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Abstract

Identifying causal relationships in omics data is essential for understanding underlying biological processes. However, detecting
these relationships remains challenging due to the complexity of molecular networks and observational data limitations. To guide
researchers, we conducted a systematic literature review of data-driven causal omics analysis methods that use structured prior
knowledge from regulatory and interaction databases. We grouped methods into three approaches based on the extent of prior knowl-
edge integration: regulon-level (direct regulator-target links, straightforward interpretation, but with the risk of oversimplification),
flow-level (multi-step propagation from regulators to targets, broader mechanism explanation, but lacking uncertainty modeling), and
network-level (system-wide interactions and crosstalk, most comprehensive, but with increased computational complexity and requir-
ing particularly careful interpretation). These methods have demonstrated utility across diverse applications, including identification of
therapeutic targets in acute myeloid leukemia, elucidation of mechanisms in IgA nephropathy, and detection of regulatory perturbations
in Alzheimer’s disease. We discuss the strengths, limitations, and representative use cases of each approach, and address general
limitations and outline future research directions. This review serves as a practical guide for the entire analysis process, from selecting

prior knowledge databases (PKDBs) to choosing and applying causal analysis methods for different research questions.
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Introduction

Understanding causal relationships in cellular processes is one of
the main goals in systems biology. Although statistical analysis
methods are effective at identifying differential patterns in large-
scale biological data, they often fail to reveal the underlying
mechanisms. These methods are generally unable to distinguish
between correlation and causation and do not provide insights
into the upstream regulatory factors that could explain observed
alterations.

To address these limitations, bioinformatics approaches have
been developed for causal molecular network analysis. These
methods integrate experimental data with prior biological knowl-
edge to provide mechanistic data interpretations. By combining
data- and knowledge-driven reasoning, causal network analysis
identifies upstream regulators and perturbations likely respon-
sible for the measured changes in gene or protein activities.
In a disease context, studying these causal mechanisms can
improve understanding of normal homeostasis and pathological
processes, and potentially highlight new candidate drug targets
for preclinical intervention studies [1].

A key aspect of causal network analysis involves using prior
knowledge databases (PKDBs), which contain information about
interactions between biological entities. In recent years, the quan-
tity and quality of available prior knowledge has grown rapidly,
driven by large-scale curation efforts [2]. This progress has pro-
vided a solid foundation for developing computational methods

that rely on prior knowledge for both associative [3] and causal
analyses.

Diverse causal network analysis methods have been proposed,
differing significantly in how they integrate prior knowledge, use
experimental data, and the outputs they produce. As molecular
datasets grow in size and complexity, causal network analysis
is playing an increasingly important role in identifying disease
mechanisms and supporting translational research.

While previous reviews have addressed causal analysis of
molecular data, their focus differs from that of the present work.
For example, Kelly et al. [4] reviewed methods for inferring causal
links and de novo network construction from observational data,
independent of prior knowledge (e.g. Mendelian randomization,
Bayesian causal inference, and time-series causal inference).
Other reviews have focused on specific applications, such as
drug discovery or repurposing, rather than on the broader class
of approaches combining experimental data with structured
biological knowledge [5, 6]. Most relevant to our work, Nguyen
[7] and Garrido-Rodriguez [8] explored data-driven methods that
incorporate prior knowledge; however, they focused on comparing
altered pathways and subnetworks rather than identifying and
ranking key causal upstream regulators, which is the primary
focus of this review.

To our knowledge, this is the first comprehensive review cen-
tered specifically on data-driven causal analysis methods that
incorporate structured prior knowledge. We propose that these
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Figure 1. Overview of the workflow for causal network analysis of
omics data. Experimental omics data and prior knowledge databases
are integrated through three complementary analytical approaches that
differ in scope: regulon-level analysis examines individual regulators
and their direct targets (left network, highlighted node shows putative
regulator); flow-level analysis traces multi-step signaling cascades from
upstream sources to downstream effectors (middle network, highlighted
node shows upstream regulator); and network-level analysis consid-
ers system-wide regulatory interactions and crosstalk (right network).
Arrows represent causal relations directed from source to target. Node
colors indicate experimental states: upregulated (blue), downregulated
(red), or not affected (white). These three methodological categories,
detailed in the Methods section, provide increasingly comprehensive but
computationally complex approaches to identifying causal mechanisms
underlying observed molecular changes. Alt text: Diagram showing three
network analysis approaches of increasing complexity: regulon-level
analysis with a single highlighted regulator node, flow-level analysis
with highlighted upstream regulator, and network-level analysis showing
system-wide interactions.

methods represent a category of their own, with growing impor-
tance in computational systems biology. A particular benefit of
causal network analyses is their potential to generate biologically
meaningful insights from datasets with relatively small sample
sizes, a common situation for many biomedical studies. Causal
network analysis is still feasible in this scenario because prior
data on known interactions is exploited, helping to narrow down
the search space of possible causal mechanisms. Through this
review, we aim to provide practical recommendations for conduct-
ing causal network analyses, addressing each step of the process
from prior knowledge database selection to interpretation of the
results (see Fig. 1).

Methods

We conducted a systematic literature review to identify and
evaluate computational methods for causal network analysis of

omics data using prior biological knowledge. This review follows
established guidelines for systematic reviews, specifically
adhering to the scoping review methodology outlined by the
Joanna Briggs Institute (JBI) [9].

Literature search strategy

We searched PubMed, Web of Science, and IEEE Xplore databases
(last search date: April 2025) for articles describing computational
methods that integrate experimental omics data with prior
knowledge networks (PKNs) to infer causal regulatory mech-
anisms. Our search strategy employed a multistage keyword-
based approach using four categories of search terms: (i) “Causal
analysis” (causal reasoning, upstream regulator), (i) “Network
analysis” (network contextualization, pathway analysis), (iil) “Prior
knowledge” (prior knowledge database, gene regulatory network),
and (iv) “Omics data” (transcriptomics, proteomics). Articles were
required to contain at least one relevant search term from each
category. We supplemented database searches with manual
screening of reference lists from key review articles. We restricted
inclusion to peer-reviewed articles published from January 2010
to April 2025 in English.

Eligibility criteria and data extraction

We included articles describing computational methods that: (i)
integrate experimental omics data with structured prior biologi-
cal knowledge, (ii) aim to identify candidate upstream regulators
or causal mechanisms, (iii) provide algorithmic descriptions suffi-
cient for implementation, and (iv) demonstrate application to real
biological datasets. We excluded methods that: (i) focus solely on
de novo network inference; (ii) describe purely correlation-based
approaches; (iii) strictly require experimental perturbation data as
primary input; or (iv) lack complete mathematical formulations,
pseudocode, step-by-step algorithmic descriptions, or validation.
Two reviewers independently checked articles for eligibility, and
for each included method, we extracted information on its mathe-
matical formulation, data requirements, PKDB compatibility, soft-
ware availability, and biological applications.

Methods were categorized based on their extent of prior knowl-
edge integration: regulon-level (direct regulator-target relation-
ships), flow-level (multi-step regulatory cascades), and network-
level (system-wide regulatory analysis; see detailed discussion
of each category below). This classification emerged iteratively
during the review process. We synthesized the literature by con-
ducting a comparative analysis of methodological approaches to
provide practical guidance for method selection.

Data resources
Prior knowledge databases

A PKDB is any structured resource that catalogs directed molec-
ular or gene regulatory interactions, specifying the source, tar-
get, and the type of effect (e.g. activating or inhibiting). For the
purposes of this review, PKDBs are assumed to contain directed
interactions in a triplet format: source, target, and sign of the
interaction. While not all pathway databases explicitly follow
this model (e.g. KEGG [10], Reactome [11], PANTHER [12]), causal
information is sometimes embedded within their biological pro-
cess descriptions. We focus on PKDBs that are directly used in
the reviewed methods (see Table 1), while a broader overview of
available PKDBs has been presented by Touré et al. [13].

Nodes and interactions in PKDBs provide two main types of
information: the type of nodes covered (e.g. genes, proteins, drugs),
which pre-determines the type of experimental data that can be
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Table 1. Overview of prior knowledge databases for causal network analysis.

Name Specific nodes/bioentities® Interaction Weighted Accessibility Ref
signs edges
SIGNOR 3.0 Phenotype, stimulus, antibody All signed No Public [14]
GeneGo Kinase, phosphatase, enzyme Signed and No Commercial RRID:
MetaCore™ DNA, G beta/gamma, G alpha, unsigned SCR_008125
inorganic ion, ligand-gated ion
channel
QIAGEN Biomedical Cytokine, disease, drug, function, Signed and Yes Commercial RRID:
Knowledge Base - group, canonical pathway, unsigned SCR_008117
Human Derived transcription regulator,
(QBKB-HD) translation regulator
PhosphoSitePlus (PPP) Proteins, kinases, phosphosites Signed and No Licence upon [15]
unsigned individual conditions

This table compares three databases (SIGNOR, MetaCore and QBKB-HD) across four dimensions: their supported “Specific nodes / bioentities” (the term
“bioentities” refer to biological entities such as genes, proteins, or metabolites, “specific” refers to terms not shared across all three databases), “Interaction signs”
(whether directed relationships are signed or unsigned), “Weighted edges” (quantitative relationship strength indicators), and “Accessibility” (public, commercial,
other), with supporting references in the “Ref” column @SIGNOR, MetaCore, and QBKB-HD all include the following shared entity types: proteins, chemicals,
complexes, and microRNAs. PPP is a specialized resource for prior knowledge on phosphoproteomics; we refer to its datasets on kinase-substrate interactions and

regulatory sites.

Table 2. Key public resources for omics data in biomedical research.

Omics type Resource URL / References
Transcriptomics Gene Expression Omnibus (GEO), ArrayExpress www.ncbi.nlm.nih.gov/geo/ [20]; www.ebi.ac.uk/arrayexpress [21]
Genomics dbGaP Database, NCBI Sequence Read Archive www.ncbi.nlm.nih.gov/gap [22]; www.ncbi.nlm.nih.gov/sra [23];
(SRA), European Nucleotide Archive (ENA) www.ebi.ac.uk/ena [24]
Proteomics EBI PRIDE, ProteomeXchange, MassIVE, www.ebi.ac.uk/pride/ [25]; www.proteomexchange.org [26]; https://
PeptideAtlas massive.ucsd.edu;
www.peptideatlas.org [27]
Metabolomics MetaboLights, Metabolomics Workbench www.ebi.ac.uk/metabolights [28]; www.metabolomicsworkbench.
org [29]
Epigenomics IHEC Portal, MethBase http://epigenomesportal.ca/ihec/ [30]; https://smithlabresearch.

org/software/methbase/ [31]

This table summarizes major public repositories organized by omics data type, providing access to standardized datasets that can be used for causal network

analysis either independently or in combination with private data.

mapped; and the type of signaling and regulatory interactions.
Commonly used resources like GeneGo MetaCoreTM and QIAGEN
Biomedical Knowledge Base - Human Derived (QBKB-HD) pro-
vide highly granular protein labels and drug nodes. The SIGNOR
database [14], in turn, covers molecular phenotype nodes such as
proliferation and apoptosis. Another essential information source
is the sign of interactions (+ for activation, — for inhibition,
and, sometimes, 0 for unknown), which defines rules for signal
propagation. Some databases also assign weights to edges, reflect-
ing the confidence of the evidence. These characteristics vary
significantly and should be carefully considered when selecting
a resource.

Omics data resources

Causal network analysis is typically used to investigate omics
data comparing different conditions, such as healthy versus dis-
eased states. Most methods require a list of altered bioentities
(e.g. genes or proteins) identified through differential analysis.
At a minimum, this list should include identifiers and the direc-
tion of change (up- or down-regulated). Some methods also sup-
port quantitative information, such as log fold changes or P-
values. Omics data can be derived from new experiments or
from public repositories (see Table 2). Incorporating public data
offers several advantages, including validating findings across
multiple datasets and increasing statistical power [16]. When
using public data, researchers should consider factors such as
experimental design compatibility, batch effects, and platform
differences [17]. Preprocessing steps like normalization and batch

correction are essential to ensure data compatibility [18, 19]. In
this review, we assume that experimental data has been pre-
processed to produce a list of altered bioentities suitable for
analysis.

Filtering of prior knowledge databases

The content of a selected PKDB must be filtered before causal
analysis. This is necessary for several reasons: contextual rele-
vance (interactions from unrelated tissues may introduce noise),
heterogeneity of bioentities (many entities may not be relevant
to the omics data studied), and varying confidence levels (retain-
ing only high-confidence interactions improves robustness). In
addition, PKDBs carry systematic curation/literature biases: well-
studied areas like cancer and immunology are often overrepre-
sented, while rare diseases and some tissues or processes are
underrepresented [32]. This skew can inflate the support for regu-
lators in heavily curated domains, so results should be interpreted
with that imbalance in mind.

Most commercial databases (like MetaCore and QBKB-HD) can-
not be downloaded in full but instead return relevant bioentities
and interactions based on predefined criteria, a process called the
“connection strategy.” For instance, one might retrieve only direct
interactions between a provided list of bioentities. For databases
that can be downloaded entirely, connection strategies remain
valuable for reducing computational complexity. Open-source
tools like NeKo by Ruscone et al. [33] support flexible network
assembly for this purpose. Once preprocessed, a PKDB is referred
to as a PKN.
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Figure 2. Comparative overview of three approaches to causal network analysis of omics data. This figure illustrates the three methodological categories
for causal network analysis, showing increasing scope and complexity. Regulon-level analysis (left) examines individual regulators and their direct
targets. Flow-level analysis (middle) traces multi-step signaling cascades from upstream regulators to downstream effectors. Network level analysis
(right) considers system-wide regulatory interactions and crosstalk between multiple regulators. The legend indicates regulators (red), direct targets
(blue), and indirect targets (purple). Alt text: Three network diagrams showing progression of causal analysis methods: regulon-level analysis depicting
a single regulator (red) with direct targets (blue); flow-level analysis showing a signaling cascade from upstream regulator through intermediate nodes
to downstream targets; network-level analysis displaying multiple interconnected regulators with overlapping targets and crosstalk.

Causal analysis approaches

We define causal network analysis as the process of inferring
potential regulatory mechanisms by integrating experimental
data with a PKN. We are particularly interested in identifying
causal regulators whose activity may causally explain down-
stream changes observed in the data. The idea is to evaluate
whether experimental observations are consistent with the
interactions already captured within the prior knowledge.

The reviewed methods are grouped into three categories based
on the extent to which PKNs are used: (i) regulon-level approaches
analyze individual transcription factors and their direct targets
in isolation; (ii) flow-level approaches trace multi-step signaling
cascades from upstream regulators through intermediate nodes
to downstream effectors; and (iii) network-level approaches con-
sider system-wide interactions among multiple regulators, their
targets, and regulatory crosstalk simultaneously (see overview in
Fig. 2). A regulon refers to a regulator and its direct downstream
targets; a flow includes a regulator and its direct and indirect
downstream targets; a network here refers to a subnetwork within
a larger molecular network. This categorization reflects a progres-
sion in methodological complexity and enables more meaningful
comparisons.

Our qualitative comparative approach is necessitated by
the heterogeneity in methodologies and applications, which
precludes direct performance benchmarking. The methods target
distinct research questions, making standardized performance
metrics inappropriate.

Regulon-level analysis

Background: given a set of bioentities with altered activity, one
may be interested in identifying the direct upstream regula-
tors responsible. For each candidate regulator in the PKN, the
subnetwork of its direct downstream targets (its regulon) is iden-
tified. The observed directions of alterations are then compared

with those expected from the prior knowledge. To formalize this,
sign counts are summarized in a contingency table for each
regulon (Supplementary Table S1).

Methods: one of the first causal reasoning approaches is Whis-
tle, proposed by Catlett et al. [34], which evaluates the counts
of matching (ny4,n-_) and opposing (n4_,n_.) signs between
predicted and observed directions of alterations. It assumes the
probability of a pattern follows a binomial distribution:

n ny_ +n_ n__
(4 e

In this formula, p is the binomial parameter, which the authors
suggest setting to 0.5, reflecting an equal chance of a correct or
incorrect prediction. A drawback is that the resulting P-values are
influenced by regulon size, potentially favoring larger regulons
[34].

An alternative method, CRE (Causal Reasoning Engine), by
Chindelevitch et al. [35], also uses these counts but evaluates prob-
abilities using the hypergeometric distribution, which accounts
for regulon size through the margins of the contingency table:

q+ q- qo
Nyt Ny — N0 ] No+,Mo—,Noo
N )
Ny ,N-,No

where ny0,n_o and ngo denote counts of non-differentially abun-
dant bioentities; q-, q— and qo are the marginal column sums, and
N =g+ +q- + qo-

Next, IURA (QIAGEN Ingenuity Upstream Regulator Analysis),
developed by Kramer et al. [36], incorporates edge weights from
PKDBs like QBKB-HD. IURA integrates these weights into its sta-
tistical framework, calculating a z-score based on matching and

prob =
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Table 3. Overview of the key features of regulon-level analysis methods.

Unsigned edges Weighted edges

Arbitrary input PKN

Code availability Software reference

Whistle a No b Yes, Java https://github.com/Selventa/whistle

CRE a No Yes Yes, R ¢

Qs Yes No Yes Yes, R http://bioconductor.org/packages/
QuaternaryProd

IURA @ Yes No, only QBKB-HD dNo https://digitalinsights.qiagen.com

VIPER No Yes Yes Yes, R http://bioconductor.org/packages/

viper

The columns “Unsigned edges” and “Weighted edges” indicate if the statistic for a method makes use of unsigned edges and edge weights. The column “Arbitrary
input PKN” indicates if a method can be used with a user-specified PKN. 2Via an enrichment statistic; PPKN should be provided in BEL (Biological Expression
Language) format; “Original code is available upon request to the authors and the method is also implemented within the QS package; 4IURA is implemented

within the commercial QIAGEN Ingenuity Pathway Analysis software.

opposing sign pairs:

Z»eé WR (1, v) Sr (1, v) Sp (V)

2,5 w0l

z(r) =

where ris a candidate regulator, sg (1, v) is the predicted direction
of regulation, sp (v) is the observed alteration sign, and wg (1, v) is
the edge weight. The sum goes over direct downstream bioentities
of r such that sg (r,v) # 0,sp (v) # 0. Under the null hypothesis,
this z-score is approximately normally distributed.

So far, none of the discussed statistics account for unsigned
regulatory relationships. To address this, each method incorpo-
rates an additional enrichment statistic (a one-sided Fisher’s
exact test) to evaluate the overrepresentation of regulated targets
within a regulon.

More recently, the QS (Quaternary Score) method by Fakhry
et al. [37] integrates both signed and unsigned relationships into a
single test statistic:

QS=nip +n__+n +n- — Ny +n_y).

Here, n,, and n,_ denote counts of bioentities with known influ-
ence but unknown regulation direction. A P-value is computed by
summing the probabilities of all contingency tables with scores
at least as large as the observed one, where the probability is
calculated using a hypergeometric formula that accounts for the
unsigned category.

Finally, VIPER (Virtual Inference of Protein Activity by Enriched
Regulon Analysis), introduced by Alvarez et al. [38], uses a
rank-based approach similar to Gene Set Enrichment Analysis
(GSEA) [39]. It incorporates continuous measures of differential
expression, allowing it to weigh predictions more effectively
and avoid arbitrary significance thresholds. VIPER computes a
signed enrichment score for each putative regulator and tests its
statistical significance.

All five methods not only assess statistical significance but also
facilitate conclusions about whether a potential regulator is likely
activated or inhibited. An overview is provided in Table 3.

Prior applications

Regulon-level methods have demonstrated significant perfor-
mance in recovering known perturbations. Whistle was applied
to TNF exposure profiles and successfully identified known TNF
signaling molecules [34]. CRE and QS were evaluated on pertur-
bation signatures involving c-MYC and H-Ras, recovering either
the perturbed regulator or a functionally related molecule [35,
37]. VIPER was tested in lymphoma cell line experiments where

individual regulators were silenced, successfully identifying them
as top inactivated proteins [38]. Furthermore, CRE was used to
gain mechanistic insight into how a small molecule compound
preserves T cell function [40], and VIPER helped investigate
transcriptional changes in schizophrenia [41].

Strengths and limitations

Regulon-level analysis benefits from its straightforward focus on
direct regulatory relationships, which facilitates interpretation.
Additionally, these methods adopt a probabilistic framework, pro-
viding a measure of uncertainty for every candidate regulator. At
the same time, the main limitation is its core assumption of treat-
ing regulons independently. In reality, regulons interact, and dif-
ferent regulators may control the same target genes. Disregarding
these connections can lead to an oversimplified representation of
complex regulatory networks.

Flow-level analysis

Background

Identifying upstream regulators not directly connected to the
observed changes requires tracing longer paths in the graph. A
“tlow” refers to a set of nodes in a causal graph that all trace
back to a common upstream regulator. These methods require
access to the complete PKN, making commercial databases with
limited accessibility unsuitable. A fully accessible resource such
as SIGNOR is a suitable alternative.

Methods

One of the first flow-level analysis methods is CARNIVAL (CAusal
Reasoning pipeline for Network identification using Integer VALue
programming), proposed by Liu et al. [42]. It casts flow derivation
as an integer linear programming optimization problem, formu-
lated to find a flow in a parsimonious manner:

minVUL[,VMh z |dv| (1 — Oy (VaCt (v) — vi}’lh (V))) + /3 Rv
veV

where d, is the measurement for node v; o, = sign (du); B is
a regularization coefficient, and R is a regularization term that
penalizes the use of additional nodes or edges; Vgt (v) , Vign (v) are
binary indicators representing activation and inhibition of node v,
respectively. CARNIVAL is available in two modes: standard (Std-
CARNIVAL), which uses prior knowledge of perturbed regulators
as input, and inverse (InvCARNIVAL), which jointly infers both the
upstream regulators and the signaling pathways leading to the
observed downstream alterations.

The ideas of CARNIVAL were extended in SignalingProfiler by
Massacci et al. [43] and further developed by Venafra et al. [44].
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Instead of treating all downstream targets as a single group,
this framework categorizes them into distinct functional groups
(kinases, phosphatases, transcription factors, etc.) arranged
in hierarchical layers. It then runs StdCARNIVAL sequentially
between layers to construct an integrated flow. Activities of
intermediate signaling proteins and transcription factors are
estimated using VIPER [38]. This multi-layered design improves
the biological relevance and relaxes the restrictive tree structure
of the original CARNIVAL.

Prior applications

CARNIVAL was originally validated in a study of IgA nephropathy
[42]. Analysis of the resulting flows identified pathways known
to be associated with the disease, and experimental validation
of key identified nodes of interest (RhoA and g-catenin) was
consistent with CARNIVAL'’s predictions. SignalingProfiler was
developed to study FLT3-ITD-positive acute myeloid leukemia,
revealing distinct modes of regulation involving the protein kinase
WEE1 between subtypes [43]. Pharmacological inhibition of WEE1
was then shown to restore therapy sensitivity, highlighting WEE1
as a potential therapeutic target.

Strengths and limitations

Flow-level analysis provides a broad view of mechanisms behind
observed alterations by tracing longer signaling paths. These
methods are also robust to noise as they typically operate on
inferred node activities (e.g. through regulon-level analysis) rather
than raw omics data. However, a main limitation is that signal
propagation over longer paths can make interpretation more
uncertain. Furthermore, these methods do not operate within a
probabilistic framework and do not provide statistical confidence
measures for the inferred flows.

Network-level analysis

Background

Neither regulons nor flows may provide a complete picture, since
interactions between high-level regulators are not fully captured.
To obtain a more comprehensive view, network-level methods
consider interactions across the entire network of regulators and
targets.

Methods

A recent network-level framework is CORNETO (Constrained Opti-
misation for the Recovery of NETworks from Omics) by Rodriguez-
Mier et al. [45], which includes a multi-sample CARNIVAL compo-
nent. Potential regulators and their condition-dependent activity
changes are provided as inputs for each sample. A key feature
is that the same PKN topology is used across all samples, and
the optimization problem favors edges that are reused across
samples, thus identifying common signal propagation paths:

1< .
min (HZZ d

i=1 veV

(1= 0l (Vie 00 = Vi )

+ # {Total number of edges used}) ,

where the minimization is performed over all V}m (v) and Vlinh ),
denoting activation and inhibition indicators for all samples i
from 1 to n. The regularization term penalizes the total number
of edges used, thereby favoring edges that are reused across
samples. This reflects a preference for identifying common signal
propagation paths originating from the perturbed nodes.

TopoNPA, proposed by Martin et al. [46], quantifies the consis-
tency between the observed downstream alteration pattern and
a PKN. It employs a two-layer model (observed transcript layer
and unobserved functional layer). An optimization problem is
formulated to infer alteration values f in the functional layer:

mingep, . (F() +sign (x — y)f(y))2~ w (x,y),

X—y

such that f|, = 8.

In this expression, the sum is taken over all directed edges
(X — y);f(x) denotes the inferred alteration value of node x; Vy is
the subset of nodes in the transcript layer; 8 is a vector of log-fold
changes in the transcript layer; and w (x,y) is the weight of the
edge between x and y (see Supplementary Material, Note S1). An
analytical solution to this optimization problem can be derived
by reformulating it in terms of the adjacency matrix of the graph
(see Supplementary Material, Note S2) and solving the resulting
matrix equation.

The NLBayes method by Arriojas et al. [47] builds on the
regulon-level approach by incorporating information about
interactions between regulons that share common targets (see
also Supplementary Fig. S1). It employs a Bayesian framework
that distinguishes between the true and observed states of nodes,
allowing it to account for potential errors in differential analysis.
Inference is performed by maximizing the likelihood function
through a sampling procedure.

Finally, GRNOptR (Gene Regulatory Network Inference Using
Optimization), introduced by Zickenrott et al. [48] and further
improved by Hartmann and Ali (https://git-r3lab.uni.lu/CBG/
GRNOptR) follows a two-step procedure. The first step contex-
tualizes the PKN by pruning it to a subnetwork i.e. consistent
with observed alteration patterns. This is done by solving a
constrained maximization problem to preserve as many logically
consistent edges as possible. The second step identifies candidate
“perturbagens”, i.e. nodes whose perturbation could potentially
revert the observed alteration pattern. This is assessed by
propagating a flipped activity state for a candidate node through
the network and counting how many downstream nodes switch
their state (see also Supplementary Fig. S2). GRNODtR is the only
reviewed method that infers the signs of previously unsigned
edges.

A summary of flow- and network-level methods is provided in
Table 4.

Prior applications: TopoNPA was used to evaluate a regulatory
network model for cardiotoxicity in zebrafish, where it correctly
identified perturbations in four out of five experimental con-
ditions [50]. GRNOptR was applied to investigate sphingolipid
metabolism in Alzheimer’s disease by Giovagnoni et al. [51]. It
was used to build a consistent gene regulatory network, which
then served to identify several candidate regulatory genes (CAV1,
SPHK1, and SELPLG) as key perturbagens. These findings aligned
well with previous literature, suggesting a causal role for these
genes in the observed alterations [52-54].

Strengths and limitations: network-level approaches offer the
most advanced level of data integration, potentially captur-
ing complex system-wide patterns. Additionally, probabilistic
frameworks of TopoNPA and NLBayes provide statistical confi-
dence measures, addressing a limitation of flow-level methods.
GRNOPptR offers the unique benefit of inferring signs of previously
unsigned interactions. Regarding limitations, as methodology
becomes more complex, interpretation becomes more challeng-
ing. Some methods still lack probabilistic confidence measures,
and like flow-level methods, rely on signal propagation across
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Table 4. Summary of flow- and network-level methods for causal analysis. The columns show the names and publication years of the
computational approaches, the method type (Flow =flow-level analysis, NW = network-level analysis), the output types, the algorithmic

foundations (brief simplified description), and links to the software implementations.

Method Level Output Algorithm (simplified) Software with reference
CARNIVAL (2019) Flow Set of flows Integer linear R: http://bioconductor.org/
programming packages/CARNIVAL
SignalingProfiler Flow Set of flows through predefined VIPER to identify R: https://github.com/
(2024) functional layers dysregulated nodes + SaccoPerfettoLab/
multiple CARNIVALs SignalingProfiler
CORNETO (2025) Flow/ Set of flows / a parsimonious NW Integer linear Python: https://github.com/
NW explaining alteration in multiple programming saezlab/corneto
samples
TopoNPA NW Concordance score between a Analytical calculation in R: [49]
(2014) subNW and observed alteration; matrix algebra Python:
set of contribution scores per https://github.com/mikethenut/
regulator perturbationx
NLBayes NW List of activated regulators Gibbs sampling using R: https://github.com/umbibio/
(2023) Markov blankets nlbayes-r
Python:
https://github.com/umbibio/
nlbayes-python
GRNOptR NW A subnetwork of direct Constraint based R:
(2016) connections between optimization https://git-r3lab.uni.lu/CBG/
differentially expressed genes; GRNOptR
perturbagen-score pairs
What is the primary research goal?
4/¢\>
Direct I -target r Multi-step regulatory cascades Sy ide r y h
(Regulon-level) (Flow-level) (Network-level)
v | .

Avre there clearly defined cutoffs
for differential analysis?

No Yes
'/ \\

Are there predefined functional layers
of interest (e.g., kinases, phosphatases, TFs)?

No Yes
'/ \\

CARNIVAL SignalingProfiler
Resulting flow Resulting flow is guided
has a tree structure by the functional layers

Are probabilistic outputs expected?

No / \Yes

NLBayes, TopoNPA
With confidence measures

VIPER
Incorporates effect sizes

Make use of
unsigned edges?

No/ \ves

GRNOptR
Infers edge signs

Commercial software?

No/ \Yes

IURA CORNETO
Incorporates edge weights Designed for multi-sample analysis

CRE, QS, Whistle
Inference using contingency tables of
predicted vs observed alterations

Additional Considerations: Legend:

* Methods are fundamentally constrained by the quality and completeness of the prior knowledge used Decision point

* Methods are complementary, and multiple methods should be considered to validate findings Approach

« Methodological and computational complexity grows from regulon- to flow- to network-level methods Method(s)

Figure 3. Decision tree for selecting appropriate causal network analysis methods based on research goals and data characteristics. The workflow
guides researchers from their primary research question through three main analytical approaches: regulon-level analysis for direct regulator-target
relationships, flow-level analysis for multi-step regulatory cascades, and network-level analysis for system-wide regulatory mechanisms. Each approach
branches into specific methods based on key decision points: availability of defined cutoffs for differential analysis, presence of predefined functional
layers, and whether probabilistic outputs are expected. Methods increase in complexity from left to right. Alt text: Flowchart showing method selection
for causal network analysis. From top question “What is the primary research goal?” three paths branch to: regulon-level (left, yellow box), flow-level
(middle, yellow box), and network-level (right, yellow box). Each path contains decision points (blue boxes) leading to recommended methods (green
boxes). Left path asks about differential analysis cutoffs, leading to VIPER or commercial software, then to CRE/QS/whistle or IURA. Middle path asks
about functional layers, leading to CARNIVAL or SignalingProfiler. Right path asks about probabilistic outputs, leading to unsigned edges methods or
NLBayes/TopoNPA, then to CORNETO or GRNOptR. Bottom section lists three key considerations about prior knowledge quality, complementary methods,
and increasing computational complexity.
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Table 5. Unified comparison of causal analysis methods.

Method Omics Data PKDB Framework Interpretability Software Advantages Limitations
(Approach) Types© Require- maturity
ments
Whistle Omics- A set of Binomial test High Moderate Simple, Biased
(Regulon- agnostic regulons (P) (Outdated) interpretable towards
level) encoded in bigger
BEL? suffices regulons;
ignores effect
sizes and
unsigned
interactions
CRE Omics- A setof Hypergeo- High Mature (Bio- Accounts for Ignores effect
(Regulon- agnostic regulons metric test conductor regulon sizes sizes; main
level) suffices (P) maintained) statistic
ignores
unsigned
interactions
Qs Omics- A set of Hypergeo- High Mature (Bio- Accounts for Ignores effect
(Regulon- agnostic regulons metric test conductor regulon sizes; sizes
level) suffices (P) maintained) incorporates
unsigned
edges
IURA Omics- QBKB-HD Z-score (P) High Mature Incorporates Commercial
(Regulon- agnostic (commercial (enterprise edge weights software;
level) QIAGEN support) main statistic
database) ignores
regulon sizes,
effect sizes
and unsigned
interactions
VIPER Omics- A setof GSEA-like High Mature Incorporates Ignores
(Regulon- agnostic regulons enrichment (widely effect sizes unsigned
level) suffices (P) adopted) and weighted interactions
edges;
accounts for
regulon sizes
CARNIVAL Omics- Fully down- Integer linear Moderate: Mature (Bio- Traces Requires
(Flow-level) agnostic loadableP program- multi-step conductor multi-step optimization
ming signalling maintained) signaling solver
(nonP) cascades
Signaling- Transcrip- Fully down- Hybrid Moderate-to- Moderate Supports Complex
Profiler tomics, loadableP (VIPER + high: layered (GitHub only) study-defined setup,
(Flow-level) (phos- multiple (still multi-step) functional requires
pho)proteomics CARNIVALSs) signaling layers optimization
(nonP) solver
CORNETO Omics- Fully down- Integer linear Moderate: Moderate Designed for Requires
(Flow/NW- agnostic loadableP program- multi-step (early stage) multi-sample optimization
level) ming signalling analysis solver
(nonP)
TopoNPA Omics- Fully down- Analytically Moderate-to- Moderate Incorporates No edges
(NW-level) agnostic loadableP solvable high: (GitHub only) effect sizes; between
optimization optimization- has analytical observed
(P) inferred solution nodes
scores
NLBayes Transcrip- A setof Bayesian Moderate-to- Moderate Captures Sampling-
(NW-1evel) tomics regulons graphical high: (early stage) regulon based
suffices model (P) sampling-based crosstalk inference;
inference “inhibition”
for regulators
not inferred
GRNOptR Omics- Fully down- Constraint- Moderate: Moderate Infers edge Ignores effect
(NW-1evel) agnostic loadableP based multi-step (GitLab only) signs sizes
optimization signalling
(nonP)

Comparison by approach, supported omics, prior-knowledge requirements, methodological framework, interpretability (qualitative), software maturity
(indicative), and key advantages/limitations. Abbreviations and terms: In “Framework” (P) indicates probabilistic methods, (nonP) - non-probabilistic (e.g. linear

programming). PKN—prior-knowledge network (directed regulator—target graph); PKDB - prior-knowledge database (source of PKNs); ®BEL—Biological Expression

Language; GSEA—Gene Set Enrichment Analysis (rank-based enrichment); QBKB-HD—QIAGEN Knowledge Base; P“Fully downloadable PKN” is a publicly
available network offered for bulk download; “Omics-agnostic—method can operate on any assay provided the PKN nodes match the measured entities and
edges encode the expected effect.
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long paths. A specific limitation for GRNOptR is that its pruning
procedure treats inputs as binary (up or down), so the most
strongly perturbed bioentities may not be adequately reflected.

Practical guidance for method selection

This subsection offers a brief, practical guide to method selection.
We start from the premise that questions addressed by causal
network analysis fall into the three approaches discussed earlier:
(i) regulon-level for identifying direct upstream regulators; (ii)
flow-level for tracing longer regulatory cascades; (iii) network-
level for identifying system-wide regulatory mechanisms. Once
the goal is set, method selection is refined by several decision
criteria: inputs from differential analysis (gene list or ranking),
any focus on specific functional layers, preferred methodological
framework (probabilistic versus optimization/integer program-
ming), and other practical constraints (e.g. access to the commer-
cial software, use of unsigned edges). The aim is not to prescribe a
single “best” tool but to make trade-offs explicit and to encourage
complementary use where appropriate. The decision guide is
shown in Fig. 3.

In addition to the guideline, a unified comparison of the
reviewed methods and corresponding software is provided in
Table 5, summarizing data requirements, PKDB compatibility,
methodological framework, interpretability, software maturity
as well as key advantages and limitations.

Conclusion

Causal network analysis is an important computational frame-
work that facilitates the inference of regulators and mechanisms
underlying observed alterations. Our classification of methods
into regulon-level, flow-level, and network-level approaches
reveals distinct strengths and limitations based on the extent of
prior knowledge integration. Regulon-level methods offer inter-
pretability and statistical rigor but may oversimplify regulatory
interactions. Flow-level approaches capture broader regulatory
cascades but can sacrifice interpretability. Network-level methods
provide the most comprehensive view while introducing greater
complexity.

While quantitative benchmarking is valuable, causal network
analysis presents challenges that necessitate a qualitative
approach, as adopted in this review. The methods discussed
are designed to yield different biological insights rather than
representing competing solutions to the same problem. This
diversity, combined with the absence of comprehensive ground
truth datasets, makes standardized benchmarking potentially
misleading. Our qualitative comparison emphasizes the comple-
mentary nature of these approaches.

Despite their utility, these methods share a fundamental lim-
itation: they are constrained by the quality and completeness of
the prior knowledge used. Missing regulators in knowledge bases
cannot be identified. Moreover, PKDBs often exhibit systematic
curation/literature biases (e.g. overrepresentation of cancer/im-
munology) that can inflate apparent support in heavily annotated
domains and pull focus away elsewhere. This emphasizes the crit-
ical importance of continuously updating biological interaction
databases and calls for cautious interpretation when prior knowl-
edge is incomplete. Promising future directions include devel-
oping hybrid approaches that combine causal network analy-
sis with data-driven causal inference methods to identify novel
regulatory relationships. While this review centers on network-
based reasoning, it is important to note that data-driven causal

Causal network analysis of omics data | 9

inference methods offer complementary capabilities for molecu-
lar analysis. Recent bioinformatics applications include MRPC for
molecular causal graphs (this method, in particular, is suited to
integrating multiple omics layers) [S5], hybrid Bayesian/optimiza-
tion approaches such as GOBNILP [56] and PC-with-NOTEARS [57],
and emerging deep-learning methods like GFlowNet-based causal
GRN discovery [58] and SLIVER [59].

Future developments of causal network analysis will likely
be driven by the increasing availability of multi-omics data and
improved prior biological knowledge [60, 61]. Next-generation
methods should jointly analyze multiple molecular layers while
accounting for their specific properties. Key methodological pri-
orities include providing probabilistic confidence scores, ensur-
ing robustness to observational noise, and avoiding overexten-
sion of signal propagation to distant, unobserved nodes. In sum-
mary, causal network analysis represents a mature and valu-
able approach for understanding disease mechanisms. Continued
progress will improve our ability to generate meaningful biological
hypotheses and support evidence-based biomedical research.

Key Points

e Causal network analysis methods integrate experimen-
tal omics data with prior knowledge databases and offer
a powerful approach to identify upstream regulators
and mechanistic explanations for observed molecular
changes, going beyond simple correlation-based analy-
ses to infer potential causation.

e Methods can be grouped into three approaches based
on their use of prior knowledge: regulon-level meth-
ods analyze direct regulator-target relationships, flow-
level methods trace multi-step signaling cascades, and
network-level methods consider system-wide regulatory
interactions and crosstalk.

¢ Regulon-level methods provide interpretable results
with statistical confidence measures but oversimplify
complex regulatory networks, while flow- and network-
level approaches capture broader mechanistic views at
the cost of increased complexity (both methodologi-
cal and computational) and sometimes reduced inter-
pretability.

e Causal network analysis is bounded by the complete-
ness and quality of prior-knowledge databases; in an
inherently incomplete knowledge setting, results require
cautious interpretation.
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