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Abstract—Computing-intensive semantic communication em-
phasizes context, enabling the extraction of task-specific seman-
tics from the source data and the reconstruction of the intended
meaning at the destination. In industrial cyber-physical systems
(CPSs), this approach can optimize automation processes while
minimizing communication overhead with efficient bandwidth
use in environments where machines, sensors, and controllers
must communicate frequently. By integrating quantum commu-
nication with computing-empowered semantic methods, we can
achieve unprecedented efficiency and security in task-oriented
data transmission, effectively safeguarding against eavesdropping
and other attacks. This paper presents a controlled quantum se-
mantic communication (QSC) framework that leverages semantic
extraction for anomaly detection in industrial CPS networks and
employs controlled quantum communication to send the data
securely with high semantic fidelity. A machine learning model
extracts semantic information from images as the hull point data
representing defective regions as pixel points. This data is then
transmitted with high fidelity using quantum communication
with controlled quantum state preparation. We use discrete- and
continuous-variable states to simulate quantum binary phase-
shift keying (BPSK) and M -ary pulse position modulation ()M -
PPM), respectively. At the receiver, these quantum states are
measured using optimal quantum decision-making and converted
back into the hull point data, thereby generating the anomaly
map. This map is overlaid on a template image to highlight
defect positions, which can be used for industrial quality control.
Furthermore, we simulate the controlled QSC framework (BPSK
and M-PPM) across a diverse set of anomaly detection examples
and evaluate the QSC performance in industrial CPS networks.

Index Terms—Industrial anomaly detection, machine learning,
quantum semantic communications, quantum control.
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I. INTRODUCTION

IGITAL transformation in industrial automation, driven

by advancements in the industrial Internet of Things
(IoT) and cyber-physical systems (CPSs), has fundamentally
transformed the way industries operate. Smart factories are
no longer reliant on rigid, predefined processes but instead
are characterized by their ability to respond dynamically to
real-time data [1]-[4]. This transformation is driven by the
integration of artificial intelligence (AI), machine learning
(ML), and cloud-fog computing, which collectively support
the efficient management of vast, interconnected networks
of devices [5], [6]. These technologies empower predictive
maintenance, process optimization, and adaptive control, al-
lowing industrial IoT and CPS networks to operate more
intelligently and autonomously than ever before. However, this
increased connectivity and intelligence bring new challenges,
particularly in terms of communication efficiency, security, and
system adaptability, as the complexity of managing real-time
data across diverse devices continues to grow.

One of the critical challenges in this evolving industrial
landscape is ensuring that communication between numerous
interconnected devices and sensors remains both efficient and
secure [7], [8]. Traditional models, such as the International
Society of Automation (ISA)-95, which have long served as
the backbone of industrial automation, are now being re-
evaluated. The growing need for real-time data processing
and rapid decision-making calls for more flexible and dynamic
communication frameworks that can adapt to the complexities
of modern industrial environments (ISA-95 models) [9]. In
response to these challenges, the semantic communication
framework has emerged as a promising solution. By trans-
mitting the meaning of data rather than just raw bits, semantic
communication enhances the efficiency and effectiveness of
information exchange in industrial environments [10]-[13].
Traditional communication systems prioritize delivering data
accurately, but semantic communication ensures that the es-
sential information is correctly understood at the receiver
end. For example, in a smart factory, sensors generate large
volumes of data that need to be processed and communicated
to various components for effective decision-making. With
semantic communication, only the essential information (e.g.,
patterns indicating machine failures or production bottlenecks)
is transmitted, reducing bandwidth usage and improving com-
munication efficiency. By filtering out redundant or non-
critical data, semantic communication ensures that only the
most relevant information is received, enabling faster and more
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TABLE I
EXPANSIONS OF IMPORTANT ACRONYMS
Acronym Expansion Acronym Expansion
BBg4 Bennett and Brassard 1984 BPSK Binary Phase-Shift Keying
CRAB Chopped Random-Basis CPS Cyber-Physical Systems
(6)% Continuous Variable DEP Decision Error Probability
DL Deep Learning DQL Deep Q-learning
DRL Deep Reinforcement Learning DV Discrete Variable
GRAPE Gradient Ascent Pulse Engineering ML Machine Learning
mloU Mean Intersection over Union M-PPM M-ary Pulse Position Modulation
NMSE Normalized Mean Squared Error NISQ Noisy Intermediate-Scale Quantum
QAT Quantum Anonymous Teleportation QKD Quantum Key Distribution
QML Quantum Machine Learning QOC Quantum Optimal Control
QsC Quantum Semantic Communication RL Reinforcement Learning
SC Semantic Communication SSIM Structural Similarity Index Measure

informed decision-making.

As industrial systems evolve, the demand for more robust
and secure communication frameworks becomes increasingly
critical. The growing reliance on cloud-fog architectures,
where data processing and decision-making are distributed
across multiple layers, introduces unique challenges in en-
suring data integrity and secure transmission [6], [14]. Ad-
vanced Al-driven models used in industrial inspection systems
require vast amounts of real-time data to operate effectively,
yet this also heightens their vulnerability to cyber-attacks.
While effective, traditional encryption methods may not be
sufficient to protect against the sophisticated threats targeting
modern industrial infrastructures [15]. As industries become
increasingly interconnected and data-centric, ensuring secure
communication and protecting critical operations have become
paramount [16]-[18].

Recently, quantum information science has gained a lot
of popularity due to its potential to revolutionize comput-
ing, communication, and cryptography. With advancements in
quantum algorithms, error correction, and qubit technology,
researchers are exploring ways to harness quantum mechanics
for solving complex problems far beyond the reach of classical
computers while also enhancing areas of machine learning
[19], [20], optimization [21], [22], sensing [23] and beyond
[24]. The integration of quantum communication with seman-
tic frameworks introduces a revolutionary dimension of secu-
rity to industrial systems. Quantum communication leverages
the principles of quantum mechanics, such as the no-cloning
theorem, to establish secure channels for data transmission,
making them nearly impervious to conventional hacking meth-
ods [25]-[27]. If an eavesdropper attempts to intercept the
information, the quantum state of the communication particles
is disturbed, immediately alerting the parties to the intrusion
[28], [29]. This inherent security mechanism ensures that any
unauthorized access is instantly detectable, making quantum
communication virtually immune to eavesdropping and man-
in-the-middle attacks. In environments where sensitive and
mission-critical data is continuously exchanged between in-
terconnected devices, such as in predictive maintenance or
real-time anomaly detection, this additional layer of security

is essential. By securing both the semantic content [30] and
the transmission channel using quantum protocols [31], [32],
industries can ensure that their communication systems not
only transmit critical information efficiently but also protect it
from emerging cybersecurity threats using quantum semantic
communication (QSC).

State preparation is a critical challenge for achieving a low
error rate in quantum communication systems. In discrete-
variable (DV) quantum systems, high-fidelity quantum states
are required to preserve the integrity of transmitted informa-
tion, as even small deviations can lead to significant errors
during transmission [29], [33], [34]. Quantum optimal control
(QOC) addresses this issue by determining the optimal con-
trol functions or pulses that steer the system to the desired
quantum state with maximum precision. When applied to
quantum communication, this optimal control ensures that
the quantum states encoding the information are transmitted
with minimal distortion, thereby preserving the reliability and
accuracy of the communication process. In continuous-variable
(CV) quantum systems, coherent states of the electromagnetic
field are widely utilized in quantum communication protocols.
These coherent states are typically generated by lasers or other
highly controlled light sources, which are characterized by
the average number of photons. In quantum communication
modulations such as quantum on-off keying and M-ary pulse
position modulation (M -PPM), increasing the average number
of photons reduces the error probability [33]. Using pulse
control, quantum systems can be controlled to prepare coherent
states by manipulating the control function. In industrial appli-
cations, where communication networks often operate under
strict performance and error-rate constraints, the use of control
alongside quantum communication ensures that critical data is
transmitted securely with exceptionally low error rates. This
is especially critical in environments that require real-time,
high-precision operations, such as in automated manufacturing
systems or real-time industrial monitoring, where even minor
communication errors could result in costly system malfunc-
tions or downtime. By improving the fidelity of quantum state
preparation, control plays a vital role in ensuring that quantum
communication systems meet the stringent demands of modern
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industrial processes.

In the paper, we propose a controlled QSC framework
comprising two main components: semantic extraction with
reconstruction and quantum state control during communica-
tion. The method leverages ML for the semantic extraction and
reconstruction of industrial data, particularly in the context
of anomaly detection in image-based industrial inspection
systems. This framework employs FastFlow [35], an ML
model specifically designed for fast and accurate anomaly
detection in image-based tasks, such as defect detection in
industrial settings. Given an input image of any manufactured
product, the model highlights regions where potential defects
are located. These regions are then translated into the hull
point data, which consists of key pixel coordinates outlining
the boundary of the defective area. This data is then converted
into its binary representation for transmission using quantum
communication. For DV quantum states, we employ quantum
binary phase-shift keying (BPSK), where each binary bit is
mapped into a quantum state with a phase shift depending on
the bit value. The QOC methods are utilized for quantum state
preparation to ensure high-fidelity communication, preserving
the accuracy of the transmitted data. The QOC optimizes the
control function and operations used to manipulate quantum
systems. Herein, we employ three QOC methods: chopped
random-basis (CRAB) [36], gradient ascent pulse engineering
(GRAPE) [37], [38], and deep Q-learning (DQL) [39], [40].
For CV states, we utilize quantum M -PPM where data is
mapped as the position of a coherent state using a pulse
symbol. This coherent state is characterized by the average
number of photons present, while the vacuum state contains
none. To prepare these quantum states, we apply control to
a quantum dot system, which can generate photons upon
excitation by a pulse [41]. Using precise pulse control, we can
increase the probability of photon emission, making quantum
M-PPM communication more robust. At the receiver end,
using optimal quantum decision-making, quantum states are
decoded back into the hull point data, generating the anomaly
map. This map is then overlayed onto a template image,
highlighting the detected area of the original image. This
controlled QSC conveys the semantics of the defective region
of the manufactured object in an efficient and secure way, as
required in automated industrial CPS networks.

The rest of this paper is organized as follows. Section III
explores applications for semantic communication in industrial
CPS networks and discusses anomaly semantic extraction and
reconstruction. Sections IV and V detail the controlled DV and
CV QSC frameworks for industrial anomaly detection. Finally,
Section VI gives a brief conclusion. Important acronyms are
summarized in Table I.

II. LITERATURE REVIEWS

Traditional communication, rooted in Shannon’s model,
focuses on maximizing bit rates and minimizing noise-induced
errors [42]. However, with the increasing demands of 6G
networks, autonomous systems, and human-machine interac-
tion, this approach becomes insufficient. Semantic communi-
cation (SC) shifts the focus to transmitting only task-relevant

information, thereby significantly reducing resource usage.
This reduction in transmitted information ultimately alleviates
bandwidth constraints and latency issues. Recently, quantum
communication and quantum computing have attracted con-
siderable attention owing to their unique advantages rooted
in quantum phenomena—such as entanglement, superposition,
no-cloning, and parallelism—which offer superior capabilities
in computation, security, and sensing compared to classical
systems [43]. Notable protocols such as quantum key distribu-
tion (QKD) and quantum anonymous communication (QAC)
provide enhanced encryption, anonymity, and privacy, ensuring
quantum-safe security [44], [45]. The advantages offered by
quantum information science can be integrated into SC to
form QSC. This QSC encompasses multiple paradigms such
as classical semantic extraction with quantum communication,
quantum semantic extraction using quantum machine learning
(QML) with classical communication, and quantum semantic
extraction with quantum communication. In this section, we
provide a brief overview of various QSC approaches.

One of the earliest QSC frameworks was proposed in [46],
leveraging quantum embedding, high-dimensional Hilbert
spaces, and QML techniques, such as quantum clustering, to
construct minimalist, efficient, and accurate semantic represen-
tations. The authors demonstrated that incorporating semantic
information reduces quantum resource consumption compared
to conventional quantum communication systems. Building on
this work, [47] focused on resource-efficient designs, introduc-
ing models that achieve semantic compression to minimize
quantum resource usage. Focusing on the communication
layer, [13] proposed a sustainable quantum semantic broadcast
framework. This system integrates foundation models for
semantic extraction with QAC protocols, employing model
pruning and distillation techniques to reduce computational
complexity while ensuring quantum-safe broadcasting via
anonymous entanglement. Similarly, [48] introduced a prag-
matic SC framework over quantum channels, targeting efficient
and robust knowledge transmission. By integrating pre-trained
large language models and graph neural networks for semantic
encoding, and employing remote state preparation for quantum
transmission, the framework maintains high semantic fidelity
even under depolarizing and dephasing noise. A Metaverse-
oriented case study in [49] presented a QSC architecture
tailored for immersive environments. This framework encodes
semantic content into quantum states using variational quan-
tum circuits and transmits them via quantum anonymous tele-
portation (QAT). The use of geometrically uniform quantum
states and square-root measurements improves resilience to
noise while preserving semantic meaning.

Collectively, these studies highlight the QSC’s versatility
and promise in redefining how systems communicate meaning.
The QSC system not only promises to significantly reduce
communication overhead and ensure quantum-level security
but also introduces a new framework for contextual reasoning
and goal-driven interaction in Al-native quantum networks.
However, several challenges remain—particularly in hardware
scalability, noisy intermediate-scale quantum (NISQ) device
limitations [50], and the lack of standardized metrics for evalu-
ating quantum semantic fidelity and contextual expressiveness.
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Fig. 1. A controlled QSC system for image-based anomaly detection in industrial CPS networks. Input images from industrial sensors are processed using
ML methods to extract relevant semantic representations, which are then encoded into quantum states and transmitted over a quantum channel with enhanced

fidelity using QOC techniques.
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Fig. 2. Semantic anomaly detection with FastFlow. A semantic extraction pipeline using ResNet-18 generates feature maps from input images, followed
by FastFlow for anomaly map generation and mask decoding for segmentation. A detailed architecture of the FastFlow modules is also depicted where
convolutions are applied to split feature maps, followed by nonlinear transformations (ReLU) and exponential scaling to compute anomaly scores, which are

subsequently concatenated for final segmentation.

III. SEMANTIC COMMUNICATION FOR INDUSTRIAL CPSs

We present a controlled QSC framework designed to extract
semantic information from images and transmit it using quan-
tum states, enabling secure and semantically rich information
exchange for anomaly detection. The protocol framework is
illustrated in Fig. 1. Semantic communication has the poten-
tial to greatly improve the performance of industrial CPSs.
Traditional communication systems transmit data without con-
sidering the semantic content, leading to inefficiencies and
potential vulnerabilities. In contrast, semantic communication
focuses on the meaning and context of the data, ensuring that
only relevant and necessary information is transmitted. This
approach can reduce communication overhead and improve
communication efficiency in industrial CPS networks.

A. CPS Applications

1) Defect Detection in Manufacturing: In defect detection
within manufacturing [51]-[55], semantic communications can
optimize the data transmission process by focusing on trans-
mitting only the most relevant information. Instead of sending
entire image datasets, which are often large and resource-
intensive, semantic communication systems can leverage deep
learning (DL) models to identify and extract critical features

that indicate potential defects. These features may include
anomalies, irregularities, or patterns that are indicative of
issues in the manufacturing process. Once identified, the
system can isolate and prioritize data transmission from pixel
regions most likely to contain defects, significantly reducing
the volume of data that needs to be sent. This targeted
approach allows for faster processing and decision-making,
enabling (near) real-time defect detection. By concentrating
only on the essential data, semantic communication conserves
bandwidth, reduces latency, and enhances the overall efficiency
of automated quality control systems in manufacturing.

2) Automated Sorting Systems: In automated sorting sys-
tems, especially in industries such as logistics, recycling,
and agriculture, accurate and efficient image segmentation is
crucial for distinguishing between different types of items or
materials [56], [57]. Semantic communication plays a vital role
in improving the performance of these systems by ensuring
that only the most relevant segmented data is processed and
transmitted. Traditional image-based sorting systems often
need to handle large volumes of high-resolution data, which
can slow down operations and introduce latency in decision-
making. However, with semantic communications, DL models
can perform image segmentation, isolating key features or
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Fig. 3. Controlled pulse amplitudes, quantum state fidelity, and DEP for BPSK QSC with DQL, GRAPE, and CRAB qubit control. Controlled pulse amplitudes
are plotted for 10 time intervals (N = 10) at each time interval in T (left). Quantum state fidelity |(w1|'¢)1)|2 and DEP P4 ppsk are also depicted as a

function of time intervals N (right).

characteristics necessary for sorting, such as shape, size, color,
or texture. Instead of transmitting the entire image, the system
can identify the critical segments required for accurate sorting
and prioritize their transmission. By focusing on the most
relevant segments, the system reduces bandwidth require-
ments, enabling low-latency communication between sensors,
processors, and actuators. This streamlined data flow not only
accelerates sorting operations but also improves precision by
minimizing errors associated with processing large amounts of

unnecessary data.

3) Vision-Based Worker Monitoring: Semantic communi-
cation enables networks to dynamically adapt to human ac-
tions in real time, offering significant safety and efficiency
improvements in environments where humans and machines
work closely together. A key application of semantic com-
munication in such settings is the detection and response to
safety-critical situations. Instead of merely analyzing raw data
streams from sensors or cameras, semantic systems interpret
the meaning behind the data. For example, if a worker is
detected near a hazardous area or in an unsafe posture,
the network can prioritize this information, alerting both the
worker and relevant machinery to prevent accidents [58]. This
real-time hazard detection and response capability allows for
rapid interventions, reducing the likelihood of injuries and
equipment damage. Additionally, semantic communication can
ensure compliance with safety regulations, such as the wearing
of personal protective equipment. By analyzing visual and
sensor data, the network can automatically detect whether
workers are wearing required safety gear, such as helmets,
gloves, or high-visibility clothing. If any safety gear is missing
or improperly worn, the network can promptly alert the
operator or supervisor, enabling swift corrective actions. This

automated monitoring reduces human error and helps maintain

a consistently safe working environment.

B. Anomaly Semantic Extraction and Reconstruction

The problem of unsupervised anomaly detection involves
identifying and localizing anomalies in images where only
normal data is available during training. The critical challenge
is to detect deviations from the expected patterns in new,
unseen images by modeling the feature distribution of normal
data and identifying outliers that do not conform to this dis-
tribution. This approach enables effective anomaly detection
without requiring labeled anomaly examples. In this paper, we
employ a two-dimensional normalizing flow-based probability
distribution estimator known as Fastflow [35].

Let X € R"*“*3 be an input image with RGB channels,
where h and w denote the image height and width, respec-
tively. Then, FastFlow initiates by extracting a feature map
Y € R"*w'*¢ from the input image X using a deep feature
extractor, known as the backbone model, such as ResNet or
Vision Transformer, where ¢ denotes the number of feature
channels. Subsequently, FastFlow applies a two-dimensional
normalizing flow model to transform the feature map Y into

a latent representation Z € R"*®’ that conforms to the
standard Gaussian distribution. The anomaly score \;; for the
(i, j)th pixel in the feature map is now computed by evaluating
the negative log-likelihood of its corresponding latent variable
z;; under the standard Gaussian distribution as follows:

1
Aij = —log( oo 631‘2.7‘/2>

™
leading to a two-dimensional anomaly score map A € RA xw’,
This anomaly score map A is then upsampled to match
the original image dimension h X w, often using bilinear
interpolation or similar techniques, yielding the final anomaly
segmentation map A, € RP*v,
The final segmentation map A, provides a pixel-wise
anomaly score, where each pixel value quantifies the like-
lihood of that region deviating from the learned Gaussian

)
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Fig. 4. Wigner function of state evolution from |4)g) to |11) at each control interval in T" for DQL, GRAPE, and CRAB qubit control when N = 10.

distribution, effectively indicating potential anomalies. The
overall framework of the model is illustrated in Fig. 2. The
largest area of the segmentation map A, can be interpreted as
a contour that highlights the defective region of the product.
Let S be the set of points along the contour of A,. A convex
hull algorithm is then applied to the set S to obtain the set
P of convex hull points, forming a convex polygon using
edge detection and contour extraction [59]. The number of
hull points determines the geometric complexity and fidelity
of the convex boundary representing a shape. A small number
of hull points simplifies the contour, potentially losing fine
details, while a large number retains more precise boundary
information. In communication or compression tasks, fewer
points reduce transmission costs but risk under-representing
critical structures. Depending on the task, we optimize the
trade-off between data efficiency and shape accuracy. This hull
point data P is converted into binary data B. These binary
values are then mapped into quantum states for transmission.
At the receiver end, the reconstructed hull point data P is
used to regenerate the defect region on a template image, pro-
ducing the output image X, which retains the same semantic
information as the image after anomaly detection.

IV. CONTROLLED DV QSC FOR ANOMALY DETECTION

Quantum communication offers significantly enhanced se-
curity compared to classical systems by leveraging funda-
mental principles of quantum mechanics. Unlike classical
methods, which rely on computational hardness assumptions,
quantum protocols derive security from physical laws such as
entanglement, state collapse, and the no-cloning theorem [33].
Since any measurement inevitably disturbs a quantum state,
eavesdropping can be detected through observable error rates,
as demonstrated in the Bennett and Brassard 1984 (BB84) pro-
tocol [60]. Consequently, intercepting data exchanged between
industrial CPS sensors, controllers, and actuators becomes
exceedingly difficult within the QSC framework. Further-
more, quantum states cannot be copied without introducing
detectable errors, unlike classical data, which can be repli-
cated and stored indefinitely without disruption [61]. This
fundamental difference effectively mitigates replay attacks—
where previously captured valid data packets are resent to

deceive CPS components into executing outdated or malicious
commands.

Building upon these inherent properties, QSC can incorpo-
rate advanced quantum protocols to guarantee anonymity and
privacy, surpassing the capabilities of classical communication
systems [27], [62], [63]. For instance, the QAT protocol en-
ables semantics-aware NISQ devices to exchange information
while concealing their identities, thus eliminating the need
for trusted intermediaries [64], [65]. This capability mitigates
man-in-the-middle attacks, where adversaries covertly relay
or alter communications, as well as identity spoofing attacks,
in which malicious actors attempt to impersonate legitimate
industrial CPS devices. As device identities remain hidden
throughout the communication process, attackers cannot locate
or impersonate target devices. Additionally, the confidentiality
of semantic information is further protected by encrypting ex-
tracted semantic content using public keys established through
QKD [66], providing an additional layer of security against
unauthorized access. This study presents the QSC framework
using fundamental quantum communication schemes such as
BPSK and M-PPM, which can be extended to the aforemen-
tioned secure protocols. Our primary focus is on the challenge
of quantum state preparation, rather than implementing any
specific anonymity or privacy protocol.

Quantum information can be encoded and transmitted using
two fundamental paradigms: DV and CV quantum states. DV
systems employ finite-dimensional Hilbert spaces, encoding
information typically in degrees of freedom such as photon
polarization, time bin, and photon number, or the internal
states of atoms and ions [67], [68]. DV protocols—including
the BB84 QKD and quantum teleportation between matter
qubits—are well-established for their robustness and compat-
ibility with heralded entanglement and Bell-state measure-
ments. In contrast, CV systems utilize infinite-dimensional
Hilbert spaces, encoding information in continuous observ-
ables, such as the quadrature amplitudes of optical fields [69].
CV quantum communication leverages homodyne or hetero-
dyne detection techniques and often employs Gaussian states
(e.g., coherent and squeezed states) to implement protocols
like CV-QKD [70], quantum teleportation of optical modes,
and quantum sensing tasks. While DV systems provide high-
fidelity control over single photons and are well suitable for
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Fig. 5. mloU, NMSE, SSIM, and Hausdorff distance for anomaly detection as a function of quantization levels N for BPSK QSC with DQL, GRAPE, and

small to medium-scale quantum networks and repeaters, CV
approaches offer advantages including high data rates, com-
patibility with standard wireless components, and resilience
against certain losses, making them especially attractive for
large-scale, fiber-based quantum communication infrastruc-
tures [71], [72]. In this section, we develop controlled DV
QSC with quantum BPSK for industrial anomaly detection.

By leveraging QOC, the system achieves optimal performance,
effectively preserving data integrity during the transmission of
hull point data extracted by anomaly detection algorithms.

A. Quantum BPSK

In the quantum BPSK, data can be represented by two
distinct quantum states i.e., ground state |0) and its 7-phase

shifted state i.e., |1) as follows:
0 — e J¢ho) = [to) (2)
1 — €™ [tho) = [¢h1) 3)

where © = v/—1, |¢)g) can be taken as the ground state |0),
and |¢1) can be taken as the excited state |1). For optimal

Since |a|” + |]° = 1, we have

|olthn)|* =1 — | {nldhr)| .

(7
Therefore, we can rewrite (4) as
1 ~ 12
Py ppsk = > 1=/ [(ien)]” ) 8)

This reveals that as the state ;) approaches |4), the prob-
ability of error decreases, leading to optimal communication.

This reduction in errors when transmitting the hull point vector
results in communication with high semantic fidelity. The
QOC schemes facilitate optimal state preparation for efficient

communication. To send the hull point binary data 3, we can
encode it into quantum states as follows:

|B]

B — ) |b:)
=1

9

where ® denotes the tensor product and b; € {0,1} is the ith
bit value of the binary data 5.

quantum measurement, the Helstrom measurement minimizes
the probability of decision error. The decision error probability
(DEP) in distinguishing between the two states is given by [33]

5 (1= V- ltwalvn) )

Py Bpsk = 5 “4)
depending on the decreasing overlap between the two quantum
states. For optimal quantum BPSK communication, the two
states |1)g) and |t)1) must be orthogonal for optimal detection.

Assuming we can generate |¢)y) without error, we want to
produce its maximally orthogonal state |¢);), starting from a

random state |¢)1) = a |0) + 5[1). Then, the inner products
are given as

(tolhr)
(W1|v) = B

«

®)
(6)

B. Controlled DV Quantum State Preparation

The QOC is a field dedicated to developing strategies and
techniques for manipulating the dynamics of quantum systems
to achieve specific objectives. These objectives can include
preparing a particular quantum state, implementing quantum
gates for quantum computing, and more. The central idea is
to determine the optimal control parameters that drive the
system’s evolution in a desired manner. The evolution of a
quantum system is typically governed by the Schrodinger
equation (for closed systems), which describes the time evo-

lution of a quantum state [t (¢)) under a Hamiltonian H (¢)
as follows:

B 1 (1)) = H (1) (1) (10)
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where h is the Planck constant. Here, H (¢) can be decom-
posed into an uncontrollable (drift) part Hq and a controllable
part H. influenced by a control function € (¢):

H (1) = Ha + € (t) He. (1)

The performance of control strategies is typically quantified
by an objective function J (@), where 6 represents the evolu-
tion of control parameters. In state preparation, the objective
function can be the fidelity between the final state |i)g (T'))
and the target state |1, ), leading to minimizing the infidelity
objective:

T(0) =1~ |(tulvbe (T))*.

Quantum systems employ a variety of sophisticated algorithms
to optimize control parameters. Notable among these are
CRAB [36], GRAPE [37], [38], DQL based on reinforcement
learning (RL) [39], [40], stochastic gradient descent [73], and
Krotov’s method [38], [74]. In this paper, we employ these
techniques—namely, CRAB, GRAPE, and DQL.

1) CRAB: The CRAB method for QOC is to find optimal
control pulses that guide a quantum system to a desired target
state. The main idea is to express the control function € (¢) as
the sum of a predefined guess function and K weighted sine
and cosine functions of randomly chosen frequencies. This
expansion allows the optimization process to explore a broad
and flexible space of control solutions. By adjusting the 2K
weighting coefficients, the CRAB method aims to optimize
the objective function as in (12). The randomization of the
frequencies helps the method avoid local minima and achieve
more effective control in complex quantum systems.

2) GRAPE: The gradient 0.J (0) /0e (t) of the objective
function with respect to the control function € (t) is used to
iteratively update € (¢) in the GRAPE method as follows:

.7 (6)
De (1)

where ¢ is a small step size determining the convergence rate.
This iterative process continues until the objective function
J (@) is minimized, resulting in an optimal control sequence
that prepares the desired quantum state with high fidelity.

3) DOL: Deep RL (DRL) combines RL with DL to op-
timize control strategies for manipulating quantum systems.
The environment simulates the quantum dynamics, includ-
ing methods to reset the system, apply control actions, and
compute rewards. A quantum state is input to the deep Q-
network, which approximates the Q-function, estimating the
expected cumulative reward for each state-action pair. Actions
adjust the control function e (¢), while the reward, based on
infidelity as given in (12), encourages the agent to minimize
the error, offering higher rewards as the state approaches the
target. The DQL leverages the Bellman equation to iteratively
update the Q-function, which estimates the optimal action-
value function. The Q-function is approximated using a neural
network consisting of two key networks: evaluation and target
networks. The evaluation network is trained to predict Q-
values, while the target network provides stable targets for
training. The training process involves storing state, action,
and reward experiences in a replay buffer, sampling batches

12)

e(t)+—e(t)—9¢ (13)

of these experiences, and updating the evaluation network by
minimizing the loss between the predicted Q-values and the
target Q-values. Periodically, the target network is updated
to match the evaluation network, ensuring stability during
training. The agent employs a g-greedy strategy to balance
exploration and exploitation: it explores by choosing a random
action with probability ¢, and exploits by selecting the best-
known action of the highest Q-value with probability 1 — gq.
The goal is to maximize cumulative reward, which is linked
to achieving high fidelity between the quantum state and the
target state, as measured by the final overlap after training.

C. Numerical Examples

We present a numerical example for image-based anomaly
(defect) detection in industrial CPS networks. A ML algorithm
extracts an anomaly semantic map from images, which is
then segmented and converted into hull point data P. This
data is then transmitted using quantum communication with
quantum states prepared by quantum optimal pulse control.
At the receiver end, quantum optimal decision-making is used
to decode the data and reconstruct the hull point information.
This anomaly map is then overlaid onto a template image to
provide a semantic understanding of the defect location, facil-
itating easier quality control and relevant corrective actions.

1) ML Model and Dataset: Anomalib [75], a deep-learning
library for anomaly detection, is used to train the FastFlow
model on the MVTec AD dataset for each specific case. The
dataset contains over 5,000 high-resolution images across 15
different categories, including objects like bottles, cables, and
wood. Each category includes both defect-free images and
images with various types of defects, along with detailed pixel-
level annotations for the defective regions. The MVTec AD
dataset is widely used to develop and benchmark algorithms
for detecting and localizing anomalies in industrial settings,
making it a crucial resource in the field of machine vision and
quality control.

Specifically, we utilize the ResNet-18 backbone and 8 flow
steps. Each category in the dataset is trained separately using
a batch size of 32. The optimizer used to train the FastFlow
model for anomaly detection is designed to maximize the area
under the receiver operating characteristic curve. This metric,
ranging from 0 to 1, measures the model ability to differentiate
between normal and anomalous samples, with higher values
indicating better performance.

2) BPSK QSC with Qubit Control: For DV qubit control,
we consider a qubit on a two-level quantum system. The drift
Hamiltonian Hq4 is given by

w

Hd = —EO'X

where w denotes the energy separation between the qubit levels
and ox = |0)(1| + |1)(0| is the Pauli-x operator. The control
Hamiltonian H, is given by

(14)

H, =e(t)vo, (15)

where + is a constant coefficient and o, = |0)(0|—|1)(1] is the
Pauli-z operator. The control function € (¢) drives transitions
between the qubit states. For simplicity, we use a sequence
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Fig. 6. Defect detection for a metal nut with controlled BPSK QSC. The left panel demonstrates the semantic extraction process, including the original
image, anomaly map, and segmentation to identify defects, followed by extracting hull point vectors. The middle panel showcases the controlled qubit state
preparation for quantum communication using DQL, GRAPE, and CRAB QOC to transmit the semantic information securely with high fidelity. The right
panel illustrates the recovery of the semantic information at different quantization levels N of control.
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Fig. 7. The controlled photon emission probability P2y and DEP Py ppm
for 1024-PPM QSC with the Gaussian pulse control as a function of epochs
for the differential evolution Nelder—-Mead algorithm.

of piecewise constant pulses, each with an identical duration.
The total time T' = 27 is split into N time intervals or control
intervals, with each piece having a duration of At = T'/N.
The total evolution time may be shorter than 7', depending
on the algorithm’s efficiency. The control function € (t) is
discretized for each interval. In numerical examples, we set
the main parameters as w = 1, v = 4, K = 5 for CRAB,
6 =0.01 for GRAPE, and ¢ = 0.9 for DQL.

Fig. 3 shows controlled pulse amplitudes, quantum state
fidelity, and DEP P4 gpsk for BPSK QSC with DQL, GRAPE,
and CRAB qubit control. For quantum state preparation start-
ing from [t¢g) to |¢1), the controlled pulse amplitudes are
plotted for 10 time intervals (N = 10) at each time step in

1.0 ‘ ‘ 140
:“‘ — m-pulse
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A ) .
0.8 1: g e population of |x)
]
E -“ - 100
0.6 : g
H £y ="
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Fig. 8. Dynamics of the optimized 7-pulse and populations (system expec-
tation values) (ITy) and (IT4) of the excited state |1) and the intermediate
state |x), where the system decays from the excited state.

T (left). Averaging over 20,000 runs, quantum state fidelity
|<¢1|1ﬂ1>|2 and Py ppsk are also depicted as a function of
time intervals [NV for three QOC algorithms (right). It can be
observed that DQL achieves the most effective (near-ideal)
qubit control within lesser time steps as shown in Fig. 3. This
is attributed to the DQL agent’s ability to rapidly learn and
explore the control space. At each control interval within 7'
for DQL, GRAPE, and CRAB qubit control, when N = 10,
the Wigner function [76] of state evolution from |g) to |i)1)
is shown in Fig. 4. The figure illustrates the evolution of the
Wigner function in phase space across successive time steps.
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Fig. 9. Wigner function of the controlled coherent state |n) by optimization with the evolution from the vacuum state to progressively optimized coherent

states over the course of epochs.

In each plot, the horizontal and vertical axes represent the
amplitude (real part) and phase quadratures (imaginary part),
respectively. Positive (red) and negative (blue) regions reveal
the quasi-probability distribution. These plots demonstrate the
progression of the quantum state under QOC, capturing the
quantum dynamics induced by the applied control.

To further ascertain the BPSK QSC performance in trans-
mitting the hull point vector of defected regions, Fig. 5 shows
the mean intersection over union (mloU) [77], the normalized
mean squared error (NMSE), the structural similarity index
measure (SSIM) [78], and the Hausdorff distance [79] for
anomaly detection as a function of time intervals N for BPSK
QSC with DQL, GRAPE, and CRAB qubit control. These
metrics are averaged across all categories in the MVTec AD
dataset and their respective defects. The mloU measures the
overlap between the predicted and actual semantic regions,
indicating how accurately the transmitted content reflects the
original semantic categories. The NMSE evaluates the overall
fidelity of the transmitted signal by quantifying the squared
error between the original and transmitted content, with lower
values indicating higher accuracy. The SSIM assesses how
well the structural information of the data, such as textures and
edges, is preserved, which is vital for retaining the perceived
meaning. Finally, the Hausdorff distance measures the maxi-
mum deviation between the spatial arrangements of semantic
elements in the predicted and ground-truth data, ensuring that
the transmitted shapes and boundaries remain intact. Fig. 5
demonstrates again the DQL maintains near-ideal control even
at lower time intervals, indicating its robustness and efficiency
in dealing with the inherent complexities of quantum system
dynamics. In Fig. 6, we show an example of metal nut anomaly
detection. These examples also suggest that while GRAPE
and CRAB can be effective under certain conditions, their
control performances are more sensitive to the complexity of
control landscapes, requiring further optimization for emerging
quantum communication applications.

V. CONTROLLED CV QSC FOR ANOMALY DETECTION

Reliable generation of photons is essential for CV quantum
states. In this section, we provide a controlled CV QSC system
for industrial anomaly detection using quantum M -PPM where
optimal pulse control manipulates a quantum dot system for
a photon source. This QOC enables the generation of photons
for coherent quantum states that are subsequently utilized in
the M-PPM QSC framework.

A. Quantum M-PPM

Quantum M -PPM is one of the most robust quantum com-
munication modulations. This modulation encodes information
in the presence or absence of a coherent state |) in a particular
time slot. The quantum state for the mth symbol is given by

[Ym) =10), @10); @ -+ ® |n),,, @---@[0)y,  (16)

where m = 1,2,..., M, |n),, represents the coherent state in
the mth time slot, and |0), denotes the vacuum state (i.e., no
photon) in the kth time slot for k # m. The coherent state |1)
can be written as [33]

o0 e
_|n|2 ui

Iy = eI/ 37 10y
Z:O\/Z!

where |£) is the Fock (number) state with exactly ¢ photons and
7 is a complex number related to the average photon number
|77|2. Since the M-PPM states have the geometrically uniform
symmetry, the square-root measurement produces an optimal
decision, leading to DEP for quantum M -PPM as follows [33]:

:17#< 1+(M1)§+(M1)\/71);

a7

Py prum

2 . ..
where ¢ = e 2" 1082 M s the superposition degree.

B. Controlled CV Quantum State Preparation

Quantum dots are semiconductor nanocrystals that confine
electrons in all three spatial dimensions, resulting in discrete
energy levels similar to those of atoms. They are excellent
sources of single photons due to their ability to emit photons
one at a time upon excitation [80]. Using quantum dots as
photon emitters in quantum M-PPM communication enables
secure and efficient information transmission by leveraging
the quantum property of light. We consider the dynamics of
a biexcitonic system in a quantum dot—i.e., a three-level
quantum system that emits two photons through a cascaded
decay process [41]. The three-level system consists of the
ground state |]), the intermediate state |x), and the excited
state |1). The system Hamiltonian consists of time-independent
and time-dependent (interaction Hamiltonian) parts. The total
Hamiltonian can be written as [41]

H () = S W)l + A () (19)
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where the first term represents the unperturbed energy of the
system associated with the intermediate state |x), £ denotes the
binding energy, and H, (t) describes the interaction between
the quantum system and the driving electric field in the rotating
wave approximation. The interaction Hamiltonian #, (t) is
given by )

e (¢
LED (e + I
where p is the coupling strength of the system to the field and
€ (t) is the time-dependent electric field driving the excitation
process. The decay from |1 (%)) to |x({)) while emitting the
first (second) photon is given by a collapse operator as follows
[81]:

H, (t) =

(20)

o1(2) = Y1) )T ()] 21

where the parameter ~,(2) denotes the decay rate for the first
(second) channel.

The system evolution is governed by the Lindblad master
equation, which describes both coherent evolution due to the
Hamiltonian and incoherent decay processes as follows [41],
[82]:

o _

2
o = Lp=—1H.(1).p]+) Dlorlp (22
k=1

where L is the Liouvillian superoperator that describes the sys-
tem time evolution and D is the Lindblad dissipator accounting
for the system coupling to its environment. The dissipative
dynamics of the system, which account for photon emissions
into the decay channels, are represented by the terms

(23)

1
Dokl p = orpo — 3 (ULUkP + 9020k>

where 1 denotes the conjugate transpose. Note that the system
starts in the ground state |]) and evolves according to the
master equation. The populations of the excited state |1) and
the intermediate state |x) can be tracked over time using the
projection operators as follows:

(IL) = (tlp 1) (24)
(IL) = ([ p %), (25)

respectively. The number of photons emitted into the first and
second channels is always equal due to the cascaded nature of
the system. We can choose to monitor (condition) the emission
from either channel while tracing over the state of only one
channel.

Let P;(2) be the probability of a single-photon emission into
the first (second) channel. Since the system can emit only one
photon per channel, this emission probability is equal to the
average number of photons emitted into each channel. Using
the formalism of conditioned evolution [41], [83], we obtain

Piiyy = / tr K2y (,00) @12y (K (0,0) 1) (1) ] ]l
0

(26)

where tr () denotes the trace operator and the superoperator

Ki(2) (t1,t2) represents the nonunitary evolution of the quan-

tum system conditioned on no photon emission during a time
interval from ¢; to to, defined by the relationship

Ki2)p = Lp — 012)pT ) 5. @7

The control problem here is to optimize the pulse € (¢) to maxi-
mize the photon emission probability Py q) or equivalently, the
average photon number. Specifically, the aim is to ensure that
each channel emits exactly one photon with high probability.
These photons will then be used to generate coherent states
for quantum M-PPM communication.

C. Numerical Examples

We consider the ML model and the dataset in Section IV-C
again. To control the quantum system, the pulse € (¢) in (20)
plays a crucial role in driving transitions between quantum
states to generate photons. Herein, we model the m-pulse using
a Gaussian pulse, controlled by parameters such as the pulse
width and offset as follows:

e(t) =

=]

2 (28)

L o [
\/2mx2 P
where x controls the pulse width and ¢y is the time offset
(the pulse center). In numerical examples, we set ty = 3 and
2y = v = & = u = 1. The objective is to optimize the
pulse width to maximize the probability of emitting a single
photon into either channel. This optimization makes the system
behave as a two-photon source, as the photons are emitted in a
cascaded manner such that the average photon number is equal
to |77|2 = P+ P;. In this system, we only need to optimize the
pulse for the average number of photons emitted into the first
(or second) channel, i.e., P; (or P»), as the optimized pulse
produces the second (or first) photon with the same expectation
value. To optimize the pulse width (i.e., x) for maximizing the
photon emission probability Pj(s), we use the Nelder-Mead
algorithm [84], with bounds set to (0.002, 2).

Fig. 7 shows the convergence of the differential evolution
(Nelder—-Mead) algorithm for the Gaussian pulse control to
maximize the photon emission probability P2, averaging
over 1,000 runs. The DEP P4 ppvm for quantum M-PPM
is also depicted when M = 2!°. The algorithm converges
with the optimal x of 0.01, maximizing the photon emission
probability (i.e., the average photon number per channel) close
to unity. The corresponding coherent state |n) has the average
photon number of |n|> = 1.98, indicating that the system
will likely emit two photons with high probability. Using
this controlled coherent state, we achieve a decent Py ppy of
5.917 x 10~ 7 for the quantum 1024-PPM, suitable for reliable
industrial CPS communication. The 7-pulse shape and system
dynamics are shown in Fig. 8. The excited state |T) decays
twice as fast as the intermediate state |%). Fig. 9 illustrates
the resulting coherent state evolution by optimization in the
Wigner function plot.

We simulate the controlled M-PPM QSC system for trans-
mitting data of defected regions using the optimized coherent
states, where the receiver again reconstructs the hull point
data P and overlays it on a template image as in BPSK
QSC, over multiple runs. The defect detection results for four
(capsule, bottle, carpet, and metal nut) classes are shown in
Fig. 10 when M = 1024. In this example, we get the mloU
score of 0.999, indicating substantial segmentation accuracy
across all defect classes in the MVTec AD dataset. The SSIM
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Fig. 10. Defect detection for four (capsule, bottle, carpet, and metal nut) classes with controlled 1024-PPM QSC.

score of 0.999 again highlights the ability to maintain high
structural similarity between the predicted and ground-truth
images. A very low NMSE of 5.26 x 1075 suggests minimal
reconstruction error, while the Hausdorff distance of 0.0011
reflects robust performance for industrial applications. All
these metrics demonstrate that the controlled QSC framework
performs reliably across diverse defect classes, achieving ef-
fective segmentation with minimal structural deviations.

VI. CONCLUSION

Industrial IoT and CPS networks face significant challenges,
particularly in data security and communication efficiency.
Semantic communication presents a promising computing-
intensive solution by transmitting only the essential meaning of
the data. In this paper, we have developed the integrated QSC
framework with QOC. Specifically, for the task of anomaly
detection in industrial environments, we have employed the
DL algorithm to extract semantic hull points from images of
defective products. These points are transmitted using secure
quantum BPSK and M-PPM communication. To prepare the
required DV and CV quantum states, we have utilized pulse
control of quantum systems, enabling high-fidelity transmis-
sion of the hull points. The receiver reconstructs these points as
anomaly maps, effectively retrieving the semantic information
of the anomaly regions. This approach offers a secure and
controlled method for communicating critical data in industrial
CPS networks.
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