

n ), k = 1, 2, and Etj−1
[(Bi

j)
4] =

Ri
tj−1

(∆6
n). We note that

Etj−1
[(Ai1

j,1)
2(Ai2

j,1)
2] = ∆nc

i1
j (θ0,2)∆nc

i2
j (θ0,2).

Moreover, we have
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Etj−1
[(Ai1

j,1)
2Ai2

j,1A
i2
j,2] = ci1tj−1

(θ0,2)a
i2
tj−1

(θ0,2)V
i1,i2
j ,

where independence of Brownian motions together with Itô isometry implies

V i1,i2
j := Etj−1

[
(W i1

tj −W i1
tj−1

)2
∫ tj

tj−1

dW i2
s

∫ tj

tj−1

(ai2s (θ0,2)− ai2tj−1
(θ0,2))dW

i2
s

]
=

∫ tj

tj−1

Etj−1
[(W i1

tj −W i1
tj−1

)2(ai2t (θ0,2)− ai2tj−1
(θ0,2))]dt. (II.6.36)

Assumption IIA7 allows us to apply Itô’s lemma to ai2t (θ0,2). We get that the
conditional expectation in (II.6.36) equals

Etj−1

[
(W i1

tj −W i1
tj−1

)2
∫ t

tj−1

N∑
k=1

(
bks(θ0,1)∂xk

ai2s (θ0,2) +
1

2
cks(θ0,2)∂

2
xk
ai2s (θ0,2)

)
ds
]

+ Etj−1

[
(W i1

tj −W i1
tj−1

)2
∫ t

tj−1

N∑
k=1

aks(θ0,2)∂xk
ai2s (θ0,2)dW

k
s

]
.

The first term is clearly a Ri1,i2
tj−1

(∆2
n) function. Regarding the second one, for k ̸= i1,

the independence of the Brownian motions makes it directly equal to 0. For k = i1,
instead, we have

Etj−1

[
(W i1

tj −W i1
tj−1

)2
∫ t

tj−1

ai1s (θ0,2)∂xi1
ai2s (θ0,2)dW

i1
s

]
,

where under IIA7 we obtain

∂xi1
ai2s (θ0,2) := ∂yã

(
X i2

s ,
1

N

N∑
l=1

K(X i2
s , X l

s)
) 1

N
∂yK(X i2

s , X i1
s )

with ∂yã, ∂yK having polynomial growth. Using the Cauchy-Schwarz inequality, it
follows that the above quantity is upper bounded by(

3∆2
nEtj−1

[( ∫ t

tj−1

ai1s (θ0,2)∂xi1
ai2s (θ0,2)dW

i1
s

)2]) 1
2

=
(
3∆2

n

∫ t

tj−1

Etj−1
[(ai1s (θ0,2)∂xi1

ai2s (θ0,2))
2]ds

) 1
2
=

1

N
Ri1,i2

tj−1
(∆

3
2
n ).

It implies

Etj−1
[(Ai1

j,1)
2Ai2

j,1A
i2
j,2] = Ri1,i2

tj−1
(∆3

n) +
1

N
Ri1,i2

tj−1
(∆

5
2
n ). (II.6.37)

We conclude that

Etj−1
[(X i1

tj −X i1
tj−1

−∆nb
i1
tj−1

(θ0,1))
2(X i2

tj −X i2
tj−1

−∆nb
i2
tj−1

(θ0,1))
2]
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= ∆nc
i1
j (θ0,2)∆nc

i2
j (θ0,2) +Ri1,i2

tj−1
(∆3

n) +
1

N
Ri1,i2

tj−1
(∆

5
2
n ),

whence

Etj−1
[Di1

j D
i2
j ] = Ri1,i2

tj−1
(∆3

n) +
1

N
Ri1,i2

tj−1
(∆

5
2
n ) (II.6.38)

if i1 ̸= i2. Finally, we plug (II.6.35), (II.6.38) back into (II.6.33), where use of the
conditions N∆n → 0, ∆n → 0 and Lemma II.5.2 completes the proof of the conver-
gence in (II.6.25).

• Proof of (II.6.27), second convergence.
We prove it for r = 2. We use the same notation as in (II.6.33) and rewrite the left
hand side of (II.6.27) as

∆2
n

N2

n∑
j=1

N∑
i1,i2,i3,i4=1

∆−4
n Ci1

j,h̃
Ci2

j,h̃
Ci3

j,h̃
Ci4

j,h̃
Etj−1

[Di1
j D

i2
j D

i3
j D

i4
j ]. (II.6.39)

We have Etj−1
[(Di

j)
4] = Ri

tj−1
(∆4

n) and card(Ic) = O(N3), where I denotes a set

of all i = (i1, i2, i3, i4) ∈ {1, . . . , N}4 such that i1, i2, i3, i4 are pairwise distinct.
In (II.6.39) the sum over i ∈ Ic converges to 0 in L1 and so in probability since
N∆n → 0. In case i ∈ I we use the decomposition

Di
j = (Ai

j,1 + Ai
j,2 +Bi

j)
2 −∆nc

i
tj−1

(θ0,2)

= (Ai
j,2 +Bi

j)(2A
i
j,1 + Ai

j,2 +Bi
j) + (Ai

j,1)
2 −∆nc

i
tj−1

(θ0,2).

We note that

Etj−1
[((Ai

j,1)
2 −∆nc

i
tj−1

(θ0,2))
4] = Ri

tj−1
(∆4

n),

Etj−1
[(Ai

j,k)
8] = Ri

tj−1
(∆4k

n ), k = 1, 2, Etj−1
[(Bi

j)
8] = Ri

tj−1
(∆12

n ).

Moreover, because of the independence of Brownian motions, we have

Etj−1

[ 4∏
k=1

((Aik
j,1)

2 −∆nc
ik
tj−1

(θ0,2))
]
= 0

and in a similar manner as in (II.6.37) under IIA7 we have

Etj−1

[
Ai1

j,2A
i1
j,1

4∏
k=2

((Aik
j,1)

2 −∆nc
ik
tj−1

(θ0,2))
]

= ai1tj−1
(θ0,2)

4∏
k=2

ciktj−1
(θ0,2)

∫ tj

tj−1

Etj−1

[
(ai1s (θ0,2)− ai1tj−1

(θ0,2))
4∏

l=2

((W il
tj −W il

tj−1
)2 −∆n)

]
ds

= Ri1,i2,i3,i4
tj−1

(∆5
n) +

1

N
Ri1,i2,i3,i4

tj−1
(∆

9
2
n ),

whence it follows

Etj−1
[Di1

j D
i2
j D

i3
j D

i4
j ] = Ri1,i2,i3,i4

tj−1
(∆5

n) +
1

N
Ri1,i2,i3,i4

tj−1
(∆

9
2
n ).
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We recall that card(I) = O(N4). Since N∆n → 0, ∆n → 0, the sum over i ∈ I in
(II.6.39) converges to 0 in L1 and so in probability.

• Proof of (II.6.26).
We rewrite the left hand side of (II.6.26) as

∆
1
2
n

N

n∑
j=1

N∑
i1,i2=1

Etj−1
[(Ai1

j,1 + Ai1
j,2 +Bi1

j )D
i2
j ]∆

−1
n Ci2

j,h̃
F i1
j,h, (II.6.40)

where

Di
j = (Ai

j,2 +Bi
j)(2A

i
j,1 + Ai

j,2 +Bi
j) + (Ai

j,1)
2 −∆nc

i
tj−1

(θ0,2)

with the notations introduced above. We recall that F i
j,h = Ri

tj−1
(1), Ci

j,h̃
=

Ri
tj−1

(1), Etj−1
[(Bi

j)
4] = Ri

tj−1
(∆6

n), Etj−1
[(Ai

j,k)
4] = Ri

tj−1
(∆2k

n ), k = 1, 2, and so

Etj−1
[((Ai

j,1)
2 −∆nc

i
tj−1

(θ0,2))
2] = Ri

tj−1
(∆2

n). We note that

Etj−1
[Ai1

j,1((A
i2
j,1)

2 −∆nc
i2
tj−1

(θ0,2))] = 0

for all i1, i2. This is a consequence of the independence of the Brownian motions for
i1 ̸= i2, while for i1 = i2 it derives from the fact that the odd moments are centered.
Hence, in case i1 = i2 = i the term Etj−1

[(Ai
j,1)

2Ai
j,2] makes the main contribution

to
Etj−1

[(Ai
j,1 + Ai

j,2 +Bi
j)D

i
j] = Ri

tj−1
(∆2

n).

Now we can see that the sum over i1 = i2 in (II.6.40) converges to 0 in L1 and so in
probability. In case i1 ̸= i2 we have

Etj−1
[Ai1

j,2((A
i2
j,1)

2 −∆nc
i2
tj−1

(θ0,2))] = 0.

Moreover,

Etj−1
[Ai1

j,1A
i2
j,1A

i2
j,2] = ai1tj−1

(θ0,2)a
i2
tj−1

(θ0,2)

∫ tj

tj−1

Etj−1
[(W i1

tj −W i1
tj−1

)(ai2s (θ0,2)− ai2tj−1
(θ0,2)]ds.

The application of Itô’s lemma to ai2s (θ0,2) under IIA7 similarly as in the proof of
(II.6.37) provides

Etj−1
[Ai1

j,1A
i2
j,1A

i2
j,2] = Ri1,i2

tj−1
(∆

5
2
n ) +

1

N
Ri1,i2

tj−1
(∆2

n).

We conclude that

Etj−1
[(Ai1

j,1 + Ai1
j,2 +Bi1

j )D
i2
j ] = Ri1,i2

tj−1
(∆

5
2
n ) +

1

N
Ri1,i2

tj−1
(∆2

n).

in case i1 ̸= i2. Hence, the sum over i1 ̸= i2 in (II.6.40) converges to 0 in L1 and so
in probability when N∆n → 0, ∆n → 0. This concludes the proof of the asymptotic
normality of −∇θS

N
n (θ0)M

N
n .
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II.6.4 Proof of Proposition II.6.3

Proof. The proof relies on the computation of the second derivatives of the contrast
function. We have that, for any k, l = 1, . . . , p1,

∂θ1,k∂θ1,lS
N
n (θ) = 2

N∑
i=1

n∑
j=1

{
∆n

∂θ1,kb
i
tj−1

(θ1)∂θ1,lb
i
tj−1

(θ1)

citj−1
(θ2)

−
∂θ1,k∂θ1,lb

i
tj−1

(θ1)

citj−1
(θ2)

(X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))
}
,

where the last factor can further be decomposed into ∆n(b
i
tj−1

(θ0,1)− bitj−1
(θ1)) and

X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ0,1). We can see that ∂θ1,k∂θ1,lS
N
n (θ)/N converges to

Σ
(1)
kl (θ) := 2

∫ 1

0

∫
R

{∂θ1,kb(θ1, x, µ̄t)∂θ1,lb(θ1, x, µ̄t)

c(θ2, x, µ̄t)
(II.6.41)

−
∂θ1,k∂θ1,lb(θ1, x, µ̄t)

c(θ2, x, µ̄t)
(b(θ0,1, x, µ̄t)− b(θ1, x, µ̄t))

}
µ̄t(dx)dt

uniformly in θ in probability. Indeed, the proof follows along the lines of the proof
of (II.6.1). We refer to Steps 3, 4 of the proof of Lemma II.6.1, where in (II.6.5)
in INn (θ), ρNn (θ) it is enough to replace the functions h(θ, ·) and g(θ, ·) with the
integrand of (II.6.41) and ∂θ1,k∂θ1,lb(θ1, ·)/c(θ2, ·) respectively, and to check them for
the respective conditions. We note that both functions have polynomial growth.
Moreover, the integrand in (II.6.41) is locally Lipschitz continuous, which allows us
to apply Lemma II.5.2 and yields the convergence in probability of the sequence
∂θ1,k∂θ1,lS

N
n (θ)/N for every θ. To get tightness in (C(Θ;R), ∥ · ∥∞), we use that

uniformly in θ the partial derivatives with respect to θi′,j′ , j
′ = 1, . . . , pi′ , i

′ = 1, 2,
of the two functions have polynomial growth.

In the same way as above we get that for any k = 1, . . . , p1, l = 1, . . . , p2, once
multiplied by

√
∆n/N ,

∂θ1,k∂θ2,lS
N
n (θ) = 2

N∑
i=1

n∑
j=1

∂θ1,kb
i
tj−1

(θ1)∂θ2,lc
i
tj−1

(θ2)

(citj−1
(θ2))2

(X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1)),

converges to 0 uniformly in θ in probability.

Finally, we have that for any k, l = 1, . . . , p2,

∂θ2,k∂θ2,lS
N
n (θ) =

N∑
i=1

n∑
j=1

{∂θ2,k∂θ2,lcitj−1
(θ2)c

i
tj−1

(θ2)− ∂θ2,kc
i
tj−1

(θ2)∂θ2,lc
i
tj−1

(θ2)

(citj−1
(θ2))2

+
2∂θ2,kc

i
tj−1

(θ2)∂θ2,lc
i
tj−1

(θ2)− ∂θ2,k∂θ2,lc
i
tj−1

(θ2)c
i
tj−1

(θ2)

∆n(citj−1
(θ2))3

× (X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))
2
}
,
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where the last factor can further be decomposed into (X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))
2 −

∆nc
i
tj−1

(θ0,2) and ∆nc
i
tj−1

(θ0,2). We note that (∆n/N)∂θ2,k∂θ2,lS
N
n (θ) converges to

Σ
(2)
kl (θ) :=

∫ T

0

∫
R

{∂θ2,k∂θ2,lc(θ2, x, µ̄t)c(θ2, x, µ̄t)− ∂θ2,kc(θ2, x, µ̄t)∂θ2,lc(θ2, x, µ̄t)

c(θ2, x, µ̄t)2

+
2∂θ2,kc(θ2, x, µ̄t)∂θ2,lc(θ2, x, µ̄t)− ∂θ2,k∂θ2,lc(θ2, x, µ̄t)c(θ2, x, µ̄t)

c(θ2, x, µ̄t)3

× c(θ0,2, x, µ̄t)
}
µ̄t(dx)dt

uniformly in θ in probability. We will prove the uniform in θ convergence to the
second term of Σ

(2)
kl (θ) only:

n∑
j=1

χN
n,j(θ)

P−→ Σ̃
(2)
kl (θ) :=

∫ T

0

∫
R
f̃(θ2, x, µ̄t)c(θ0,2, x, µ̄t)µ̄t(dx)dt, (II.6.42)

where

χN
n,j(θ) =

1

N

N∑
i=1

f̃ i
tj−1

(θ2)(X
i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))
2

and function f̃ : Θ2 × R × P → R is given by (2(∂θ2,kc)(∂θ2,lc) − (∂θ2,k∂θ2,lc)c)/c
3.

For every θ the convergence in (II.6.42) follows from

n∑
j=1

Etj−1
[χN

n,j(θ)]
P−→ Σ̃

(2)
kl (θ),

n∑
j=1

Etj−1
[(χN

n,j(θ))
2]

P−→ 0

by [47, Lemma 9]. Indeed, the above relations hold, because by Lemma II.5.3(1),

Etj−1
[χN

n,j(θ)] =
1

N

N∑
i=1

f̃ i
tj−1

(θ2)(∆nc
i
tj−1

(θ0,2) +Ri
tj−1

(∆3/2
n )),

by Jensen’s inequality and Lemma II.5.3(2),

Etj−1
[(χN

n,j(θ))
2] ≤ 1

N

N∑
i=1

(f̃ i
tj−1

(θ2))
2Ri

tj−1
(∆2

n),

by polynomial growth of ∂i′

θ2,j′
c(θ2, ·), i′ = 0, 1, 2, j′ = 1, . . . , p2, IIA3 and Point 1. of

Lemma II.5.1,

(f̃ i
tj−1

(θ2))
2 = Ri

tj−1
(1).

The tightness in (C(Θ;R), ∥ · ∥∞) follows from E[supθ ∥∇θ

∑n
j=1 χ

N
n,j(θ)∥] = O(1).

Indeed, we have

∇θ1χ
N
n,j(θ) = −2

∆n

N

N∑
i=1

∇θ1b
i
tj−1

(θ1)f̃
i
tj−1

(θ2)(X
i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1)),
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∇θ2χ
N
n,j(θ) =

1

N

N∑
i=1

∇θ2 f̃
i
tj−1

(θ2)(X
i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1))
2,

where by polynomial growth of supθ1 ∥∇θ1b(θ1, ·)∥, supθ2 |∂
i′

θ2,j′
c(θ2, ·)|, i′ = 0, 1, 2, 3,

j′ = 1, . . . , p2, and IIA3,

sup
θ

∥∇θ1b
i
tj−1

(θ1)f̃
i
tj−1

(θ2)∥ = Ri
tj−1

(1), sup
θ2

∥∇θ2 f̃
i
tj−1

(θ2)∥ = Ri
tj−1

(1)

and
sup
θ1

|X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ1)| ≤ |X i
tj
−X i

tj−1
|+∆n sup

θ1

|bitj−1
(θ1)|

with supθ1 |b
i
tj−1

(θ1)| = Ri
tj−1

(1). Finally, we have E[|X i
tj
−X i

tj−1
|4] ≤ C∆2

n uniformly
in i, j and N, n by Lemma II.5.1(2).
We conclude that the matrix ΣN

n (θ) converges to Σ(θ) = diag(Σ(1)(θ),Σ(2)(θ)) uni-
formly in θ and so at θ = θ0 in probability. Hence,

∥ΣN
n (θ0 + s(θ̂Nn − θ0))− ΣN

n (θ0)∥ ≤ oP(1) + ∥Σ(θ0 + s(θ̂Nn − θ0))− Σ(θ0)∥,

where the uniform convergence in probability (in s) of the last term to 0 follows
from continuity of Σ(θ) at θ = θ0 and consistency of the estimator sequence θ̂Nn .

II.7 Proof of technical results

II.7.1 Proof of Lemma II.5.1

Proof. Proof of Lemma II.5.1(1).
We have, for any i = 1, . . . , N , 0 ≤ t ≤ T , p ≥ 2,

E[|X i
t |p] ≤ E

[∣∣∣X i
0 +

∫ t

0

biu(θ0,1)du+

∫ t

0

aiu(θ0,2)dW
i
u

∣∣∣p]
≤ C

(
E[|X i

0|p] + tp−1

∫ t

0

E[|biu(θ0,1)|p]du+ t
p
2
−1

∫ t

0

E[|aiu(θ0,2)|p]du
)
,

where we have used the Burkholder-Davis-Gundy and Jensen inequalities. We ob-
serve that, as a consequence of the lipschitzianity gathered in IIA2, for the true value
of the parameter both coefficients are upper bounded by C(1 + |X i

u| +W2(µu, δ0)).
Due to Jensen’s inequality, we have

E[W p
2 (µu, δ0)] ≤

1

N

N∑
j=1

E[|Xj
u|p] = E[|X i

u|p].

The last identity follows from the fact that the particles are equally distributed. We
obtain

E[|X i
t |p] ≤ C

(
E[|X i

0|p] + (tp−1 + t
p
2
−1)
(
t+ 2

∫ t

0

E[|X i
u|p]du

))
. (II.7.1)
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We infer by Gronwall’s lemma that

E[|X i
t |p] ≤ C(E[|X i

0|p] + T p + T
p
2 ) exp(C ′(T p + T

p
2 )).

As the constants do not depend on t ≤ T and E[|X i
0|p] < ∞ by IIA1, we have the

wanted result for p ≥ 2. Then, by a Jensen argument and the boundedness of the
moments for p ≥ 2, it follows the result also for p < 2.

Proof of Lemma II.5.1(2).
We have for any 0 ≤ s < t ≤ T , p ≥ 2,

E[|X i
t −X i

s|p] = E
[∣∣∣ ∫ t

s

biu(θ0,1)du+

∫ t

s

aiu(θ0,2)dW
i
u

∣∣∣p]
≤ C

(
(t− s)p−1

∫ t

s

E[|biu(θ0,1)|p]du+ (t− s)
p
2
−1

∫ t

s

E[|aiu(θ0,2)|p]ds
)
,

where we have used the Jensen and Burkholder-Davis-Gundy inequalities. Because
of (II.1.4) and the just shown Lemma II.5.1(1), the result follows letting t− s ≤ 1.

Proof of Lemma II.5.1(3).
According to the definition of Ri

s(1), we want to evaluate the Lq norm of Es[|X i
t −

X i
s|p]. For any 0 ≤ s < t ≤ T such that t− s ≤ 1 and p ≥ 2, q ≥ 1,

E
[∣∣Es[|X i

t −X i
s|p]
∣∣q] 1

q ≤ E[|X i
t −X i

s|pq]
1
q ≤ C(t− s)

p
2

follows by conditional Jensen’s inequality and Lemma II.5.1(2).

Proof of Lemma II.5.1(4).
This is a straightforward consequence of

W p
2 (µt, µs) ≤

( 1

N

N∑
j=1

|Xj
t −Xj

s |2
) p

2 ≤ 1

N

N∑
j=1

|Xj
t −Xj

s |p (II.7.2)

by Jensen’s inequality for any 0 ≤ s < t ≤ T such that t− s ≤ 1, p ≥ 2 and Lemma
II.5.1(2).

Proof of Lemma II.5.1(5).
It follows directly from (II.7.2), where we use Minkowski’s inequality as follows:

E
[∣∣Es[W

p
2 (µt, µs)]

∣∣q] 1
q ≤ 1

N

N∑
j=1

E
[∣∣Es[|Xj

t −Xj
s |pq]

∣∣] 1
q ,

and then Lemma II.5.1(3).
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II.7.2 Proof of Lemma II.5.2

Proof. Step 1. We prove that

∆n

N

N∑
i=1

n∑
j=1

f(X i,N
tj−1,n

, µN
tj−1,n

)− 1

N

N∑
i=1

∫ T

0

f(X i,N
s , µN

s )ds
L1

−→ 0.

Here we note ∆n = tj,n− tj−1,n and decompose the above integral into integrals over
[tj−1,n, tj,n). We can see that the above convergence follows from

n∑
j=1

∫ tj,n

tj−1,n

E[|f(X i,N
tj−1,n

, µN
tj−1,n

)− f(X i,N
s , µN

s )|]ds → 0, N, n → ∞,

for fixed i, which in turn follows using the condition (II.5.1), Cauchy-Schwarz
inequality and moment bounds in Lemma II.5.1(1), (2) and (4). In particular,
E[|X i,N

tj−1,n
−X i,N

s |2] ≤ C∆n for all tj−1,n ≤ s ≤ tj,n, j and n,N .

Step 2. Next, let us prove that

1

N

N∑
i=1

∫ T

0

f(X i,N
s , µN

s )ds−
1

N

N∑
i=1

∫ T

0

f(X̄ i
s, µ̄s)ds

L1

−→ 0, N → ∞,

where each (X̄ i
t)t∈[0,T ] satisfies (II.1.3) with (Wt)t∈[0,T ] = (W i

t )t∈[0,T ] and X̄ i
0 = X i,N

0 .
It suffices to prove ∫ T

0

E[|f(X i,N
s , µN

s )− f(X̄ i
s, µ̄s)|]ds → 0,

where i is fixed and the integral is over a bounded interval. For this purpose, let
us use again the condition (II.5.1) and the Cauchy-Schwarz inequality. Following
the same arguments as in the proof of Lemma II.5.1(1) and Gronwall lemma, it is
easy to show that for all p > 0 there exists Cp > 0 such that for all s, i, N it holds
E[|X̄ i

s|p] < Cp. Moreover we have

E[|X i,N
s − X̄ i

s|2] ≤
C√
N

for all 0 ≤ s ≤ T and i, N , thanks to Theorem 3.20 in [20], based on Theorem
1 of [44]. We remark that, from the boundedness of the moments, the quantity q
appearing in the statement of Theorem 3.20 in [20] is larger than 4. Hence, the rate
N−(q−2)/q is negligible compared to N−1/2. The propagation of chaos stated above
implies

E[W 2
2 (µ

N
s , µ̄s)] ≤

C√
N
.

Indeed, to get the last relation, we introduce the empirical measure µ̄N
s = N−1

∑N
i=1 δX̄i

s

of the independent particle system at time s and use the triangle inequality for W2.
Then

E[W 2
2 (µ

N
s , µ̄

N
s )] ≤

1

N

N∑
i=1

E[|X i,N
s − X̄ i

s|2] ≤
C√
N
,
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whereas Theorem 1 of [44] implies

E[W 2
2 (µ̄

N
s , µ̄s)] ≤

C√
N
.

Step 3. Finally, the law of large numbers gives

1

N

N∑
i=1

∫ T

0

f(X̄ i
s, µ̄s)ds

P−→ E
[ ∫ T

0

f(X̄s, µ̄s)ds
]
, N → ∞.

II.7.3 Proof of Lemma II.5.3

Proof. We use the same notation as before.

Proof of Lemma II.5.3(2). We decompose X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ0,1) into Ai
j,1 and

H i
j,2 := Ai

j,2 +Bi
j, where

Ai
j,1 :=

∫ tj

tj−1

aitj−1
(θ0,2)dW

i
s , Ai

j,2 :=

∫ tj

tj−1

(ais(θ0,2)− aitj−1
(θ0,2))dW

i
s ,

Bi
j :=

∫ tj

tj−1

(bis(θ0,1)− bitj−1
(θ0,1))ds,

(II.7.3)

are the same as in (II.6.29), (II.6.31).
Firstly, we will show that for any p ≥ 2,

E[|H i
j,2|p] ≤ C∆p

n. (II.7.4)

Using Jensen’s inequality and Lipschitz continuity of b(θ1, ·) we get

E[|Bi
j|p] ≤ E

[
∆p−1

n

∫ tj

tj−1

|bis(θ0,1)− bitj−1
(θ0,1)|pds

]
≤ C∆p−1

n

∫ tj

tj−1

(E[|X i
s −X i

tj−1
|p] + E[W p

2 (µs, µtj−1
)])ds

≤ C∆p−1
n

∫ tj

tj−1

(s− tj−1)
p
2ds = C∆

3
2
p

n , (II.7.5)

where the last inequality follows from Lemma II.5.1(2) and (4). Further use of the
Burkholder-Davis-Gundy and Jensen inequalities gives

E[|Ai
j,2|p] ≤ CE

[( ∫ tj

tj−1

|ais(θ0,2)− aitj−1
(θ0,2)|2ds

) p
2
]

≤ C∆
p
2
−1

n

∫ tj

tj−1

E[|ais(θ0,2)− aitj−1
(θ0,2)|p]ds

≤ C∆p
n, (II.7.6)
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where the last inequality follows from Lipschitz continuity of a(θ2, ·) and Lemma II.5.1(2)
and (4) as so does (II.7.5). Hence, we have shown (II.7.4).
Next, we have

E[|Ai
j,1|p] = C∆

p
2
nE[|aitj−1

(θ0,2)|p] ≤ C∆
p
2
n (II.7.7)

since we know the absolute moments of a centered normal distribution and have
linear growth of a(θ0,2, ·), moment bounds in Lemma II.5.1(1). In particular, we
note

Etj−1
[(Ai

j,1)
4] = 3∆2

n(c
2)itj−1

(θ0,2).

Finally, we have

Etj−1
[(X i

tj
−X i

tj−1
−∆nb

i
tj−1

(θ0,1))
4] = 3∆2

n(c
2)itj−1

(θ0,2)+
3∑

k=0

(
4

k

)
Etj−1

[(Ai
j,1)

k(H i
j,2)

4−k].

(II.7.8)
For any k = 0, 1, 2, 3 and q ≥ 1, using Jensen’s inequality for conditional expectation,
we get

E
[∣∣Etj−1

[(Ai
j,1)

k(H i
j,2)

4−k]
∣∣q] ≤ E

[∣∣(Ai
j,1)

k(H i
j,2)

4−k
∣∣q] ≤ C∆

(4− k
2
)q

n ,

where the last inequality follows from (II.7.6), (II.7.4) using Cauchy-Schwarz in-
equality. Hence, the term converging to 0 in Lq at the slowest rate is the one for
which k = 3. We therefore obtain that the remaining sum on the right hand side of

(II.7.8) is an Ri
tj−1

(∆
5
2
n ) function.

Proof of Lemma II.5.3(3). This follows directly from (II.7.5) by decomposing the
dynamics of X i as in (II.7.3) and remarking that the stochastic integral is centered.

Proof of Lemma II.5.3(1). We decompose X i
tj
−X i

tj−1
−∆nb

i
tj−1

(θ0,1) into

Ai
j := Ai

j,1 + Ai
j,2 =

∫ tj

tj−1

ais(θ0,2)dW
i
s ,

and Bi
j satisfying respectively E[|Ai

j|2p] ≤ C∆p
n and E[|Bi

j|2p] ≤ C∆3p
n , whence

E[|Ai
jB

i
j|p] ≤ C∆2p

n for any p ≥ 1, see (II.7.5)-(II.7.7). We conclude that

Etj−1
[(X i

tj
−X i

tj−1
−∆nb

i
tj−1

(θ0,1))
2] =

∫ tj

tj−1

Etj−1
[cis(θ0,2)]ds+Ri

tj−1
(∆2

n).

We are left to show that we can replace Etj−1
[cis(θ0,2)] with citj−1

(θ0,2) and that the

remaining integral is an Ri
tj−1

(∆2
n) function.

Under IIA7 we have that for any i,

(x1, . . . , xN) 7→ c
(
θ0,2, xi,

1

N

N∑
j=1

δxj

)
= ã2

(
xi,

1

N

N∑
j=1

K(xi, xj)
)
=: gi(x1, . . . , xN)
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is a twice continuously differentiable function from RN to R. Given a vector (X1
s , . . . , X

N
s )s∈[0,T ]

of processes, we denote

(∂l
xk
c)is(θ0,2) := ∂l

xk
gi(X1

s , . . . , X
N
s ).

We apply the multidimensional Itô’s formula to gi(X1
s , . . . , X

N
s ) = cis(θ0,2) as follows:

cis(θ0,2)− citj−1
(θ0,2) =

N∑
k=1

∫ s

tj−1

(
(∂xk

c)iu(θ0,2)b
k
u(θ0,1) +

1

2
(∂2

xk
c)iu(θ0,2)c

k
u(θ0,2)

)
du

+
N∑
k=1

∫ s

tj−1

(∂xk
c)iu(θ0,2)a

k
u(θ0,2)dW

k
u .

Since the driving (W 1
u , . . . ,W

N
u )u∈[tj−1,s] is independent of FN

tj−1
, it follows that

Etj−1
[cis(θ0,2)]− citj−1

(θ0,2)

= Etj−1

[ N∑
k=1

∫ s

tj−1

(
(∂xk

c)iu(θ0,2)b
k
u(θ0,1) +

1

2
(∂2

xk
c)iu(θ0,2)c

k
u(θ0,2)

)
du
]
. (II.7.9)

To conclude, we need to bound each (∂l
xk
c)iu(θ0,2), l = 1, 2. To do that, we rely on the

assumption about the dependence of the diffusion coefficient on the convolution with
a probability measure gathered in IIA7. To compute the derivatives with respect to
xk we need to consider two different cases, depending on whether k ̸= i or k = i.
When k ̸= i we have (∂xk

c)iu(θ0,2) = 2aiu(θ0,2)(∂xk
a)iu(θ0,2), where

(∂xk
a)iu(θ0,2) := ∂yã

(
X i

u,
1

N

N∑
j=1

K(X i
u, X

j
u)
) 1

N
∂yK(X i

u, X
k
u), (II.7.10)

while for k = i we have (∂xi
c)iu(θ0,2) = 2aiu(θ0,2)(∂xi

a)iu(θ0,2), where

(∂xi
a)iu(θ0,2) := ∂xã

(
X i

u,
1

N

N∑
j=1

K(X i
u, X

j
u)
)
+ ∂yã

(
X i

u,
1

N

N∑
j=1

K(X i
u, X

j
u)
)

×
( 1

N

N∑
j=1

∂xK(X i
u, X

j
u) +

1

N
∂yK(X i

u, X
i
u)
)
.

From polynomial growth of the l-th order partial derivatives of K, ã for l = 0, 1,
that of b(θ0,1, ·), moment bounds in Lemma II.5.1(1) applying Jensen’s inequality it

follows that
∑N

k=1(∂xk
c)iu(θ0,2)b

k
u(θ0,1) is bounded in Lp for any p ≥ 1 uniformly

in u, i. We proceed similarly to compute (∂2
xk
c)iu(θ0,2). Then from polynomial

growth of the l-th order partial derivatives of K, ã for l = 0, 1, 2, moment bounds in
Lemma II.5.1(1) applying Jensen’s inequality it follows that

∑N
k=1(∂

2
xk
c)iu(θ0,2)c

k
u(θ0,2)

is bounded in Lp for any p ≥ 1 uniformly in u, i. For any p ≥ 1, tj−1 ≤ s ≤ tj,
repeatedly applying Jensen’s inequality to (II.7.9) we get

E
[∣∣Etj−1

[cis(θ0,2)]− citj−1
(θ0,2)

∣∣p] ≤ C(s− tj−1)
p,



II.7. Proof of technical results 53

whence

E
[∣∣∣ ∫ tj

tj−1

(
Etj−1

[cis(θ0,2)]− citj−1
(θ0,2)

)
ds
∣∣∣p] ≤ C∆2p

n .

which completes the proof.





Chapter III

Local asymptotic normality for
discretely observed
McKean-Vlasov diffusions

Abstract: We study the local asymptotic normality (LAN) property for the like-
lihood function associated with discretely observed d-dimensional McKean-Vlasov
stochastic differential equations over a fixed time interval. The model involves a
joint parameter in both the drift and diffusion coefficients, introducing challenges
due to its dependence on the process distribution. We derive a stochastic expansion
of the log-likelihood ratio using Malliavin calculus techniques and establish the LAN
property under appropriate conditions. The main technical challenge arises from the
implicit nature of the transition densities, which we address through integration by
parts and Gaussian-type bounds. This work extends existing LAN results for inter-
acting particle systems to the mean-field regime, contributing to statistical inference
in non-linear stochastic models.

55
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III.1 Introduction

The study of McKean-Vlasov stochastic differential equations (SDEs) have gained
significant attention in recent years due to their wide-ranging applications in statis-
tical physics, finance, and mean-field games among other fields [8,15,21,36,42,50,54,
80]. These equations are characterized by their dependence on the law of the solu-
tion, making them inherently nonlinear. In this work, we consider an i.i.d. array of
d-dimensional processes, defined on a complete probability space (Ω,F , (Ft)t≥0,P),
governed by the McKean-Vlasov SDE:dX i,θ

t = bθ1
(
X i,θ

t , µθ
t

)
dt+ aθ2

(
X i,θ

t

)
dW i

t i = 1, ..., N, t ∈ [0, T ]

Law
(
X1,θ

0 , ..., XN,θ
0

)
:= µ0 × ...× µ0

(III.1.1)

where the unknown parameter θ := (θ1, θ2) is an element of the set Θ = Θ1 × Θ2,
and Θk ⊂ R, k = 1, 2 are compact and convex sets with nonempty interior. The
d-dimensional Brownian motions (W i)1≤i≤N are independent, µθ

t denotes the law of
X i,θ

t , and
b : Θ1 × Rd × P2 7→ Rd, a : Θ2 × Rd 7→ Rd×d

are the drift and diffusion coefficients, respectively. Here, P2 denotes the set of prob-
ability measures on Rd with a finite second moment, endowed with the Wasserstein
2-metric

W2(µ, λ) :=
(

inf
m∈Γ(µ,λ)

∫
Rd×Rd

∥x− y∥2m(dx, dy)
) 1

2

where Γ(µ, λ) denotes the set of probability measures on the product space Rd×Rd

with marginals µ and λ.
In this paper, we aim to establish the local asymptotic normality (LAN) property
for the likelihood function associated with the discrete observations(

X i,θ
tj

)i=1,...,N

j=1,...,n
, (III.1.2)

where tj := Tj/n and ∆n := T/n denotes the discretization step. We consider
the asymptotic regime ∆n → 0, N → ∞, and the time horizon T being fixed. We
recall that a sequence of statistical models (Pm,θ : θ ∈ Θ ∈ Rp) is said to be locally
asymptotically normal if there exist matrices rm,Σθ ∈ Rp×p such that for any h ∈ Rp:

log
Pm,θ+r−1

m h

Pm,θ

= h⊤N − 1

2
h⊤Σθh+ oPm,θ

(1), as m → ∞,

where N ∼ N (0,Σθ). The LAN property is a crucial tool in asymptotic statistical
inference, originally introduced by Le Cam. When the LAN property holds and the
covariance matrix is invertible, minimax theorems can be applied to derive lower
bounds on the asymptotic variance of estimators (see e.g. [56, 70,71]).
Our work contributes to the growing field of statistical inference for McKean-Vlasov
processes, providing new insights into the asymptotic properties of parameter es-
timators in a mean-field setting. Numerous parametric estimation methods for
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McKean-Vlasov diffusions have been studied in the literature under different sam-
pling schemes in [7, 12, 22, 24, 48, 49, 63, 73, 88, 92]. Non-parametric approaches have
also gained increasing attention, with notable contributions including [4, 10, 25, 29,
85].

A major challenge in establishing the local asymptotic normality property for McK-
ean–Vlasov SDEs lies in the intractability of their transition densities, which compli-
cates the analysis of the likelihood function’s asymptotic behavior. To address this,
we employ tools from Malliavin calculus—specifically, the integration by parts for-
mula—to derive an explicit representation of the logarithmic derivative of the tran-
sition density. This methodology, originally introduced by Gobet in the context of
classical diffusion models [52,53], enables a stochastic expansion of the log-likelihood
ratio and ultimately yields the desired LAN result. In contrast to Gobet’s frame-
work [53], which relies on the ergodicity of the underlying process, our approach
does not require this assumption, as the asymptotic regime is instead driven by the
growing number of particles.

We remark that the drift and diffusion coefficients are estimated at different asymp-
totic rates. Specifically, the drift parameter is estimated at rate

√
N , while the

diffusion parameter is estimated at rate
√
N/∆n. These findings are consistent

with the recent results in [7], which develop a contrast-based estimation method
for discretely observed particle systems and establish consistency and asymptotic
normality of the resulting estimators. A closely related contribution is [30], which
proves the LAN property for drift estimation in continuously observed d-dimensional
McKean–Vlasov models. It is important to note, however, that in the latter setting
the likelihood function admits a closed-form expression via the Girsanov theorem,
which simplifies the analysis.

The paper is organized as follows. In Section III.2 we introduce some notations,
formulate the assumptions and state some technical lemmas we will use in order to
show our main results. Section III.3 is devoted to the preliminary results essential
for proving the LAN property, such as an explicit expression for the derivative of
the log-transition density using the Malliavin calculus, and the main theorem of the
paper. Proofs are collected in Section III.4.

III.2 Notation and assumptions

In this section, we introduce the notation and the main assumptions associated with
the model (III.1.1).

III.2.1 Notation

Throughout the paper, we use a generic positive constant denoted by C, or Cq when
it depends on an external parameter q. This constant is independent of n, N and θ,
and may vary from line to line. The dimensions of the state space and the parameter
space, as well as the time horizon T > 0, are fixed.
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All vectors are understood as column vectors. We denote the Euclidean norm on
Rd by ∥ · ∥, and for any vector x ∈ Rd, we define x⊗2 := xx⊤; the r-th component
of x is written as xr or xr. The trace of a matrix A ∈ Rd×d is denoted by tr(A).
For a function f : Rd ×Θk → R, we denote by ∇xf (resp. ∂θkf) the derivative with
respect to x (resp. with respect to θk). A function f : Rd ×Pl → Rd is said to have
polynomial growth if there exist constants k, l ≥ 0 such that

∥f(x, µ)∥ ≤ C
(
1 + ∥x∥k +W l

2(µ, δ0)
)

for all (x, µ) ∈ Rd × Pl, where Pl denotes the space of probability measures on Rd

with finite l-th absolute moment. For l ∈ [1,∞), the Wasserstein-l distance between
two probability measures µ and λ on Rd is defined as

Wl(µ, λ) :=

(
inf

m∈Γ(µ,λ)

∫
Rd×Rd

∥x− y∥l m(dx, dy)

)1/l

,

where Γ(µ, λ) denotes the set of all couplings of µ and λ.
We often suppress the dependence on θ and write Xt (or X

i
t) to denote the observed

data. Moreover, we define conditional expectations

Eθ
t,x[Z] := Eθ[Z|Xθ

t = x] and Eθ
t [Z] := Eθ[Z|Ft],

and introduce the conditional mean and covariance matrix ofX i,θ
tj+1

given the starting

point X i,θ
tj = x ∈ Rd by

mθ
tj ,tj+1

(x) := Eθ
tj ,x

[
X i,θ

tj+1

]
∈ Rd, (III.2.1)

V θ
tj ,tj+1

(x) := Eθ
tj ,x

[(
X i,θ

tj+1
−mθ

tj ,tj+1
(x)
)⊗2
]
∈ Rd×d.

For Ft-measurable random variables Y i
t , i = 1, . . . , N , we will often use the notation

Y i
t = Ri

t(ε), ε = ε(n,N), (III.2.2)

if ε−1Y i
t is uniformly bounded (in (θ, i, t, n,N)) in Lq(Ω) for all q ≥ 1, that is

Eθ[|ε−1Y i
t |q]1/q ≤ Cq.

For a sequence of random variables (Yn)n≥1, we write Yn = OP(εn) (resp. Yn =
oP(εn)) when ε−1

n Yn is stochastically bounded (resp. ε−1
n Yn converges in probability

to 0).

III.2.2 Model assumptions

In order to get asymptotic properties of the likelihood ratio, it is necessary to put
some additional conditions on the coefficients. We shall work under the following
assumptions on (III.1.1):
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IIIA1. The initial distribution µ0 is sub-Gaussian, i.e. there exists a constant σ > 0
such that

µ0(A) ≤ CΦσ(A), for any Borel set A,

where Φσ denotes the distribution function of Nd(0, σ
2Id).

IIIA2. The functions bθ1 and aθ2 are bounded uniformly in θ ∈ Θ. For all θ there
exists C > 0 such that for all (x, µ), (y, λ) ∈ Rd × P2,

∥bθ1(x, µ)− bθ1(y, λ)∥ ≤ C(∥x− y∥+W2(µ, λ)),

∥aθ2(x)− aθ2(y)∥ ≤ C∥x− y∥.

We remark that Assumption IIIA2 guarantees existence and uniqueness of the
McKean-Vlasov SDE (III.1.1). As for the regularity of the drift b : Θ1×Rd×P2 → Rd

the notion of linear differentiability, commonly used in the literature on McKean-
Vlasov equations and mean-field games in order to quantify the smoothness of
µ 7→ bθ1(x, µ) as a mapping P2 → R, will be useful in our setting. We refer in
particular to [29, Section 2] and the references therein.

Definition III.2.1. A mapping f : P2 → Rd is said to have a linear functional
derivative, if there exists ∂µf : Rd × P2 → Rd such that

f(µ)− f(µ′) =

∫ 1

0

∫
Rd

∂µf(y, λµ+ (1− λ)µ′)(µ− µ′)(dy)dλ

for every (µ, µ′) ∈ P2 and ∂µf satisfies additional smoothness properties, which will
be provided in the following assumption.

In the linear case f(µ) =
∫
Rd g(x)µ(dx), where g : Rd → Rd is a µ-integrable

function, we simply have ∂µf(y, µ) = g(y).

IIIA3. Regularity of the derivatives:
(I) For all (x, µ), the functions bθ1(x, µ), aθ2(x) are in C2(Θ1;Rd), C2(Θ2;Rd×d)
respectively. Furthermore, all their partial derivatives up to order three have poly-
nomial growth, uniformly in θ.
(II) The first and second order derivatives in θ are locally Lipschitz in (x, µ) with
polynomial weights, i.e. for all θ there exists C > 0, k, l = 0, 1, . . . such that for all
r1 + r2 = 1, 2 (x, µ), (x′, µ′) ∈ Rd × P2,∥∥∂r1

θ1
∂r2
θ1
bθ1(x, µ)− ∂r1

θ1
∂r2
θ1
bθ1(x

′, µ′)
∥∥+ ∥∥∂r1

θ2
∂r2
θ2
aθ2(x)− ∂r1

θ2
∂r2
θ2
aθ2(x

′)
∥∥

≤ C(∥x− x′∥+W1(µ, µ
′))
(
1 + ∥x∥k + ∥x′∥k +W l

1(µ, δ0) +W l
1(µ

′, δ0)
)
.

(III) The map µ 7→ bθ1(x, µ) admits a functional derivative in the sense of Definition
III.2.1. There exists k, k′, l ≥ 1 such that∥∥∂µbθ1(x, y, µ)− ∂µbθ1(x

′, y′, µ′)
∥∥ ≤ C(∥x− x′∥+ ∥y − y′∥+W1(µ, µ

′))∥∥∂µbθ1(x, y, µ)∥∥ ≤ C
(
1 + ∥x∥k + ∥y∥k′ +W l

l (µ, δ0)
)
.
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IIIA4. For every point θ in the interior of Θ, the coefficient functions are twice
differentiable in x. Furthermore, the following estimates hold:

(a) ∥∇xbθ1(x, µ)∥+ ∥∇xaθ2(x)∥ ≤ C;

(b) ∥g(·, x)∥ ≤ C(1 + ∥x∥q) for g = ∇2
xb,∇x∂θ1b,∇2

xa,∇x∂θ2a.

for some positive constants C and q.

IIIA5. (Regularity of the diffusion coefficient) The diffusion matrix a is symmetric,
positive definite and satisfies an uniform ellipticity condition. That is, there exists
a positive constant c such that

∀(θ2, x) ∈ Θ2 × Rd,
1

c
Id ≤ aθ2(x) ≤ cId.

We note that Assumptions IIIA3-IIIA5 are direct analogues of conditions imposed in
[52,53], which in particular imply uniform lower and upper bounds for the transition
density established in Proposition III.4.2.

III.2.3 Basic elements of Malliavin calculus

In this section, we present the fundamental concepts of Malliavin calculus that will
be used throughout the remainder of the text.
Let H := L2([0, T ],Rd) and consider a function h ∈ H. We define the Itô integral of
h with respect to a standard Rd-valued Brownian motion B = (Bt)t∈[0,T ] by

B(h) :=

∫ T

0

h(t)⊤dBt.

Let S denote the class of smooth random variables, i.e., random variables of the form

F = f(B(h1), . . . , B(hk)),

where hi ∈ H and f : Rk → R is a C∞
p -function (that is, a function which is infinitely

differentiable and all its derivatives grow at most polynomially).
The Malliavin derivative of F ∈ S is defined as the H-valued random variable

DF =
k∑

j=1

∂xj
f(B(h1), . . . , B(hk)) · hj.

The operator D is closable from Lp(Ω) to Lp(Ω;H) for any p ≥ 1. Its closure has
domain denoted by D1,p, which consists of all F ∈ Lp(Ω) such that DF ∈ Lp(Ω;H),
equipped with the norm

∥F∥1,p := (E[|F |p] + E[∥DF∥pH])
1/p .

We now introduce the Skorohod integral δ, which is defined as the adjoint of the
Malliavin derivative. More precisely, δ is a linear operator from a subset of L2([0, T ]×
Ω;H) to L2(Ω), characterized as follows:
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(i) The domain of δ, denoted Dom(δ), consists of all processes u ∈ L2([0, T ]×Ω;H)
such that

∀F ∈ D1,2, |E [⟨DF, u⟩H]| ≤ c(u)∥F∥L2(Ω).

(ii) For u ∈ Dom(δ), the Skorohod integral δ(u) ∈ L2(Ω) is defined by the inte-
gration by parts formula

∀F ∈ D1,2, E[F δ(u)] = E[⟨DF, u⟩H]. (III.2.3)

It is well known that the Skorohod integral and the Itô integral coincide when both
integrals exist. The following proposition summarizes key properties of the Skorohod
integral.

Proposition III.2.2. Let p > 1. Then the following assertions hold:

(i) If u ∈ D1,p(H), then u ∈ Dom(δ) and

∥δ(u)∥p ≤ cp
(
∥u∥Lp(Ω;H) + ∥Du∥Lp(Ω;H⊗H)

)
. (III.2.4)

(ii) Let F ∈ D1,2 and u ∈ Dom(δ) such that E
[
F 2
∫ T

0
∥ut∥2dt

]
< ∞. Then,

whenever the right-hand side is square-integrable, we have the product formula

δ(Fu) = Fδ(u)− ⟨DF, u⟩H. (III.2.5)

III.3 Main results

In this section, we present the main results of the paper. We begin by noting that
for any s < t, the conditional law of Xθ,i

t given Xθ,i
s = x admits a strictly positive

transition density (see Proposition III.4.2 and [53, Proposition 1.2]), denoted by
pθ(s, t, x, y), which is differentiable with respect to the parameter θ. We define the
perturbed parameter as

(θ+1 , θ
+
2 ) :=

(
θ01 +

u√
N
, θ02 +

v√
N/∆n

)
, θ+ := (θ+1 , θ

+
2 ), (III.3.1)

and exploit the Markov property of the processes (Xθ,i
t )t≥0, i = 1, . . . , N , to express

the log-likelihood ratio between the measures Pθ+ and Pθ0 as

z(θ0, θ+) := log
dPθ+

dPθ0
(Xtj)j=1,...,n =

n∑
j=1

N∑
i=1

log

(
pθ

+

pθ0

)(
tj, tj+1, X

i
tj
, X i

tj+1

)
.

(III.3.2)

From the expansion (III.3.2), we obtain the identity

z(θ0, θ+) =
n∑

j=1

N∑
i=1

(
ζ i,θ1j + ζ i,θ2j

)
, (III.3.3)
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where the individual components are given by

ζ i,θ1j :=
u√
N

∫ 1

0

∂θ1p
θ1(l),θ

+
2

pθ1(l),θ
+
2

(
tj, tj+1, X

i
tj
, X i

tj+1

)
dl,

ζ i,θ2j :=
v√

N/∆n

∫ 1

0

∂θ2p
θ01 ,θ2(l)

pθ
0
1 ,θ2(l)

(
tj, tj+1, X

i
tj
, X i

tj+1

)
dl.

(III.3.4)

Here, we use the notation

θ1(l) := θ01 +
lu√
N
, θ2(l) := θ02 +

lv√
N/∆n

. (III.3.5)

In the next step, we present an expansion formula for the transition density expres-
sions appearing in (III.3.4). To this end, we introduce the notation (t ∈ [0,∆n])

X i,θ
tj+t = X i,θ

tj +

∫ t

0

bθ1
(
X i,θ

tj+s, µ
θ
tj+s

)
ds+

∫ t

0

aθ2
(
X i,θ

tj+s

)
dBi

s,

where the process Bi represents the Brownian motion W i shifted in time by tj.
Furthermore, for t ∈ [0,∆n] we introduce derivative processes which satisfy the
following stochastic differential equations:

∂θ1X
i,θ
t =

∫ t

0

(
∂θ1bθ1

(
X i,θ

tj+s, µ
θ
tj+s

)
+∇xbθ1

(
X i,θ

tj+s, µ
θ
tj+s

)
∂θ1X

i,θ
s

+

∫
Rd

∂µbθ1
(
X i,θ

tj+s, y, µ
θ
tj+s

)
∂θ1µ

θ
tj+s(dy)

)
ds+

d∑
r=1

∫ t

0

∇xa
r
θ2

(
X i,θ

tj+s

)
∂θ1X

i,θ
s dBi

r,s,

∂θ2X
i,θ
t =

∫ t

0

(
∇xbθ1

(
X i,θ

tj+s, µ
θ
tj+s

)
∂θ2X

i,θ
s +

∫
Rd

∂µbθ1
(
X i,θ

tj+s, y, µ
θ
tj+s

)
∂θ2µ

θ
tj+s(dy)

)
ds

+
d∑

r=1

∫ t

0

(
∂θ2a

r
θ2

(
X i,θ

tj+s

)
+∇xa

r
θ2

(
X i,θ

tj+s

)
∂θ2X

i,θ
s

)
dBi

r,s.

(III.3.6)

We remark that the third term in the representation of ∂θ1X
i,θ
t is indeed finite due

to Assumption (A3)(III) and the fact that the density of ∂θ1µ
θ
t has a sub-Gaussian

density due to Proposition III.4.2. The same argument applies to the corresponding
term in the representation of ∂θ2X

i,θ
t .

We now present an explicit formula for the Malliavin derivative DsX
i,θ
t ∈ Rd×d. To

this end, we introduce the Rd×d-valued stochastic process (Y i,θ
t )t∈[0,∆n], defined by

Y i,θ
t := Id +

∫ t

0

∇xbθ1
(
X i,θ

tj+s, µ
θ
tj+s

)
Y i,θ
s ds+

d∑
r=1

∫ t

0

∇xa
r
θ2

(
X i,θ

tj+s

)
Y i,θ
s dBr,i

s ,

(III.3.7)
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where arθ2 denotes the rth column of the matrix-valued function aθ2 . It can be shown

that Y i,θ
t is invertible for all t ≥ 0, and the Malliavin derivative satisfies the following

identity (see [86, Eq. (2.59)]):

DsX
i,θ
tj+t = Y i,θ

t (Y i,θ
s )−1aθ2(X

i,θ
tj+s) 1[0,t](s). (III.3.8)

Our first result provides an identity for the terms ζ i,θ1j and ζ i,θ2j introduced in
(III.3.4).

Proposition III.3.1. Assume that Assumptions IIIA1–IIIA5 hold. Then, for x, y ∈
Rd and θ ∈ Θ, the transition density pθ(tj, tj+1, x, y) is absolutely continuous with
respect to θ, and we have the representation

∂θ1p
θ

pθ
(tj, tj+1, x, y) =

1

∆n

Eθ
tj ,x

[
d∑

r=1

δ
(
∂θ1X

i,θ
r,∆n

U i
r

) ∣∣∣∣X i,θ
tj+1

= y

]
,

∂θ2p
θ

pθ
(tj, tj+1, x, y) =

1

∆n

Eθ
tj ,x

[
d∑

r=1

δ
(
∂θ2X

i,θ
r,∆n

U i
r

) ∣∣∣∣X i,θ
tj+1

= y

]
,

(III.3.9)

where U i
r denotes the r-th column of the Rd×d-valued process

U i
s :=

(
DsX

i,θ
tj+1

)−1

= a−1
θ2
(X i,θ

tj+s)Y
i,θ
s

(
Y i,θ
∆n

)−1

, s ∈ [0,∆n].

The application of Malliavin calculus to derive the transformation in (III.3.9) is
essential for establishing the LAN property of the statistical model. This formula was
originally shown by Gobet (see, e.g., [52, Proposition 4.1]) in the setting of classical
stochastic differential equations, and the same reasoning applies in our framework,
so we omit the proof. However, in contrast to classical SDEs, the derivative process
∂θ1X

i,θ includes an additional functional derivative term ∂µbθ1 , which captures the
dependence of the laws µθ

t on the parameter θ.
The next result applies Proposition III.3.1 to derive an asymptotic expansion of the
log-likelihood function z(θ0, θ+).

Proposition III.3.2. Assume that Assumptions IIIA1–IIIA5 hold. Define the
quantities

zθt (x) := ∂θ1bθ1
(
x, µθ

t

)
+

∫
Rd

∂µbθ1
(
x, y, µθ

t

)
∂θ1µ

θ
t (dy) (III.3.10)

and

ζ̂ i,θ1j :=
u√
N

∫ 1

0

z
θ1(l),θ

+
2

tj (X i
tj
)⊤
[
a−2

θ+2
(X i

tj
)
(
X i

tj+1
−m

θ1(l),θ
+
2

tj ,tj+1
(X i

tj
)
)]

dl,

ζ̂ i,θ2j :=
v√
N∆n

∫ 1

0

tr
[
∂θ2aθ2(l)(X

i
tj
) a−1

θ2(l)
(X i

tj
)

×
((

X i
tj+1

−m
θ01 ,θ2(l)
tj ,tj+1

(X i
tj
)
)⊗2

− V
θ01 ,θ2(l)
tj ,tj+1

(X i
tj
)

)
a−2
θ2(l)

(X i
tj
)

]
dl.
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Then, as N, n → ∞, we have for j = 1, 2:

n∑
j=1

N∑
i=1

(
ζ i,θkj − ζ̂ i,θkj

)
Pθ0

−−→ 0.

Remark III.3.3 (Interacting particle systems). A model closely related to (III.1.1)
is the interacting particle system described bydX i,N,θ

t = bθ1
(
X i,N,θ

t , µN
t

)
dt+ aθ2

(
X i,N,θ

t

)
dW i

t , i = 1, . . . , N, t ∈ [0, T ],

Law
(
X1,N,θ

0 , . . . , XN,N,θ
0

)
:= µ⊗N

0 ,

(III.3.11)
where µN

t := 1
N

∑N
i=1 δXi,N,θ

t
denotes the empirical measure of the particle system

(X1,N,θ
t , . . . , XN,N,θ

t ). Parametric estimation techniques for such interacting particle
systems have been studied, for instance, in [7, 30, 88]. In many cases, statistical
inference methods developed for the particle system also extend to its mean-field
limit (III.1.1).

However, establishing the LAN property for the interacting particle system under
discrete-time observations proves to be significantly more challenging, and no gen-
eral methods are currently available in the literature. A central difficulty lies in
the derivation of lower and upper bounds for the transition densities, which are
instrumental in proving Proposition III.3.2—a key step in the LAN analysis.

In the case of model (III.1.1), where the particles are i.i.d., it suffices to obtain
bounds for the d-dimensional transition density pθ(t, s, x, y) (cf. Proposition III.4.2).
In contrast, for interacting particle systems, one cannot reduce the analysis to
marginal densities, and must instead handle the full dN -dimensional joint tran-
sition density pθ(t, s, x, y). Unfortunately, such bounds in high dimensions are not
yet available in the literature, posing a major obstacle in the LAN analysis for the
particle system.

We finally note that these mathematical challenges are absent in the setting of con-
tinuous observations (X i,N,θ

t )t∈[0,T ], where the LAN property for the drift component
has been successfully established in [30].

Using the expansion in Proposition III.3.2, we now derive the LAN property for the
statistical model (III.1.1).

Theorem III.3.4. Assume that Assumptions IIIA1–IIIA5 hold. Then, as N, n →
∞,

z(θ0, θ+)
Pθ0−law−−−−−→

(
u
v

)⊤

N θ0 − 1

2

(
u
v

)⊤

Σθ0
(
u
v

)
, (III.3.12)

where the matrix Σθ0 ∈ R2×2 is given by

Σθ0 =

(
Σθ0

b 0

0 Σθ0

a

)
,
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with

Σθ0

b =

∫ T

0

∫
Rd

zθ
0

s (x)⊤a−2
θ02
(x)zθ

0

s (x)µθ0

s (dx) ds,

Σθ0

a = 2

∫ T

0

∫
Rd

tr
(
∂θ2aθ02(x)a

−1
θ02
(x)∂θ2aθ02(x)a

−1
θ02
(x)
)
µθ0

s (dx) ds.

Let us now comment on the implications of Theorem III.3.4. The article [7] investi-
gates parametric estimation of the drift and diffusion coefficients in one-dimensional
particle systems of the form (III.3.11), observed at discrete time points. The pro-
posed estimator, based on minimising a contrast function, is shown to be asymptot-
ically normal. Under the additional condition N∆n → 0, the asymptotic covariance
matrix takes the same form as Σθ0 .
However, a key distinction arises when comparing the particle system model (III.3.11)
to the i.i.d. observation scheme of the McKean–Vlasov system (III.1.1). In the par-
ticle system setting, the linear functional derivative ∂µbθ1 does not appear in the
asymptotic covariance. Consequently, the quantity zθt (x) is replaced by the sim-
pler expression ∂θ1bθ1(x, µ

θ
t ). This structural difference has already been highlighted

in [30] in the context of continuously observed particle systems.
For ease of exposition, we have considered the case of univariate parameters. Never-
theless, as shown in [53] for ergodic SDEs, the LAN property extends naturally to the
multi-parameter setting. While the notation becomes much more cumbersome, the
mathematical complexity does not increase significantly. Assume, for instance, that
θ1 ∈ Θ1 ⊂ Rp and θ2 ∈ Θ2 ⊂ Rq. Then the LAN property holds with asymptotic
covariance matrix

Σθ0 =

(
Σθ0

b 0

0 Σθ0

a

)
∈ R(p+q)×(p+q),

where Σθ0

b ∈ Rp×p and Σθ0

a ∈ Rq×q are defined by

(
Σθ0

b

)
kl
=

∫ T

0

∫
Rd

zθ
0

k,s(x)
⊤a−2

θ02
(x)zθ

0

l,s(x)µ
θ0

s (dx) ds,

(
Σθ0

a

)
kl
= 2

∫ T

0

∫
Rd

tr
(
∂θk,2aθ02(x)a

−1
θ02
(x)∂θl,2aθ02(x)a

−1
θ02
(x)
)
µθ0

s (dx) ds,

and

zθk,t(x) := ∂θk,1bθ1
(
x, µθ

t

)
+

∫
Rd

∂µbθ1
(
x, y, µθ

t

)
∂θk,1µ

θ
t (dy).

We omit the full details of the multi-parameter extension, referring the interested
reader to the cited literature for exposition of technicalities.

III.4 Proofs

III.4.1 Preliminary results

In this section, we collect several auxiliary results that will be instrumental in es-
tablishing the main theorems of this paper.
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To begin with, under Assumptions IIIA3 and IIIA4, the random variables X i,θ
t , Y i,θ

t ,
(Y i,θ

t )−1, ∂θ1X
i,θ
t , and ∂θ2X

i,θ
t belong to the Malliavin space D1,p for any t ∈ [0, T ]

and p ≥ 1 (see [86, Section 2.2]). Moreover, the following uniform estimates hold:

Eθ

[
sup

0≤t≤T
∥Zt∥p

]
+ sup

r∈[0,T ]

Eθ

[
sup

r≤t≤T
∥DrZt∥p

]
≤ C, (III.4.1)

for Zt ∈ {X i,θ
t , Y i,θ

t , (Y i,θ
t )−1} and t ∈ [0, T ].

Next, we recall a collection of moment bounds adapted from [7].

Lemma III.4.1. Assume that Assumptions IIIA1–IIIA2 hold. Then, for all p ≥ 1,
0 ≤ s < t ≤ T with t − s ≤ 1, i ∈ {1, . . . , N}, and N ∈ N, the following estimates
are satisfied:

(i) supt∈[0,T ] E[|X
i,θ,N
t |p] < C, and moreover, supt∈[0,T ] E[W q

p (µ
θ
t , δ0)] < C for p ≤

q.

(ii) E[|X i,N
t −X i,N

s |p] ≤ C(t− s)p/2.

(iii) E[W p
2 (µ

θ
t , µ

θ
s)] ≤ C(t− s)p/2.

In the next step, we present a technique which reduces the McKean-Vlasov system
introduced in (III.1.1) to standard SDEs with time-varying coefficients. Consider
the SDE

dX̃θ
t = bθ1

(
X̃θ

t , µ
θ
t

)
dt+ aθ2

(
X̃θ

t

)
dWt, X̃0 ∼ µ0,

obtained by freezing the laws (µt)t∈[0,T ] in the original model (III.1.1). Under As-

sumption IIIA2, the stochastic process X̃θ follows an SDE with bounded coefficients.
We also note that the processes X̃θ and Xθ,i have the same law due to uniqueness
of the solution of (III.1.1). Consequently, we can transfer certain results from stan-
dard SDE setting to McKean-Vlasov diffusion. In particular, we obtain the following
upper and lower bounds of Aronson type for the transition density pθ(tj, tj+1, x, y)
(see [53, Proposition 1.2]).

Proposition III.4.2. Assume that Assumptions IIIA2–IIIA5 are satisfied. Then
there exist constants c > 1 and L > 1 such that for all (x, y) ∈ Rd×Rd and tj, tj+1 ∈
[0, T ], the transition density pθ(tj, tj+1, x, y) satisfies the following Gaussian-type
bounds:

pθ(tj, tj+1, x, y) ≤
L

∆
d/2
n

exp

(
−∥x− y∥2

c∆n

)
exp(c∆n∥x∥2), (III.4.2)

pθ(tj, tj+1, x, y) ≥
1

L∆
d/2
n

exp

(
−c

∥x− y∥2

∆n

)
exp(−c∆n∥x∥2). (III.4.3)

Moreover, for any m > 1, there exist constants c > 1, L > 1, and q > 0 such that

Eθ̄
tj ,x

[∣∣∣∣∂θ1pθpθ
(tj, tj+1, x,X

i
tj+1

)

∣∣∣∣m] ≤ L∆m/2
n exp(c∆n∥x∥2)(1 + ∥x∥)q, (III.4.4)

Eθ̄
tj ,x

[∣∣∣∣∂θ2pθpθ
(tj, tj+1, x,X

i
tj+1

)

∣∣∣∣m] ≤ L exp(c∆n∥x∥2)(1 + ∥x∥)q. (III.4.5)



III.4. Proofs 67

As a consequence of Proposition III.4.2 and Assumption IIIA1, we conclude that
all probability measures (µt)t∈[0,T ] are sub-Gaussian (cf. [11, Lemma 3.1]) and we
conclude that

Eθ
[
exp(r0∥Xθ,i

t ∥2)
]
≤ C for all t ∈ [0, T ], (III.4.6)

for some r0 > 0.
The following lemma will also be used throughout this section. Its proof is a direct
consequence of the weak law of large numbers and integrability properties, and is
therefore omitted.

Lemma III.4.3. Assume that Assumptions IIIA1–IIIA2 are satisfied. Let f : Rd ×
Pl → Rp be a function such that for some C > 0, k, l ∈ N0, and all (x, µ), (y, λ) ∈
Rd × Pl, the following inequality holds:

∥f(x, µ)∥ ≤ C
(
1 + ∥x∥k +W l

l (µ, δ0)
)
. (III.4.7)

Assume further that the map (x, t) 7→ f(x, µt) is integrable with respect to µt(dx) dt
on Rd × [0, T ]. Then, as n,N → ∞,

∆n

N

N∑
i=1

n∑
j=1

f(X i,θ
tj , µ

θ
tj
)

Pθ

−→
∫ T

0

∫
Rd

f(x, µθ
t )µ

θ
t (dx) dt.

The following proposition will be frequently used to establish the negligibility of
certain stochastic terms in various settings.

Proposition III.4.4. Suppose that Assumptions IIIA1–IIIA5 hold. Let H i
tj+1

, i =
1, . . . , N , be a sequence of independent Ftj+1

-measurable random variables. Recall
the definition (III.2.2).

(i) Assume that for any τ > 1:

Eθ1(l),θ
+
2

tj ,x [H i
tj+1

] = 0 and
(
Eθ1(l),θ

+
2

tj ,x |H i
tj+1

|τ
)1/τ

= Ri
tj
(∆2

n).

Then, as N, n → ∞, we have

1

∆n

√
N

n∑
j=1

N∑
i=1

∫ 1

0

Eθ1(l),θ
+
2

tj ,Xtj

[
H i|X i,θ1(l),θ

+
2

tj+1
= X i

tj+1

]
dl

Pθ0

−−→ 0.

(ii) Assume that for any τ > 1:

Eθ01 ,θ2(l)
tj ,x [H i

tj+1
] = 0 and

(
Eθ01 ,θ2(l)

tj ,x |H i
tj+1

|τ
)1/τ

= Ri
tj
(∆3/2

n ).

Then, as N, n → ∞, we have

1√
N∆n

n∑
j=1

N∑
i=1

∫ 1

0

Eθ01 ,θ2(l)
tj ,Xtj

[
H i

tj+1
|X i,θ01 ,θ2(l)

tj+1
= X i

tj+1

]
dl

Pθ0

−−→ 0.
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We note that the main challenge in Proposition III.4.4 arises from the need to
establish convergence under the original measure Pθ0 , which differs from the per-
turbed measures Pθ1(l),θ

+
2 and Pθ01 ,θ2(l). The proof presented below closely follows the

methodology developed in [53].

Proof. We only show part (i) of Proposition III.4.4 as the second part is shown
similarly (cf. [53]). We define the random variable

ξNj :=
1

∆n

√
N

N∑
i=1

∫ 1

0

Eθ1(l),θ
+
2

tj ,Xtj

[
H i

tj+1
|X i,θ1(l),θ

+
2

tj+1
= X i

tj+1

]
dl.

By martingale methods it suffices to prove the following convergence results:

n∑
j=1

Eθ0

tj
[ξNj ]

Pθ0

−−→ 0 and
n∑

j=1

Eθ0

tj
[(ξNj )2]

Pθ0

−−→ 0.

We start by handling the conditional expectation. We first observe the identity

n∑
j=1

Eθ0

tj
[ξNj ] =

1

∆n

√
N

n∑
j=1

N∑
i=1

∫ 1

0

Eθ1(l),θ
+
2

tj ,Xi
tj

[
H i

tj+1

pθ
0

pθ1(l),θ
+
2

(tj, tj+1, X
i
tj
, X i

tj+1
)

]
dl.

Consequently, we deduce the decomposition

n∑
j=1

Eθ0

tj
[ξNj ] =: V 1

n,N + V 2
n,N ,

with

V 1
n,N :=

1

∆n

√
N

n∑
j=1

N∑
i=1

∫ 1

0

Eθ1(l),θ
+
2

tj ,Xi
tj

[
H i

tj+1

pθ
0
1 ,θ

+
2 − pθ1(l),θ

+
2

pθ1(l),θ
+
2

(tj, tj+1, X
i
tj
, X i

tj+1
)

]
dl,

V 2
n,N :=

1

∆n

√
N

n∑
j=1

N∑
i=1

∫ 1

0

Eθ1(l),θ
+
2

tj ,Xi
tj

[
H i

tj+1

pθ
0 − pθ

0
1 ,θ

+
2

pθ1(l),θ
+
2

(tj, tj+1, X
i
tj
, X i

tj+1
)

]
dl.

For the first term V 1
n,N we obtain the identity

V 1
n,N = − u

∆nN

n∑
j=1

N∑
i=1

∫ 1

0

∫ 1

0

Eθ1(l),θ
+
2

tj ,Xi
tj

[
H i

tj+1

∂θ1p
θ1(r),θ

+
2

pθ1(r),θ
+
2

pθ1(r),θ
+
2

pθ1(l),θ
+
2

(tj, tj+1, X
i
tj
, X i

tj+1
)

]
drdl.

Now, we apply Hölder inequality with conjugates q1, q2, q3 > 1, conditions of Propo-
sition III.4.4(i) and the inequalities of Proposition III.4.2, which imply that

|V 1
n,N | ≤

C

N
√
∆n

n∑
j=1

N∑
i=1

Ri
tj
(∆2

n) exp(c∆n∥X i
tj
∥2/q2)
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×
(
∆−d/2

n

∫
Rd

exp

(
−
q3∥Xtj − y∥2

c∆n

)
exp

(
c(q3 − 1)∥Xtj − y∥2

∆n

)
exp(c(2q3 − 1)∆n∥X i

tj
∥2)dy

)1/q3

.

We note that the above integral is finite when (q3 − 1)c − q3/c < 0, which can be
achieved by choosing q3 close enough to 1. We also note that, for any given constant
C > 0, E[exp(C∆n∥X i

tj
∥2)] is uniformly bounded due to (III.4.6) if ∆n is small

enough. Hence, we conclude that

E[|V 1
n,N |] ≤ C∆1/2

n .

The term V 2
n,N is handled in exactly the same fashion and we deduce

E[|V 2
n,N |] ≤ C∆1/2

n .

Consequently, we have proved that

n∑
j=1

Eθ0

tj
[ξNj ]

Pθ0

−−→ 0.

Concerning the conditional second moment we readily obtain the formula

n∑
j=1

Eθ0

tj
[(ξNj )2] =

1

∆2
nN

n∑
j=1

N∑
i1,i2=1

∫ 1

0

∫ 1

0

Eθ1(l1),θ
+
2

tj ,Xtj

[
H i1

tj+1
|X i1,θ1(l1),θ

+
2

tj+1
= X i1

tj+1

]
× Eθ1(l2),θ

+
2

tj ,Xtj

[
H i2

tj+1
|X i2,θ1(l2),θ

+
2

tj+1
= X i2

tj+1

]
dl1dl2

Applying Jensen’s inequality and proceeding exactly as above, we conclude that

n∑
j=1

Eθ0 [(ξNj )2|Ftj ] = OP(∆
2
n).

This completes the proof of Proposition III.4.4.

III.4.2 Proof of Proposition III.3.2

III.4.2.1 The drift term

We start by considering the difference ζ i,θ1j − ζ̂ i,θ1j . Throughout this subsection we
set for simplicity

θ = (θ1, θ2) := (θ1(l), θ
+
2 ).

According to Proposition III.3.1 we have the identity

ζ i,θ1j =
u

∆n

√
N

∫ 1

0

Eθ
tj ,Xtj

[
d∑

r=1

δ
(
∂θ1X

i,θ
r,∆n

U i
r

) ∣∣∣∣X i,θ
tj+1

= X i
tj+1

]
dl.

In the following discussion we will study the decomposition

δ
(
∂θ1X

i,θ
r,∆n

U i
r

)
= ∆nz

θ
r,θ1

(
X i,θ

tj

)
(III.4.8)
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×
[
a−2
θ2

(
X i,θ

tj

)(
X i,θ

tj+1
−mθ

tj ,tj+1

(
X i,θ

tj

))]
r
+H i

tj+1
.

Here the random variable H i
tj+1

is a reminder term, which necessarily satisfies

Eθ1(l),θ
+
2

tj ,x [H i
tj+1

] = 0 since the other two terms in (III.4.8) obviously satisfy this iden-
tity. Hence, if we prove that(

Eθ
tj ,x

|H i
tj+1

|τ
)1/τ

= Ri
tj
(∆2

n) for any τ > 1,

the proof of Proposition III.3.2 is completed for ζ i,θ1j due to Proposition III.4.4(i).
We apply the product formula (III.2.5) and conclude the identity

δ
(
∂θ1X

i,θ
r,∆n

U i
r

)
= ∂θ1X

i,θ
r,∆n

δ
(
U i
r

)
−
∫ ∆n

0

(
Dt∂θ1X

i,θ
r,∆n

)⊤
U i
r,tdt.

In the next step, we recall the definition U i
s = a−1

θ2
(X i,θ

tj+s)Y
i,θ
s (Y i,θ

∆n
)−1, s ∈ [0,∆n],

and define its approximation via

Û i
s := a−1

θ2
(X i,θ

tj+s).

With this notation at hand, we finally obtain the decomposition

δ
(
∂θ1X

i,θ
r,∆n

U i
r

)
= M i

n +H i,1
n +H i,2

n +H i,3
n

with

M i
n := ∆nz

θ
r,θ1

(
X i,θ

tj

)
δ
(
Û i
r

)
H i,1

n := −
∫ ∆n

0

(
Dt∂θ1X

i,θ
r,∆n

)⊤
U i
r,tdt

H i,2
n :=

(
∂θ1X

i,θ
r,∆n

−∆nz
θ
r,θ1

(
X i,θ

tj

))
δ
(
Û i
r

)
H i,3

n := ∂θ1X
i,θ
r,∆n

δ
(
U i
r − Û i

r

)
The term M i

n represents the main contribution while H i,j
n , j = 1, 2, 3, turn out to

be negligible.
We start with the term H i,1

n . Due to the formula (III.3.6), we readily obtain the
statement

sup
t∈[0,∆n]

∣∣∣∂θ1X i,θ
r,t

∣∣∣ = Ri
tj+1

(∆n). (III.4.9)

This implies the same statement for the Malliavin derivative:∥∥∥Dt∂θ1X
i,θ
r,∆n

∥∥∥ = Ri
tj+1

(∆n).
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As a consequence, we deduce that

H i,1
n = Ri

tj+1
(∆2

n).

Now, we handle the term H i,2
n . We note that

δ
(
Û i
r

)
= Ri

tj+1
(∆1/2

n ).

On the other hand, we deduce that

∂θ1X
i,θ
r,∆n

−∆nz
θ
r,θ1

(
X i,θ

tj

)
= Ri

tj+1
(∆3/2

n ),

which readily implies that H i,2
n = Ri

tj+1
(∆2

n).

Next, we treat the term H i,3
n . Due to (III.2.4), we conclude that

δ
(
U i
r − Û i

r

)
= Ri

tj+1
(∆n).

Hence, the application of (III.4.9), implies that H i,3
n = Ri

tj+1
(∆2

n).

Finally, we treat the main term M i
n. First note that δ(Û i

r) is a regular Itô integral
with respect to Bi. For the Brownian motion Bi we obtain the following represen-
tation:

dBi
t = a−1

θ2

(
X i,θ

tj+t

)
dX i,θ

tj+t − a−1
θ2

(
X i,θ

tj+t

)
bθ1
(
X i,θ

tj+t, µ
θ
tj+t

)
dt

= a−1
θ2

(
X i,θ

tj

)
dX i,θ

tj+t +
(
Id − a−1

θ2

(
X i,θ

tj

)
aθ2
(
X i,θ

tj+t

))
dBi

t

+ a−1
θ2

(
X i,θ

tj

)
bθ1
(
X i,θ

tj+t, µ
θ
tj+t

)
dt.

Using the above representation we conclude that

δ
(
Û i
r

)
=

d∑
m=1

∫ ∆n

0

(
a−1
θ2

)
rm

(
X i,θ

tj+t

)
dBm,i

t

=
d∑

m=1

∫ ∆n

0

(
a−1
θ2

)
rm

(
X i,θ

tj

)
dBm,i

t +Ri
tj+1

(∆n)

=
d∑

m=1

(
a−2
θ2

)
rm

(
X i,θ

tj

)∫ ∆n

0

dXm,i,θ
tj+t +Ri

tj+1
(∆n)

=
[
a−2
θ2
(X i,θ

tj )
(
X i,θ

tj+1
−mθ

tj ,tj+1
(X i,θ

tj )
)]

r
+Ri

tj+1
(∆n).

This completes the proof of Proposition III.3.2 for the drift component.
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III.4.2.2 The diffusion term

We proceed by considering the difference ζ i,θ2j − ζ̂ i,θ2j . In this subsection we set for
simplicity of notation

θ = (θ1, θ2) := (θ01, θ2(l)).

As in Section III.4.2.1, according to Proposition III.3.1 we have the identity

ζ i,θ2j =
v√
∆nN

∫ 1

0

Eθ
tj ,Xtj

[
d∑

r=1

δ
(
∂θ2X

i,θ
r,∆n

U i
r

) ∣∣∣∣X i,θ
tj+1

= X i
tj+1

]
dl.

We consider the following decomposition:

δ
(
∂θ2X

i,θ
r,∆n

U i
r

)
=
[
∂θ2aθ2(X

i,θ
tj )a

−1
θ2
(X i,θ

tj )
(
X i,θ

tj+1
−mθ

tj ,tj

(
X i,θ

tj

))]
r

×
[
a−2
θ2
(X i,θ

tj )
(
X i,θ

tj+1
−mθ

tj ,tj+1

(
X i,θ

tj

))]
r

−
[
∂θ2aθ2(X

i,θ
tj )a

−1
θ2
(X i,θ

tj )V
θ
tj ,tj+1

(
X i,θ

tj

)
a−2
θ2
(X i,θ

tj )
]
r,r

+H i
tj+1

. (III.4.10)

As in the previous section, we only need to show that(
Eθ

tj ,x
|H i

tj+1
|τ
)1/τ

= Ri
tj
(∆3/2

n ) for any τ > 1,

which completes the proof of Proposition III.3.2 is completed for ζ i,θ2j due to Propo-
sition III.4.4(ii).
We apply the product formula (III.2.5) and conclude the identity

δ
(
∂θ2X

i,θ
r,∆n

U i
r

)
= ∂θ2X

i,θ
r,∆n

δ
(
U i
r

)
−
∫ ∆n

0

(
Dt∂θ2X

i,θ
r,∆n

)⊤
U i
r,tdt.

Substituting U i
r by Û i

r as in the previous proof, we readily deduce the approximation

∂θ2X
i,θ
r,∆n

=
[
∂θ2aθ2(X

i
tj
)a−1

θ2
(X i,θ

tj )
(
X i,θ

tj+1
−mθ

tj ,tj

(
X i,θ

tj

))]
r
+Ri

tj+1
(∆n)

and

δ
(
U i
r

)
=
[
a−2
θ2
(X i,θ

tj )
(
X i,θ

tj+1
−mθ

tj ,tj+1

(
X i,θ

tj

))]
r
+Ri

tj+1
(∆n).

Furthermore, since V θ
tj ,tj+1

(X i,θ
tj ) = ∆na

2
θ2
(X i,θ

tj ) +Ri
tj
(∆

3/2
n ), we conclude that∫ ∆n

0

(
Dt∂θ2X

i,θ
r,∆n

)⊤
U i
r,tdt =

[
∂θ2aθ2(X

i,θ
tj )a

−1
θ2
(X i,θ

tj )V
θ
tj ,tj+1

(
X i,θ

tj

)
a−2
θ2
(X i,θ

tj )
]
r,r

+Ri
tj+1

(∆3/2
n ).

This concludes the proof of Proposition III.3.2.
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III.4.3 Proof of Theorem III.3.4

In view of Proposition III.3.2 and [59, Theorem VII-5-2 ], it suffices to check the
following conditions:

n∑
j=1

N∑
i=1

Eθ0

tj

[
ζ̂ i,θ1j

]
Pθ0

−−→ −1

2
u2Σθ0

b (III.4.11)

n∑
j=1

Eθ0

tj

[( N∑
i=1

ζ̂ i,θ1j

)2]
−

(
Eθ0

tj

[ N∑
i=1

ζ̂ i,θ1j

])2

Pθ0

−−→ u2Σθ0

b (III.4.12)

n∑
j=1

Eθ0

tj

[∣∣∣ N∑
i=1

ζ̂ i,θ1j

∣∣∣4] Pθ0

−−→ 0 (III.4.13)

n∑
j=1

N∑
i=1

Eθ0

tj

[
ζ̂ i,θ2j

]
Pθ0

−−→ −1

2
v2Σθ0

a (III.4.14)

n∑
j=1

Eθ0

tj

[( N∑
i=1

ζ̂ i,θ2j

)2]
−

(
Eθ0

tj

[ N∑
i=1

ζ̂ i,θ2j

])2

Pθ0

−−→ v2Σθ0

a (III.4.15)

n∑
j=1

Eθ0

tj

[∣∣∣ N∑
i=1

ζ̂ i,θ2j

∣∣∣4] Pθ0

−−→ 0 (III.4.16)

n∑
j=1

Eθ0

tj

[ N∑
i=1

ζ̂ i,θ1j

N∑
i=1

ζ̂ i,θ2j

]
− Eθ0

tj

[ N∑
i=1

ζ̂ i,θ1j

]
Eθ0

tj

[ N∑
i=1

ζ̂ i,θ2j

]
Pθ0

−−→ 0 (III.4.17)

Proof of (III.4.11): We first observe that mθ
tj ,tj+1

(x) = x+
∫ tj+1

tj
Eθ

tj ,x
[bθ1(X

i,θ
s , µθ

s)]ds.

Applying the Taylor expansion and recalling (III.3.10), we deduce that

mθ0

tj ,tj+1
(X i

tj
)−m

θ1(l),θ
+
2

tj ,tj+1
(X i

tj
) = − lu∆n√

N
zθ

0

tj
(X i

tj
) +Ri

tj
(εn,N∆n/

√
N) (III.4.18)

with εn,N → 0. We introduce the notation

ζ
i,θ1
j :=

u√
N

∫ 1

0

z
θ1(l),θ

+
2

tj (X i
tj
)⊤
[
a−2

θ+2
(X i

tj
)
(
X i

tj+1
−mθ0

tj ,tj+1
(X i

tj
)
)]

dl,

which is a direct analogue of ζ̂ i,θ1j with mθ1(l),θ
+
2 replaced by mθ0 . By definition it

holds that Eθ0

tj
[ζ

i,θ1
j ] = 0. Hence, we conclude the statement

n∑
j=1

N∑
i=1

Eθ0

tj

[
ζ̂ i,θ1j

]
=

u√
N

n∑
j=1

N∑
i=1

∫ 1

0

z
θ1(l),θ

+
2

tj (X i
tj
)⊤

×
[
a−2

θ+2
(X i

tj
)
(
mθ0

tj ,tj+1
(X i

tj
)−m

θ1(l),θ
+
2

tj ,tj+1
(X i

tj
)
)]

dl
Pθ0

−−→ −1

2
u2Σθ0

b ,

which follows directly from (III.4.18) and Lemma III.4.3.
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Proof of (III.4.12): We observe that

Eθ0

tj

[ N∑
i=1

ζ̂ i,θ1j

]
= Eθ0

tj

[ N∑
i=1

(ζ̂ i,θ1j − ζ
i,θ1
j )
]
= Ri

tj
(∆n)

due to (III.4.18). Hence, the second term in (III.4.12) is asymptotically negligible.
As for the first term, we obtain the decomposition

n∑
j=1

Eθ0

tj

[( N∑
i=1

ζ̂ i,θ1j

)2]
=

n∑
j=1

Eθ0

tj

[ ∑
i1 ̸=i2

ζ̂ i1,θ1j ζ̂ i2,θ1j +
N∑
i=1

(ζ̂ i,θ1j )2
]
.

Again due to (III.4.18), we deduce the estimate

Eθ0

tj

[ ∑
i1 ̸=i2

ζ̂ i1,θ1j ζ̂ i2,θ1j

]
= Eθ0

tj

[ ∑
i1 ̸=i2

(ζ̂ i1,θ1j − ζ
i1,θ1
j )(ζ̂ i2,θ1j − ζ

i2,θ1
j )

]
= Ri

tj
(∆2

n).

In other words,
n∑

j=1

Eθ0

tj

[ ∑
i1 ̸=i2

ζ̂ i1,θ1j ζ̂ i2,θ1j

]
Pθ0

−−→ 0.

Finally, we have that

(ζ̂ i,θ1j )2 =
u2

N

[
zθ

0

tj
(X i

tj
)⊤a−2

θ02
(X i

tj
)
(
X i

tj+1
−mθ0

tj ,tj+1
(X i

tj
)
)]2

+Ri
tj+1

(εn,N∆n/N)

with εn,N → 0. Since V θ
tj ,tj+1

(X i,θ
tj ) = ∆na

2
θ2
(X i,θ

tj ) +Ri
tj
(∆

3/2
n ), we conclude that

n∑
j=1

N∑
i=1

Eθ0

tj

[
(ζ̂ i,θ1j )2

]
Pθ0

−−→ u2Σθ0

b .

Proof of (III.4.13): Observe that

n∑
j=1

Eθ0

tj

[∣∣∣ N∑
i=1

ζ̂ i,θ1j

∣∣∣4] ≤ C

n∑
j=1

Eθ0

tj

[∣∣∣ N∑
i=1

ζ̂ i,θ1j − Eθ0

tj

[
ζ̂ i,θ1j

]∣∣∣4]

+ C
n∑

j=1

∣∣∣ N∑
i=1

Eθ0

tj

[
ζ̂ i,θ1j

]∣∣∣4.
As in the proof of (III.4.12), we immediately deduce the convergence

n∑
j=1

∣∣∣ N∑
i=1

Eθ0

tj

[
ζ̂ i,θ1j

]∣∣∣4 Pθ0

−−→ 0.

Setting yij := ζ̂ i,θ1j − Eθ0

tj
[ζ̂ i,θ1j ], we obtain the decomposition

n∑
j=1

Eθ0

tj

[∣∣∣ N∑
i=1

yij

∣∣∣4] = n∑
j=1

Eθ0

tj

 ∑
(i1,i2,i3,i4)∈AN∪BN∪CN

yi1j · · · yi4j

 ,
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where

AN := {all indices are distinct},
BN := {the indices contain two pairs (m1,m1) and (m2,m2) with m1 ̸= m2},
CN := {i1 = i2 = i3 = i4}.

Due to independence and (III.4.18) we have

n∑
j=1

Eθ0

tj

 ∑
(i1,i2,i3,i4)∈AN

yi1j · · · yi4j

 = OPθ0 (∆
3
n).

We also obtain
n∑

j=1

Eθ0

tj

 ∑
(i1,i2,i3,i4)∈BN

yi1j · · · yi4j

 = OPθ0 (∆n)

and
n∑

j=1

Eθ0

tj

 ∑
(i1,i2,i3,i4)∈CN

yi1j · · · yi4j

 = OPθ0 (∆n/N).

This completes the proof of (III.4.13).

Proof of (III.4.14): Similarly to the proof of (III.4.11), we obtain the identity:

Eθ0

tj

[
ζ̂ i,θ2j

]
=

v√
N∆n

∫ 1

0

tr
[
∂θ2aθ2(l)(X

i
tj
) a−1

θ2(l)
(X i

tj
)

×
((

mθ0

tj ,tj+1
(X i

tj
)−m

θ01 ,θ2(l)
tj ,tj+1

(X i
tj
)
)⊗2

+
(
V θ0

tj ,tj+1
(X i

tj
)− V

θ01 ,θ2(l)
tj ,tj+1

(X i
tj
)
))

a−2
θ2(l)

(X i
tj
)

]
dl.

Due to (III.4.18) the term containing the difference of conditional expectations is
negligible, and we only need to study the difference of conditional variances. Via
Itô formula we deduce the decomposition(
V θ
tj ,tj+1

(x)
)
r1,r2

= xr1xr2 +

∫ tj+1

tj

Eθ
tj ,x

[
a2θ2(X

i,θ
s )r1,r2 + br1,θ1(X

i,θ
s , µθ

s)X
i,θ
r2,s

+ br2,θ1(X
i,θ
s , µθ

s)X
i,θ
r1,s

]
ds

−mθ
tj ,tj+1

(x)r1m
θ
tj ,tj+1

(x)r2

=

∫ tj+1

tj

Eθ
tj ,x

[
a2θ2(X

i,θ
s )r1,r2 + br1,θ1(X

i,θ
s , µθ

s)(X
i,θ
r2,s

− xr2) + br2,θ1(X
i,θ
s , µθ

s)(X
i,θ
r1,s

− xr1)
]
ds

+

(∫ tj+1

tj

Eθ
tj ,x

[
br1,θ1(X

i,θ
s , µθ

s)
]
ds

)(∫ tj+1

tj

Eθ
tj ,x

[
br2,θ1(X

i,θ
s , µθ

s)
]
ds

)
.

By mean value theorem we deduce

V θ0

tj ,tj+1
(x)− V

θ01 ,θ2(l)
tj ,tj+1

(x) = (θ02 − θ2(l))∂θ2V
θ01 ,θ̃2
tj ,tj+1

(x)
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for some θ̃2 satisfying |θ02 − θ̃2| ≤ |θ02 − θ2(l)|. Consequently, we conclude that

V θ0

tj ,tj+1
(X i

tj
)− V

θ01 ,θ2(l)
tj ,tj+1

(X i
tj
) = −2lv∆

3/2
n√

N
∂θ2aθ02(X

i
tj
)aθ02(X

i
tj
) +Ri

tj

(
εn,N∆

3/2
n /

√
N
)

(III.4.19)

with εn,N → 0. Hence, (III.4.19) implies the convergence in (III.4.14).

Proof of (III.4.15): In the previous proof we have shown that

Eθ0

tj

[
ζ̂ i,θ2j

]
= Ri

tj
(∆n/N).

Hence, we immediately conclude that

n∑
j=1

(
Eθ0

tj

[ N∑
i=1

ζ̂ i,θ2j

])2

Pθ0

−−→ 0.

Furthermore, following the same arguments as in the proof of (III.4.12), we deduce
the estimate

n∑
j=1

Eθ0

tj

[( N∑
i=1

ζ̂ i,θ2j

)2]
=

N∑
i=1

Eθ0

tj

[
(ζ̂ i,θ2j )2

]
+ oPθ0 (1).

Last but not least, a direct computation shows that

N∑
i=1

Eθ0

tj

[
(ζ̂ i,θ2j )2

]
Pθ0

−−→ v2Σθ0

a .

This completes the proof of (III.4.15).

Proof of (III.4.16): This statement is shown in exactly the same way as (III.4.13).

Proof of (III.4.17): Applying the estimates from the proof of (III.4.11) and (III.4.14),
we immediately obtain the convergence

n∑
j=1

Eθ0

tj

[ N∑
i=1

ζ̂ i,θ1j

]
Eθ0

tj

[ N∑
i=1

ζ̂ i,θ2j

]
Pθ0

−−→ 0.

Also, using the same arguments as in the proof of (III.4.12), we deduce that

n∑
j=1

Eθ0

tj

[ N∑
i=1

ζ̂ i,θ1j

N∑
i=1

ζ̂ i,θ2j

]
=

n∑
j=1

Eθ0

tj

[ N∑
i=1

ζ̂ i,θ1j ζ̂ i,θ2j

]
+ oPθ0 (1).

Finally, using the representations from Proposition III.3.2, we obtain for any 1 ≤
r1, r2, r3 ≤ d:

Eθ0

tj

[(
X i

tj+1
−m

θ1(l),θ
+
2

tj ,tj+1
(X i

tj
)
)
r1
V

θ01 ,θ2(l)
tj ,tj+1

(X i
tj
)r2,r3

]
= Ri

tj
(∆2

n/
√
N),



III.4. Proofs 77

Eθ0

tj

[(
X i

tj+1
−m

θ1(l),θ
+
2

tj ,tj+1
(X i

tj
)
)
r1

(
X i

tj+1
−m

θ01 ,θ2(l)
tj ,tj+1

(X i
tj
)
)⊗2

r2,r3

]
= Ri

tj
(∆2

n)

This implies the convergence

n∑
j=1

Eθ0

tj

[ N∑
i=1

ζ̂ i,θ1j ζ̂ i,θ2j

]
Pθ0

−−→ 0,

and the proof of Theorem III.3.4 is complete.





Chapter IV

On goodness-of-fit testing for
volatility in McKean–Vlasov
models

Abstract: This paper develops a statistical framework for goodness-of-fit testing
of volatility functions in McKean–Vlasov stochastic differential equations, which
describe large systems of interacting particles with distribution-dependent dynam-
ics. While integrated volatility estimation in classical SDEs is now well established,
formal model validation and goodness-of-fit testing for McKean–Vlasov systems re-
main largely unexplored, particularly in regimes with both large particle limits and
high-frequency sampling. We propose a test statistic based on discrete observations
of particle systems, analysed in a joint regime where both the number of particles
and the sampling frequency increase. The estimators involved are proven to be con-
sistent, and the test statistic is shown to satisfy a central limit theorem, converging
in distribution to a centred Gaussian law.
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IV.1 Introduction

McKean–Vlasov stochastic differential equations (SDEs) have gained increasing promi-
nence as a widely used modeling framework for complex systems consisting of large
populations of interacting agents. Unlike classical SDEs, the dynamics of each par-
ticle depend not only on its individual state but also on the statistical distribution
of the entire system. This distinctive feature makes McKean–Vlasov models par-
ticularly well-suited for capturing systemic interactions and emergent behavior in
diverse applications ranging from economics and finance to physics and engineer-
ing [16,36,60,90].

In the context of financial modeling, McKean–Vlasov dynamics have been used to
study systemic risk [43], mean-field interactions in portfolio management [17], and
the evolution of agent-based financial markets. More broadly, their use has expanded
to problems involving optimal control, equilibrium analysis, and the dynamics of
large-scale interacting systems, as surveyed in [18, 68]. These models allow for a
nuanced representation of endogenous feedback effects in financial systems, where
local decisions and aggregate dynamics are tightly coupled through distributional
dependencies.

Given the growing importance of McKean–Vlasov models in applications, there is an
increasing need for statistical methods that can rigorously validate their structural
components, particularly the volatility function, which governs the system’s stochas-
tic fluctuations. While classical diffusion models often rely on volatility functions
depending solely on the state or time variables, this assumption breaks down in sys-
tems where interaction between agents drives the evolution. In such settings, volatil-
ity may depend on the entire population distribution, and any mis-specification can
significantly affect downstream predictions and risk measures.

Despite the importance of model validation, the literature on goodness-of-fit testing
for McKean–Vlasov equations remains scarce. Existing parametric testing proce-
dures for volatility, such as those developed for standard SDEs [3, 26, 34, 35] and
fractional SDEs [87], are tailored to non-interacting systems only. Parametric and
non-parametric estimation methods for McKean-Vlasov SDEs have been investi-
gated in [4,7,10,12,22,24,25,29,48,49,63,73,85,88,92], but they mostly focus on the
drift function. This creates a critical methodological gap: there is currently no gen-
eral method for assessing whether a given volatility structure adequately captures
the behavior of a McKean–Vlasov system based on empirical data.

We address this gap by developing a statistical testing procedure for McKean–Vlasov
particle systems. Our focus lies on constructing a goodness-of-fit test for the volatil-
ity function under high-frequency and large-population asymptotics. In this work,
we consider a system of N interacting particles (X i)i=1,...,N , defined on a filtered
probability space (Ω,F , (Ft)t≥0,P), and evolving over a fixed time interval [0, T ].
The particles are modeled as independent copies of a non-linear process satisfying
the McKean–Vlasov SDE:dX i

t = b
(
X i

t , µt

)
dt+ a

(
X i

t , µt

)
dW i

t i = 1, . . . , N, t ∈ [0, T ]

Law
(
X1

0 , . . . , X
N
0

)
:= µ0 × . . .× µ0

(IV.1.1)
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where the processes (W i
t )t∈[0,T ], i = 1, . . . , N , are independent Brownian motions,

and µt denotes the law of X i
t . The model coefficients

b : R× P2 → R, a : R× P2 → R

are measurable functions that depend on the current state and the current distri-
bution of the solution. Here, P2 denotes the space of probability measures on R
with finite second moments. This space is equipped with the Wasserstein 2-metric,
defined by

W2(µ, ν) =
(

inf
m∈Γ(µ,ν)

∫
R2

|x− y|2m(dx, dy)
) 1

2
,

where Γ(µ, ν) denotes the set of probability measures on R2 with marginals µ and
ν.

Our primary objective is to develop a goodness-of-fit testing framework for the
volatility function a(x, µ), based on discrete-time observations of the system. We
consider observations of the form(

X i
tj

)i=1,...,N

j=1,...,n
, with tj = Tj/n, (IV.1.2)

and study the regime where both the observation frequency increases (∆n := T/n →
0) and the number of particles grows (N → ∞), with a fixed time horizon T > 0.

The main statistical goal of this work is to develop a goodness-of-fit test for the
volatility function a(x, µ), under the null hypothesis that it belongs to a given para-
metric family. To this end, we introduce a test statistic based on discrete-time
observations of an interacting particle system, constructed through an appropriate
distance measure. We prove consistency of the underlying estimators and establish
a central limit theorem for the proposed statistic. This yields a testing procedure
that maintains the correct asymptotic level and is consistent against any fixed al-
ternative. The main methodological challenge lies in the measure dependence of
a(x, µ), which generates non-linear and path-dependent effects that render standard
techniques from classical SDE analysis inapplicable.

To the best of our knowledge, this work provides the first rigorous statistical testing
framework for volatility structures in McKean–Vlasov models based on discrete-
time observations of interacting particle systems. By combining high-frequency
asymptotics with the mean-field structure, our approach extends the scope of model
validation to complex stochastic systems with distribution-dependent dynamics and
lays the theoretical groundwork for hypothesis testing in nonlinear diffusion models.

The structure of the paper is as follows. Section IV.2 introduces the framework and
sets out the standing assumptions for model (IV.1.1). In Section IV.3, we develop
the proposed goodness-of-fit testing procedure, detailing the construction of the
test statistic. Section IV.4 presents the main theoretical results, establishing the
consistency and asymptotic normality of the estimators, and deriving the limiting
distribution of the test statistic under the null hypothesis. All proofs and supporting
technical arguments are collected in Section IV.5.
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IV.2 Assumptions

In this section, we introduce the main assumptions associated with the model
(IV.1.1), which are satisfied by a wide class of stochastic volatility models.

IVA1. For all k ≥ 1, ∫
R
|x|kµ0(dx) ≤ Ck.

The following assumption ensures the existence and uniqueness of a strong solution
to (IV.1.1), guaranteeing well-posedness of the model.

IVA2. The drift and diffusion coefficients satisfy Lipschitz continuity and a lin-
ear growth condition. Specifically, there exists a constant C > 0 such that for all
(x, µ), (y, λ) ∈ R× P2:

|b(x, µ)− b(y, λ)|+ |a(x, µ)− a(y, λ)| ≤ C
(
|x− y|+W2(µ, λ)

)
,

|b(x, µ)|2 + |a(x, µ)|2 ≤ C
(
1 + |x|2 +W 2

2 (µ, δ0)
)
,

Regarding the regularity of the diffusion function a : R × P2 → R, we adopt the
notion of linear differentiability, which is widely used in the literature on McK-
ean–Vlasov equations and mean-field games to characterize the smoothness of the
mapping µ 7→ a(x, µ) from P2 → R. This concept is particularly well-suited to our
framework, and we refer the reader to Section 2 of [29] and the references therein
for a detailed exposition.

Definition IV.2.1. A mapping f : P2 → R is said to have a linear functional
derivative, if there exists ∂µf : R× P2 → R such that

f(µ)− f(µ′) =

∫ 1

0

∫
R
∂µf(y, λµ+ (1− λ)µ′)(µ− µ′)(dy)dλ

for every (µ, µ′) ∈ P2 and ∂µf satisfies additional smoothness properties, which will
be provided in the following assumption.

IVA3. The map µ 7→ a(x, µ) admits a functional derivative in the sense of Defini-
tion IV.2.1. Furthermore, there exists a constant C > 0 such that for all (x, µ), (x′, µ′) ∈
R× P2, ∣∣∂µa(x, y, µ)− ∂µa(x

′, y′, µ′)
∣∣ ≤ C(|x− x′|+ |y − y′|+W2(µ, µ

′)).

Additionally it holds that

|∂y∂µa(x, y, µ)| ≤ C ∀(x, y, µ),
|∂y∂µa(x, y, µ)− ∂y∂µa(x, y, µ

′)| ≤ CW2(µ, µ
′).

Finally, the function a(x, t) := a(x, µt) is in C2,1(R× [0, T ]).
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We note that Assumption IVA3 ensures, in particular, that the process (a(X i
t , t))t∈[0,T ]

is a continuous semimartingale. Indeed, by Itô’s formula one obtains

a(X i
t , t) = a(X0, 0) +

∫ t

0

(
∂ta(X

i
s, s) + b(X i

s, µs) ∂xa(X
i
s, s) +

1
2
∂xxa(X

i
s, s) a

2(X i
s, s)

)
ds

+

∫ t

0

∂xa(X
i
s, s)a(X

i
s, s) dW

i
s . (IV.2.1)

This representation plays a key role in deriving error estimates for high-frequency
statistics of the process (X i

t)t∈[0,T ] (cf. [9]).

IV.3 Testing parametric hypotheses for the volatil-

ity

In this section, we develop a goodness-of-fit testing framework for the volatility
structure in McKean–Vlasov SDEs. Our goal is to assess whether a given parametric
form of the volatility function is consistent with the observed behavior of a discretely
sampled particle system. We begin by formally stating the parametric hypothesis.
Then, we introduce our proposed test statistic ŜN and describe its construction
under high-frequency and large-population asymptotics.
Let

a21, . . . , a
2
d : R× P2 → R+

be a collection of known functions, assumed to be linearly independent and to satisfy
the same regularity conditions as the volatility function a(x, µ). Our objective is to
test whether the squared volatility function a2(x, µ) belongs to the linear span of
the basis functions a21, . . . , a

2
d. More precisely, the null hypothesis is given by

H0 : L := min
(λ1,...,λd)∈Rd

∫ T

0

∫
R

(
a2(x, µt)−

d∑
k=1

λka
2
k(x, µt)

)2
µt(dx) dt = 0, (IV.3.1)

with the alternative hypothesis H1 : L > 0. Here, µt denotes the distribution of
the underlying particle system (X1

t , . . . , X
N
t ), which is not directly observable. In

practice, we approximate µt by the empirical distribution of the observed particles.
The criterion in (IV.3.1) serves as a natural foundation for our test construction,
since it directly measures model discrepancy in a Hilbert space framework. More-
over, it admits a discretized version that can be readily implemented using particle
observations.

Remark IV.3.1. The distance measure L introduced in (IV.3.1) is conceptually
related to the distance proposed in [34, 35] for classical SDEs, although the two
approaches differ in essential aspects. To clarify this, recall that [34, 35] study the
one-dimensional diffusion model

dXt = b(Xt) dt+ a(Xt) dWt,
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observed at discrete time points tj. They introduce the random distance measure

M2 := min
(λ1,...,λd)∈Rd

∫ T

0

(
a2(Xt)−

d∑
k=1

λka
2
k(Xt)

)2
dt,

and consider the hypothesis test H0 : M2 = 0 versus H1 : M2 > 0. A key point is
that, under high-frequency observations of a single trajectory of (Xt)t∈[0,T ], one can
only verify whether

a2(Xt) =
d∑

k=1

λka
2
k(Xt)

holds for some choice of λk, along the realized path (Xt(ω))t∈[0,T ]. There is no possi-
bility to test this identity outside the observed trajectory, i.e., for x /∈ (Xt(ω))t∈[0,T ].
In contrast, in our setting with N independent trajectories as in (IV.1.1), the con-
dition L = 0 entails that

a2(x, µt) =
d∑

k=1

λka
2
k(x, µt)

for some λk, holding for µt-almost every x ∈ R, t ∈ [0, T ]. Nevertheless, this identity
is testable only with respect to the distributions µt of the observed particles (X i

t),
and not for arbitrary distributions.

Standard arguments (cf. [2]) show that this L2-distance admits the closed-form ex-
pression:

L = g(Γ1, . . . ,Γd,B,Λ) = B − (Γ1, . . . ,Γd)Λ
−1(Γ1, . . . ,Γd)

⊤ (IV.3.2)

where the quantities B,Γ1, . . . ,Γd and the matrix Λ = (Λk,l)1≤k,l≤d are given by

B :=

∫ T

0

∫
R
a4(x, µt)µt(dx)dt,

Γk :=

∫ T

0

∫
R
a2k(x, µt)a

2(x, µt)µt(dx)dt, k = 1, . . . , d

Λk,l :=

∫ T

0

∫
R
a2k(x, µt)a

2
l (x, µt)µt(dx)dt, k, l = 1, . . . , d

(IV.3.3)

In order to construct a consistent estimator of L in (IV.3.2), we replace the quantities
in (IV.3.3) with their empirical counterparts, based on the discrete-time observations
introduced in (IV.1.2). Accordingly, we define the following estimators:

B̂ :=
1

3N∆n

N∑
i=1

n∑
j=1

|X i
tj+1

−X i
tj
|4

Γ̂k :=
1

N

N∑
i=1

n∑
j=1

a2k(X
i
tj
, µN

tj
)|X i

tj+1
−X i

tj
|2 k = 1, . . . , d

Λ̂k,l :=
∆n

N

N∑
i=1

n∑
j=1

a2k(X
i
tj
, µN

tj
)a2l (X

i
tj
, µN

tj
) k, l = 1, . . . , d

(IV.3.4)
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(For simplicity of notation we suppress the dependence of estimators on n and N).
Here, µN

t denotes the empirical measure of the system at time t, i.e.

µN
t :=

1

N

N∑
i=1

δXi
t
.

We then introduce the following test statistic as the empirical analogue of the quan-
tity (IV.3.2):

ŜN = g(Γ̂1, . . . , Γ̂d, B̂, Λ̂) = B̂ − Γ̂⊤Λ̂−1Γ̂

where the vector Γ̂ = (Γ̂1, . . . , Γ̂d)
⊤ is defined by the components in (IV.3.4). This

statistic captures the deviation from the null hypothesis and forms the basis of our
goodness-of-fit test.
In the following section, we briefly summarise the key statistical properties of our
proposed estimator ŜN . Specifically, building on the consistent estimation of B,
Γk, and Λk,l by B̂, Γ̂k, and Λ̂k,l (as established in Theorems IV.4.1 and IV.4.2,

respectively), we show that ŜN is a consistent estimator of L as N → ∞ and
∆n → 0, and provide the associated central limit theorem.

IV.4 Main results

In this section, we present the core theoretical contributions of this paper, focusing
on the asymptotic properties of our proposed estimators and their associated test
statistics. We begin by demonstrating the consistency and convergence rates of our
estimators. Specifically, Theorem IV.4.1 establishes the consistent approximation of
the limiting matrix Λ by its empirical counterpart Λ̂. Similarly, Theorem IV.4.2 pro-
vides stochastic expansions for the quantities B̂ and Γ̂k (for k = 1, . . . , d), which are
essential for deriving the limiting distribution of our test statistic. Corollary IV.4.3
then establishes the joint asymptotic normality of these key components. These
results together characterize the limiting distribution and its asymptotic covari-
ance structure. Finally, combining these foundational results, we present the main
asymptotic normality result for our proposed estimator ŜN .
In what follows, we introduce two theorems that provide stochastic expansions for
the quantities Λ̂, B̂, and Γ̂k. Throughout the sequel, we will frequently use the
notation oP(1) to denote terms that converge to 0 in probability.

Theorem IV.4.1. Assume that Assumptions IVA1-IVA3 hold and N∆2
n → 0. Then

√
N
(
Λ̂− Λ

)
=

√
NMΛ + oP(1)

where MΛ is a (d× d)-matrix with elements

MΛ,k,l :=
1

N

N∑
i=1

(
Zi

Λ,k,l − E(Z1
Λ,k,l)

)
Zi

Λ,k,l :=

∫ T

0

a2k(X
i
s, µs)a

2
l (X

i
s, µs)ds k, l = 1, . . . , d.
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Theorem IV.4.2. Assume that Assumptions IVA1-IVA3 hold and N∆2
n → 0. Then

√
N
(
Γ̂k − Γk

)
=

√
NMk + oP(1)

√
N
(
B̂ − B

)
=

√
NMB + oP(1)

with

Mk :=
1

N

N∑
i=1

(
Zi

k − E(Z1
k)
)
, Zi

k :=

∫ T

0

a2k(X
i
s, µs)a

2(X i
s, µs)ds

MB :=
1

N

N∑
i=1

(
Zi

B − E(Z1
B)
)
, Zi

B :=

∫ T

0

a4(X i
s, µs)ds

Building upon the individual asymptotic properties established in Theorems IV.4.1
and IV.4.2, we are now in a position to derive the joint asymptotic distribution
of the involved components (M1, . . . ,Md,MB,MΛ). The following statement is a
simple consequence of the standard central limit theorem and the δ-method.

Corollary IV.4.3. Assume that Assumptions IVA1-IVA3 are satisfied and N∆2
n →

0.

(i) It holds that

Ẑ :=
√
N


M1
...

Md

MB
vec (MΛ)k,l

 L−→ Z∗, Z∗ d
= Nd2+d+1(0,Σ)

where the components of the covariance matrix Σ are given by

Σp,q = Cov
(
Ẑp, Ẑq

)
.

(ii) It holds that √
N(ŜN − L)

L−→ G ∼ N (0, τ 2)

where the asymptotic variance τ 2 is defined as

τ 2 = ∇g⊤(Γ1, . . . ,Γd,B,Λ)Σ∇g(Γ1, . . . ,Γd,B,Λ).

The asymptotic result of Corollary IV.4.3 forms the theoretical basis of our goodness-
of-fit test. Under the null hypothesis H0 : L = 0, it yields

√
N ŜN L−→ N (0, τ 2).

Suppose we can construct a consistent estimator τ̂ 2 of the asymptotic variance τ 2,
that is,

τ̂ 2
P−→ τ 2.
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Then, for a given significance level α ∈ (0, 1), the null hypothesis H0 : L = 0 is
rejected whenever √

N ŜN

τ̂
> z1−α,

where z1−α denotes the (1 − α)-quantile of the standard normal distribution. By
construction, this test attains the correct asymptotic size α. Moreover, under the

alternative H1 : L > 0, we have
√
N ŜN P−→ +∞, which ensures that the procedure

is consistent against any fixed alternative.
In the final step we construct a consistent estimator τ̂ 2 of τ 2. We introduce the
vector

V̂ i :=
(
Ẑi

1, . . . , Ẑ
i
d, Ẑ

i
B, vec (Ẑ

i
Λ)k,l

)⊤
with the estimators given by

Ẑi
k :=

n∑
j=1

a2k(X
i
tj
, µN

tj
)|X i

tj+1
−X i

tj
|2 k = 1, . . . , d

Ẑi
B :=

1

3∆n

n∑
j=1

|X i
tj+1

−X i
tj
|4

(Ẑi
Λ)k,l := ∆n

n∑
j=1

a2k(X
i
tj
, µN

tj
)a2l (X

i
tj
, µN

tj
) k, l = 1, . . . , d

Then the empirical covariance estimator of the covariance matrix Σ is defined as

Σ̂ =
1

N

N∑
i=1

(
V̂ i − V

)(
V̂ i − V

)⊤
, with V =

1

N

N∑
i=1

V̂ i.

Applying similar methods as in Theorem IV.4.1, we conclude that Σ̂
P−→ Σ and

consequently the estimator

τ̂ 2 := ∇g⊤
(
Γ̂1, . . . , Γ̂d, B̂, Λ̂

)
Σ̂∇g

(
Γ̂1, . . . , Γ̂d, B̂, Λ̂

)
satisfies τ̂ 2

P−→ τ 2.

Remark IV.4.4. For practical applications, the null hypothesis will almost never
hold exactly. It is therefore natural to ask how well the linear span of the functions
a21, . . . , a

2
d can approximate the true squared volatility coefficient a2. The distance

measure L is not ideal in this context, since its numerical size is difficult to interpret.
A more convenient criterion was introduced in [87] for fractional diffusion models
and, in our setting, takes the form

G :=
L

B
.

In contrast to L, the statistic G enjoys the appealing property G ∈ [0, 1], which
follows directly from Pythagoras’ theorem. This normalization allows deviations
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from the null hypothesis to be expressed in relative terms rather than in absolute
units. Moreover, for any fixed δ ∈ (0, 1), one can test

H0 : G ∈ [0, δ] vs. H1 : G ∈ (δ, 1],

and the asymptotic normality of G follows directly from Corollary IV.4.3.

IV.5 Proofs

As a preliminary step, we recall a collection of moment bounds, adapted from [7],
that will serve as a foundation for establishing the main results of this paper.

Lemma IV.5.1. Assumptions IVA1–IVA3 hold. Then, for any p ≥ 1, there exists
a constant C > 0 such that the following bounds hold uniformly over all particles
i ∈ {1, . . . , N}, for all N ∈ N, and for all times t ∈ [0, T ]:

(i) sup
t∈[0,T ]

E[|X i
t |p] < C, and moreover, sup

t∈[0,T ]

E[W q
p (µ

N
t , δ0)] < C for p ≤ q.

(ii) E[|X i
tj+1

−X i
tj
|p] ≤ C∆

p/2
n .

(iii) E[W 2
2 (µ

N
t , µt)] ≤ CN−1.

IV.5.1 Proof of Theorem IV.4.1

We restrict our attention to the case d = 1 and set f := a41. The extension to
higher dimensions d > 1 is straightforward and involves only additional notational
complexity. We consider the following decomposition

Λ̂− Λ =
∆n

N

N∑
i=1

n∑
j=1

f(X i
tj
, µN

tj
)−

∫ T

0

∫
R
f(x, µs)µs(dx)ds

=
1

N

N∑
i=1

∫ T

0

f(X i
s, µs)ds−

∫ T

0

∫
R
f(x, µs)µs(dx)ds

+
∆n

N

N∑
i=1

n∑
j=1

f(X i
tj
, µtj)−

1

N

N∑
i=1

∫ T

0

f(X i
s, µs)ds

+
∆n

N

N∑
i=1

n∑
j=1

[
f(X i

tj
, µN

tj
)− f(X i

tj
, µtj)

]
=: MΛ +H(1) +H(2)

The term MΛ corresponds to the deviation between the empirical mean and its
deterministic counterpart. We thus need to show that

√
N(|H(1)|+ |H(2)|) = oP(1).

First of all, we note that the term H(1) corresponds to the Riemann sum approxima-
tion error associated with stochastic process ft := f(X i

t , µt). According to (IV.2.1),
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this stochastic process is a continuous Itô semimartingale, we know from [9, Section
7 and 8] that

∆n

n∑
j=1

f(X i
tj
, µtj)−

∫ T

0

f(X i
s, µs)ds = ∆nA

n
i

with
1

N

N∑
i=1

An
i = OP(1).

In other words,
√
NH(1) = OP(∆n

√
N) and the latter is negligible as N∆2

n → 0.
Now, we focus on the term H(2). Here we use the notion of the linear functional
derivative and apply it to the function f :

H(2) = H(2.1) +H(2.2),

where the terms H(2.1) and H(2.2) are defined via

H(2.1) :=
∆n

N

N∑
i=1

n∑
j=1

∫
R
∂µf(X

i
tj
, y, µtj)(µ

N
tj
− µtj)(dy)

H(2.2) :=
∆n

N

N∑
i=1

n∑
j=1

∫ 1

0

∫
R

{
∂µf(X

i
tj
, y, λµN

tj
+ (1− λ)µtj)− ∂µf(X

i
tj
, y, µtj)

}
× (µN

tj
− µtj)(dy)dλ

For the term H(2.1) we obtain the identity

H(2.1) =
∆n

N2

N∑
i,k=1

n∑
j=1

(
∂µf(X

i
tj
, Xk

tj
, µtj)−

∫
R
∂µf(X

i
tj
, y, µtj)µtj(dy)

)
.

If we write H(2.1) = N−2
∑N

i,k=1 Rn(i, k) and use the arguments from Hoeffding
decomposition for U -statistics to compute the variance of H(2.1), we immediately
conclude that

H(2.1) = OP(1/N).

Now, we move on to handling the term H(2.2). For a function g : R → R with
bounded derivative we know that∣∣∣∣∫

R
g(x)(µ− ν)(dx)

∣∣∣∣ ≤ ∥g′∥∞W1(µ, ν).

Applying this inequality, Lemma IV.5.1(iii) and Assumption IVA3, we obtain for
the term H(2.2):

|H(2.2)| ≤
∆n

N

N∑
i=1

n∑
j=1

∫ 1

0

sup
y∈R

∣∣∣∂y∂µf(X i
tj
, y, λµN

tj
+ (1− λ)µtj)− ∂y∂µf(X

i
tj
, y, µtj)

∣∣∣ dλ
×W1(µ

N
tj
, µtj)
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≤ C∆n

n∑
j=1

W2(µ
N
tj
, µtj)W1(µ

N
tj
, µtj) = OP(N

−1).

Hence, we conclude that H(2) = OP(N
−1), which completes the proof of Theorem

IV.4.1.

IV.5.2 Proof of Theorem IV.4.2

We start with the term Γ̂k. We obtain the decomposition

Γ̂k − Γk = Γk.1 + Γk.2

where the terms Γk.1 and Γk.2 are defined as

Γk.1 :=
∆n

N

N∑
i=1

n∑
j=1

a2k(X
i
tj
, µN

tj
)a2(X i

tj
, µN

tj
)−

∫ T

0

∫
R
a2k(x, µt)a

2(x, µt)µt(dx)dt,

Γk.2 :=
1

N

N∑
i=1

n∑
j=1

a2k(X
i
tj
, µN

tj
)|X i

tj+1
−X i

tj
|2 − ∆n

N

N∑
i=1

n∑
j=1

a2k(X
i
tj
, µN

tj
)a2(X i

tj
, µN

tj
).

Analogously to the proof of Theorem IV.4.1 we conclude that

Γk.1 = Mk + oP(N
−1).

Applying the methods of [9, Section 7 and 8], we deduce the decomposition

Γk.2 =
1

N

N∑
i=1

n∑
j=1

a2k(X
i
tj
, µN

tj
)a2(X i

tj
, µN

tj
)
(
(W i

tj+1
−W i

tj
)2 −∆n

)
+OP(N

−1).

By martingale methods we immediately obtain that

var(Γk.2) = N−1∆n.

This implies that
√
NΓk.2 = oP(1).

The term B̂ is handled the same way as Γ̂k, which completes the proof of Theorem
IV.4.2.
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crete observations of diffusion processes with mixed effects. Stochastic Processes
and their Applications, 128(6), 1929–1957, 2018.

[29] L. Della Maestra and M. Hoffmann. Nonparametric estimation for interact-
ing particle systems: McKean–Vlasov models. Probability Theory and Related
Fields, 182(1), 551–613, 2022.

[30] L. Della Maestra and M. Hoffmann. The LAN property for McKean–Vlasov
models in a mean-field regime. Stochastic Processes and their Applications, 155,
109–146, 2023.

[31] C. Denis, C. Dion, and M. Martinez. Consistent procedures for multiclass clas-
sification of discrete diffusion paths. Scandinavian Journal of Statistics, 2020.

[32] C. Denis, C. Dion-Blanc, and M. Martinez. A ridge estimator of the drift from
discrete repeated observations of the solutions of a stochastic differential equa-
tion. Bernoulli, 27(4), 2675–2713, 2021.

[33] H. Dette and C. von Lieres und Wilkau. On a test for a parametric form of
volatility in continuous time financial models. Finance and Stochastics, 7, 363–
384, 2003.

[34] H. Dette and M. Podolskij. Testing the parametric form of the volatility in
continuous time diffusion models—a stochastic process approach. Journal of
Econometrics, 143, 56–73, 2008.

[35] H. Dette, M. Podolskij, and M. Vetter. Estimation of integrated volatility in
continuous-time financial models with applications to goodness-of-fit testing.
Scandinavian Journal of Statistics, 33, 259–278, 2006.

[36] B. Djehiche, F. Gozzi, G. Zanco, and M. Zanella. Optimal portfolio choice with
path dependent benchmarked labor income: a mean field model. Stochastic
Processes and their Applications, 145, 48–85, 2022.

[37] G. Dos Reis, S. Engelhardt, and G. Smith. Simulation of McKean-Vlasov SDEs
with super-linear growth. IMA Journal of Numerical Analysis, 42(1), 874–922,
2022.

[38] G. Dos Reis, W. Salkeld, and J. Tugaut. Freidlin-Wentzell LDP in path space
for McKean-Vlasov equations and the functional iterated logarithm law. The
Annals of Applied Probability, 29(3), 1487–1540, 2019.



Bibliography 95
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