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Abstract

After nearly a century of specialized applications in optics, remote sensing, and acoustics, the near-

field (NF) electromagnetic propagation zone is experiencing a resurgence in research interest. This

renewed attention is fueled by the emergence of promising applications in various fields such as wireless

communications, holography, medical imaging, and quantum-inspired systems. Signal processing within

NF sensing and wireless communications environments entails addressing issues related to extended

scatterers, range-dependent beampatterns, spherical wavefronts, mutual coupling effects, and the presence

of both reactive and radiative fields. Recent investigations have focused on these aspects in the context

of extremely large arrays and wide bandwidths, giving rise to novel challenges in channel estimation,

beamforming, beam training, sensing, and localization. While NF optics has a longstanding history,

advancements in NF phase retrieval techniques and their applications have lately garnered significant

research attention. Similarly, utilizing NF localization with acoustic arrays represents a contemporary

extension of established principles in NF acoustic array signal processing. This article aims to provide an

overview of state-of-the-art signal processing techniques within the NF domain, offering a comprehensive

perspective on recent advances in diverse applications.

I. INTRODUCTION

Electromagnetic (EM) fields generated by an antenna create distinct spatial regions, each with unique

characteristics [1]. Closest to the antenna surface is the near-field (NF) region, which is divided into

reactive and radiative sub-regions, as illustrated in Fig. 1. The reactive NF, immediately adjacent to the

antenna, is dominated by fields that rapidly diminish with distance and become negligible beyond a

boundary of approximately λ/π, where λ is the operating wavelength. Beyond this boundary lies the
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Fig. 1. EM field regions of an antenna of size A for the signal wavelength λ. The reactive NF is immediately adjacent to the

antenna and becomes negligible at R1 = λ/π. Beyond this boundary lies the radiative NF, itself split into two regions. The first

part, known as the aperture zone, extends from R1 to R2 = 0.62
√

A3/λ. The second part of the radiative NF is the Fresnel

region, stretching from R2 to R3 = 2A2/λ.

radiative NF, itself split into two regions. The first part, known as the aperture zone, extends from the

reactive NF to approximately 0.62
√

A3/λ, where A is the antenna’s maximum linear size. In this zone,

the reactive fields are insignificant, the wavefront is quasi-planar, field strength remains nearly constant

with distance, and the field amplitude distribution mirrors that of the antenna aperture. The second part

of the radiative NF is the Fresnel region, stretching from 0.62
√

A3/λ to 2A2/λ. In this region, the

radiation pattern begins to form, but its shape depends on the distance from the antenna. This is due to

changing phase relationships and varying field amplitude ratios between different antenna elements as

distance increases.

As the observation point moves away from the antenna, the field amplitude initially oscillates before

steadily decaying. At infinite distance, this attenuation becomes inversely proportional to the distance.

Additionally, as distance increases, the phase and amplitude relationships between the fields from indi-

vidual antenna elements gradually stabilize, and the angular distribution of the field becomes independent

of distance. The outer boundary of the Fresnel zone, typically at 2A2/λ, marks the start of the far-field

(FF) region, where the field distribution depends solely on the observation angle, and the field strength

diminishes proportionally with distance. In this region, the EM wave’s phase front is spherical, though

it appears planar within small angles. The internal parameters of the antenna relate to both reactive and

radiative fields, while external parameters are concerned solely with the radiated EM waves.
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For much of its history, signal processing focused on FF applications, particularly in telecommunica-

tions, radar, and broadcasting, where the signals of interest were typically assumed to propagate over

long distances with relatively simple wavefront characteristics. However, the unique NF properties were

known for quite some time. Heinrich Hertz was among the first to observe that the field of a radiating

dipole decays inversely with the third power of range at very close distances, rather than the inverse

linear dependence observed in the FF. As a result, the field close to the dipole is significantly stronger

than what one might expect from a simple extrapolation of the FF value. In 1909, Arnold Sommerfeld

calculated the impact of NF perturbations on the radiation characteristics of a dipole antenna situated

near the ground.

NF optics began to take shape in the late 1920s, driven by the need to surpass the diffraction limit

in microscopy, enabling the visualization of structures at a nanometer scale [2]. This early work laid

the groundwork for modern techniques such as NF scanning optical microscopy (NSOM) [3], with more

recent applications in Raman spectroscopic imaging [4] and computational imaging [5]. In the field of

acoustics, the 1980s marked the beginning of a focused effort on NF applications, where sound waves

interact with objects in close proximity, leading to advances in technologies like NF acoustic holography

[6], direction finding [7], underwater 3-D localization [8], NF sonar [9], beamforming [10, 11], and sensor

array optimization [12]. In ultrasound imaging, beamforming is usually performed via using wideband

signals in NF [13, 14].

In radar remote sensing, NF imaging has a rich research heritage dating back to the 1990s, particularly in

applications like ground-penetrating radar, through-the-wall imaging, and synthetic aperture interferometry

[15]. Recent NF radar signal processing applications focus on direction-of-arrival (DoA) estimation [16],

localization [17], and correlated/coherent source localization [18, 19]. One of the major issues has

been to derive the performance bounds, e.g., Cramér-Rao bounds (CRB) for parameter estimation in

NF scenarios [20, 21]. The consideration of a NF signal model makes the parameter estimation more

challenging especially when the received signal includes both NF and FF signals [22, 23]. In order to

estimate the DoA and the range information of the NF sources, a well-known technique is to employ

a multiple signal classification (MUSIC) algorithm over both direction and range dimensions [24]. As

MUSIC is a subspace-based approach, it fails when the signals are coherent, i.e., fully correlated. In such

cases, maximum-likelihood (ML) [18] or compressed sensing (CS) [19] approaches can be employed.

Relying on the high order statistics (HOS) of the array data, fourth order cumulants are also used [25,

26].

More recently, the evolution of array signal processing in wireless communications is moving towards

the use of small, densely packed sensors to create extremely large aperture arrays (ELAA), which
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Fig. 2. Applications of NF signal processing on radar, communications, acoustics, ultrasound and optics.

significantly enhance angular resolution and beamforming gain [27, 28]. Particularly, with the advent

of sixth-generation (6G) networks, there is a notable adoption of ELAAs or surfaces, coupled with the

exploitation of higher frequency bands like terahertz (THz) frequencies, shifting the EM diffraction field

from the FF region to the NF. The extended array aperture and shorter wavelengths in the NF region,

where the receiver is closer to the transmitter than the Fraunhofer distance [29], result in non-planar signal

wavefronts. With larger array apertures and frequencies, the NF range can extend tens to hundreds of

meters, crucial for communication system design [30–32]. For instance, an antenna array of 1-m aperture

operating at 30 GHz yields a NF region of up to 200 meters, which is critical for system design in

communication environments [32]. In this context, spherical wavefront considerations become paramount

in beamforming design, enabling signal focusing at specific 3-D locations rather than traditional FF

beamsteering towards specific angles. The ELAA system facilitates not only directional signal reception

but also transmitter localization, distinguishing it from conventional FF designs. However, exploiting the

NF region presents both opportunities and challenges in communication [31] and sensing [21] applications.

Beamforming in NF leverages depth information to enhance spatial multiplexing, catering to users at

varying distances within the same direction. Additionally, high-resolution sensing and localization are

imperative in the NF, necessitating innovative communication strategies. Furthermore, in large arrays

operating at high bandwidths, the frequency-dependent array response poses challenges to conventional

beamforming, necessitating adaptive strategies for optimized beamforming gains [33].

Communications channel estimation in NF involves the reconstruction of the channel via estimating

the complex channel gain as well as the direction and the range information of the dominant signal
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paths. In contrast to the radar scenario, the received signal includes several non-line-of-sight (NLoS)

reflections, which may be in the NF of the receiver [34, 35]. This poses challenges to model the received

signal for communications, wherein the aim is to improve the communication rate, rather than estimating

the location of the user. In beamforming, the aim is to optimize the beamformer weights to maximize

the communication rate. By taking into account the spherical-wave model of the received path signals,

various techniques have been adopted for beamforming, e.g., CS [36] and orthogonal matching pursuit

(OMP) [37, 38]. Combined with radar, integrated sensing and communications (ISAC) is a new paradigm

to effectively use the system resources on a common platform for simultaneously performing radar sensing

of targets or users as well as communication with the users [39, 40]. In this respect, recent research also

includes NF signal processing techniques to provide both sensing and communication functionalities,

such as beamforming [36] as well as user/target localization [39].

The intent of this article is to encapsulate the recent advancements in NF signal processing techniques.

Notably, there is a distinct absence of surveys encapsulating signal processing strategies for the NF and

acquainting with the nuances and challenges of this burgeoning field. Lately, literature on NF signal

processing involves short/extensive surveys [30–32] mainly on wireless communications while there is a

substantial gap for an overview of NF signal processing techniques in radar, acoustics, ultrasound, and

optics (Fig. 2). This article aims to present a synopsis of the state-of-the-art signal processing techniques

in the NF with a focus on array processing and its contemporary applications.

II. NF SIGNAL MODEL

Consider a uniform linear array (ULA) with N antenna elements and inter-element spacing d that

receives signals emitted from K sources. We define sk(t) ∈ C as the emitted signal from the k-th source

with the direction of θk at time t. Then, the observation model at the n-th antenna element is given by

yn(t) =

K∑
k=1

sk(t)e
−j2πfcτn,k + en(t), (1)

where fc is the carrier frequency and en(t) ∈ C denotes the additive white Gaussian noise, and normlized

time delay τn,k is associated with the the k-th source signal propagation time among the antennas as

τn,k =
rk
fcλ

(√
1 +

n2d2

r2k
− 2nd sin θk

rk
− 1

)
, (2)

where λ is the signal wavelength and rk denotes the range of the k-th source. Depending on propagation

distance, the source location may be regarded in the reactive, radiative or FF of the array:

• The reactive NF starts from the array to 0.62
√

D3/λ, where D denotes the array aperture, and it

is defined as D = (N − 1)d for a ULA [41].
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Fig. 3. MSE for the difference of NF and FF signal model for a ULA of N = 256 elements on various frequencies.

• The radiative NF (i.e., Fresnel region) extends from the reactive NF to FF, i.e., 0.62
√

D3/λ < r <

2D2

λ [30]. It is in this region that the time delay τn,k can be approximated by using a Taylor series

expansion as

τn,k = − 1

2πfc

(
ωkn+ κkn

2 +O

(
d2

r2k

))
, (3)

where ωk = 2πd sin θk
λ and κk = −πd2 cos2 θk

λrk
. Then, by neglecting O

(
d2

r2k

)
in the time delay

expression, the observation model in (1) becomes

yn(t) =

K∑
k=1

sk(t)e
j(ωkn+κkn2) + en(t). (4)

• The FF region starts after dF = 2D2

λ , which is called the Fraunhofer distance, and it covers r > 2D2

λ ,

wherein the plane wavefront can be approximated as planar with a maximum spherical-induced

phase-shift of π/8 across the antennas [29]. Fig. 3 shows the mean-squared error (MSE) for the

difference of NF and FF signal models for various frequencies and dF. We can see that this MSE

decreases as the propagation distance d increases and becomes negligible after d > dF.

In a compact form, the N × 1 observation vector y(t) ∈ CN can be expressed as

y(t) = As(t) + e(t), (5)

where y(t) = [y1(t), · · · , yN (t)]T, e(t) = [e1(t), · · · , eN (t)]T and s(t) = [s1(t), · · · , sK(t)]T. Here,

A = [a(r1, θ1), · · · ,a(rK , θK)] ∈ CN×K denotes the array response, and a(rk, θk) ∈ CN represents the

steering vector corresponding to the k-th source as

a(rk, θk) =
[
1, ej(ωk+κk), · · · , ej(ωk(N−1)+κk(N−1)2)

]T
. (6)
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III. NF RADAR

The localization of the radar signals in the proximity of antenna array has been extensively studied. This

includes the estimation of the DoA angles as well as the range of the emitting source direction. Practical

radar applications involve several challenging scenarios, which requires advanced signal processing

techniques for accurate parameters estimation. Unlike FF scenario, the array response is range-dependent,

which should be taken into account for source parameter estimation. Range-dependent beampattern is also

observed in some far-field applications such as frequency diverse array (FDA) radars [42] and quantum

Rydberg arrays [43]. However, the wavefront is not spherical in these applications.

A. DoA Estimation and Localization

Subspace-based techniques, e.g., the MUSIC algorithm [24], have been widely used for NF DoA

estimation and localization. Define R ∈ CN×N as the sample covariance matrix of the array output y(t)

as

R =
1

T

T∑
t=1

y(t)yH(t), (7)

where T is the number of data snapshots collected from the array. Then, the MUSIC algorithm for NF

DoA and range estimation is performed by finding the peak values of the following MUSIC spectra [17],

i.e.,

P (θ, r) =
1

aH(θ, r)UNUH
Na(θ, r)

, (8)

where UN ∈ CN×(N−K) denotes the noise subspace eigenvectors, which can be obtained from the

eigenvalue decomposition of R as R = UΛUH, where Λ ∈ CK×K includes the eigenvalues of R in

descending order and U = [US, UN] ∈ CN×N is composed of the eigenvectors corresponding to the

signal and noise subspaces, respectively.

B. Mixed NF and FF Source Localization

In some practical applications, the signal received by the array is a mixture of FF and NF sources [23].

Fig. 4(a) shows the array beampattern for mixture of FF and NF targets. For example, in high frequency

(HF) radar, the NF multipaths have strong effects compared to very/ultra high frequency (V/U-HF) bands

such that the received signal is composed of a FF source signal as well as its NF reflections [19]. Assume

that there exist KF FF and KN NF emitting sources, for which the array output is given by

y(t) =

KF∑
k=1

a(θk)sk(t) +

K∑
k=KF+1

a(θk, rk)sk(t) + e(t), (9)
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(a) (b)

Fig. 4. Mixed FF and NF scenario. (a) Array beampattern for the mixture of FF beamforming and NF beamfocusing. (b)

Coherent mixture FF and NF signals.

where K = KF + KN and a(θk) ∈ CN denotes the FF steering vectors for k ∈ {1, · · · ,KF}. In this

scenario, the MUSIC algorithm can be employed in a two-stage scheme to sequentially estimate FF and

NF parameters. In [22], two different special cumulant matrices are designed for this purpose. Consider

a ULA with N = 2N̄ + 1 elements and let 0-th antenna be phase reference of the array. Then, the

fourth-order cumulant of the array outputs can be expressed as

cum{yp(t), y∗−p(t), yq(t), y−q(t)} =

K∑
k=1

cske
j(2pωk−2qωk), (10)

where p, q ∈ [−N̄ , N̄ ], and csk = cum{sk(t), s∗k(t), s∗k(t), sk(t)} is the kurtosis of the k-the signal [17].

Define p̄ = p+ N̄ +1 and q̄ = q+ N̄ +1. The (p̄, q̄)-th element of the cumulant matrix C1 ∈ CN×N is

[C1]p̄,q̄ =cum{yp̄−N̄−1(t), y
∗
−p̄+N̄+1(t), y

∗
q̄−N̄−1(t), y−q̄+N̄+1(t)}

=

K∑
k=1

cske
j(2(p̄−N̄−1)ωk−2(q̄−N̄−1)ωk). (11)

We can write C1 in a compact form as C1 = B1CsB
H
1 , where the virtual steering matrix and vectors

are defined as Cs = diag{cs1 , · · · , csK} ∈ CK×K , and B1 = [b1(ω1), · · ·b1(ωK)], where b1(ωk) =[
e−j2N̄ωk , · · · , ej2N̄ωk

]T
∈ CN for k = 1, · · · ,K. By computing the MUSIC spectra based on the noise

subspace eigenvectors of C1, the DoA information ωk for k ∈ {1, · · · ,KF} can be obtained via

P (ω) =
1

bH
1 (ω)UN1

UH
N1
b1(ω)

, (12)

where UN1
∈ CN×(N−K) denotes the noise subspace eigenvector matrix of C1. In order to estimate

κk, another cumulant matrix C2 ∈ C(4N̄+1)×(4N̄+1) is constructed as C2 =

 C2,1 C2,2

C2,3 C2,4

, which
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can be written as C2 = B2CsB
H
2 , where B2 = [b2(ω1, κ1), · · · ,b2(ωK , κK)] ∈ C(4N̄+1)×K , and

b2(ωk, κk) = b2(ωk)b2(κk) ∈ C4N̄+1 (See [22] for the computation of b2(ωk), b2(κk) and C2,i,

i = 1, · · · , 4). Then, by substituting the estimated ωk into b2(ωk, κk), the following MUSIC spectra

reveals the range-dependent source parameters κk for k ∈ {KF + 1, · · · ,KF +KN}, i.e.,

P (κ) =
1

bH
2 (ω, κ)UN2

UH
N2
b2(ω, κ)

, (13)

where UN2
∈ C(4N̄+1)×(4N̄+1−K) denotes the noise subspace eigenvector matrix of C2.

The aforementioned technique require multiple steps to sequentially estimate the DoA and range

parameters of the mixture signals. Instead, more efficient techniques have been introduced in the literature

by exploiting the special geometry/structure of the antenna arrays, e.g., subarrayed ULA [44] and nested

array [23]. Apart from these model-based approaches, data-driven techniques have also been devised [45].

C. Correlated/Coherent Signal Estimation

In practice, the source signals are not always uncorrelated because of the received reflections from

the objects which can be located in the FF or NF of the antenna array. In the most extreme scenario,

the signal are coherent, i.e., fully correlated, such that the covariance matrix of the received signal turns

out to be rank-deficient [18]. For example, in multipath scenario, the emitted signals from FF or NF

sources are scattered from the objects in the vicinity of the antenna array as shown in Fig. 4(b). Consider

a single FF source signal s1(t) (i.e., KF = 1), which is then reflected from KN = K − 1 reflection

points in the NF of the array. Thus, the reflected signals are coherent with s1(t), i.e, sk(t) = ζks1(t) for

k ∈ {2, · · · ,K} and ζk ∈ C. Then, the mixture model in (9) is written for coherent signals as

yc(t) = a(θ1)s1(t) +

K∑
k=2

a(θk, rk)s1(t) + e(t). (14)

Since the covariance matrix of yc(t) is rank-1, the subspace-based methods fail to resolve source angle

and ranges. In [19], a calibration-based approach is presented to estimate the angle and range parameters

of mixture signals. Specifically, the NF signal components are first treated as disturbance signals to be

calibrated, and the FF DoA angle is estimated. Then, the NF parameters are found. By exploiting the

coherent signal model, the observation in (14) can be written as

y(t) = a(θ1)s1(t)(1 + β2 + β3 + · · ·+ βK) + e(t), (15)

where βk = sk(t)
s1(t)

(k ∈ {2, . . . ,K}) is a direction-dependent coefficient. Then, the array model for FF is

y(t) = Γa(θk)s1(t) + e(t), (16)
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where Γ = diag{γ1, · · · , γN} ∈ CN×N is a direction-dependent matrix representing the impact of

NF signals as disturbances. As a result, the FF DoA angles can estimated with the knowledge of Γ,

which can be designed via a calibration technique. Define Ã =
[
ã(θ̃1), · · · , ã(θ̃C)

]
∈ CN×C as the

set of measurements collected during calibration process for C different DoA angles. Assume that the

calibration data is collected at the DoA angles Θ̃ = {θ̃1, · · · , θ̃C} uniformly in [−π/2, π/2]. Then, the

elements of the calibration matrix Γc at the c-th calibration angle θ̃c can be found as γn,c = [ã(θ̃c)]n
[a(θc)]n

for c = 1, · · · , C and n = 1, · · · , N . Then, the FF DoA angle θ1 can be estimated from the following

MUSIC spectra evaluated at Θ̃ i.e.,

P (θc) =
1

aH(θc)ŨNŨH
Na(θc)

, (17)

where ŨN ∈ CN×(N−1) is the noise subspace eigenvector matrix for the covariance of y(t) in (14).

Once the FF signal are obtained, the array output in (14) is transformed to the FF domain to perform

angle estimation of the NF signals by employing a near-to-far transformation (NFT) matrix T ∈ CN×N ,

i.e., AFF = TANF, where AFF ∈ CN×C and ANF ∈ CN×C denote the collected FF and NF calibration

measurements. Then, the transformed array output is given by

ynf(t) = Ty(t) = Ta(θ1)s(t) +Te(t)︸ ︷︷ ︸
distortions

+

K∑
k=2

Ta(θk, rk)s1(t)︸ ︷︷ ︸
desiredNFsignal

, (18)

where the FF signal behave like distortion. The transformed signal in (18) is still rank-deficient. To alle-

viate this, forward-backward spatial smoothing (FBSS) technique [46] to construct a full-rank covariance

matrix. Then, the DoA angles of the desired signals can be obtained via FF MUSIC algorithm based on

the covariance of ynf(t). Finally, the estimation of the ranges of the NF signals can be performed via

sparsity-based techniques by substituting the estimated FF and NF DoA angles [19].

IV. NF WIRELESS COMMUNICATIONS

NF signal processing is an emerging area of research in wireless communications, driven by advance-

ments in mmWave [47, 48] and THz [34, 49] technologies. For instance, mmWave massive MIMO

systems, which involve a very large number of antennas (e.g., > 128) and operate at high frequencies

(e.g., > 30 GHz), can have a Fraunhofer distance extending up to hundreds of meters. In such cases, NF

signal processing becomes crucial for performing key communication tasks such as channel estimation,

beamforming, and resource allocation.
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A. Channel Estimation

Consider K single-antenna users and L effective scatterers between each user and the BS. When all

the effective scatterers between the BS and a particular user are located within the radiative NF of the

BS, the channel between the BS and user k can be expressed as

hk =

L∑
l=1

αk,la(θk,l, rk,l), (19)

where αk,l is the complex gain of the l-th path. The θk,l and rk,l are the corresponding angle and

distance. To estimate the users’ channels, the BS receives pilot sequences sent by the users during the

training interval. To facilitate channel estimation and avoid interference, we assume that users are assigned

orthogonal pilot sequences. This allows us to focus on a single user’s received pilot signal (omitting the

user index k), which is given by

y =
√
ρAh+ n, (20)

where y is obtained after correlating the received signals with the pilot sequence of the user of interest,

and ρ is the pilot signal-to-noise ratio (SNR). The matrix A ∈ CNRF×N represents the analog combining

matrix, where the BS employs a hybrid beamforming architecture with NRF RF chains. Each entry of

A has a modulus of 1/
√
N [50]. The independent additive noise is denoted by n ∼ NC(0, IN ).

To leverage the sparse characteristics of high-frequency channels when L is relatively small, we

can utilize OMP-type algorithms with codebooks specifically designed to account for the NF spherical

wavefront [34, 49]. For a good performance in the OMP algorithm, the dictionary matrix should exhibit

low column coherence, meaning the magnitude of the maximum pairwise inner product between different

columns is minimized. In FF scenarios, the dictionary matrix can be constructed using the columns of

a discrete Fourier transform (DFT) matrix that correspond to FF array steering vectors. Conversely, for

the NF case, a common approach to dictionary construction is the polar-domain design [50], which aims

to achieve low column coherence, which is given as

µ = max
p ̸=q

∣∣∣aH (θp, rp)a (θq, rq)
∣∣∣ , (21)

where p and q are the column indices of the dictionary. The absolute value of the inner product is∣∣∣aH (θp, rp)a (θq, rq)
∣∣∣ =

∣∣∣∣∣∣
N̄∑

n=−N̄

e
−j 2π

λ

(
dn(sin θq−sin θp)+d2n2

(
cos2 θp

2rp
− cos2 θq

2rq

))∣∣∣∣∣∣ , (22)

where we have considered an ULA with N = 2N̄ + 1 elements and 0-th antenna being phase reference

of the array. In polar-domain dictionary design, both angular and distance sampling are performed. For
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angular sampling, we consider two arbitrary locations where cos2 θ
r = 1

ϕ , with ϕ representing a constant

corresponding to the distance ring ϕ. On this distance ring, the nulls are obtained by sampling the angles

θ = arcsin

(
nλ

Nd

)
, n = 0,±1,±2, . . . ,±

⌊
Nd

λ

⌋
. (23)

For distance sampling, we focus on two arbitrary locations with the same angle. Using the Fresnel integral

approximation of the summation in (22), one can derive that [50, Lemma 1], the distances should be

sampled according to

r =
1

s

N2d2 cos2 θ

2λε2
, s = 0, 1, 2, . . . , (24)

where ε > 0 is a parameter that can be adjusted to guarantee a certain column coherence. For instance,

to guarantee at most 0.5 of the maximum inner product (i.e., N ), ε should be selected larger than 1.6.

The dictionary matrix W is constructed using the array steering vectors a(θ, r), with angles and

distances selected according to the previously described angular and distance sampling methods to achieve

the desired column coherence. In Fig. 5(a), we compare the least squares (LS) channel estimator with

the OMP algorithm using dictionaries designed with ε = 1 and ε = 2. The simulation parameters

are as follows: N = 256, NRF = 8, and SNR = 10 dB. As shown in the figure, as the pilot length

increases, the normalized mean-squared error (NMSE) of all estimators decreases, with the OMP algorithm

demonstrating superior performance when the pilot length is sufficiently large. This is because the OMP

algorithm, combined with the polar-domain dictionary, effectively exploits both sparsity and the NF array

steering vector structure, unlike the non-parametric LS estimator.

NF effects can also be observed in midband frequencies for extremely large-scale arrays [29]. At these

frequencies, the sparsity may no longer exist. In such cases, the spatial correlation matrix can be utilized.

When the full knowledge of the spatial correlation matrix is available, the optimal approach is to use

the minimum mean-squared error (MMSE) estimator. However, acquiring the spatial correlation matrix

becomes increasingly challenging, particularly as the array size grows. To improve upon the simplest

LS alternative, one option for two-dimensional arrays is to leverage the low-rank characteristics of any

plausible spatial correlation matrix, which is independent of specific user locations and only dependent

on array geometry. The corresponding reduced-dimension LS (RS-LS) estimator can provide significantly

better estimates than LS without requiring specific correlation matrix knowledge [51].

B. Beamforming vs. Beam-Focusing

Suppose a user has a line-of-sight (LoS) channel to the BS. If the user is situated in the FF of the BS

and the BS employs maximum ratio transmission (MRT) precoding by adjusting the precoding vector
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Fig. 5. Channel estimation and SE performance. (a) NMSE versus pilot length for the LS and OMP-based channel estimators.

(b) Average SE per user with exact NF channels and mismatched FF channels.

according to the user’s FF array steering vector, the resulting beampattern exhibits a finite beamwidth

across the angular domain. However, along the distance at the user’s angle, the beampattern remains

strong. On the other hand, if the user is located in the NF of the BS, there is both a finite beam width

across the angular domain and a finite beam depth along the distance domain. This can be understood

by analyzing the NF beampattern at a specific angle θ by computing the normalized array gain:

G(θ, r) =
1

N

∣∣∣aH (θ, r0)a (θ, r)
∣∣∣ , (25)

where r0 is the range of the user [31]. It can be shown that G(θ, r) can be approximated using Fresnel

integrals C(z) =
∫ z
0 cos

(
π
2x

2
)
dx and S(z) =

∫ z
0 sin

(
π
2x

2
)
dx by

G(θ, r) ≈
∣∣∣∣C(z) + jS(z)

z

∣∣∣∣ , (26)

where z =

√
N2d2 sin2 θ

2λ

∣∣∣ 1r0 − 1
r

∣∣∣. Since
∣∣∣C(z)+jS(z)

z

∣∣∣ is a decreasing function for z ∈ [0, 1.8] and it reduces

to 0.5 when z ≈ 1.6, there is a finite beam depth along the r axis, which defines the 3 dB beam depth.

After some mathematical manipulations, it can be shown that if r < rBD where rBD = N2d2 sin2 θ
2λz2

3dB
, where

z3dB = 1.6, the 3 dB beam depth (BD) is given as

BD3dB =
2r20rBD

r2BD − r20
. (27)

On the other hand, if r0 ≥ rBD, then the beam depth becomes infinity as in the FF case.

One of the significant implications of NF beam focusing is that multiple users can be simultaneously

served by the BS, even if they are located along the same angle. This is not possible in the FF scenario,

where nulling the interference between users is challenging. Due to the finite beam depth characteristics
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of beam-focusing, it is feasible to spatially multiplex many users, a concept known as massive spatial

multiplexing [52].

To exemplify massive spatial multiplexing, we consider the uplink of a multi-user MIMO system with

K single-antenna users. Following [52, Sec. II.B], if one uses MMSE combining scheme, the spectral

efficiency of the k-th user is given as

SEk = log2

1 + pkh
H
k

 K∑
i=1,i ̸=k

pihih
H
i + σ2IN

−1

hk

 , (28)

where, pk denotes the transmit power of the k-th user, and σ2 represents the noise variance. In Fig. 5(b),

we present the average SE per user for N = 512, fc = 30 GHz, pk = 0.2 W, and σ2 = −87 dBm,

which corresponds to a 100 MHz bandwidth [53]. K users are positioned at an angle of θ = 0, with

distances uniformly distributed between 20 and 500 meters. In the figure, the “exact” curve illustrates the

SE derived using the precise NF LoS channels, while the “mismatched” curve represents the case where

LoS channels are approximated by FF array steering vectors. As shown, approximating user channels as

FF significantly reduces SE. This demonstrates that, despite identical path losses in both cases, utilizing

NF channels leads to a considerable improvement in SE.

C. Wideband Processing and Beam-Squint

In wideband hybrid beamforming, the generated beam direction changes across the subcarriers com-

pared to the central subcarrier. When the bandwidth is relatively large, e.g., in mmWave or THz designs,

the beam direction squints especially at the high-end and low-end subcarriers. This phenomenon is called

beam-squint [54]. For instance, consider two users/targets located in the FF and NF at the broadside

direction. In the FF, the angular deviation due to beam-squint is roughly 6◦ (0.4◦) for 300 GHz with

30 GHz (60 GHz with 1 GHz) bandwidth, respectively. However, NF beam-squint has approximately

(6◦, 10m) angular and range deviation for a target/user located at 20 m distance for 300 GHz with 30

GHz bandwidth. Fig. 6(a) shows the array beampattern in the presence of NF beam-squint.

Consider the array steering vector in (6), which can be rewritten in terms of the distance between the

k-th source and the n-th antenna, r(n)k , as

a(ϑk, rk) = [e−j2π d

λ
r
(1)
k , · · · , e−j2π d

λ
r
(N)
k ]T, (29)

where ϑk = sin θk and r
(n)
k =

√
r2k + 2(n− 1)2d2 − 2rk(n− 1)dϑk, which can be approximated [29,

32] as r
(n)
k ≈ rk − (n − 1)dϑk + (n − 1)2d2Υk, where Υk = 1−ϑ2

k

2rk
. Then, we can rewrite (29) as

a(ϑk, rk) ≈ e
−j2π fc

c0
rk ã(ϑk, rk), where the n-th element of ã(ϑk, rk) ∈ CN is

[ã(ϑk, rk)]n = e
j2π fc

c0
((n−1)dϑk−(n−1)2d2Υk). (30)
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Fig. 6. Beam-squint calibration in NF: (a) Array beampattern in the presence of NF beam-squint. (b) DoA estimation RMSE

in NF radar. (b) Channel estimation in NF communications.

Due to beam-squint, the generated beam toward (ϑk, rk) deviates to the spatial location (ϑ̄m,k, r̄m,k) at

the m-th subcarrier in the beamspace. Then, the n-th entry of the deviated steering vector in (30) for the

spatial location is

[ã(ϑ̄m,k, r̄m,k)]n=e
j2π fm

c0
((n−1)dϑ̄m,k−(n−1)2d2Ῡm,k), (31)

for which we can finally define the NF beam-squint in terms of DoAs and ranges as

∆(ϑk,m) = ϑ̄m,k − ϑk = (ηm − 1)ϑk, (32)

∆(rk,m) = r̄m,k − rk = (ηm − 1)rk = (ηm − 1)
1− η2mϑ2

k

ηm(1− ϑ2
k)
rk, (33)

where ηm = fc
fm

is the ratio of the central and m-th subcarrier frequencies.

The observation of beam-squint differs when the receive array is in the NF, which is the area where the

receive signal wavefront is spherical rather than plane-wave as in FF. In such a scenario, NF beam-squint

causes the squint of the generated beam toward distinct locations rather than directions. As a result,

handling beam-squint in the NF is even more challenging than that in the FF since the impact of beam-

squint and the model mismatch due to the spherical wavefront are intertwined. Thus, NF beam-squint

brings up new research challenges in both radar and communications for target/user DoA estimation [33],

beamforming [28, 29], waveform design, and resource allocation [35]. One direct solution, analogous to

the FF methods, is to employ OMP [37, 38] or MUSIC [33] algorithms with the dictionary of NF array

responses for channel/DoA estimation and beamforming. Fig.6(b-c) shows beam-squint-aware system

performance for DoA estimation root mean-squared error (RMSE) and channel estimation NMSE to

account for both radar and communication scenarios, respectively [33, 49]. In both cases, it is clear that

beam-squint should be accurately compensated as it leads to substantial performance loss in DoA/channel



16

-40 -30 -20 -10 0 10 20

0

5

10

15

20

25

30

35

40

45

(a)

0 5 10 15 20 25 30 35 40

18

19

20

21

22

23

24

25

26

27

28

(b)

Fig. 7. NF ISAC hybrid beamforming performance in terms of SE with respect to (a) SNR and (b) bandwidth. We assume

N = 128 transmit antennas with NRF = 8 RF chains to generate beams toward K = 3 targets and a user with L = 5 NLoS

paths. The carrier frequency and the bandwidth are selected as fc = 300 GHz and B = 20 GHz, respectively.

estimation. In comparison, the model mismatch, i.e., employing only FF model for the received signal,

has relatively less impact on the performance.

D. Integrated Sensing & Communications

Until recently, radar sensing and communication systems have been exclusively operated in non-

overlapping frequency bands. However, a common demand for ubiquitous connectivity in wireless com-

munications and high resolution radar sensing has led to a joint design of both systems in a shared

spectrum as an effective solution: ISAC paradigms to share spectrum between radar and communications

[40]. As the combination of both scenarios, NF ISAC design involves simultaneously generating multiple

beams toward both users and targets which are located in the NF [39]. Fig. 7 shows the NF ISAC

beamforming performance in terms of spectral efficiency (SE) with respect to both SNR as well as the

system bandwidth. We can see that the FF assumption leads to serious performance degradation in both

hybrid beamforming design. It can also be seen NF beam-squint should be modeled accurately to maintain

satisfactory performance over a large bandwidth in the ISAC system.

V. ACOUSTICS AND ULTRASOUND

In acoustics and ultrasound, the source location is usually in the NF of the sensor (microphone/hydrophone

for acoustics and transducer for ultrasound) array, thereby observing the wavefront curvature. Fourier near-

field acoustic holography (NAH) has been very popular since 1980s [6]. This technique reconstructs a

3-D sound field from the 2-D hologram scanned above the source surface in planar, cylindrical, and
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spherical geometries. This classical technique has been investigated for acoustic source localization for

decades. Some recent extensions of NAH are discussed below.

A. Localization in Acoustics

Localization of acoustic signals is a major task in air/underwater communications, security surveillance

and sonar, wherein acoustic vector sensor (AVS) is employed as a measuring device [8]. An AVS is

composed of four components: three orthogonal velocity sensors measuring the Cartesian components

and an isotropic pressure sensor measuring the acoustic pressure. Specifically, the 4×1 NF array manifold

for a AVS is given by

v =


u

v

w

p

 =



sinφ cos θ

sinφ sin θ

cosφ

1√
1+( λ

2πr )
2
ej arctan

λ

2πr


, (34)

where θ, φ and r represent azimuth/elevation angles and the distance of the source. The array manifold

in (34) can be estimated via the standard subspace-based methods such as estimation of signal parameters

via rotational invariance (ESPRIT) [7]. Then, the 3D source location can be estimated by taking into

account the NF propagation path attenuation and the phase difference among the sensors [8].

B. Beamforming in Acoustics

In acoustics, beamforming is an important technology in microphone array signal processing to steer,

shape and focus the acoustic waves toward a desired direction. A widely used beamforming technique

is minimum variance distortionless response (MVDR), which is also called Capon beamforming [28].

Define ym(t) ∈ CN as the microphone array output, which are multiplied by the beamforming weights,

i.e., w1, · · · , wN ∈ C. Then, the combined beamformer output is yo(t) = wHym(t), where ym(t) =

a(θ, r)sm(t) + em denotes the array output for the source signal sm(t) ∈ C, and w = [w1, · · · , wN ]T is

the beamforming vector. For a NF acoustic source signal, the MVDR beamformer design problem is

minimize
w

wHRmw subject to wHa(θ, r) = 1, (35)

where Rm = 1
T

∑T
t=1 ym(t)y

H
m(t) is the sample covariance matrix of the array output and a(θ, r) denotes

the desired direction of interest of the beamformer. The optimal solution for (35) is

wopt =
(
aH(θ, r)R−1

m a(θ, r)
)−1

R−1
m a(θ, r), (36)
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which requires the knowledge of a(θ, r). To relax this requirement, various beamforming techniques have

been introduced for a more robust design [28]. Due to simplicity of the FF model, the transformation or

calibration of the NF array output to FF have been widely adopted. Therefore, in order to deal with the

NF effect in acoustics, a common approach is to employ a calibration technique by applying a gain/phase

compensation to each array output so that the curved wavefront of the resulting signals appear as plane-

wave [12]. It is also shown in [12] that the improved beamforming performance can be achieved by

exploiting the a priori knowledge of the distance between the source and the array, especially when the

source of interest lies in NF while the interfering sources are located in the FF. Besides, subspace-based

techniques, e.g., MUSIC and ESPRIT, can be employed for joint angle and range estimation [10].

C. Beamforming in Ultrasound Imaging

While beamforming has been widely used for narrowband signals in the FF, medical ultrasound imaging

involves wideband signals originating in NF [13]. Unlike classical radar imaging that assumes targets

in FF as point sources, ultrasound NF imaging encounters extended scatterers. Hence, DoA estimation

algorithms designed for point sources are inapplicable here. Generally, spread source modeling approach

may be employed but the presence of severe background noise precludes widespread usage of this method.

Hence, MVDR beamforming is commonly used by casting the problem as spatial spectrum estimation.

However, this method is very sensitive to the errors in the imaging system as it is SNR-dependent based

on the data covariance matrix. In order to overcome these challenges, sidelobe pattern control techniques

have been introduced based on array optimization and diagonal loading [14]. Alternatively, a full-scale

electromagnetic or acoustic model of the scenario, including sensor/receiver characteristics and target

environment, may be employed for DoA estimation.

Define yu(xp, yp, zp) ∈ CN as the NF response vector at the field point (xp, yp, zp) in Cartesian

coordinate systems. Suppose that the the mainlobe of the array is steering to the focus point (xf , yf , zf ).

Then, the combined beamformer output of the ultrasound transducer array from the acoustic point source

at the (xp, yp, zp) becomes B(xp, yp, zp) = wHyu(xp, yp, zp). The aim is to achieve maximum array

gain at the desired location (xf , yf , zf ) while minimizing the sidelobes in the beampattern. Thus, the

beamforming design problem for sidelobe control is given by

minimize
w

ξ subject to wHyu(xf , yf , zf ) = 1, ∥w∥ ≤ ξ, |wHyu(xp, yp, zp)| ≤ δ, (37)

where (xp, yp, zp) ∈ Θu, and δ controls the sidelobe level in the sidelobe region Θu.
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VI. NF OPTICS

Until the 1980s, NF optics remained confined to microscopy. However, with the advent of applications

such as tomography [55], cryogenic electron microscopy [56], and x-ray coherent diffractive imaging [57],

NF techniques became highly diversified. In particular, infrared NF offers remarkable chemical sensitivity

and nanoscopic spatial resolution, enabling the quantitative extraction of material properties from 3-D

structured objects such as thin films and nanostructures [58]. A major advantage of NF imaging is its

ability to surpass the resolution limits of conventional FF techniques, which are constrained by diffraction

to about half the wavelength of the employed light. This limitation is a significant barrier to examining

nanoscale objects, where resolutions in the range of 10-100 nm are required. In contrast, NF propagation

enables resolutions that are unattainable with traditional methods, especially in the holographic regime,

where small Fresnel numbers produce high contrast. More recently, there has been a focus on NF phase

Retrieval (PR) for fields such as spanning holography [59], ptychography [60], and lens-less x-ray coherent

diffractive imaging [57].

A general NF PR problem has the following setting. The spherical near-field samples are defined in

the rotation space, which is a set of all possible rotations on the 3-D Euclidean space R3. This space

is parameterized by three rotation angles: polarization angles, ϕ, χ ∈ [02π] and azimuth angle θ ∈ [0π].

Wigner D-functions are the orthonormal basis of this space, i.e., [61]

Dk,n
l (θ, ϕ, χ) = Nle

−jkϕdk,nl (cos θ)e−jnχ, (38)

where dk,nl (cos θ) is the Wigner D-function of band-limit degree 0 ≤ l ≤ B−1 and orders −l ≤ k, n ≤ l,

and Nl =
√

2l+1
8π2 is the normalization factor. The spherical NF field h(θ, ϕ, χ) using a Wigner D-function

expansion and bandwidth B is

h(θ, ϕ, χ) =

B−1∑
l=0

l∑
k=−l

l∑
n=−l

αk,n
l Dk,n

l (θ, ϕ, χ), (39)

where {αn
l }

l
k,n=−l are spherical mode coefficients to be reconstructed. Spherically sampling {θ, ϕ, χ} in

m points, the Wigner D expansion (39) is rewritten in the form of following linear feasibility problem:

h = AWα, where h = [h (θ1, ϕ1, χ1) , · · · , h (θm, ϕm, χm)]⊤ ,α ∈ Cn is constructed by Wigner D

coefficients {αn
l }

l
k,n=−l, and the Wigner D-matrix AW is

AW =


D0,0

0 (θ1, ϕ1, χ1) . . . DB−1,B−1
B−1 (θ1, ϕ1, χ1)

...
...

. . .
...

D0,0
0 (θm, ϕm, χm) . . . DB−1,B−1

B−1 (θm, ϕm, χm)

 . (40)

This matrix is a collection of m different samples of Wigner D-functions, where for each sample there exist

Wigner D-functions related to its degree l and order |k|, |n| < B. When only the phaseless measurements
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of NF radiation are available, then recovering α from the embedded phaseless data given the knowledge

of AW is the optimization problem

Find α subject to y = |AWα|, (41)

where the non-convex constraint models the measurement process. This PR problem may also be gen-

eralized to mixed measurements from near-, middle-, and far-zone fields [62]. Since the problem results

in a non-convex inverse problem, the recovery method to obtain the phase generally exploit a specific

optical design or signal structure [62, 63].

VII. SUMMARY AND FUTURE OUTLOOK

NF signal processing, traditionally regarded as a specialized niche, has a rich and extensive history that

has significantly contributed to the advancement of various scientific fields, including electromagnetics,

acoustics, and medical imaging. Classical NF techniques laid the groundwork for understanding and

manipulating electromagnetic fields at close ranges, enabling breakthroughs that have shaped modern

technology. In recent years, however, there has been a remarkable resurgence of interest in NF signal

processing, driven by advancements in emerging technologies such as ELAA and ISAC. Further, enhanced

capabilities for conducting measurements across various optical regimes have reinvigorated NF optics,

leading to a proliferation of specialized applications. Recent quantum-inspired techniques like those

utilizing Rydberg atoms [64] have underscored the need to revisit and expand NF signal processing

approaches. In summary, the ongoing exploration of NF theory and its applications holds great promise

for addressing new and complex problems in signal processing.
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